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Abstract

We consider the problem of classifying completely unlabeled data by using convex inequalities that
contain absolute values of the data. This allows each data point to belong to either one of two classes
by entering the inequality with a plus or minus value. By using such absolute value inequalities (AVIs)
in support vector machine classifiers, unlabeled data can be successfully partitioned into two classes
that capture most of the correct labels dropped from the data. Inclusion of partially labeled data
leads to a semisupervised classifier. Computational results include unsupervised and semisupervised
classification of the Wisconsin Breast Cancer Wisconsin (Diagnostic) Data Set.
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1 Introduction

We begin with the following convex absolute value inequality (AVI):
[z'w — 4| <1, (1.1)

where | - | denotes the absolute value. Here the column vector z represents any data point in an n-
dimensional space R"™, w € R™ is the normal vector to the classifying plane 2w — v = 0, v determines
the distance from the origin of the plane, and the prime denotes the transpose of the column vector x.
The AVI (1.1) is equivalent to dividing R™ into two overlapping halfspaces by the following two linear
inequalities:

z'w ¥+1,

<
> -1 (1.2)

2w
The key to our approach is to represent the last two inequalities by the single absolute value inequality
AVT (1.1). Thus if 2’w — v > 0 then AVI (1.1) reduces to the first linear inequality of (1.2), whereas
if 2'w —~ < 0 then AVI (2.3) reduces to the second linear inequality of (1.2). Hence if we impose the
AVI (1.1) on an unlabeled dataset, the dataset will be divided into two categories to best fit the AVI
(1.1) or equivalently the two linear inequalities (1.2). Our objective will then be to minimize the overlap
between the bounding planes x'w = v £ 1.

There have been approaches to semisupervised classification utilizing support vector machines such
as [3, 7], but none of them have utilized absolute value inequalities. As far as unsupervised classification
is concerned there have been no approaches such as ours here that does not use any labeled data if desired.
There are of course many clustering techniques such as [1, 2, 4, 5, 16] that do not utilize any labels.
However these approaches are quite different from what we are proposing here. Furthermore none of
these approaches utilize either absolute value inequalities [13] or absolute value equations [20, 21, 14, 12].
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Our approach here, as will be made clear in Section 2, will be based on concave minimization on a
polyhedral set [9, 11, 12] which is solved by a few linear programs, typically four or less.

We briefly describe now the contents of the paper. In Section 2 we outline the theory behind
our approach and in Section 3 we state our iterative algorithm for minimizing a concave function on a
polyhedral set that consists of solving a succession of linear programs with a linearized objective function.
In Section 4 we give computational results that show the effectiveness of our approach by recovering
most of the labels that have been dropped from either all (unsupervised) or most (semisupervised) data
points. Section 5 concludes the paper.

We describe now our notation. The scalar product of two column vectors  and y in a n-dimensional
real space will be denoted by z'y. For a vector u, u’ represents the ith iterate of u during an iterative
process. The identity matrix in a real space of arbitrary dimension will be denoted by I, while a column
vector of ones of arbitrary dimension will be denoted by e and a column of zeros by 0. The notation
Of(z) stands for a subgradient if f(x) is a convex function, and a supergradient if f(x) is a concave
function. We shall use the MATLAB [18] symbol le £n to denote 10¥". The abbreviation “s.t.” stands
for “subject to”.

2 Unsupervised and Semisupervised Classification

We begin with an unlabeled dataset consisting of m points in the n-dimensional space R" represented
by the m x n matrix A and the labeled dataset consisting of k points in R™ represented by the k x n
matrix H and labeled by the k& x k diagonal matrix D with entries of +1 which denote which class of
+1 or —1 each row of H belongs to. Thus we wish to find two planes 2w — v = +1 in R" that specify
the £1 feasible regions generated by the two inequalities of (1.2) and which satisfy with minimal error
vector s the following inequalities:

Aw—er] < e
D(Hw —ey)+s > e, (2.3)
S > 0.

Here the nonnegative slack variable s is to be driven toward zero by the following optimization problem:

e jw| = |y| + pe s
s.t. |Aw — ev| < e (2.4)
D(Hw —ey) +s > e,
S > 0,

which in addition, maximizes the 1-norm of (w, ) in order to minimize the distance between the two
overlapping feasible regions of the inequalities of (1.2), while u is a positive parameter that balances
the two groups of objectives of (2.4). We note that the constraints of (2.4) are convex while the
objective function is concave, which we shall minimize by the finite successive linearization techniques
of [9, 11, 12]. In order to handle the nonlinear absolute value inequality in (2.4) above we proceed as
follows. We replace the term |Aw — e7| in the absolute value inequality by an upper bound r on it:
—r < (Aw — ey) < r whose 1-norm is minimized with objective function weight . This results in the
following linearly constrained concave minimization problem:

s =€ 1 = P '
st.—r < Aw — ey <
, < e (2.5)
—D(Hw —ey) — s < —e
s > 0,



which will be solved by a finite sequence of linear programs as described in the next section.

3 Successive Linear Programming Solution of Unsupervised & Semisupervised
Classification

We note first that the objective function of our optimization problem (2.5) is concave and the constraints
are linear. We further note, under the generally satisfied condition that the n 4+ 1 columns of the
m x (n + 1) matrix [A e] are linearly independent, it follows that the iterates (w’,~, 7%, s') of our
successive linearization algorithm 3.1 below are bounded. Hence, by [10, Theorem 3] we have that the
iterates (w’, v, 7%, s') strictly decrease the objective function of (2.5) and terminate in a finite number of
steps (typically less than five) at a point satisfying the minimum principle necessary optimality condition
for our problem (2.5).
We now state our successive linearization algorithm.

ALGORITHM 3.1. SLA: Successive Linearization Algorithm Choose parameter values for (u,v) in
(2.5), typically le — 4.

(I) Initialize the algorithm by choosing an initial nonnegative random vector in R" ! for (w®,~°). Set
iteration number to i = 0.

(II) Solve the following linear program, which is a linearization of (2.5) around (w',~*,r%,s%), for
(Wit At it i)

!

( )IéléﬂlJerM — sign(w') w — sign(y")y + ver + pe's
w?’y77‘78
s.t.—r < Aw — ey <
. < e (3.6)
—D(Hw —ey) — s s —e
s > 0,

(III) If w™t = w' stop.
(IV) Seti=1i+ 1 and go to Step (II).
By invoking [10, Theorem 3] we have the following finite termination result for our SLA 3.1.

PROPOSITION 3.1. Finite Termination of SLA 3.1 Let z = (w,~y,r,s), let f(z) denote the concave
objective function of (2.5) and let Z denote the feasible region of (2.5). Then the SLA 3.1 generates a
finite sequence of feasible iterates {z%, 2%, ..., 2} of strictly decreasing function values f(z') > f(z?) >
v f(2Y), such that 2* satisfies the minimum principle necessary optimality condition:

If(2)(z—2) >0, VzeZ, (3.7)
where Of(2') denotes the supergradient of f at 2.

We note that all the above results can be extended to nonlinear kernel classification [17, 8, 6]
by replacing the linear absolute value inequality (1.1) by one representing a nonlinear surface
|K(2', A)u — ] < 1 that is still linear in the unknowns (u,7), but nonlinear in the data variable
x € R"™, where K is any nonlinear kernel.



4 Computational Results

We begin with a simple 2-dimensional example consisting of six points depicted in Figure 1. When
Algorithm 3.1 is applied to the six points [0,0;0,1;1,0;4, 4; 3,4; 4, 3] starting with a random (w, ), it
terminates after solving three linear programs with the separating line 1 = 2, which is quite appropriate
for the given six unlabeled data points.
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Figure 1: Simple 2-dimensional example consisting of the six unlabeled points
[0,0;0,1;1,0;4,4;3,4;4,3] and the separating line z; = 2 generated by Algorithm 3.1 by
solving three linear programs.

Our second example is one of the most popular datasets available from the University of California
Irvine Machine Learning Repository [19]: the Wisconsin Diagnostic Breast Cancer Dataset WDBC [22].
For our purposes we have extracted from WDBC an m x n matrix A with m = 569 and n = 30. Here
m is the total number of patients in WDBC and n is the total number of features obtained from the
fine needle aspirate of each patient [15]. We have rearranged the rows of A so that the first 357 rows
are the data of benign aspirates, while the last 212 rows A are those of malignant aspirates. We shall
now present results of our Algorithm 3.1 applied to this dataset.

We first ran Algorithm 3.1 on the whole matrix A as a completely unsupervised problem, that is
without the last two constraints of (3.6) and obtained a correctness of 65.55%. We then ran Algorithm 3.1
twice with two different ten labeled cases, five benign and five malignant cases and obtained correctness
values of 75.40% and 81.72% respectively. These results are summarized in Table 1.

5 Conclusion and Outlook

We have proposed the use of absolute value inequalities for classifying unlabeled data. We have also
combined the approach with standard methods for classifying labeled data. It will be interesting
to utilize other absolute value inequality formulations to handle unlabeled data, as well as utilizing
nonlinear kernels in addition to the linear kernels employed here. Hopefully this may lead to effective
tools for handling large unlabeled data.



No. of Unlabeled Labeled Data No. of Linear Correctness
Data Used Rows Used Programs Solved
569 None 2 65.55%
559 Rows 201-205 Benign 3 75.40%
Rows 361-365 Malignant
559 Rows 1-5 Benign 4 81.72%
Rows 565-569 Malignant

Table 1: Unsupervised and semisupervised results for Algorithm 3.1 on the Wisconsin
Diagnostic Breast Cancer Dataset WDBC [22] consisting of 569 cases the first 357 of which
being benign and the last 212 cases being malignant.
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