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Abstract

We propose a novel privacy-preserving random kernel approximation based on a data matrix
A ∈ Rm×n whose rows are divided into privately owned blocks. Each block of rows belongs to
a different entity that is unwilling to share its rows or make them public. We wish to obtain an
accurate function approximation for a given y ∈ Rm corresponding to each of the m rows of A. Our
approximation of y is a real function on Rn evaluated at each row of A and is based on the concept of
a reduced kernel K(A,B′) where B′ is the transpose of a completely random matrix B. The proposed
linear-programming-based approximation, which is public but does not reveal the privately-held data
matrix A, has accuracy comparable to that of an ordinary kernel approximation based on a publicly
disclosed data matrix A.

Keywords: privacy-preserving approximation, random kernels, support vector machines, linear
programming

1 INTRODUCTION

The problem addressed in this work is that of obtaining an approximation to a given vector y ∈ Rm

of function values corresponding to the m rows of a data matrix A ∈ Rm×n that represents m points
in the n-dimensional real space Rn. The matrix A is partitioned into q blocks of rows belonging to
q entities that are unwilling to share their data or make them public. The motivation for this work
arises from similar problems arising in classification theory where the data, corresponding to rows of
a data matrix, is also held by various private entities and hence referred to as horizontally partitioned
data. Thus in [19, 15] privacy-preserving support vector machine (SVM) classifiers were obtained for
such data, while in [20] induction tree classifiers were generated for similar problems. Other privacy-
preserving classifying techniques include cryptographically private SVMs [7], wavelet-based distortion
[10] and rotation perturbation [3]. There is also a substantial body of research on privacy preservation
in linear programming such as [1, 12, 13]. However, there does not appear to be any privacy-preserving
applications to approximation problems in the literature. This is the problem we wish to address here
as follows.

In this work we propose an efficient privacy-preserving approximation (PPA) for horizontally
partitioned data that is based on the following two ideas. For a given data matrix A ∈ Rm×n, instead
of using the usual kernel function K(A, A′) : Rm×n × Rn×m −→ Rm×m for constructing a linear or
nonlinear approximation of a given y ∈ Rm corresponding to the m rows of A, we use a random kernel
[9, 8] K(A, B′) : Rm×n × Rn×m̄ −→ Rm×m̄, m̄ < n, where B is a completely random matrix that is
publicly disclosed. Such a random kernel will be shown to completely hide the data matrix A. The
second idea is that each entity i ∈ {1, . . . , q} makes public only the kernel function K(Ai, B

′) of its
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privately held matrix block of data Ai ∈ Rmi×n. By employing these two ideas, we shall describe a
linear-programming-based algorithm that protects the privacy of each horizontal partition block of the
data matrix A, owned by a distinct entity, while generating a privacy-preserving approximation which
has an accuracy comparable to that of an ordinary kernel approximation based on a totally disclosed
A.

We now briefly describe the contents of the paper. In Section 2 we describe our method for a
privacy-preserving linear kernel approximation for horizontally partitioned data. We show there that
by using a random linear kernel each entity does not disclose its privately held data while enabling
the generation of a global linear approximation to a given y ∈ Rm. Section 3 extends these results to
nonlinear kernels. In Section 4 we give linear-programming-based computational results which show
that the accuracy of our privacy-preserving nonlinear random krenel approximation is comparable not
only to ordinary kernel approximation based on openly available data, but also accurately reproduces
the underlying nonlinear function which generated the privately held data. Section 5 concludes the
paper.

We describe our notation now. All vectors will be column vectors unless transposed to a row vector
by a prime ′. For a vector x ∈ Rn the notation xj will signify either the j-th component or j-th block
of components. The scalar (inner) product of two vectors x and y in the n-dimensional real space Rn

will be denoted by x′y. For x ∈ Rn, ‖x‖1 denotes the 1-norm: (
n

∑

i=1

|xi|) while ‖x‖ denotes the 2-norm:

(
n

∑

i=1

(xi)
2)

1

2 . The notation A ∈ Rm×n will signify a real m × n matrix. For such a matrix, A′ will

denote the transpose of A, Ai will denote the i-th row or i-th block of rows of A, A·j the j-th column
or the j-th block of columns of A, and Air the ir-th element of A or the r-th row of i-th block Ai of
A. A vector of ones in a real space of arbitrary dimension will be denoted by e. Thus for e ∈ Rm and
y ∈ Rm the notation e′y will denote the sum of the components of y. A vector of zeros in a real space
of arbitrary dimension will be denoted by 0. For A ∈ Rm×n and B ∈ Rk×n, a kernel K(A, B′) maps
Rm×n × Rn×k into Rm×k. In particular, if x and y are column vectors in Rn then, K(x′, y) is a real
number, K(x′, B′) is a row vector in Rk and K(A, B′) is an m × k matrix. The base of the natural
logarithm will be denoted by ε. A frequently used kernel in nonlinear classification is the Gaussian kernel
[18, 4, 11] whose ij-th element, i = 1, . . . , m, j = 1, . . . , k, is given by: (K(A, B′))ij = ε−µ‖Ai−B·j

′‖2

,
where A ∈ Rm×n, B ∈ Rk×n and µ is a positive constant. We shall not assume that our kernels satisfy
Mercer’s positive definiteness condition [18, 16, 5]. However, we shall assume that they are associative
in the following sense:

K

([

E

F

]

, G′

)

=

(

K(E, G′)
K(F, G′)

)

, (1.1)

where E ∈ Rm1×n, F ∈ Rm2×n, G ∈ Rk×n. It is straightforward to check that both a linear kernel
K(A, B′) = AB′ and a Gaussian kernel satisfy (1.1). For the k matrices G1, . . . , Gk, of the same

dimensions, their affine hull is defined as the set {H | H =

j=k
∑

j=1

λjGj , with

j=k
∑

j=1

λj = 1}. The abbreviation

“s.t.” stands for “subject to”.

2 Privacy-Preserving Linear Kernel Approximation

We wish to construct linear approximation of a given vector y in Rm associated with the m n-dimensional
points represented by the m rows of the matrix A ∈ Rm×n. The matrix A is divided into q blocks of
m1, m2, . . .mq rows with m1 + m2 + . . . + mq = m, and each block of rows “owned” by an entity that



is unwilling to make it public or share it with others. The linear kernel approximation to be generated
based on this data will be a plane defined on Rn as:

x′w − γ = x′B′u − γ, (2.2)

where w = B′u, w ∈ Rn is the normal to the approximating plane x′w − γ, γ ∈ R determines the
distance of the plane from the origin and B is a completely random matrix in Rk×n. The change of
variables w = B′u is employed in order to kernelize the data and is motivated by the fact that when
B = A and hence w = A′u, the variable u is the dual variable for a 2-norm SVM [11]. The variables
u ∈ Rk and γ ∈ R are to be determined by an optimization problem such that the given data A and y

satisfy, to the extent possible, the approximation:

AB′u − eγ ≈ y. (2.3)

In general, the matrix B which determines a transformation of variables w = B′u, is set equal to A.
However, in reduced support vector machines [9, 6] B = Ā, where Ā is a submatrix of A whose rows
are a small subset of the rows of A. In fact B can be a random matrix in Rm̄×n with m̄ < n for our
application here. The random choice of B holds the key to our privacy-preserving approximation and
has been used effectively in SVM classification problems [14]. Computational results have shown that
there is no essential difference between using a random B or a random submatrix of Ā of the rows of A

in reduced SVMs [9, 8].
We shall partition our data matrix A into q row blocks A1, A2, . . . , Aq with each row block belonging

to one of the q entities and held privately by it and never made public. However, what is made public
by each entity i is the matrix product AiB

′ which allows the public calculation of the the linear kernel
AB′ ∈ Rm×m̄ as follows:











A1B
′

A2B
′

...
AqB

′











(2.4)

We are now ready to state our algorithm which will provide a linear classifier for the data without
revealing the private blocks of the privately held data blocks A1, A2, . . . , Aq. The accuracy of this
algorithm will be comparable to that of a linear SVM using a publicly available linear kernel AA′

instead of merely the blocks A1B
′, A2B

′, . . . , AqB
′ of (2.4) as is the case here.

Algorithm 2.1. Linear PPA Algorithm

(I) All q entities agree on the same random matrix B ∈ Rm̄×n with m̄ < n for security reasons as
justified in the explanation immediately following this algorithm.

(II) All entities make public the function values yℓ, ℓ = 1, . . . , m, for all the rows Ai, i = 1, . . . , m, of
the data matrix A that they all hold collectively.

(III) Each entity i makes public its linear kernel AiB
′ ∈ Rmi×m̄. This does not reveal its matrix block

Ai but allows the public computation of the full linear kernel:

AB′ =











A1

A2
...

Aq











B′ (2.5)



(IV) A publicly calculated linear approximation x′Bu − γ is computed by some standard method such
as a 1-norm error minimization together with a Tikhonov regularization term ν‖u‖1 [17, 2] as
follows:

min
(u,γ,s)

‖s‖1 + ν‖u‖1

s.t. s ≥ AB′u − eγ − y ≥ −s.
(2.6)

This problem is equivalent to the linear program:

min
(u,γ,s,t)

e′s + νe′t

s.t. s ≥ AB′u − eγ − y ≥ −s,

t ≥ u ≥ −t.

(2.7)

(V) For each new privately held x ∈ Rn obtained by any entity, that entity privately computes x′B′

from which a linear approximation is computed as follows:

x′B′u − γ. (2.8)

Note that no entity i reveals its data matrix block Ai. This is so because each entity reveals only the
mim̄ numbers constituting the matrix Pi = (AiB

′) ∈ Rmi×m̄. When m̄ < n, there is an infinite number
of matrices Ai ∈ Rmi×n satisfying AiB

′ = Pi, given B and Pi. We make this statement more precise by
first showing that at least an exponential number of matrices Ai satisfy AiB

′ = Pi for a given B and
Pi when m̄ < n. We then show that the infinite number of matrices that lie in the affine hull of these
matrices also satisfy AiB

′ = Pi. This obviously precludes the possibility of determining the matrix
block Ai held by entity i given only AiB

′.

Proposition 2.2. Given the matrix product Pi
′ = AiB

′ ∈ Rmi×m̄ where Ai ∈ Rmi×n is unknown and
B is a known matrix in Rm̄×n with m̄ < n, there are an infinite number of solutions, including:

(

n

m̄

)mi

=

(

n!

(n − m̄)!m̄!

)mi

, (2.9)

possible solutions Ai ∈ Rmi×n to the equation BAi
′ = Pi. Furthermore, the infinite number of matrices

in the affine hull of these
(

n
m̄

)mi matrices also satisfy BAi
′ = Pi.

Proof See [15, Proposition 2.2].
For the specific case of m̄ = n− 1, which is typically used in numerical computations, we have that:

(

n

m̄

)mi

=

(

n!

(n − 1)!

)mi

= (n)mi . (2.10)

This translates to (2)10 for a typical case of n = 2, m̄ = 1 and mi = 10.
We turn now to nonlinear approximation.

3 Privacy-Preserving Nonlinear Kernel Approximation

The approach to nonlinear approximation is similar to that for the linear one, except that we make
use of the associative property (1.1) of a nonlinear kernel which is satisfied by a Gaussian kernel. This
kernel is one of the most commonly used nonlinear kernels. Otherwise, the approach is very similar to
that of a linear kernel. Thus, we wish to obtain the nonlinear kernel approximation:

y ≈ K(x′, B′)u − γ, (3.11)

where K is a Gaussian kernel, B is a random matrix in Rm̄×n with m̄ < n, and u ∈ Rm̄, γ ∈ R are
parameters to be determined as described in the following algorithm.



Algorithm 3.1. Nonlinear PPSVM Algorithm

(I) All q entities agree on the same random matrix B ∈ Rm̄×n with m̄ < n for security reasons as
justified in the explanation immediately following this algorithm.

(II) All entities make public the function values yℓ, ℓ = 1, . . . , m for the data matrix rows Ai,
i = 1, . . . , m, that they all hold.

(III) Each entity i makes public its nonlinear kernel K(Ai, B
′). This does not reveal its matrix block

Ai but allows the public computation of the full nonlinear kernel:

K(A, B′) = K
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(3.12)

(IV) A publicly calculated nonlinear approximation K(x′, B)u−γ is computed by some standard method
such as a 1-norm using Tikhonov regularization [17, 2]:

min
(u,γ,s)

‖s‖1 + ν‖u‖1

s.t. s ≥ K(A, B′)u − eγ − y ≥ −s.
(3.13)

This problem is equivalent to the following linear program:

min
(u,γ,a,ts)

e′s + νe′t

s.t. s ≥ K(A, B′)u − eγ − y ≥ −s,

t ≥ t ≥ −s.

(3.14)

(V) For each new x ∈ Rn obtained by an entity, that entity privately computes K(x′, B′) from which
a nonlinear approximation is computed as follows:

K(x′, B′)u − γ. (3.15)

Note that in the above algorithm no entity i reveals its data matrix block Ai. This is so because it is
impossible to compute unique min numbers constituting the matrix Ai ∈ Rmi×n given only the mim̄

numbers constituting the revealed kernel matrix K(Ai, B
′) ∈ Rmi×m̄ with m̄ < n. However, all entities

share the publicly computed nonlinear approximation (3.15) without revealing their individual matrix
blocks Ai, i = 1, . . . , q, or any new x that they obtain. Thus, for example, if we wish to compute the
r-th row Air of entity i’s data matrix Ai from the given matrix Pi = K(Ai, B

′) ∈ Rmi×m̄, we need to
solve the m̄ nonlinear equations K(B, Air

′) = Pir
′ for the n components of Air ∈ Rn. Because n > m̄,

this would in general generate a nonlinear surface in Rn containing an infinite number of solutions which
makes it impossible to determine Air uniquely.

We turn now to our linear-programming-based computational results.

4 Computational Results

We illustrate the effectiveness of our proposed privacy-preserving approximation (PPA) in three ways.
First, we demonstrate that by using our approach, entities can obtain better approximations than
approximations obtained using only the data of each entity alone. Second, we show that a random



kernel K(A, B′) achieves comparable accuracy to that of the usual kernel K(A, A′) utilizing all the
privately held data made public. Third, we show that PPA gives an accurate approximation to the
underlying function itself that generated the privately held data.

The number of rows m̄ of B was set to 1000. Thus, we ensure that the conditions discussed in the
previous sections hold in order to guarantee the private data Ai cannot be recovered from K(Ai, B

′).
Each entry of B was selected independently from a uniform distribution on the interval [0, 1]. All
datasets were normalized so that each feature was between zero and one. This normalization can be
carried out if the entities disclose only the maximum and minimum of each variable in their datasets.
In all the algorithms the Gaussian kernel parameter µ was chosen by cross-validation from the set
{0.01, 0.2, 0.4, 0.6, 0.8, 1, 2} and the regularization parameter ν was chosen by cross-validation from the
set {2−5, 2−4, . . . , 24, 25}.

4.1 Comparison of our privacy-preserving approach with approximations obtained using
only each entity’s data and also with all data revealed We investigate the benefit of using our
PPA approach, instead of using only the data available to each entity alone, by using the two-dimensional
sinc function defined on the square region D = [−3, 3] × [−3, 3]:

sinc(x1, x2) =
sinπx1

πx1
·
sinπx2

πx2
, (4.16)

Figure 2 shows a graph of the sinc function sinc(x1, x2) as defined above in (4.16).
For this experiment, we suppose that we have data owned by two private entities, Entity 1 and

Entity 2, and that the data cannot be shared. Entity 1 has 1000 data points on a grid E1 of equally
spaced point that lies in the subset: S1 = {[−1.5, 1.5] × [−1.5, 1.5]} ⊂ D, while Entity 2 has 1000 data
points on a grid E2 of equally spaced points in the subset: S2 = D − S1 as shown in Figure 1.
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Figure 1: (Left): Entity 1 domain S1 = {[−1.5, 1.5] × [−1.5, 1.5]} , (Right): Entity 2 domain
S2 = D − S1

Our computational results are depicted in Figures 3 through 6 and can be summarized as as follows:

• Figure 3 depicts a poor approximation of the sinc function defined above based only on the
privately held data of Entity 1. In order to measure the quality of the approximation with respect
to the original sinc function, we calculate the relative error defined as:

ErrorE1
= (

∑

x∈E1∪E2

(appE1
(x) − sinc(x))2

sinc(x)2
)

1

2 , (4.17)

where appE1
is the approximation learned only using data from the set E1. The value of ErrorE1

was 5.01



• Similarly Figure 4 shows a poor approximation of the sinc function based only on the privately
held data of Entity 2. For this experiment the value of ErrorE2

was 1.05.

• Figure 5 shows an approximation of the sinc function based on publicly revealed data of both
entities. The relative error in this case was 0.01.

• Figure 6 depicts an approximation of the sinc function based on unrevealed privately held data
as described in our proposed Algorithm 3.1. The relative error in this case was also 0.01.
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Figure 2: The exact sinc function sinc(x1, x2) = sinπx1
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· sinπx2
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Figure 3: The approximation of sinc(x1, x2) by the data of Entity 1 only
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Figure 4: The approximation of sinc(x1, x2) by the data of Entity 2 only
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Figure 5: The approximation of sinc(x1, x2) by the publicly revealed data of both Entities 1 and 2
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Figure 6: The approximation of sinc(x1, x2) by the privately held data of Entities 1 and 2 utilizing Algorithm 3.1

5 Conclusion

We have proposed a linear and nonlinear privacy-preserving support vector machine (SVM) approxi-
mation based on a privately generated and privately held random matrix by each entity. Each entity
possesses a different set of data used collectively to generate the SVM approximation. The proposed
approach uses all the privately held data, yet does not reveal that data. Computational comparisons
indicate that the accuracy of our proposed approach is comparable to fully revealed data approximation.
Furthermore, the accuracy obtained by the privacy-preserving approximation is markedly better than
the accuracy of approximation generated by each entity using only its own data.
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