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Abstract. For a bounded system of linear equalities and inequalitieskow that the NP-haré) norm min-
imization problem rpirﬂx\lo subject toAx = a, Bx> b and ||x||» < 1, is completely equivalent to the concave

minimization n)”(lionHp subject toAx = a, Bx> b and||x||» < 1, for a sufficiently smallp. A local solution to

the latter problem can be easily obtained by solving a prigvtite number of linear programs. Computational
results frequently leading to a global solution of theminimization problem and often producing sparser solu-
tions than the correspondirfg solution are given. A similar approach applies to finding mitidgesolutions of
linear programs.
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1. Introduction

We consider the solvable system of linear equations in thlevector variable:
Ax=a, Bx>b, x| < 1, (1)

whereA is a given real matrix irR™", B € R*", ac R™, b € R andx € R". We note
immediately that any bounded linear system suclgs- a, By > b and [Ylleo <y with
y > 0, can be transformed to the above system (1) by definiay/y, A= yA, B=yB and
consequently|x||» < 1. We are here interested in finding a sparsest solution tah@jis,
one with the least number of nonzero components. This isvalgunit to the followinglo
norm minimization problem:

min |[xlo st. Ax=2, Bx>b, [|x] <1, 2)

n
where ||x||o = 215|gn(\x.|) This problem has been studied extensively in the liteeatur

especially for linear equalities, for example [4, 6, 3], I®yating it to thel/;-minimization
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problem:
min x|y st. Ax=2, Bx>b, [|x] < 1. (3)

Independently and predating the above approaches theechlasre been studies in the ma-
chine learning literature that utilized concave minimiaatfor obtaining sparse linear and
nonlinear classifiers [1, 9, 11] as well as in the approxioratiterature [2]. We shall use
this concave minimization approach here to establish tbetfet thelg norm minimiza-
tion problem is equivalent to the concaggnorm minimization problem for sufficiently
smallp<1:

mXin [Xllp st. Ax=a, Bx>D, [[X||c < 1. (4)

The advantage of this approach is that a linear-programiibnasgd successive lineariza-
tion algorithm (SLA) consisting of minimizing a linearizah of a concave function on
a polyhedral set is &initely terminating stepless Frank-Wolfe algorithm [7]. In [9] fmi
termination of the SLA was established for a differentiatd@cave function, and in [10]
for a nondifferentiable concave function using its supadggnt.

We briefly describe the contents of our paper. In Section 2 stabdish the equivalence
between the/p norm minimization problem (2) and the concafgnorm minimization
problem (4) for sufficiently smalp. We also show how to find minimdh norm solutions
of linear programs. In Section 3 we state our SLA algorithrd astablish its termination
in a finite number of steps at a point satisfying the minimuimgiple necessary optimality
condition. In Section 4 we present our computational resuttile Section 5 concludes the
paper.

A word about our terminology and notation now. All vectordlvkbie column vectors
unless transposed to a row vector by a priméor a vectorx € R" the notationx; will
signify the j-th component andx||, denotes thg-th norm ofx for p € [0,]. The scalar
(inner) product of two vectors andy in the n-dimensional real spad@” will be denoted
by X'y. The notationA € R™" will signify a realmx n matrix. For such a matrix4’ will
denote the transpose &f A will denote thei-th row, A j the jth column andy; theijth
element. A vector of ones in a real space of arbitrary dinm@nsiill be denoted bg. Thus
for e R" andx € R the notatiore’x will denote the sum of the componentsxofA vector
of zeros in a real space of arbitrary dimension will be deddig 0. The star functio)..
will signify the the sign functiorsign(-) which returns 1, 0 or-1, depending on whether
the argument is positive, zero or negative. For a nonnegatetort and a real numbep,
the expressiotP denotes a vector whose components are the componentaiséd to the
power p. The abbreviation “s.t.” stands for “subject to”. For sinefily in presenting our
computational results we utilize the notatiofx}#to denote the cardinality of a real vector
X, that is the number of nonzero componentg.ofhus #x) = ||X||o.

2. Equivalence of thely and the ¢, Norm Minimization Problems for Sufficiently
Small p

We shall establish in this section the equivalence betwleefytnorm minimization prob-
lem (2) and the concavg norm minimization problem (4) for a sufficiently smadl Our
proof is similar to that of [2, Theorem 2.1] where equivalerbetween a concave mini-
mization problem and a general step function minimizat®esdtablished.
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We note first that théy, norm (2) minimization problem can be stated in the following
equivalent form, where the bound constrgjrf. < 1 has been restated ag < x < eand
the objective function replaced as follows:

min_ €t, st. Ax=a, Bx>b, -t <x<t, —e<x<e (5)
(x,t)eRran

Here, as defined in the Introductidndenotes sigft). Note that sincé > 0 it follows that
each component df is either 1 or 0 depending on whether the component®positive
or zero. Hence&'t, = ||t|lo > |X|lo. Similarly, we can rewrite the concave minimization
problem (4) in the following equivalent form:

1
min  €td st. Ax=a, Bx>b, -t <x<t, —e<x< e whereq=

>1. 6
(xt)eR2n o ©

ol

We define now a subset of the bounded feasible region of theatvawe problems as
follows:

T={(xt)cR"|Ax=a, Bx>bh, -t <x<t, —e<x<e 0<t<e}, (7)

where the inequalities 8 t < e follow from the inequalities-t <x<t, —e<x< e, and
the monotonicity of the objective functions of the minintiva problems (5) and (6). We
are now ready to state our principal result.

Proposition 1 Equivalence of the/g and the ¢, Norm Minimization Problems (2) &
(4) for Sufficiently Small p Thelo norm minimization problem (2) is equivalent to the
norm minimization problem (4) for someg g 1. Furthermore, there exists a vertex of T
that is an exact solution of thig norm minimization problem (2), equivalently (8)d is
a global solution of the concavg norm minimization problem (4), equivalently (6), for
some g € Q where:

Q=1{1,23,...}, (8)

and p):q—lo.

Proof: Note first that the objective function of (6) is concaveffor 0, q € Q, and that:
oge'tégeft*, for0<t<e 9)

Sincee’t% > 0 on the bounded polyhedral sé&t it follows by [12, Corollaries 32.3.3
and 32.3.4] that (6) has a vertéq),x(q)) of T as a solution for each € Q. SinceT
has a finite number of vertices, one vertex, $ay), will repeatedly solve (6) for some
increasing infinite sequence of real numbers in a suQset{do, 01,02, ...} of Q. Hence
forgi € Q:
¢fF — dt(q)F = min etd <
(xt)eT

inf €t,, (10)
(xt)eT

where the last inequality above follows from (9). Letting oo, it follows from (10) that:

et = lim € < inf et (11)

I (xt)eT
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Since (x;t) € T, it follows that (x;t) solves (5). Furthermoréx,t) is a vertex ofT.

|
We give now a simple example illustrating the above proparsit
Example 2 Example lllustrating Proposition 1 Consider the linear system:
Xp+adxo+4x3+4x4 = 1
2%+ 2% — 44Xz +2x4 = 2 (12)

4X1 +6Xp —bx3+10x4 > 4

It is easily checked that the minimé&] norm solution is x = 1, X = x3 = X4 = 0, with
[IX[lo =1, |x]|l1 =1 and ||X||» = 1. The minimalf; norm solution obtained by linear
programming is x = 0, X2 = 0.5, X3 = —0.25, x4 = 0 with ||x|lo = 2, ||X||1 = 0.75 and
X[/ = 0.5. For this problem the minimat; , norm solution is the same as the minirigl
norm solution.

The following remark shows how to obtain minimé& norm solutions of linear pro-
grams.

Remark 3 Minimal /o Norm Solution of Linear Programs We note that if we have the
linear program
mxin dx st. Ax=a, Bx>b, ||X|l <1, (13)

with a solution, say, then finding a minimalp norm solution to this linear program can
be stated as:
min ||| st. Ax=a, Bx>b, x< X ||X]o <1, (14)
X

which can be handled in a manner similar to that of problem (2)

We turn now to our finitely terminating successive lineatima algorithm for obtaining
a local solution to our concave minimization problem (6).

3. Finitely Terminating Successive Linearization Algorithm (SLA)

Our successive linearization algorithm consists of lileag the differentiable concave
function of the/,, norm minimization problem (6) around a current paixtt') and solving
the resulting linear program. The algorithm terminates ifinée number of steps at a
stationary point as we shall show after adding the congttained to the minimization
problem (6) for some smad > 0 to ensure the differentiability of the objective function
of (6).

Algorithm 1 SLA: Successive Linearization Algorithm Choose a ¢ Q and o suffi-
ciently small, typicallyd = 1le— 6. Start with an(x°,t°)) that solves they norm mini-
mization problem (3). Havingx,t') determing(x*2,t'+1) by solving the following linear
program:

min _ (t)'a Yt (15)

(xt)eT,t>ed
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Stop when

. 1 . .
(tl)/(q l) (tl _t|+1) —_ o (16)

By [9, Theorem 4.2] we have the following finite terminatiasult for the SLA algo-
rithm.

Proposition 2 SLA Finite termination The SLA 1 generates a finite sequefité,t')}
with strictly decreasing objective function values for ggorm minimization problem (6)
with p= %, and terminating at a satisfying the following minimum principle necessary
optimality condition [8, Theorem 9.3.3]:

(ti_)’(%_l)(t—ti_) >0,V (xt) e Tn{t|t>ed}, (17)

which states that the linearized objective function of @ k global minimum ax,t').

We note that since the SLA terminates at a local solution kvisicot necessarily a global
solution, we introduce the following heuristic into the SAvhich attempts to drive down
large-valued components tfto 6 while ignoringd-valued components of as follows.

Algorithm 3 SLA Heuristic Once Algorithm 1 terminates at a local solutioxi,t'), re-
run the linear program (13) while deletingvalued components @¢k,t') from the ob-
jective function of (15) as well as the corresponding colamp and B; from A and B
in the definition of T (7). Continue with the new poirt*,t'*1) only if it has mores-
valued components thaiX,t'), else stop and declare the stationary pofrtt') as the
final solution.

We turn now to our computational results which utilize bdtle SLA Algorithm 1 as
well as the SLA Heuristic Algorithm 3.

4. Computational Results

For all the experiments, we generated our problems by stawith random matrices of
appropriate dimensions and a random solution of predetetrsparsity whose cardinality
is denoted by #.0). For our experiments the sparsity of our initial random soluwas
set to 5% of the value afi (the number of features). Then we generated the appropriate
right hand side for each problem, whether be it a system eéliequalities, linear inequal-
ities or a linear program. One hundred instances were sdbwegach problem type and
size. For all our experiments, the initial point for our SLAyarithm was generated by a
linear program resulting from a minim@} norm solution. Since sparsity through én
regularization is commonly used and is considered a stiatieesart for a wide range of
applications, we present comparisons with this approadeutne heading df;.

We tested our proposed SLA Algorithm 1 by performing expents on three types of
problems as follows.

1. For asystem of linear inequaliti&x > b we solved:

mXin [[X]lo st. Bx>Db,||X]] < 1.
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by SLA to obtain a solution with a minimal number of nonzeronpmnents.

2. For the linear program (13) with a given solutiowe used SLA to solve:

min [[x]lo st. Ax=a, Bx>b, x <X |[X]|» <1,
X

which is the transformation given in (14). This problem isved by SLA in a manner
similar to the problem above.

3. Finally, for a system of linear equalitidx = a we solved:

min [[xlo st. Ax=a,[x]. < 1.
by using SLA to find a solution with a minimal number of nonzeamponents.

Experimental results for the three type of problems listeave are summarized in Tables
1, 2 and 3 where (6LA)) stands for the cardinality, and hen&genorm, of the SLA solu-
tion. Similarly for the other # functions appearing in thélseee tables. For all problems
considered, three values were used for the number of vagal{00,750,1000). For each
value ofn we considered three values for the number of romvsf equalities/inequalities
which consisted of approximately 60%, 80% and 100% of thaevalf the corresponding
n. This resulted in 9 different values for the p&in,n).

The two first columns of each table show the valuesiandn respectively while fol-
lowing columns show the number of times (out of a 100) thatdalinality (#) of the
solution obtained by the SLA algorithm or the formulation, is equal or smaller than the
original sparsé._o solution used to generate the random problems.

Table (1) shows results for the linear inequality problenm,m|x||o s.t. Bx> b, [|X||e < 1.
These results clearly show that our SLA approach outpedhal; approach by produc-
ing sparser solutions with cardinality closer to thesolution.

Similarly to the results obtained for the linear inequaligse, Table (2) shows results
for the sparse linear programming formulation problem (18pain, the results clearly
show that our SLA approach frequently outperformslth@pproach by producing sparser
solutions with cardinality closer to that of the solution. We also note cases where the
cardinality of the solution generated by the SLA approachk atamost equal to the cardi-
nality of the/; solutions.

Table (3), shows interesting results for the problemyniixijo s.t. Ax=a,||X||. <1, for
a system of linear equalities. In this case, we can see thatttdinality of all the solutions
(for all the (m,n) cases) were the same for the SLA algorithm and forlthéormulation
for our randomly generated spargesolution. This somewhat puzzling result is essentially
justified by the following statement from [5, Corollary 1&hd the way we generated our
test problems:

“Let y = Axg, wherexg contains nonzeros at k sites (fewer thanny€elected uniformly
at random, with signs chosen uniformly at random (amplisuckn have any distribution),
and whereA is a uniform random orthoprojector froR" to R™. With overwhelming
probability for largen, the minimum 1-norm solution tp= Axis also the sparsest solution,
and is preciselyg.”
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Table 1. Results for the problem: mjn||x|o s.t. Bx> b, ||X|l« < 1. Columns show the number of times (out
of a 100) that the cardinality of the solution obtained by $ieA algorithm or thel; formulation, is equal or
smaller than the original sparse solution used to generatetidom problemd.g).

No. of Rows  No. of Variables  (BLA =#(Lo) #(L1) =#(Lo) #(SLA <#(L1) #(SLA =#(L1)

300 500 11 0 100 0
400 500 88 0 100 0
500 500 94 0 100 0
450 750 13 0 100 0
600 750 89 0 100 0
750 750 92 0 100 0
600 1,000 9 0 100 0
800 1,000 79 0 100 0
1,000 1,000 87 0 100 0

This statement is related to what is generally referred ttheg;/{, equivalence, where
under certain conditions the cardinality of theand the/y minimization problems are the
same. Hence, these results confirm that both our SLA algoréhd thel; formulation
coincide with an optimal global solution to thg formulation.

5. Conclusion and Outlook

We have presented a new result which shows that the NP-habdiepn of minimizing the
Lo norm solution for linear equations, inequalities and lnpeograms, is equivalent to
minimizing thel, norm solution for the same problems for sufficiently snpalAlthough
the latter concave minimization problem is still NP-hardsuecessive linearization algo-
rithm applied to it terminates in a finite number of steps aiaal solution which is often
a global solution as indicated by the computational requiésented. As such, the pro-
posed equivalence has practical significance for the pnolyges presented, as well as
for problems in other fields requiring sparsity such as maetearning and data mining.
Hopefully these problems will be addressed in future work.
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Table 2. Results for the LP problem (13): mirt’x s.t. Ax=a, Bx> b, ||X||« < 1. Columns show the number
of times (out of a 100) that the cardinality of the solutionasbed by the SLA algorithm or thie; formulation,
is equal or smaller than the original sparse solution use@&beate the random problenisy.

No. of Rows  No. of Variables  (8LA =#(Lo) #(L1) =#(Lo) #(SLA <#(L1) #(SLA =#(L1)

300 500 79 21 79 21
400 500 100 100 0 100
500 500 100 100 0 100
450 750 78 13 87 13
600 750 100 100 0 100
750 750 100 100 0 100
600 1,000 73 19 81 19
800 1,000 99 100 0 100
1,000 1,000 99 100 0 100
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