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Abstract. We propose a privacy-preserving formulation of a lineargoaon whose constraint matrix is par-
titioned into groups of columns where each group of colummd igs corresponding cost coefficient vector are
owned by a distinct entity. Each entity is unwilling to sharemake public its column group or cost coefficient
vector. By employing a random matrix transformation we ¢nret a linear program based on the privately held
data without revealing that data or making it public. Thes@cy-preserving transformed linear program has
the same minimum value as the original linear program. Carapbgroups of the solution of the transformed
problem can be decoded and made public only by the origimalgythat owns the corresponding columns of the
constraint matrix and can be combined to give an exact solwictor of the original linear program.
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1. INTRODUCTION

Recently there has been substantial interest in privaegguving classification wherein
the data to be classified is owned by different entities thatuawilling to reveal the data
they hold or make it public. Various techniques were devetbfor generating classifiers
without revealing the privately held data [11, 9, 10, 4, 1576]. Since underlying the
classification problem is an optimization problem, ofteiin@r program, we investigate
here the problem of solving a general linear program whexetby-n constraint matrixA

is divided intop blocks of columns, each block of which together with the esponding
block of cost vector, is owned by a distinct entity not wigito make its data public. By
using a linear transformation involving a different randamatrix for each entity, as was
done in [7] for the special case of classification problenmsane able to solve a privacy-
preserving transformed linear program that generatesagct splution to the original linear
program without revealing any of the privately held data.

A possible example illustrating this problem might be thessical diet problem of min-
imizing the cost of usingn foods to generaten dietary supplements where theh food
containsAjj units of dietary supplemerit The privacy issue arises when tpecolumn
blocks of them+by-n constraint matrixA, as well as the corresponding cost vector blocks,
are owned byp entities unwilling to make their proprietary matrix colurgnoup and the
corresponding cost vector public. The proposed approamhadl allow us to solve this
problem by a random linear transformation that will not r@vany of the privately held



data but will give a publicly available exact minimum valoeethe original linear program.
Component groups of the solution vector of the privacy-presg transformed linear pro-
gram can be decoded only by the group owners and can be made Ippkhese entities
to give an exact solution vector to the original linear pagr

We briefly describe the contents of the paper. In Section 2 we tpe theory and in
Section 3 an implementation of our method for a privacy-erésg linear programming
formulation using a random transformation. In Section 4 vixe gqaumerical examples
demonstrating our approach. Section 5 concludes the pageavgummary and an open
problem.

We describe our notation now. All vectors will be column \@stunless transposed to
a row vector by a primé. For a vecto € R" the notatior; will signify either the j-th
component olj-th block of components. The scalar (inner) product of twotgesx and
y in the n-dimensional real spade” will be denoted byx'y. The notationA € R™" will
signify a realm x n matrix. For such a matrixd’ will denote the transpose @, A; will
denote the-th row ori-th block of rows ofA andA ; the j-th column or thej-th block of
columns ofA. A vector of zeros in a real space of arbitrary dimension tdldenoted by
0.

2. Privacy-Preserving Linear Programming for Vertically Partitioned Data

We consider the linear program:

miQ c/x where X = {x| Ax> b}, (1)
Xe

and the matriXA € R™" together with the cost vectarc R", that is [‘/i] are divided into
p vertical blocks ofg,np, ...... andnp, (m+ 1)-dimensional columns withy +nx+ ...+
np = n. Each block of columns oA and corresponding block of the cost vectbrare
“owned” by a distinct entity that is unwilling to make thisdek of data public or share it
with the other entities. We wish to solve this linear progmaitnout revealing any privately
held data. We shall achieve this by proceeding as follows.

Each of thep entities chooses its own privately held random maBixe RN j =
1,...,p, wherek > n. Define:

B=[B1 Ba...... B.p| € RN, (2)

We note immediately that the rank of the randomly generatatiirB € R<" with k > n
is n [2], which is the reason for choosirkg> n. Utilizing this fact we define the following
invertible transformation:

x=Bu, (3)

and its least 2-norm inverse:
u=B(B'B) x. (4)

We now transform our original linear program into the foliow “secure” linear program:

miLrjw c¢B'u whereU = {u| AB'u> b}. (5)
ue



We use the term “secure” to describe the transformed linesgram (5) because it does not
reveal any of the privately held da{é’_], j=1,...,p. This is so because for each entity
]

different from entity j, it is impossible to compute eithe; from the revealed product
cj'Bj’, or A from the revealed produd ;B.;" withoutknowing the random matriB.;
chosen by entity and known to itself only. See also Remark 2 below.

We now relate our original linear program (1) to the transfed linear program (5) as
follows.

Proposition 1 Letk> n for the random matrix B: R" of (2). The secure linear program
(5) is solvable if and only if the linear program (1) is soNaln which case the extrema of
both linear programs are equal.

Proof: We begin by stating the duals of the two linear programs (&) @) respectively
as follows:

mz\;\/xb’v whereV = {v|A'v=c, v> 0}, (6)
ve

max b'w whereW = {w | BAw = Bc, w > 0}. (7)
we

Let x andv solve the dual linear programs (1) and (6) respectively. rigafias in (3)-(4),
that isx = B'U'andu= B(B'B)"'x. Thusu satisfies the constraints of (5). Sinesolves
the dual problem (6) it follows that:
Av=c, v>0. (8)
Consequently,
BAV=Bc, v>0. 9)
Hencev € W, the dual feasible region of (7). Consequently the dual (8H(7) are both

feasible and hence by strong duality theory are both sodvafith equal extrema. Conse-
quently:

cdBU=cx= miQ dx = max bv = bv < max b'w= miLrJ1 c'B'u, (10)
Xe ve we ue!

where the inequality above follows from the fact just es&itgld thatv'e W. Henceu =
B(B'B)xsolves (5).

Conversely now, leti andw solve the dual pair (5)-(7). Let= B'U and hence € X.
Sincew solves the dual problem (7), it follows that

BAW = Bc, w> 0. (11)
Since the rank of the matri® is n, it follows that
Aw=c, w>0. (12)

Hencew €V, that is it is feasible for the dual problem (6). Since- B'uc X andwe V,
it follows that the dual pair (1)-(6) are solvable.

We have thus established that the linear program (1) is btdvhand only if the secure
linear program (5) is solvable. It remains to show that thizeara of these two linear
programs are equal.



Sincew € W implies thatw € V, it follows that

maxb'w=b'w < maxb'v. (13)
weW veV
Hence:
min ¢B'u = maxb'w > min ¢’x = maxb'v > maxb'w = min ¢B'u, (14)
ueu wew xeX veV wew ucuU

where the equalities above follow from the equality of ogimprimal and dual objectives

of linear programs, the first inequality follows from (10)cathe second inequality from

(13). Thus, mxirc’x = miLrjw ¢/B'u, and the extrema of (1) and (5) are equal. [
Xe uec

We turn now to an explicitimplementation of the secure liq@agramming formulation

(5).
3. Privacy-Preserving Linear Program (PPLP)

Starting with the linear program (1) that is partitioned amgp entities as described in Sec-
tion 2, we propose the following algorithm for generatingdusion to the linear program
without disclosing any of the privately held data.

Algorithm 1 PPLP Algorithm

(I) All p entities agree on a k n, the number of rows of the random matrixcBR¥" as
definedin (2).

() Each entity generates its own privately held randomnina.j € RN j=1,...... . P,
where 1) is the number of features held by entity j which results in:

B=[B1 B2......Bp| € R*". (15)

(Il Each entity j makes public only its matrix productjB ;" as well as its cost coeffi-
cient product Bicj. These products do not reveal eithef &r c; but allow the public
computation of the full constraint matrix needed for theusedinear program (5):

AB = A.lB.ll + A.zB.Z/ +. + A.pB.p/, (16)
as well as the cost coefficient for (5):

B =cBa'+0cBy +...... +cyB.y. (17)

(IV) A public optimal solution vector u to the secure lineaogram (5) and a public opti-
mal objective function valué®'u are computed. By Proposition 1 this optimal value
equals the optimal objective function of the original linpaogram (1).

(V) Each entity computes its optimgleomponent group from (3) as follows:

xj:B.j’u, i=1,...,p. (18)



(V1) The solution component vectors x=1,..., p, are revealed by its owners if a public
solution vector to the original linear program is agreed upoElse the component
vectors may be kept private if only the minimum value of (heisded, in which case
that minimum value equals the the publicly available min"rnmaluemi&] ¢'B'u of the

secure linear program (5).

Remark 2 Note that in the above algorithm no entity j reveals its dattnx A or its
cost group vector £ Components of the solution vectgrase revealed if agreed upon.
Note further that it is impossible to compute thejmumbers constituting Ac R™"
given the mk numbers constitutitdB.j’) € R™ and not knowing B € R“". Similarly

it is impossible to computg & R" from ¢'B.j’ € R¥, or x; € R" from B’u € R" without
knowing B;j. Hence, all entities share the publicly computed optimaieaf their common
linear program but each entity shares or keeps private togiimal components values
unless agreed upon to make them public.

We turn now to some computational results.

4. Computational Results

We demonstrate our results by solving two examples as fellowa 4 Gigabyte machine
runningi386.rhel5 Linux. We utilize the CPLEX linear programming code [3]tlvn
MATLAB [8] to solve our linear programs. The first example hE30 constraints and
1000 variables, while the second example has 100 variabl@sl800 constraints. For
both examples, the components of the ma#riwere uniformly distributed in the interval
[-50,50], and the components of the primal solutionf (1) were uniformly distributed
in the interval[—5,5], with about half of the primal constraints of (1) being aetiwith
corresponding dual variables uniformly distributed in ihierval [0, 10]. We usedk = nin
both examples. Similar results were obtainedifor n.

Example1 For our first example we generated a random solvable lineagmm (1)
with m= 100and n= 1000 We partitioned the columns of A as well as the cost vector
c into three groups with n= 500, n; = 300and s = 200. We generated three random
matrices, with coefficients uniformly distributed in thieival [0,1] with B; € R™™ B, €
R™M and B3 € R™". We solved the secure linear program (5) and compared itienaht
objective value with that of (1). The two optimal objectiagseed to 14 significant figures
attained at two distinct optimal solution points. Compigattime was 0.163 seconds.

Example2 For our second example we generated a random solvable lipegram (1)
with m= 1000and n= 100 We patrtitioned the columns of A as well as the cost vector ¢
into three groups with n= 50, n = 30and ry = 20. We generated three random matrices,
with coefficients uniformly distributed in the interval {Qwith B.; € R™™, B, € R™™

and Bz € R™", We solved the secure linear program (5) and compared itsnabtob-
jective value with that of (1). The two optimal objectiveseagl to 13 significant figures
attained at points that were essentially the same, thatasotimorm of their difference was
less thar?.3e— 13. Computation time was 0.177 seconds.



We note that the solution vector values for the linear progr#l) and (5) in the above
two examples may or may not be the same because either prafdgmot have a unique
solution. Thus attaining the same optimal value was our ro@mparative measure.

5. Conclusion and Outlook

We have shown how to securely solve a linear program whemitstcaint matrix and ob-
jective function data are partitioned among entities ulinglto share their data or make it
public. Another interesting problem in this realm occursewtihe constraint matrix rows
and the corresponding right hand side data are partitiomazhg entities similarly unwill-
ing to make their data public. We refer to the first problermreadly addressed in the present
paper, as a vertically partitioned linear program and titetgroblem as horizontally par-
titioned linear program. Just as in the case for horizoytadlrtitioned classification prob-
lems [5], all entities use theamerandom matrixB € R*" in the secure linear program
(5) to compute privately their matrix produstB’, i = 1,..., p. These matrix products are
combined to generate a pubA®’ as follows:

AB
AB = | : (19)

ApB’
BecauseB is publicly known, unlike the case treated in this papemust be less than
n again as in [5] in order to prevent the computationfpffrom the publicly available
AB'. This latter condition that < n prevents the secure linear program (5) from giving an
exact solution to our original linear program (1). Howeuéis issue does not hinder the
generation of an accurate privacy-preserving classifigbjnas measured by testing set
correctness, but does prevent here a secure linear prog)anoin generating an accurate
solution to the original linear program (1). Circumventitigs issue for a general linear

program is an interesting problem for possible future regedhat we do not have an
immediate answer for now.
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