
Optimization Letters, , 1–7 (2010)
c© 2010

Privacy-Preserving Linear Programming

O. L. MANGASARIAN olvi@cs.wisc.edu
Computer Sciences Department
University of Wisconsin
Madison, WI 53706
Department of Mathematics
University of California at San Diego
La Jolla, CA 92093

Received March 16, 2010

Editor: Panos Pardalos

Abstract. We propose a privacy-preserving formulation of a linear program whose constraint matrix is par-
titioned into groups of columns where each group of columns and its corresponding cost coefficient vector are
owned by a distinct entity. Each entity is unwilling to shareor make public its column group or cost coefficient
vector. By employing a random matrix transformation we construct a linear program based on the privately held
data without revealing that data or making it public. The privacy-preserving transformed linear program has
the same minimum value as the original linear program. Component groups of the solution of the transformed
problem can be decoded and made public only by the original group that owns the corresponding columns of the
constraint matrix and can be combined to give an exact solution vector of the original linear program.

Keywords: security, privacy-preserving, linear programming, vertically partitioned data

1. INTRODUCTION

Recently there has been substantial interest in privacy-preserving classification wherein
the data to be classified is owned by different entities that are unwilling to reveal the data
they hold or make it public. Various techniques were developed for generating classifiers
without revealing the privately held data [11, 9, 10, 4, 1, 7,5, 6]. Since underlying the
classification problem is an optimization problem, often a linear program, we investigate
here the problem of solving a general linear program where them-by-n constraint matrixA
is divided intop blocks of columns, each block of which together with the corresponding
block of cost vector, is owned by a distinct entity not willing to make its data public. By
using a linear transformation involving a different randommatrix for each entity, as was
done in [7] for the special case of classification problems, we are able to solve a privacy-
preserving transformed linear program that generates an exact solution to the original linear
program without revealing any of the privately held data.

A possible example illustrating this problem might be the classical diet problem of min-
imizing the cost of usingn foods to generatem dietary supplements where thej-th food
containsAi j units of dietary supplementi. The privacy issue arises when thep column
blocks of them-by-n constraint matrixA, as well as the corresponding cost vector blocks,
are owned byp entities unwilling to make their proprietary matrix columngroup and the
corresponding cost vector public. The proposed approach here will allow us to solve this
problem by a random linear transformation that will not reveal any of the privately held

2

data but will give a publicly available exact minimum value to the original linear program.
Component groups of the solution vector of the privacy-preserving transformed linear pro-
gram can be decoded only by the group owners and can be made public by these entities
to give an exact solution vector to the original linear program.

We briefly describe the contents of the paper. In Section 2 we give the theory and in
Section 3 an implementation of our method for a privacy-preserving linear programming
formulation using a random transformation. In Section 4 we give numerical examples
demonstrating our approach. Section 5 concludes the paper with a summary and an open
problem.

We describe our notation now. All vectors will be column vectors unless transposed to
a row vector by a prime′. For a vectorx ∈ Rn the notationx j will signify either the j-th
component orj-th block of components. The scalar (inner) product of two vectorsx and
y in then-dimensional real spaceRn will be denoted byx′y. The notationA ∈ Rm×n will
signify a realm×n matrix. For such a matrix,A′ will denote the transpose ofA, Ai will
denote thei-th row or i-th block of rows ofA andA· j the j-th column or thej-th block of
columns ofA. A vector of zeros in a real space of arbitrary dimension willbe denoted by
0.

2. Privacy-Preserving Linear Programming for Vertically Partitioned Data

We consider the linear program:

min
x∈X

c′x where X = {x | Ax≥ b}, (1)

and the matrixA∈ Rm×n together with the cost vectorc∈ Rn, that is
[c′

A

]

, are divided into
p vertical blocks ofn1,n2, andnp, (m+1)-dimensional columns withn1+n2+ . . .+
np = n. Each block of columns ofA and corresponding block of the cost vectorc′ are
“owned” by a distinct entity that is unwilling to make this block of data public or share it
with the other entities. We wish to solve this linear programwithout revealing any privately
held data. We shall achieve this by proceeding as follows.

Each of thep entities chooses its own privately held random matrixB· j ∈ Rk×n j , j =
1, . . . , p, wherek≥ n. Define:

B = [B·1 B·2B·p] ∈ Rk×n
. (2)

We note immediately that the rank of the randomly generated matrix B∈ Rk×n with k ≥ n
is n [2], which is the reason for choosingk≥ n. Utilizing this fact we define the following
invertible transformation:

x = B′u, (3)

and its least 2-norm inverse:
u = B(B′B)−1x. (4)

We now transform our original linear program into the following “secure” linear program:

min
u∈U

c′B′u whereU = {u | AB′u≥ b}. (5)

3

We use the term “secure” to describe the transformed linear program (5) because it does not

reveal any of the privately held data
[c′j
A· j

]

, j = 1, . . . , p. This is so because for each entity

different from entity j, it is impossible to compute eitherc j from the revealed product
c j

′B· j
′, or A· j from the revealed productA· jB· j

′ without knowing the random matrixB· j

chosen by entityj and known to itself only. See also Remark 2 below.
We now relate our original linear program (1) to the transformed linear program (5) as

follows.

Proposition 1 Let k≥ n for the random matrix B∈Rk×n of (2). The secure linear program
(5) is solvable if and only if the linear program (1) is solvable in which case the extrema of
both linear programs are equal.

Proof: We begin by stating the duals of the two linear programs (1) and (5) respectively
as follows:

max
v∈V

b′v whereV = {v | A′v = c, v≥ 0}, (6)

max
w∈W

b′w whereW = {w | BA′w = Bc, w≥ 0}. (7)

Let x̄ andv̄ solve the dual linear programs (1) and (6) respectively. Define ū as in (3)-(4),
that isx̄ = B′ū andū = B(B′B)−1x̄. Thusū satisfies the constraints of (5). Since ¯v solves
the dual problem (6) it follows that:

A′v̄ = c, v̄≥ 0. (8)

Consequently,
BA′v̄ = Bc, v̄≥ 0. (9)

Hence ¯v∈ W, the dual feasible region of (7). Consequently the dual pair(5)-(7) are both
feasible and hence by strong duality theory are both solvable with equal extrema. Conse-
quently:

c′B′ū = c′x̄ = min
x∈X

c′x = max
v∈V

b′v = b′v̄ ≤ max
w∈W

b′w = min
u∈U

c′B′u, (10)

where the inequality above follows from the fact just established that ¯v ∈ W. Hence ¯u =
B(B′B)−1x̄ solves (5).

Conversely now, let ¯u andw̄ solve the dual pair (5)-(7). Let ¯x = B′ū and hence ¯x ∈ X.
Sincew̄ solves the dual problem (7), it follows that

BA′w̄ = Bc, w̄≥ 0. (11)

Since the rank of the matrixB is n, it follows that

A′w̄ = c, w̄≥ 0. (12)

Hencew̄∈V, that is it is feasible for the dual problem (6). Since ¯x = B′ū∈ X andw̄∈V,
it follows that the dual pair (1)-(6) are solvable.

We have thus established that the linear program (1) is solvable if and only if the secure
linear program (5) is solvable. It remains to show that the extrema of these two linear
programs are equal.

4

Sincew̄∈W implies thatw̄∈V, it follows that

max
w∈W

b′w = b′w̄ ≤ max
v∈V

b′v. (13)

Hence:

min
u∈U

c′B′u = max
w∈W

b′w ≥ min
x∈X

c′x = max
v∈V

b′v ≥ max
w∈W

b′w = min
u∈U

c′B′u, (14)

where the equalities above follow from the equality of optimal primal and dual objectives
of linear programs, the first inequality follows from (10) and the second inequality from
(13). Thus, min

x∈X
c′x = min

u∈U
c′B′u, and the extrema of (1) and (5) are equal.

We turn now to an explicit implementation of the secure linear programming formulation
(5).

3. Privacy-Preserving Linear Program (PPLP)

Starting with the linear program (1) that is partitioned among p entities as described in Sec-
tion 2, we propose the following algorithm for generating a solution to the linear program
without disclosing any of the privately held data.

Algorithm 1 PPLP Algorithm

(I) All p entities agree on a k≥ n, the number of rows of the random matrix B∈ Rk×n as
defined in (2).

(II) Each entity generates its own privately held random matrix B· j ∈Rk×n j , j = 1, , p,
where nj is the number of features held by entity j which results in:

B = [B·1 B·2B·p] ∈ Rk×n
. (15)

(III) Each entity j makes public only its matrix product A· jB· j
′ as well as its cost coeffi-

cient product B· jc j . These products do not reveal either A· j or c j but allow the public
computation of the full constraint matrix needed for the secure linear program (5):

AB′ = A·1B·1
′ +A·2B·2

′ ++A·pB·p
′
, (16)

as well as the cost coefficient for (5):

c′B′ = c′1B·1
′ +c′2B·2

′ ++c′pB·p
′
. (17)

(IV) A public optimal solution vector u to the secure linear program (5) and a public opti-
mal objective function value c′B′u are computed. By Proposition 1 this optimal value
equals the optimal objective function of the original linear program (1).

(V) Each entity computes its optimal xj component group from (3) as follows:

x j = B· j
′u, j = 1, . . . , p. (18)

5

(VI) The solution component vectors xj , j = 1, . . . , p, are revealed by its owners if a public
solution vector to the original linear program is agreed upon. Else the component
vectors may be kept private if only the minimum value of (1) isneeded, in which case
that minimum value equals the the publicly available minimum valuemin

u∈U
c′B′u of the

secure linear program (5).

Remark 2 Note that in the above algorithm no entity j reveals its data matrix A· j or its
cost group vector cj . Components of the solution vector xj are revealed if agreed upon.
Note further that it is impossible to compute the mnj numbers constituting A· j ∈ Rm×n j

given the mk numbers constituting(A· jB· j
′)∈Rm×k and not knowing B· j ∈Rk×n j . Similarly

it is impossible to compute cj ∈ Rn j from cj
′B· j

′ ∈ Rk, or xj ∈ Rn j from B· j ′u∈ Rn j without
knowing B· j . Hence, all entities share the publicly computed optimal value of their common
linear program but each entity shares or keeps private theiroptimal components values
unless agreed upon to make them public.

We turn now to some computational results.

4. Computational Results

We demonstrate our results by solving two examples as follows on a 4 Gigabyte machine
running i386 rhe15 Linux. We utilize the CPLEX linear programming code [3] within
MATLAB [8] to solve our linear programs. The first example has100 constraints and
1000 variables, while the second example has 100 variables and 1000 constraints. For
both examples, the components of the matrixA were uniformly distributed in the interval
[−50,50], and the components of the primal solution ¯x of (1) were uniformly distributed
in the interval[−5,5], with about half of the primal constraints of (1) being active with
corresponding dual variables uniformly distributed in theinterval[0,10]. We usedk = n in
both examples. Similar results were obtained fork > n.

Example 1 For our first example we generated a random solvable linear program (1)
with m= 100and n= 1000. We partitioned the columns of A as well as the cost vector
c into three groups with n1 = 500, n2 = 300and n3 = 200. We generated three random
matrices, with coefficients uniformly distributed in the interval [0,1] with B·1 ∈Rn×n1, B·2 ∈
Rn×n2 and B·3 ∈ Rn×n3. We solved the secure linear program (5) and compared its optimal
objective value with that of (1). The two optimal objectivesagreed to 14 significant figures
attained at two distinct optimal solution points. Computation time was 0.163 seconds.

Example 2 For our second example we generated a random solvable linearprogram (1)
with m= 1000and n= 100. We partitioned the columns of A as well as the cost vector c
into three groups with n1 = 50, n2 = 30and n3 = 20. We generated three random matrices,
with coefficients uniformly distributed in the interval [0,1] with B·1 ∈ Rn×n1, B·2 ∈ Rn×n2

and B·3 ∈ Rn×n3. We solved the secure linear program (5) and compared its optimal ob-
jective value with that of (1). The two optimal objectives agreed to 13 significant figures
attained at points that were essentially the same, that is the∞-norm of their difference was
less than2.3e−13. Computation time was 0.177 seconds.

6

We note that the solution vector values for the linear programs (1) and (5) in the above
two examples may or may not be the same because either problemmay not have a unique
solution. Thus attaining the same optimal value was our maincomparative measure.

5. Conclusion and Outlook

We have shown how to securely solve a linear program when its constraint matrix and ob-
jective function data are partitioned among entities unwilling to share their data or make it
public. Another interesting problem in this realm occurs when the constraint matrix rows
and the corresponding right hand side data are partitioned among entities similarly unwill-
ing to make their data public. We refer to the first problem, already addressed in the present
paper, as a vertically partitioned linear program and the latter problem as horizontally par-
titioned linear program. Just as in the case for horizontally partitioned classification prob-
lems [5], all entities use thesamerandom matrixB ∈ Rk×n in the secure linear program
(5) to compute privately their matrix productAiB′, i = 1, . . . , p. These matrix products are
combined to generate a publicAB′ as follows:

AB′ =







A1B′

...
ApB′






(19)

BecauseB is publicly known, unlike the case treated in this paper,k must be less than
n again as in [5] in order to prevent the computation ofAi from the publicly available
AiB′. This latter condition thatk < n prevents the secure linear program (5) from giving an
exact solution to our original linear program (1). However,this issue does not hinder the
generation of an accurate privacy-preserving classifier in[5], as measured by testing set
correctness, but does prevent here a secure linear program (5) from generating an accurate
solution to the original linear program (1). Circumventingthis issue for a general linear
program is an interesting problem for possible future research that we do not have an
immediate answer for now.

Acknowledgments The research described in this Data Mining Institute Report10-01,
March 2010, was supported by the Microsoft Corporation and ExxonMobil. I am indebted
to Alice Bednarz of the University of Adelaide, Australia, who pointed out a difficulty
associated with possibly including a nonnegativity constraint in the linear program (1).

References

1. K. Chen and L. Liu. Privacy preserving data classificationwith rotation perturbation. InProceedings of the
Fifth International Conference of Data Mining (ICDM’05), pages 589–592. IEEE, 2005.

2. X. Feng and Z. Zhang. The rank of a random matrix.Applied Mathematics and Computation, 185:689–694,
2007.

3. ILOG, Incline Village, Nevada. ILOG CPLEX 9.0 User’s Manual, 2003.
http://www.ilog.com/products/cplex/.

4. Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. Cryptographically private support vector machines. In
KDD ’06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 618–624, New York, NY, USA, 2006. ACM.

7

5. O. L. Mangasarian and E. W. Wild. Privacy-preserving classification of horizontally partitioned data via
random kernels. Technical Report 07-03, Data Mining Institute, Computer Sciences Department, University
of Wisconsin, Madison, Wisconsin, November 2007. Proceedings of the 2008 International Conference
on Data Mining, DMIN08, Las Vegas July 2008, Volume II, 473-479, R. Stahlbock, S.V. Crone and S.
Lessman, Editors.

6. O. L. Mangasarian and E. W. Wild. Privacy-preserving random kernel classification of checkerboard parti-
tioned data. Technical Report 08-02, Data Mining Institute, Computer Sciences Department, University of
Wisconsin, Madison, Wisconsin, September 2008. Annals of Information Systems XIII, 2010, 375-387.

7. O. L. Mangasarian, E. W. Wild, and G. M. Fung. Privacy-preserving classification of vertically partitioned
data via random kernels. Technical Report 07-02, Data Mining Institute, Computer Sciences Department,
University of Wisconsin, Madison, Wisconsin, September 2007. ACM Transactions on Knowledge Dis-
covery from Data (TKDD) Volume 2, Issue 3, October 2008.

8. MATLAB. User’s Guide. The MathWorks, Inc., Natick, MA 01760, 1994-2006.
http://www.mathworks.com.

9. M.-J. Xiao, L.-S. Huang, H. Shen, and Y.-L. Luo. Privacy preserving id3 algorithm over horizontally
partitioned data. InSixth International Conference on Parallel and Distributed Computing Applications
and Technologies (PDCAT’05), pages 239–243. IEEE Computer Society, 2005.

10. H. Yu, X. Jiang, and J. Vaidya. Privacy-preserving SVM using nonlinear kernels on horizontally partitioned
data. InSAC ’06: Proceedings of the 2006 ACM symposium on Applied computing, pages 603–610, New
York, NY, USA, 2006. ACM Press.

11. H. Yu, J. Vaidya, and X. Jiang. Privacy-preserving svm classification on vertically partitioned data. In
Proceedings of PAKDD ’06, volume 3918 ofLNCS: Lecture Notes in Computer Science, pages 647 – 656.
Springer-Verlag, January 2006.

