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Abstract. For a bounded system of linear equalities and inequalities we show that the NP-hardℓ0 norm min-
imization problem min

x
‖x‖0 subject toAx = a, Bx≥ b and‖x‖∞ ≤ 1, is completely equivalent to the concave

minimization min
x

‖x‖p subject toAx= a, Bx≥ b and‖x‖∞ ≤ 1, for a sufficiently smallp. A local solution to

the latter problem can be easily obtained by solving a provably finite number of linear programs. Computational
results frequently leading to a global solution of theℓ0 minimization problem and often producing sparser solu-
tions than the correspondingℓ1 solution are given. A similar approach applies to finding minimal ℓ0 solutions of
linear programs.
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1. Introduction

We consider the solvable system of linear equations in the real vector variablex:

Ax= a, Bx≥ b,‖x‖∞ ≤ 1, (1)

whereA is a given real matrix inRm×n, B ∈ Rk×n, a ∈ Rm, b ∈ Rk andx ∈ Rn. We note
immediately that any bounded linear system such asÃy = a, B̃y≥ b and‖y‖∞ ≤ γ with
γ > 0, can be transformed to the above system (1) by definingx = y/γ, A= γÃ, B= γB̃ and
consequently‖x‖∞ ≤ 1. We are here interested in finding a sparsest solution to (1), that is,
one with the least number of nonzero components. This is equivalent to the followingℓ0

norm minimization problem:

min
x

‖x‖0 s.t. Ax= a, Bx≥ b, ‖x‖∞ ≤ 1, (2)

where‖x‖0 =
n

∑
i=1

sign(|xi |). This problem has been studied extensively in the literature

especially for linear equalities, for example [4, 6, 3], by relating it to theℓ1-minimization
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problem:
min

x
‖x‖1 s.t. Ax= a, Bx≥ b, ‖x‖∞ ≤ 1. (3)

Independently and predating the above approaches there have have been studies in the ma-
chine learning literature that utilized concave minimization for obtaining sparse linear and
nonlinear classifiers [1, 9, 11] as well as in the approximation literature [2]. We shall use
this concave minimization approach here to establish the fact that theℓ0 norm minimiza-
tion problem is equivalent to the concaveℓp norm minimization problem for sufficiently
small p≤ 1:

min
x

‖x‖p s.t. Ax= a, Bx≥ b, ‖x‖∞ ≤ 1. (4)

The advantage of this approach is that a linear-programming-based successive lineariza-
tion algorithm (SLA) consisting of minimizing a linearization of a concave function on
a polyhedral set is afinitely terminating stepless Frank-Wolfe algorithm [7]. In [9] finite
termination of the SLA was established for a differentiableconcave function, and in [10]
for a nondifferentiable concave function using its supergradient.

We briefly describe the contents of our paper. In Section 2 we establish the equivalence
between theℓ0 norm minimization problem (2) and the concaveℓp norm minimization
problem (4) for sufficiently smallp. We also show how to find minimalℓ0 norm solutions
of linear programs. In Section 3 we state our SLA algorithm and establish its termination
in a finite number of steps at a point satisfying the minimum principle necessary optimality
condition. In Section 4 we present our computational results while Section 5 concludes the
paper.

A word about our terminology and notation now. All vectors will be column vectors
unless transposed to a row vector by a prime′. For a vectorx ∈ Rn the notationx j will
signify the j-th component and‖x‖p denotes thep-th norm ofx for p∈ [0,∞]. The scalar
(inner) product of two vectorsx andy in then-dimensional real spaceRn will be denoted
by x′y. The notationA∈ Rm×n will signify a realm×n matrix. For such a matrix,A′ will
denote the transpose ofA, Ai will denote thei-th row, A· j the jth column andAi j the i j th
element. A vector of ones in a real space of arbitrary dimension will be denoted bye. Thus
for e∈ Rn andx∈ Rn the notatione′x will denote the sum of the components ofx. A vector
of zeros in a real space of arbitrary dimension will be denoted by 0. The star function(·)∗
will signify the the sign functionsign(·) which returns 1, 0 or−1, depending on whether
the argument is positive, zero or negative. For a nonnegative vectort and a real numberp,
the expressiont p denotes a vector whose components are the components oft raised to the
powerp. The abbreviation “s.t.” stands for “subject to”. For simplicity in presenting our
computational results we utilize the notation #(x) to denote the cardinality of a real vector
x, that is the number of nonzero components ofx. Thus #(x) = ‖x‖0.

2. Equivalence of theℓ0 and the ℓp Norm Minimization Problems for Sufficiently
Small p

We shall establish in this section the equivalence between theℓ0 norm minimization prob-
lem (2) and the concaveℓp norm minimization problem (4) for a sufficiently smallp. Our
proof is similar to that of [2, Theorem 2.1] where equivalence between a concave mini-
mization problem and a general step function minimization is established.
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We note first that theℓ0 norm (2) minimization problem can be stated in the following
equivalent form, where the bound constraint‖x‖∞ ≤ 1 has been restated as−e≤ x≤ eand
the objective function replaced as follows:

min
(x,t)∈R2n

e′t∗ s.t. Ax= a, Bx≥ b, −t ≤ x≤ t, −e≤ x≤ e. (5)

Here, as defined in the Introduction,t∗ denotes sign(t). Note that sincet ≥ 0 it follows that
each component oft∗ is either 1 or 0 depending on whether the component oft is positive
or zero. Hencee′t∗ = ‖t‖0 ≥ ‖x‖0. Similarly, we can rewrite the concave minimization
problem (4) in the following equivalent form:

min
(x,t)∈R2n

e′t
1
q s.t. Ax= a, Bx≥ b, −t ≤ x≤ t, −e≤ x≤ e, whereq =

1
p
≥ 1. (6)

We define now a subset of the bounded feasible region of the twoabove problems as
follows:

T = {(x, t) ∈ R2n | Ax= a, Bx≥ b, −t ≤ x≤ t, −e≤ x≤ e, 0≤ t ≤ e}, (7)

where the inequalities 0≤ t ≤ e follow from the inequalities−t ≤ x≤ t, −e≤ x≤ e, and
the monotonicity of the objective functions of the minimization problems (5) and (6). We
are now ready to state our principal result.

Proposition 1 Equivalence of theℓ0 and the ℓp Norm Minimization Problems (2) &
(4) for Sufficiently Small p Theℓ0 norm minimization problem (2) is equivalent to theℓp

norm minimization problem (4) for some p0 ≤ 1. Furthermore, there exists a vertex of T
that is an exact solution of theℓ0 norm minimization problem (2), equivalently (5),and is
a global solution of the concaveℓp norm minimization problem (4), equivalently (6), for
some q0 ∈ Q where:

Q = {1,2,3, . . .}, (8)

and p0 = 1
q0

.

Proof: Note first that the objective function of (6) is concave fort ≥ 0, q∈ Q, and that:

0≤ e′t
1
q ≤ e′t∗, for 0≤ t ≤ e. (9)

Sincee′t
1
q ≥ 0 on the bounded polyhedral setT, it follows by [12, Corollaries 32.3.3

and 32.3.4] that (6) has a vertex(t(q),x(q)) of T as a solution for eachq ∈ Q. SinceT
has a finite number of vertices, one vertex, say(x̄, t̄), will repeatedly solve (6) for some
increasing infinite sequence of real numbers in a subsetQ̄ = {q0,q1,q2, . . .} of Q. Hence
for qi ∈ Q̄:

e′t̄
1
qi = e′t(qi)

1
qi = min

(x,t)∈T
e′t

1
qi ≤ inf

(x,t)∈T
e′t∗, (10)

where the last inequality above follows from (9). Lettingi → ∞, it follows from (10) that:

e′t̄∗ = lim
i↔∞

e′t̄
1
qi ≤ inf

(x,t)∈T
e′t∗. (11)
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Since(x̄, t̄) ∈ T, it follows that (x̄, t̄) solves (5). Furthermore(x̄, t̄) is a vertex ofT.

We give now a simple example illustrating the above proposition.

Example 2 Example Illustrating Proposition 1Consider the linear system:

x1 +4x2 +4x3 +4x4 = 1
2x1 +2x2−4x3 +2x4 = 2

4x1 +6x2−6x3 +10x4 ≥ 4
(12)

It is easily checked that the minimalℓ0 norm solution is x1 = 1, x2 = x3 = x4 = 0, with
‖x‖0 = 1, ‖x‖1 = 1 and ‖x‖∞ = 1. The minimalℓ1 norm solution obtained by linear
programming is x1 = 0, x2 = 0.5, x3 = −0.25, x4 = 0 with ‖x‖0 = 2, ‖x‖1 = 0.75 and
‖x‖∞ = 0.5. For this problem the minimalℓ1/2 norm solution is the same as the minimalℓ0

norm solution.

The following remark shows how to obtain minimalℓ0 norm solutions of linear pro-
grams.

Remark 3 Minimal ℓ0 Norm Solution of Linear Programs We note that if we have the
linear program

min
x

c′x s.t. Ax= a, Bx≥ b, ‖x‖∞ ≤ 1, (13)

with a solution, saȳx, then finding a minimalℓ0 norm solution to this linear program can
be stated as:

min
x

‖x‖0 s.t. Ax= a, Bx≥ b, c′x≤ c′x̄, ‖x‖∞ ≤ 1, (14)

which can be handled in a manner similar to that of problem (2).

We turn now to our finitely terminating successive linearization algorithm for obtaining
a local solution to our concave minimization problem (6).

3. Finitely Terminating Successive Linearization Algorithm (SLA)

Our successive linearization algorithm consists of linearizing the differentiable concave
function of theℓp norm minimization problem (6) around a current point(xi , t i) and solving
the resulting linear program. The algorithm terminates in afinite number of steps at a
stationary point as we shall show after adding the constraint t ≥ eδ to the minimization
problem (6) for some smallδ > 0 to ensure the differentiability of the objective function
of (6).

Algorithm 1 SLA: Successive Linearization Algorithm Choose a q∈ Q and δ suffi-
ciently small, typicallyδ = 1e− 6. Start with an(x0, t0)) that solves theℓ1 norm mini-
mization problem (3). Having(xi , t i) determine(xi+1, t i+1) by solving the following linear
program:

min
(x,t)∈T, t≥eδ

(t i)′
( 1

q−1)
t. (15)
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Stop when

(t i)′
( 1

q−1)
(t i − t i+1) = 0. (16)

By [9, Theorem 4.2] we have the following finite termination result for the SLA algo-
rithm.

Proposition 2 SLA Finite termination The SLA 1 generates a finite sequence{(xi , t i)}
with strictly decreasing objective function values for theℓp norm minimization problem (6)
with p= 1

q, and terminating at an̄i satisfying the following minimum principle necessary
optimality condition [8, Theorem 9.3.3]:

(t ī)′
( 1

q−1)
(t − t ī) ≥ 0, ∀ (x, t) ∈ T ∩{t | t ≥ eδ}, (17)

which states that the linearized objective function of (6) has a global minimum at(xī , t ī).

We note that since the SLA terminates at a local solution which is not necessarily a global
solution, we introduce the following heuristic into the SLA1 which attempts to drive down
large-valued components oft ī to δ while ignoringδ-valued components oft ī as follows.

Algorithm 3 SLA Heuristic Once Algorithm 1 terminates at a local solution(xī , t ī), re-
run the linear program (13) while deletingδ-valued components of(xī , t ī) from the ob-
jective function of (15) as well as the corresponding columns A· j and B· j from A and B
in the definition of T (7). Continue with the new point(xī+1, t ī+1) only if it has moreδ-
valued components than(xī , t ī), else stop and declare the stationary point(xī , t ī) as the
final solution.

We turn now to our computational results which utilize both the SLA Algorithm 1 as
well as the SLA Heuristic Algorithm 3.

4. Computational Results

For all the experiments, we generated our problems by starting with random matrices of
appropriate dimensions and a random solution of predetermined sparsity whose cardinality
is denoted by #(L0). For our experiments the sparsity of our initial random solution was
set to 5% of the value ofn (the number of features). Then we generated the appropriate
right hand side for each problem, whether be it a system of linear equalities, linear inequal-
ities or a linear program. One hundred instances were solvedfor each problem type and
size. For all our experiments, the initial point for our SLA algorithm was generated by a
linear program resulting from a minimalℓ1 norm solution. Since sparsity through anℓ1

regularization is commonly used and is considered a state-of-the-art for a wide range of
applications, we present comparisons with this approach under the heading ofL1.

We tested our proposed SLA Algorithm 1 by performing experiments on three types of
problems as follows.

1. For a system of linear inequalitiesBx≥ b we solved:

min
x

‖x‖0 s.t. Bx≥ b,‖x‖∞ ≤ 1.
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by SLA to obtain a solution with a minimal number of nonzero components.

2. For the linear program (13) with a given solution ¯x we used SLA to solve:

min
x

‖x‖0 s.t. Ax= a, Bx≥ b, c′x≤ c′x̄, ‖x‖∞ ≤ 1,

which is the transformation given in (14). This problem is solved by SLA in a manner
similar to the problem above.

3. Finally, for a system of linear equalitiesAx= a we solved:

min
x

‖x‖0 s.t. Ax= a,‖x‖∞ ≤ 1.

by using SLA to find a solution with a minimal number of nonzerocomponents.

Experimental results for the three type of problems listed above are summarized in Tables
1, 2 and 3 where #(SLA)) stands for the cardinality, and henceℓ0 norm, of the SLA solu-
tion. Similarly for the other # functions appearing in thesethree tables. For all problems
considered, three values were used for the number of variablesn (500,750,1000). For each
value ofn we considered three values for the number of rowsm of equalities/inequalities
which consisted of approximately 60%, 80% and 100% of the value of the corresponding
n. This resulted in 9 different values for the pair(m,n).

The two first columns of each table show the values form andn respectively while fol-
lowing columns show the number of times (out of a 100) that thecardinality (#) of the
solution obtained by the SLA algorithm or theL1 formulation, is equal or smaller than the
original sparseL0 solution used to generate the random problems.

Table (1) shows results for the linear inequality problem: minx ‖x‖0 s.t. Bx≥ b,‖x‖∞ ≤ 1.
These results clearly show that our SLA approach outperforms theL1 approach by produc-
ing sparser solutions with cardinality closer to theL0 solution.

Similarly to the results obtained for the linear inequalitycase, Table (2) shows results
for the sparse linear programming formulation problem (13). Again, the results clearly
show that our SLA approach frequently outperforms theL1 approach by producing sparser
solutions with cardinality closer to that of theL0 solution. We also note cases where the
cardinality of the solution generated by the SLA approach was at most equal to the cardi-
nality of theℓ1 solutions.

Table (3), shows interesting results for the problem minx ‖x‖0 s.t. Ax= a,‖x‖∞ ≤ 1, for
a system of linear equalities. In this case, we can see that the cardinality of all the solutions
(for all the (m,n) cases) were the same for the SLA algorithm and for theL1 formulation
for our randomly generated sparseℓ0 solution. This somewhat puzzling result is essentially
justified by the following statement from [5, Corollary 1.5]and the way we generated our
test problems:
“Let y = Ax0, wherex0 contains nonzeros at k sites (fewer than .49n) selected uniformly
at random, with signs chosen uniformly at random (amplitudes can have any distribution),
and whereA is a uniform random orthoprojector fromRn to Rm. With overwhelming
probability for largen, the minimum 1-norm solution toy= Ax is also the sparsest solution,
and is preciselyx0.”
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Table 1. Results for the problem: minx ‖x‖0 s.t. Bx≥ b,‖x‖∞ ≤ 1. Columns show the number of times (out
of a 100) that the cardinality of the solution obtained by theSLA algorithm or theL1 formulation, is equal or
smaller than the original sparse solution used to generate the random problems (L0).

No. of Rows No. of Variables #(SLA) = #(L0) #(L1) = #(L0) #(SLA) < #(L1) #(SLA) = #(L1)

300 500 11 0 100 0

400 500 88 0 100 0

500 500 94 0 100 0

450 750 13 0 100 0

600 750 89 0 100 0

750 750 92 0 100 0

600 1,000 9 0 100 0

800 1,000 79 0 100 0

1,000 1,000 87 0 100 0

This statement is related to what is generally referred to asthe ℓ1/ℓ0 equivalence, where
under certain conditions the cardinality of theℓ1 and theℓ0 minimization problems are the
same. Hence, these results confirm that both our SLA algorithm and theL1 formulation
coincide with an optimal global solution to theL0 formulation.

5. Conclusion and Outlook

We have presented a new result which shows that the NP-hard problem of minimizing the
ℓ0 norm solution for linear equations, inequalities and linear programs, is equivalent to
minimizing theℓp norm solution for the same problems for sufficiently smallp. Although
the latter concave minimization problem is still NP-hard, asuccessive linearization algo-
rithm applied to it terminates in a finite number of steps at a local solution which is often
a global solution as indicated by the computational resultspresented. As such, the pro-
posed equivalence has practical significance for the problem types presented, as well as
for problems in other fields requiring sparsity such as machine learning and data mining.
Hopefully these problems will be addressed in future work.
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Table 2. Results for the LP problem (13): minx c′x s.t. Ax= a, Bx≥ b, ‖x‖∞ ≤ 1. Columns show the number
of times (out of a 100) that the cardinality of the solution obtained by the SLA algorithm or theL1 formulation,
is equal or smaller than the original sparse solution used to generate the random problems (L0).

No. of Rows No. of Variables #(SLA) = #(L0) #(L1) = #(L0) #(SLA) < #(L1) #(SLA) = #(L1)

300 500 79 21 79 21

400 500 100 100 0 100

500 500 100 100 0 100

450 750 78 13 87 13

600 750 100 100 0 100

750 750 100 100 0 100

600 1,000 73 19 81 19

800 1,000 99 100 0 100

1,000 1,000 99 100 0 100
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