TEICHNICIAIL S|

Test Driving Your Next Cache

r—" he U.S. Government reports the fuel efficiency of new automobiles
with the warning: Your actual mileage may vary. Most computer
manufacturers report that their machines will execute up to 20
MIPS; some say you will get 14 MIPS sustained performance. In any
case, your actual “mileage” will vary a lot and will probably be less

than what the manufacturer claims.

One major reason that a computer’s speed varies so much, and in fact rarely
exceeds half its reported peak, is the effect of cache memories. (For more
details on cache concepts and organization, see “Memory Caching Schemes” in
the June issue.) While it is nice to assume that all references are serviced in a
cache without accessing main memory, real programs are not as kind as that. All
programs cause the cache to miss sometimes. Variation in the frequency of
misses is caused by differences in loop, array, and record sizes, procedure call
patterns, the number of local variables, etc. Furthermore, small differences in
how often the cache misses are magnified by how much longer it takes to get
information from main memory on a miss, often a factor of five to twenty. Thus,
if a computer’s cache misses on two percent of the references from someone
else’s program and on five percent of your program’s references, you will find
the computer 15 to 60 percent slower than they will.

This article will describe a method, called trace-driven simulation, that you
can use to evaluate the effectiveness of alternative caches on your workload.
Using trace-driven simulation reduces the uncertainty of how a computer will
perform with your programs, allowing you to buy your next computer based on
your numbers, not the manufacturer’s. Below I provide some background on
cache design, describe trace-driven simulation, and explain how to obtain the
cache simulator. I restrict the discussion to caches in uniprocessors, since
multiprocessor cache de-

CIEINIE

Simulating cache
performance using
real memory traces

BY MARK D. HILL

sign and simulation are
not as well understood.

Measuring Cache
Performance

The most commonly
used measure of cache
performance is the miss
ratio, which represents
the fraction of memory
references for which the

FIGURE 1. Trace-Driven
Simulation

Compute
effective
access from
miss ratio,
etc.

(© 1989 « NEIL PINCHIN DESIGN

MIPS



cache fails to have the information re-
quested. Miss ratio is used because it is
easy to define, interpret, compute, and
perhaps mostimportant, it is implementa-
tion-independent. This independence fa-
cilitates performance comparisons of
caches that are implemented with differ-
ent technologies and in different kinds of
systems as well as caches that are not yet
implemented.

The miss ratio metric, however, suffers
from two disadvantages. First, since miss
ratio comparisons contrast the number of
misses, they can be misleading if the delay
associated with a miss varies. For instance,
increasing the block size (j.e., the

miss penalty (the delay beyond a cache
access 1o access main memory). More
sophisticated models of effective access
time treat writes differently than reads
and instruction fetches.

The principal disadvantage of effective
access time is that implementation details
must be examined and assumptions made
to determine the values of .., and 4,0,
Performance estimates with any 1mplemen—
tation assumptions are less general, and
those with incorrect assumptions are mis-
leading. Table 1 shows some sample miss
ratios and effective access times. Note,
for example, that with ¢,,,,,,,,,,, = 10 cycles,
a 4-Kbyte single-cycle cache (i.e., no wait

TABLE 1. This table shows how cache miss ratio and effective access time interact. The miss ratios
given here are for direct-mapped unified caches (data and instructions together) that have 32-byte
blocks and are driven by some user/system traces from a DEC VAX-11 and an IBM 370. Your miss

ratios and effective access times may differ considerably from these.

Effective Access rm-(aydes) ,

o e ' S 7
i ; s =1 tope b wd -
{bytes] {percont] : muo t",,:",;,,-zo pmgm:
512 25 35 6.0 4.5
1K 19 29 4.8 3.9
2K 14 24 3.8 3.4
4K 10 2.0 3.0 3.0
8K 8 1.8 2.6 2.8
16K 6 1.6 2.2 2.6
32K 4 1.4 1.8 2.4
64K 3 1.3 1.6 2.3
128K 2 1.2 1.4 2.2

amount of information brought in on a
cache miss) often reduces the number of
misses and hence the miss ratio, but often
it also increases the number of cycles
needed to load that information. The ac-
tual change in cache performance will
depend on how much the number of
misses decreases and how much the time
to service a miss increases. The second
disadvantage is that small changes in the
miss ratio can lead to large changes in the
average time taken to service memory
references. Thus, one needs to be careful
when ignoring small differences in miss
ratio.

For this reason, I prefer to measure
cache performance with effective access
time, or the average time required to ser-
vice a memory reference. Using effective
access time has three advantages. First,
relative changes in effective access trans-
late almost directly into changes in how
fast a computer runs. Reducing effective
access time by 10 percent usually increases
a computer’s speed by 5 to 10 percent,
depending on the frequency of memory
references. Second, one can compare
caches where the delay for a miss differs,
as in the above example. Third, effective
access time can be simply modeled and
computed from the miss ratio and two
implementation parameters:

teff = tcache tmX tmemory

where I, ™, and 1,,,,,, are cache

access (hit) time, miss ratio, and average

AUGUST 1989

states) has an effective access time of 2.0
cycles, better than any two-cycle cache.

Key Cache Parameters

The cache design parameters that have
the greatest effecton ..., m, and ¢,,,,,,,,.,,
include cache size, whether data and in-
structions are cached together, block size,
and associativity.

Cache size and whether data and in-
structions are cached together are most

important. For highest performance, the -
cache should be the largest size that still--{
permits no-wait-state access. In pra;c‘fti'ce;

"« both 80387 and Weitek 3167

cost or limited chip or board area ‘can
cause designers to choose smaller:
caches. Today, typical on-chip caches con

RAM chips permit much larger board-~
level caches (e.g., 64 Kbytes) than were
heretofore optimal.

A cache designer must also choose be~
tween caching data and instructions in
one cache or in separate caches. The
principal advantage of separate caches is
that they facilitate accessing an instruc-
tion and a data item simultaneously, while
the main disadvantage is higher cost. Most
caches'used on today’s microprocessors
are separate, while most board-level
caches are unified.

Block (line) size is the amount of data
brought into a cache on a miss. Larger
blocks usually yield lower miss ratios be-
cause of spatial locality (the tendency to
reference near recent memory references),

but they also increase t,,,,,,,, Of memory

Obsolescence

designed out

Now, a 386 motherboard that
keeps up with progress. One
board with over 200 options
you choose —in seconds.
One board you can upgrade in
the future—up to 40Mz —in
seconds.

We've designed a 386 motherboard that
offers the best of what is available today
with whatis coming in the future. We've
put the most advanced support func-
tions available on the motherboard.
Whether it's a general purpose com-
puter, a workstation, or a file server, you
choose thebest combination of processor
features for your needs. Your invest-
ment is secure for the coming years of
progress. Features of the motherboard
include:

* 6 AT slots, 1 PC slot

» 2 serials, 1 parallel, 2 floppies

» G2 386 chipset & Quadtel BIOS
¢ LUIM 4.0, EEMS, & shadow ROM
« Interleaved 0 wait state memory
« Standard baby AT board size

+ Engineered and manufactured in
U.S.A. using advanced surface
mounted technologies

The processors are on a separate board

connected through a high speed private

bus. Options are:

* Intel 80386 at 20, 25, 33, or 40Mz
(when available)

coprocessor sockets standard

"« Austek cache controller with set-

tain 4 Kbytes or less, while large static :|.

- .associative or direct modes

| + Cache RAM from 32Kb to 128Kb
e Up to 16Mb of SIMM memory

This board set is sold alone or in con-
figured FCC approved systems. Call us
today for details and a quote. Quantity
prices for VARS and distributors.

Business MicroSystems, Inc.
531 South Plymouth Court
Chicago, llinois 60605

3129390062 FAX 3129320006

1.800.282.0286

NO. 139 ON READER SERVICE CARD
85




system cost. This is because transferring
more data on a cache miss requires either
more transfers or a wider path from main
memory. Block sizes of 16 or 32 bytes are
best for many caches; however, 8-byte
blocks may be preferred for caches of 4
Kbytes or smaller, while 64-byte blocks

mav be ontimal in caches larger than 64

Hiay 0T Uplliial il Calils laigtll viall U

Kbytes. For ease of 1mplementat1on, al-
most all caches use aligned blocks, mean-
ing that the address of the first item in the
block divided by the block size has re-
mainder zero.

Associativity is the final important cache
parameter. This is the number of places
in a cache where a block may reside.
Larger associativities lower the miss ratio
by providing the hardware with more
flexibility regarding what to throw out of
cache to make room for a new block.

. However, they increase cache cost and
access time by requiring that more places
be searched to determine if the reference
is present. Blocks must be replaced from
a cache, because a cache can hold far
fewer blocks than exist in main memory.
A cache that allows a block to be any-
where is called fully-associative; one that
restricts a block to one place in the cache
is direct-mapped; and one organized to
search z places is n-way set-associative.

Intuition suggests that an n-way set-
associative cache with large n is probably
the best compromise between cost and
performance. Unfortunately, intuition is
wrong, much as the intuition that sug-
gests that more complex instructions al-
ways lead to faster computers is wrong.

Data show that direct-manned two-way

mapped, v

and four-way set-associative caches are
usually best. I recommend using two-
way, unless direct-mapped allows a
farger no-wait-state cache to be built (fre-
quently trie for large caches) or four-
way costs little extra (rarely true).

Cache design parameters of secondary
importance include how to make replace-
ment decisions, whether or not to pre-
fetch, and how to update memory on
writes. Replacing the least-recently-used

“block usually gives the lowest miss ratio,
but random replacement works better than
expected, at lower cost.

Prefetching (loading data before it is
referenced) is rarely worth its implemen-
tation complexity, except for small in-
struction caches.

Cachies may update memory on every
write (write-through, non-store-in) or only
when a block is replaced (write-back,
copy-back, store-in). A naive implemen-
fation of write-through requires a proces-
sor to stall until each write completes at
main memory. Stall time can be signifi-
cantly reduced by adding write buffers to
hold pending writes and allowing the
processor to continue. An implementa-
tion of write-back requires that each cache
biock remember whether it has been writ-
ten and that main memory be updated
when a so-called “dirty” block is replaced.
Since replacement usually happens on

AUGUST 1989

reg addr_a: = &§a;
reg sum = 0

¥
sum = reg_sum;

104 move 0x200, regl H
108 move 0, reg2
10¢ move 0x14, reg3 H

Zero sum

110 load regi+reg3, reg4
114 add reg2, regd, reg2 add to sum
118 'sub reg3, 4, reg3 i reduce i
1l¢ branch>=0' 0x110 ;7 end loop

12

=3

store reg3, 0x300

LISTING 1. Pseudo-C code after register allocation.

for {reg i = 20; reg_i >= 0; reg i = reg i - 4
reg_sum = reg_sum + *(reg addr a + reg i};

LISTING 2. Assembly language produced for a load-store architecture.

assume 0xz200 is address of array a
initialize i

begin loop; load a{i] in a register

+i assume 0x300 is address of sum

{

cache misses, the update must occur be-
fore or after the new block is loaded,
costing additional delay if done before or
requiring a special buffer if done after. In
a uniprocessor, write-through and write-
back with proper buffering yield similar
performance. Thus, implementation con-
siderations dictate which is preferred. In
multiprocessor caches (not discussed in
this article), the choice of write policy is
of primary importance, and a form of
write-back is most often used because it
results in less traffic to main memory.

Test Driving with Simulation

Trace-driven simulation, a two-step
process, assesses expected cache perfor-
mance by evaluating how your programs
interact with the caches you design or
purchase. In step one, you gather and
save data on how your programs refer-
ence memory. This process is called trac-
ing, and the resulting data is called a
trace. In step two, you feed one or more
of your traces into a program that mimics
a cache in order to compute a miss ratio
for your trace. Finally, you combine that
miss ratio with assumptions for ¢, and
temory O compute the effective access
time for caches of interest. Step two can
be repeated many times to assess alterna-
tive cache performance on your trace.
Figure 1 illustrates the process of trace-
driven simulation.

Step One: Gathering Traces

I will illustrate trace-driven simulation
with the following fragment of C code,
which, when executed, will make 35 mem-
ory references. Useful simulations, how-
ever, require traces that are millions of
references long.

sum=0;
for (i=0; i<6; i++) {
sum=sum+ali];

An optimizing compiler could do regis-
ter allocation and alter the loop index
variable to get the pseudo-C code shown
in Listing 1 (where reg stands for a
register, each element of the array a is 4

bytes in size, and byte addressing is used).
Finally, the compiler could produce the
assembly language shown in Listing 2,
for a load-store architecture.

To trace this code, you must execute it
and record the type of reference (read,
write, or instruction fetch) and the ad-
dress for each memory reference in pro-
gram execution order. The execution of
the above program yields the trace shown
in Listing 3, where 0 stands for read, 1
for write, and 2 for instruction fetch, and
addresses are in hexadecimal.

Saving this trace completes step one
for this example. 1 have, however,
glossed over two items of considerable
practical complexity. The first item is how
to execute the program and gather the
trace. Three methods are used: software,
microcode, and hardware; none is clearly
best. In the software method, you write a
simulator of the hardware to be traced
that will both execute programs and write
a trace file. The advantages of this ap-
proach are that little hardware expertise
is required, the target machine need not
exist, and the trace file can be immedi-

LISTING 3. Trace file used as input to the
cache simulator.

104

108

10¢

110 ;; begin loop lteration
214

114

118

1ic

110 :; begin loop iteration
210

114

118

llc

110 I
20¢

114

118

1lc

.

o

[

begin loop iteration

110 ;i begin loop iteration 4
208
114
118
lic
110 i: begin loop iteration 5
204
114
118
1le
110 ;3 begin loop iteration 6

200
114
118
llc
120
300

FNNNNONNNRNOMNNNNONN RN O NR R RO RN RN DN NN R

87



ately piped into a cache simulator with-
out disturbing experimental results. The
main disadvantages are that the approach
can be very slow and it is hard to trace
anything but single-user programs (i.e.,
no operating system or multiprogram-
ming effects).

In the microcode method, you modify
a machine’s microcode so that it writes a
trace file as a side effect of execution. The
advantages of this approach are that pro-
grams being traced run much faster than
with the software method and multipro-
gramming effects and non-real-time parts
of the operating system can be traced.
The principal disadvantages are that it
requires a machine to exist and have extra

cnace in writable control store You aleo
Space i writaoie Controi Store. You diso

need to have considerable hardware ex-
pertise. This approach has been used with
great success on the VAX 8200. In the
final method, you attach a hardware moni-
tor to record addresses off a computer’s
bus as it runs at full speed. This approach
allows all things to be traced, but requires
special hardware and expertise.

The second problem encountered gath-
ering traces is that you must gather traces
that are both representative of your work-
load and sufficiently long to exercise
caches of interest. If you fail to get good
traces and feed garbage into a cache simu-
lator, the simulator will faithfully mimic
cache behavior and give you garbage
miss ratios. The following rules are useful
for gathering good traces:

m Select a dozen or more programs im-
portant to you (usually these include com-
pilers and an operating system).

® Run the programs on important input
data (e.g., the compiler compiling the
operating system).

m Make sure traces are long enough that
each cache block will see numerous
misses (often requiring millions of ad-
dresses, implying tens of millions of bytes
of trace data).

Step Two: Running
a Cache Simulator

The easy part of trace-driven simula-
tion is running a cache simulator to ex-
plore the cache design space. I wrote
such a simulator in C for Unix and named
it dinero (Spanish for cash). The current
version is dinerolll.

Running dinerolll is much simpler than
gathering traces. After you specify cache
parameters with command-line arguments
and feed a trace into its standard input,
dinerolll writes the miss ratio and related
numbers to standard output. Consider the
following command line:

dineroIlI -132768 —d32768 -blo
—-al < tracel

where tracel is a file containing the
extremely short (35-reference) trace de-
scribed above. This command line tells
dinerolll to simulate a 32-Kbyte instruc-
tion cache and a separate 32-Kbyte data

88

FIGURE 2. This sample simulation shows results of a short run on the dinerolll cache simulator.
The first five lines give information about the version of dinerolll used and the cache parameters
selected (e.g., “‘blocksize=16" means that cache block size is 16 bytes). The two lines labeled
“Demand Fetches” give the number and fraction of memory references that are of a given type

(e.g., 28 of 35 references are instruction fetches). “Demand Misses” give the number of misses and

miss ratio for each type of reference (e.g., 2 of 6 data reads missed). Finally, the last metrics give

total (normalized) numbers for words brought into the cache (normali

d by the ber of

memory references), the words written back to memory (normalized by the number of writes),
and the total traffic into and out of the cache (also normalized by the number of memory

references).
-Dinero III by Mark D. Hill.
—Version 3.1, Released 2/25/86.
CMDLINE: dineroIII -132768 ~-d32768 -blé —al
CACHE {in bytes): blocksize=16, sub-blocksize=0, Dsize=32768, Isize=32768.
POLICIES: assoc=l-way, replacement=1, fetch=d(1,0), write=c, allocate=w.
Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Misc
Demand Fetches 35 28 7 6 1 0
1.0000 0.8000 0.2000 0.1714 0.0286 0.0000
Demand Misses 6 3 3 2 1 0
0.1714 0.1071 0.4286 0.3333 1.0000 0.0000
Words From Memory 24
(/Demand Fetches) 0.6857
Words Copied-Back 4
(/Demand Writes) 4.,0000
Total Traffic (words) 28
(/Demand Fetches) 0.8000

cache with 16-byte (four-word) blocks
and direct-mapped placement and to use
the defaults for other parameters (e.g.,
write-back write policy).

Figure 2 shows the results of this simu-
lation run. The two caches experience six
misses, three on instruction blocks con-
taining hexadecimal addresses 100-10f,
110-11f, 120-12f, and three on data
blocks 200-20f, 210-21f, and 300-30f. The
resulting miss ratio is 0.1714 (6/35). The

trace is not long enough for any blocks to
be replaced.

I can now experiment with varying the
block size by running:

dineroIII-i132768 —d32768 —b32
—al < tracel

Figure 3 shows these results, where
four misses now occur on blocks 100-11f,
120-13f, 200-21f, and 300-31f.

FIGURE 3. This figure shows results similar to those of Figure 2. The only input change is that a
block size of 32 bytes (-b32) is used in place of 16 bytes. This change does not affect the number of
fetches but does affect the miss ratio and traffic numbers.

~Dinero III by Mark D. Hill.
—Version 3.1, Released 2/25/86.
CMDLINE: dineroIIl —i32768 —d32768 -b32 -al
CACHE (in bytes): blocksize=32, sub-blocksize=0, Dsize=32768, Isize=32768.
POLICIES: assoc=l-way, replacement=1l, fetch=d(l,0), write=c, allocate=w.
Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Misc
Demand Fetches 35 28 7 6 1 0
1.0000 0.8000 0.2000 0.1714 0.0286 0.0000
Demand Misses 4 2 2 1 1 0
0.1143 0.0714 0.2857 0.1667 1.0000 0.0000
Words From Memory 32
(/Demand Fetches) 0.9143
Words Copied-Back 8
(/Demand Writes) 8.0000
Total Traffic (words) 40
(/Demand Fetches) 1.1429
MIPS



Of course, no conclusions regarding
the best block size should be drawn from
a trace of 35 references. I'll now consider
a more realistic trace containing 0.5 mil-
lion instructions from the SPUR Lisp com-
piler, compiling part of itsell. (SPUR is a
research project at U.C. Berkeley that built
a multiprocessor workstation using co-
herent caches and custom RISC micro-
processors.) Figure 4 shows that with
this trace, doubling block size from 16
bytes to 32 bytes reduces the overall miss
ratio from 0.0498 o 0.0356.

Which block size is preferred? Assume
that cache misses with 16-byte blocks
take 10 cycles beyond a single-cycle cache
access to service. In this case, effective
access time is 1.50 cycles (1 + 0.0498 x
10). If 32-byte blocks can also be trans-
ferred from memory in 10 cycles, then
effective access time with them is 1.36
cycles. On the other hand, if doubling
block size doubles the miss handling delay,
making it 20 cycles, effective access time
is a poor 1.71 cycles. Therefore, neglect-
ing cost, 32-byte blocks are superior in
the first case and inferior in the second.

You may also wonder at what miss
penalty do the two block sizes yield the
same effective access time. To answer
this you need only solve:

1.1 +¢0.0498) x (10) = 1 + (0.0356) x
tmemmy

to find that using 32-byte blocks yields a

lower effective access time if their miss

penalty is less than 14 cycles.

Similar analysis can be done for other
cache parameters. A reliable analysis
should use a dozen or more traces and
include cache cost considerations.

I've focused here on caches in a uni-
processor, where minimizing effective

access time and cache cost are most impor-

will be attached to each processor in a
multiprocessor machine. Multiprocessor
caches differ from uniprocessor caches in
at least two ways. First, multiprocessor
caches may be more concerned with re-
ducing interconnection network traffic
than minimizing effective access time. Sec-
ond, in many cases, they must guarantee
that cached information does not become
out of date. This problem, called cache
coherency, arises when one processor
writes information that another has
cached. Multiprocessor cache design is
currently a topic of much research inter-
est. Thus, our understanding of what is
best is likely to evolve in the coming
years. Interested readers should consult
the studies by Archibald and Baer, and
Goodman (references are listed below).

Obtaining the Cache Simulator
I wrote dinerolll in C under Unix to do
my research but am willing to make the

and designers. The software will be avail-
able from MIPS’ online listing service (see

90

tant. In the future, however, many caches

source code available to other researchers.

FIGURE 4. This figure shows results from two simulations with a 0.5 million-address trace. All
performance differences are caused by using 16-byte blocks in the first simulation and 32-byte

blocks in the second.

—Dinero I1II by Mark D. Hill.

lTeased 2/925/0¢6
86.

Veraion 2 1 Ne
L, Reieaseld «/ <95/

CMDLINE: dineroIII -i32768 -d32768 —blé —al
CACHE (in bytes): blocksize=16, sub-blocksize-0, Dsize-32768, Isize=32768.
POLICIES: assoc=1l-way, replacement=1, fetch=d(1l,0), write=c, allocate=w.

nnnnn a0 atpa=DT

Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Misc
Demand Fetches 640146 500000 140146 114679 25467 0
1.0000 0.7811 0.218% 0.1791 0.0398 0.0000
Demand Misses 31884 19850 12034 8295 3739 0
0.0498 0.0397 0.0859 0.0723 0.1468 0.0000
Words From Memory 127536
(/Demand Fetches) 0.1992
Words Copied-Back 17704
{/Demand Writes) 0.6952
Total Traffic (words) 145240
(/Demand Fetches) 0.2269

—Dinero III by Mark D. Hill.
~Version 3.1, Released 2/25/86.

CMDLINE: dineroIIl —132768 —d32768 -b32 —-al
CACHE (in bytes): blocksize=32, sub~blocksize=0, Dsize=32768, Isize=32768.
POLICIES: assoc=l-way, replacement=1, fetch=d(1,0), write=c, allocate=w.

Metrics Access Type:
(totals, fraction) Total Instrn Data Read Write Misc
Demand Fetches 640146 500000 140146 114679 25467 4}
1.0000 0.7811 0.218% 0.1791 0.0398 0.0000
Demand Misses 22805 13261 9544 7498 2046 0
0.035 0.0265 0.0681 0.0654 0.0803 0.0000
Words From Memory 182440
(/Demand Fetches) 0.2850
Words Copied-Back 21080
(/Demand Writes) 0.8277
Total Traffic (words) 203520
(/Demand Fetches) 0.3179

the editorial, page 4). I ask, but do not
require, individuals who wish to acquire
dinerolll to make an unrestricted dona-
tion of $30 (U.S.) to my University of
Wisconsin grants. I ask companies to give
$300. This money will aid continued re-
search. To do this, write a check payable
to Computer Sciences Fund —University
of Wisconsin Foundation and mail it to
Prof. Mark D. Hill, Computer Sciences
Department, 1210 West Dayton Street,
University of Wisconsin, Madison, WI
53706.

If you choose to acquire dinerolll, feel
free to modify it and give it to researchers
in your company. | ask, however, that
you; (1) indicate to others any modifica-
tions you make, (2) do not distribute it to
researchers beyond your company, (3)
do not sell it, and (4) acknowledge
dinerolll and me in papers that use it to a
significant extent. I make no representa-

tions about the suitability of this software
for any purpose. It is provided “as is,”
without expressed or implied warranty.

Additional Information

In this article I have discussed impor-
tant aspects of cache design and have
introduced a trace-driven simulation tech-
nique for evaluating caches. Readers in-
terested in studying cache size, block size,
and associativity in more detail may con-
sult the studies by Przybylski, Horowitz,
and Hennessy, M. D. Hill, and A. J. Smith’s
article, “Line Size Choice for CPU
Caches,” respectively. Those interested
in more on trace-driven simulation should
see Smith’s study, “Cache Evaluation and
the Impact of Workload Choice.” m

References
Archibald, J. and Baer, J.“Cache Coher-
ence Protocols: Evaluation Using Multi-

MIPS.




processor Simulation Model.” ACM
Trans. on Computer Systems, Novem-
ber 1986, pp. 273-298.

Goodman, J.R. June 1983. “Using Cache
Memory to Reduce Processor-Memory
Traffic.” Proc. Tenth International Sympo-
sium on Computer Architecture, pp. 124-
131. Stockholm, Sweden.

Hill, M.D."“A Case for Direct-Mapped
Caches.” IEEE Computer, December

1988, pp. 25-40.

Przybylski, S., Horowitz, M., and Hen-
nessy, J. June 1988. “Performance Trade-
offs in Cache Design.” 15th Annual
International Symposium on Computer
Architecture, pp. 290-298. Honolulu,
Hawaii.

Smith, A. J. June 1985. “Cache Evaluation
and the Impact of Workload Choice.”
Proc. Twelfth International Symposium

on Computer Architecture. pp. 64-73.
———*“LineSize Choice for CPU
Caches.” [EEE Trans. on Computers, Sep-
tember 1987, pp. 1063-1075.

Mark D. Hill is Assistant Professor of Compuiter
Sciences at the University of Wisconsin at Madi-
son and a recipient of the 1989 Presidential
Young Investigator Award.

386 User’s Log

Getting workstation
capabilities
from a 386 PC

BY WILLIAM L. RINKO-GAY

y typical working environment
M is an AST 20-MHz 386-based PC

linked to our 3Com LAN with an
Etherlink II card. An 80-Mbyte ESDI drive,
4 Mbytes of RAM, and a VGA graphics
adapter and monitor round out my hard-
ware configuration. In this series of
articles T'll be telling you what I find
as I dig into the capabilities of 386 ma-
chines. I'll share the problems I run into
as well as the solutions. By way of back-
ground, T studied electrical engineering
in college, and since then I've been work-
ing on minicomputers, engineering work-
stations, and microcomputers in a variety
of environments. At MIPST evaluate com-
puters, software development systems,
and benchmarking methodologies. I still
write a lot of utilities when I need them.

Working on an
Engineering Workstation

If you've used an engineering work-
station, you're familiar with the differ-
ences between workstations and PCs. I
used to work on an Apollo network. My
workstation was the DN4000, which had
about 4 Mbytes of real memory, more
virtual memory than I ever used, and a
very high resolution monochrome dis-
play that was run by the Display Manager
(DM). DM sits between the screen and
Aegis, Apollo’s operating system. (Apollo
layered Unix on top of Aegis, and this is
what T used.) With DM you can create
windows, resize them, and move them
around.

The interesting thing about these win-
dows is that they are full size. If you're
used to Microsoft Windows or DESQ-
view, you know that to display DOS in a
small window is to give up several col-
umns or rows. With Apollo’s DM, the

92

window you create for a text-based ap-
plication can be a full-sized screen. You
don’t have to scroll horizontally or verti-
cally. The text wraps at the right of the
window regardless of the width you set
and, unlike text displayed in Windows,
doesn't extend beyond the window. If
you create a window that’s 50 columns
wide and 10 lines deep, the application
uses only 50 columns and 10 lines. This is
a nice feature for applications like editors
and spreadsheets, especially when you're
displaying many of them at once. You
can see each window without overlap if
you want.

In addition to good display manage-
ment, the Apollo network (like many Unix
networks) gives you complete access to
hardware installed on other systems on
the network. In my job I worked with
coprocessor cards, but I never had one of
the cards on my workstation. When I
wanted to test a program with one of the
cards, T just accessed a system that had a
card installed. This feature also came in
handy if I needed a math coprocessor or
modem or whatever. Sharing hardware
wasn't entirely trouble-free. Occasionally
the loudspeaker would announce, “Who-
ever just shut down the Saturn node is in
big trouble,” but we lived with these minor
problems.

Last, the virtual memory the worksta-
tion network gave me was tremendous. I
never ran out of memory. Processes could
have all they wanted, regardless of what
else was running. Of course, using more
memory than was physically available
slowed things down a bit, but I was never
told that memory was not available.

The user interface, network capabili-
ties, and the virtual memory are great to
have when youre performing multiple
tasks at the same time. 386 PCs can run
multiple tasks, but those sophisticated
features make a huge difference.

Tapping into the Power of the 386

Compared to the Apollo, the computer
I use now seems low powered. I'm not
talking about MFLOPS, but capabilities
for the end user. The AST machine may
benchmark faster than the Apollo, but its
network environment and user interface

are much less powerful.

I need multitasking and windowing
environments. For a lot of what I do,
context switching works okay, but multi-
tasking is what I require. I print a lot of
graphs, and bit-mapped printing takes a
lot of computing power. I like to throw
that in the background when I can. Com-
piling large programs is the same. I also
do things like copying files in the back-
ground, a habit I got into while using the
workstation. 1 now keep it up with the
help of DOS-compatible multitasking op-
erating systems.

When I'm working on an article, I usu-
ally have four directly related things going
at once. I'm graphing benchmark results
I've gathered so 1 can quickly see the
overall picture. I'm running a spreadsheet
that lets me make group calculations, like
average percent differences in AIM bench-
mark results (the results are usually
spread out all over my drive, and DOS is
the easiest way to get them). I use a
calculator for quick, single-point calcula-
tions, and I write in a word processor. I
also use DOS to run programs I've writ-
ten that put benchmark data in a format I
can import elsewhere. In addition, I must
have a business card filer (I constantly
have to make phone calls in the middle
of my work) and my calendar available at
any time. In the background is my net-
work server, which 1 use to access a
printer and, occasionally, share files.

Windows/386

My first attempt to make all my re-
quirements work together was Microsoft
Windows/386, a fully multitasking envi-
ronment and graphical user interface
(GUD). It runs DOS programs in windows
or with the full screen. When used in
windows, programs display only as much
on screen as you've allowed room for. If
you don’t make the windows large
enough, text extends beyond them and
you have to use horizontal and vertical
scroll bars.

Compared to earlier versions of Win-
dows, Windows/386 is slightly different.
First, it supports multitasking. You get
access to multitasking either through the
Program Information File (PIF), which

MIPS




