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ABSTRACT

This paper presents a shared-memory model, data-race-free-1, that unifies four earlier models: weak order-
ing, release consistency (with sequentially consistent special operations), the VAX memory model, and data-
race-free-0. The most intuitive and commonly assumed shared-memory model, sequential consistency, limits per-
formance. The models of weak ordering, release consistency, the VAX, and data-race-free-0 are based on the
common intuition that if programs synchronize explicitly and correctly, then sequential consistency can be
guaranteed with high performance. However, each model formalizes this intuition differently and has different
advantages and disadvantages with respect to the other models.

Data-race-free-1 unifies the models of weak ordering, release consistency, the VAX, and data-race-free-0
by formalizing the above intuition in a manner that retains the advantages of each of the four models. A multipro-
cessor is data-race-free-1 if it guarantees sequential consistency to data-race-free programs. Data-race-free-1
unifies the four models by providing a programmer’s interface similar to the four models, and by allowing all
implementations allowed by the four models. Additionally, data-race-free-1 expresses the programmer’s interface
more explicitly and formally than weak ordering and the VAX, and allows an implementation not allowed by
weak ordering, release consistency, or data-race-free-0.

The new implementation proposal for data-race-free-1 differs from earlier implementations mainly by per-
mitting the execution of all synchronization operations of a processor even while previous data operations of the
processor are in progress. To ensure sequential consistency, two synchronizing processors exchange information
to delay later operations of the second processor that conflict with an incomplete data operation of the first proces-
sor.

Index Terms: data-race-free-0, data-race-free-1, memory model, release consistency, sequential con-
sistency, shared-memory multiprocessor, weak ordering.
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1. Introduction

A memory model for a shared-memory multiprocessor system is a formal specification of how memory

operations in a program will appear to execute to the programmer. In particular, a memory model specifies the

values that may be returned by read operations executed on a shared-memory system. This paper presents a new

memory model, data-race-free-1, that unifies four earlier models.1 Although the four models are very similar, each

model has different advantages and disadvantages for programmers and system designers. Data-race-free-1

unifies the four models by retaining all the advantages of the four models.

Most uniprocessors provide a simple memory model that ensures that memory operations will appear to

execute one at a time, in the order specified by the program (program order). Thus, a read returns the value from

the last write (in program order) to the same location. To improve performance, however, uniprocessors often

allow memory operations to overlap other memory operations and to be issued and executed out of program order.

Uniprocessors use interlock logic to maintain the programmer’s model of memory (that memory operations

appear to execute one at a time, in program order). This model of uniprocessor memory, therefore, has the

advantage of simplicity and yet allows for high performance optimizations.

The most commonly (and often implicitly) assumed memory model for shared-memory multiprocessor sys-

tems is sequential consistency, formalized by Lamport [21] as follows.

Definition 1.1: [A multiprocessor system is sequentially consistent if and only if] the result of any
execution is the same as if the operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in this sequence in the order specified
by its program.

In other words, a sequentially consistent multiprocessor appears like a multiprogrammed uniprocessor [24].

Although sequential consistency retains the simplicity of the uniprocessor memory model, it limits perfor-

mance by preventing the use of several optimizations. Figure 1 shows that in multiprocessor systems, both with

and without caches, common uniprocessor hardware optimizations, such as write buffers, overlapped memory

operations, out-of-order memory operations, and lockup-free caches [20], can violate sequential consistency.

These optimizations significantly improve performance and will become increasingly important in the future as

processor cycle times decrease and memory latencies increase [13]. Gharachorloo et al. have described
�����������������������������������

1. An earlier version of this work appears in the Proceedings of the 17th Annual International Symposium on Computer
Architecture, June 1990 [1]. The data-race-free-1 memory model developed in this paper extends the data-race-free-0
model of [1] by distinguishing unpaired synchronization operations from paired release and acquire synchronization opera-
tions. The definition of data-race-free-1 in Section 2 uses the notions of how different operations are distinguished, when
the distinction is correct, the synchronization-order-1 and happens-before-1 relations, and data races. These notions are ex-
tensions of similar concepts developed for data-race-free-0. Also, in parallel with our work on this paper, we published a
technique for detecting data races on a data-race-free-1 system [2]. Consequently, [2] reviews data races and the data-race-
free-1 memory model, and contains the definitions (in slightly different form) of Section 2. This material is used in Section
2 with the permission of the ACM.
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mechanisms that allow these optimizations to be used with the sequential consistency model, but the mechanisms

require hardware support for prefetching and rollback [12].

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Initially X = Y = 0

P 1 P 2

X = 1 Y = 1
r1 = Y r2 = X

Result: r1 = r2 = 0

Figure 1. A violation of sequential consistency.2

X and Y are shared variables and r1 and r2 are local registers. The execution depicted above violates sequential
consistency since no total order of memory operations consistent with program order lets both P 1 and P 2 return 0
for their reads on Y and X. Note that neither processor has data dependencies among its instructions; therefore,
simple interlock logic will not preclude either processor from issuing its second instruction before the first.

Shared-bus systems without caches - The execution is possible if processors issue memory operations out of ord-
er or allow reads to pass writes in write buffers.

Systems with general interconnection networks without caches - The execution is possible even if processors
issue memory operations in program order, if the operations reach memory modules in a different order [21].

Shared-bus systems with caches - Even with a cache coherence protocol [6], the execution is possible if proces-
sors issue memory operations out-of-order or allow reads to pass writes in write buffers.

Systems with general interconnection networks and caches - The execution is possible even if memory opera-
tions are issued and reach memory modules in program order, if they do not complete in program order. Such a si-
tuation can arise if both processors initially have X and Y in their caches, and a processor issues its read before its
write propagates to the cache of the other processor.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Alternate memory models have been proposed to improve the performance of shared-memory systems. To

be useful, the new models should satisfy the following properties: (1) the model should be simple for program-

mers to use, and (2) the model should allow high performance. The central assumption of this work is that most

programmers prefer to reason with the sequential consistency model since it is a natural extension of the well-

understood uniprocessor model. Therefore, one way in which a memory model can satisfy the first property is to

appear sequentially consistent to most programs and to formally characterize this group of programs. A memory

model can satisfy the second property by allowing all high performance optimizations that guarantee sequential

consistency for this group of programs.

One group of programs for which it is possible to guarantee sequential consistency and still use many

optimizations is programs that explicitly distinguish between synchronization memory operations (operations used

to order other operations) and data memory operations (operations used to read and write data). This dichotomy
�����������������������������������

2. Figure 1 is a modified version of Figure 1 in [1] and is presented with the permission of the IEEE.
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between memory operations is the motivation behind the four models of weak ordering [9], release consistency

with sequentially consistent special operations (henceforth called release consistency) [11], the VAX [8], and

data-race-free-0 (originally called weak ordering with respect to data-race-free-0) [1].

Although the four memory models are very similar, small differences in their formalization lead to differ-

ences in the way they satisfy the above two properties. Weak ordering [9] and release consistency [11] restrict

hardware to actually execute specific memory operations in program order. For programmers, the authors of

weak ordering later stated that mutual exclusion should be ensured for each access to a shared variable by using

constructs such as critical sections, which are implemented with hardware-recognizable synchronization opera-

tions [10, 26]. The authors of release consistency formalize a group of programs called properly labeled pro-

grams, for which release consistency ensures sequential consistency. A properly labeled program distinguishes its

memory operations depending on their use. For example, it distinguishes synchronization operations from ordi-

nary data operations. The VAX and data-race-free-0 models differ from weak ordering and release consistency

by avoiding explicit restrictions on the actual order of execution of specific memory operations. In the VAX

architecture handbook [8], the data sharing and synchronization section states the following. ‘‘Accesses to expli-

citly shared data that may be written must be synchronized. Before accessing shared writable data, the program-

mer must acquire control of the data structure. Seven instructions are provided to permit interlocked access to a

control variable.’’ Data-race-free-0 [1] states that sequential consistency will be provided to data-race-free pro-

grams. A data-race-free program (discussed formally in Sections 2 and 3) distinguishes between synchronization

operations and data operations and ensures that conflicting data operations do not race (i.e., cannot execute con-

currently). For programs that contain data races, data-race-free-0 does not guarantee the behavior of the

hardware.

The different formalizations of the four models result in some models satisfying the simplicity or the high-

performance property better than other models; however, no model satisfies both properties better than all other

models. For example, the VAX imposes the least restrictions on hardware, but its specification is less explicit and

formal than the other models. Consider the statement, ‘‘before accessing shared writable data, the programmer

must acquire control of the data structure.’’ Does this allow concurrent readers? Further, how will hardware

behave if programs satisfy the specified conditions? Although it may be possible to answer these questions from

the VAX handbook, a more explicit and formal interface would allow a straightforward and unambiguous resolu-

tion of such questions. Release consistency, on the other hand, provides a formal and explicit interface. However,

as Section 4 will show, the hardware requirements of release consistency are more restrictive than necessary.

This paper defines a new model, data-race-free-1, which unifies the weak ordering, release consistency,

VAX, and data-race-free-0 models in a manner that retains the advantages of each of the models for both the
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programmer and the hardware designer. The following summarizes how data-race-free-1 unifies the four models

and how it overcomes specific disadvantages of specific models.

For a programmer, data-race-free-1 unifies the four models by explicitly addressing two questions: (a)

when is a program correctly synchronized? and (b) how does hardware behave for correctly synchronized pro-

grams? Data-race-free-1 answers these questions formally, but the intuition behind the answers is simple: (a) a

program is correctly synchronized if none of its sequentially consistent executions have a data race (i.e.,

conflicting data operations do not execute concurrently), and (b) for programs that are correctly synchronized, the

hardware behaves as if it were sequentially consistent. This viewpoint is practically the same as that provided by

release consistency and data-race-free-0. However, it is more explicit and formal than weak ordering and the

VAX (e.g., it allows concurrent readers because they do not form a data race).

For a hardware designer, data-race-free-1 unifies the four models because (as will be shown in Section 4)

implementing any of the models is sufficient to implement data-race-free-1. Furthermore, data-race-free-1 is less

restrictive than either weak ordering, release consistency, or data-race-free-0 for hardware designers since there

exists an implementation of data-race-free-1 that is not allowed by weak ordering, release consistency, or data-

race-free-0. The new implementation (described in Section 4) differs from implementations of weak ordering and

release consistency by allowing synchronization operations to execute even while previous data operations of the

synchronizing processors are incomplete. To achieve sequential consistency, processors exchange information at

the time of synchronization that ensures that a later operation that may conflict with an incomplete data operation

is delayed until the data operation completes. The new implementation differs from implementations of data-

race-free-0 by distinguishing between different types of synchronization operations.

The rest of the paper is organized as follows. Section 2 defines data-race-free-1. Sections 3 and 4 compare

data-race-free-1 with the weak ordering, release consistency, VAX, and data-race-free-0 models from the

viewpoint of a programmer and hardware designer respectively. Section 5 relates data-race-free-1 to other

models. Section 6 concludes the paper.

2. The Data-Race-Free-1 Memory Model

Section 2.1 first clarifies common terminology that will be used throughout the paper and then informally

motivates the data-race-free-1 memory model. Section 2.2 gives the formal definition of data-race-free-1. Data-

race-free-1 is an extension of our earlier model data-race-free-0 [1].
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2.1. Terminology and Motivation for Data-Race-Free-1

The rest of the paper assumes the following terminology. The terms system, program, and operations (as in

definition 1.1 of sequential consistency) can be used at several levels. This paper discusses memory models at the

lowest level, where the system is the machine hardware, a program is a set of machine-level instructions, and an

operation is a memory operation that either reads a memory location (a read operation) or modifies a memory

location (a write operation) as part of the machine instructions of the program. The program order for an execu-

tion is a partial order on the memory operations of the execution imposed by the program text [27]. The result of

an execution refers to the values returned by the read operations in the execution. A sequentially consistent exe-

cution is an execution that could occur on sequentially consistent hardware. Two memory operations conflict if at

least one of them is a write and they access the same location [27].

The motivation for data-race-free-1, which is similar to that for weak ordering, release consistency, the

VAX model and data-race-free-0, is based on the following observations made in [1].3 Assuming processors

maintain uniprocessor data and control dependencies, sequential consistency can be violated only when two or

more processors interact through memory operations on common locations. These interactions can be classified

as data memory operations and synchronization memory operations. Data operations are usually more frequent

and involve reading and writing of data. Synchronization operations are usually less frequent and are used to

order conflicting data operations from different processors. For example, in the implementation of a critical sec-

tion using semaphores, the test of the semaphore and the unset or clear of the semaphore are synchronization

operations, while the reads and writes in the critical section are data operations.

Additionally, synchronization operations can be characterized as paired acquire and release synchronization

operations or as unpaired synchronization operations as follows. (The characterization is similar to that used for

properly labeled programs for release consistency [11]; Section 3 discusses the differences.) In an execution, con-

sider a write and a read synchronization operation to the same location, where the read returns the value of the

write, and the value is used by the reading processor to conclude the completion of all memory operations of the

writing processor that were before the write in the program. In such an interaction, the write synchronization

operation is called a release, the read synchronization operation is called an acquire, and the release and acquire

are said to be paired with each other. A synchronization operation is unpaired if it is not paired with any other

synchronization operation in the execution. For example, consider an implementation of a critical section using

semaphores, where the semaphore is tested with a test&set instruction and is cleared with an unset instruction.

The write due to an unset is paired with the test that returns the unset value; the unset write is a release operation
�����������������������������������

3. The observations are paraphrased from [1] with the permission of the IEEE.
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and the test read is an acquire operation because the unset value returned by the test is used to conclude the com-

pletion of the memory operations of the previous invocation of the critical section. The write due to a set of a

test&set and a read due to the test of a test&set that returns the set value are unpaired operations; such a read is

not an acquire and the write is not a release because the set value does not communicate the completion of any

previous memory operations.

As will be illustrated by Section 4, it is possible to ensure sequential consistency by placing most hardware

restrictions only on the synchronization operations. Further, of the synchronization operations, the paired opera-

tions require more restrictions. Thus, if hardware could distinguish the type of an operation, it could complete

data operations faster than all the other operations, and unpaired synchronization operations faster than the paired

synchronization operations, without violating sequential consistency. A data-race-free-1 system gives program-

mers the option of distinguishing the above types of operations to enable higher performance.

2.2. Definition of Data-Race-Free-1

Section 2.1 informally characterized memory operations based on the function they perform, and indicated

that by distinguishing memory operations based on this characterization, higher performance can be obtained

without violating sequential consistency. This section first discusses how the memory operations can be dis-

tinguished based on their characterization on a data-race-free-1 system, and then gives the formal criterion for

when the operations are distinguished correctly for data-race-free-1. The section concludes with the definition of

the data-race-free-1 memory model.

Data-race-free-1 does not impose any restrictions on how different memory operations may be dis-

tinguished. One option for distinguishing data operations from synchronization operations is for hardware to pro-

vide different instructions that may be used for each type of operation. For example, only special instructions

such as Test&Set and Unset may be used to generate synchronization operations. Alternatively, only operations

to certain memory-mapped locations may be distinguished as synchronization operations. One way of distin-

guishing between paired and unpaired synchronization operations is for hardware to provide special instructions

for synchronization operations and a static pairable relation on those instructions; a write and a read in an execu-

tion are distinguished by the hardware as paired release and acquire if they are generated by instructions related

by the pairable relation, and if the read returns the value of the write. Figure 2 gives examples of different instruc-

tions and the pairable relation, and illustrates their use.

The following discusses when a programmer distinguishes operations correctly for data-race-free-1. If the

operations are distinguished exactly according to their function outlined in Section 2.1, then the distinction is

indeed correct. However, data-race-free-1 does not require a programmer to distinguish operations to match their
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P0 P1

DataWrite,x DataWrite,y

SyncRead,flag

DataRead,xDataWrite,y

(a)

P0 P1

DataWrite,x

Test&Set,s

DataRead,x

(b)

Fetch&Inc,count
Fetch&Inc,count

SyncWrite,flag

Fetch of
Fetch&Inc

Inc of
Fetch&Inc

SyncWrite

Unset,s

Test&Set,s

Unset,s

Test of
Test&Set

Set of
Test&Set

Unset
×

×

while (Test&Set,s) {;}

Unset,s

data ops in critical section

data ops before barrier

/* code for barrier */

if (Fetch&Inc,count == N) {

data ops after barrier

Test&Set,s

/* code for critical setion */

Sync-
Read

acquire

acquire

release

×

release

SyncRead,flag

DataWrite,count

local_flag = !local_flag;

DataWrite,count = 1;

SyncWrite,flag = local_flag;

while(SyncRead,flag != local_flag) {;}

} else

Figure 2. Synchronization instructions and the pairable relation for different systems.

Figures 2a and 2b represent two systems with different sets of instructions that can be used for synchronization
operations. For each system, the figure shows the different synchronization operations and the pairable relation,
along with programs and executions that use these operations. The table in each figure lists the read synchroniza-
tion operations (potential acquires) horizontally, and the write synchronization operations (potential releases) verti-
cally. A ‘×’ indicates that the synchronization operations of the corresponding row and column are pairable; they
will be paired in an execution if the read returns the value written by the write in that execution. The executions
occur on sequentially consistent hardware and their operations execute in the order shown. op,x denotes an opera-
tion op on location x. DataRead and DataWrite denote data operations. The Test&Set and Fetch&Inc [17] instruc-
tions are defined to be atomic instructions. Their read and write operations are represented together as Test&Set,x
or Fetch&Inc,x. Paired operations are connected with arrows.

Figure 2a shows a system with the Test&Set and Unset instructions, which are useful to implement a critical sec-
tion. A Test&Set atomically reads a memory location and updates it to the value 1. An Unset updates a memory
location to the value 0. A write due to an Unset and a read due to a Test&Set are pairable. The figure shows code
for a critical section and its execution involving two processors.

Figure 2b shows a system with the Fetch&Inc [17], SyncWrite and SyncRead instructions, which are useful to im-
plement a barrier. Fetch&Inc atomically reads and increments a memory location, SyncWrite is a synchronization
write that updates a memory location to the specified value, and SyncRead is a synchronization read of a memory
location. A write due to a Fetch&Inc is pairable with a read due to another Fetch&Inc and a write due to a
SyncWrite is pairable with a read due to a SyncRead. Also shown is code where N processors synchronize on a
barrier [23], and its execution for N = 2. The variable local_flag is implemented in a local register of the processor
and operations on it are not shown in the execution.

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
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function exactly. In the absence of precise knowledge regarding the function of an operation, a programmer can

conservatively distinguish an operation as a synchronization operation even if the operation actually performs the

function of a data operation. Sequential consistency will still be guaranteed although the full performance poten-

tial of the system may not be exploited. Henceforth, the characterization of an operation will be the one dis-

tinguished by the programmer (which may be different from that based on the actual function the operation per-

forms). For example, an operation that is actually a data operation, but for which the programmer uses a syn-

chronization instruction, will be referred to as a synchronization operation.

Intuitively, operations are distinguished correctly for data-race-free-1 if sufficient synchronization opera-

tions are distinguished as releases and acquires. The criteria for sufficiency is that if an operation is distinguished

as data, then it should not be involved in a race; i.e, the program should be data-race-free. The notion of a data

race is formalized by defining a happens-before-1 relation for every execution of a program as follows.

The happens-before-1 relation for an execution is a partial order on the memory operations of the execution.

Informally, happens-before-1 orders two operations initiated by different processors only if paired release and

acquire operations execute between them. Definition 2.2 formalizes this intuition by using the program order and

the synchronization-order-1 relations (Definition 2.1).

Definition 2.1: In an execution, memory operation S 1 is ordered before memory operation S 2 by the
synchronization-order-1 relation if and only if S 1 is a release operation, S 2 is an acquire operation
and S 1 and S 2 are paired with each other.

Definition 2.2: The happens-before-1 relation for an execution is the irreflexive transitive closure of
the program order and synchronization-order-1 relations for the execution.

The definitions of a data race, a data-race-free program and the data-race-free-1 model follow.

Definition 2.3: A data race in an execution is a pair of conflicting operations, at least one of which is
data, that is not ordered by the happens-before-1 relation defined for the execution. An execution is
data-race-free if and only if it does not have any data races. A program is data-race-free if and only
if all its sequentially consistent executions are data-race-free.

Definition 2.4: Hardware obeys the data −race −free −1 memory model if and only if the result of
every execution of a data-race-free program on the hardware can be obtained by an execution of the
program on sequentially consistent hardware.

Figures 3a and 3b illustrate executions that respectively exhibit and do not exhibit data races. The execution

in Figure 3a is an implementation of the critical section code in Figure 2a, except that the programmer used a data

write operation instead of the Unset synchronization operation for P 0’s write on s. Therefore, happens-before-1

does not order P 0’s write on x and P 1’s read on x. Since the write and read on x conflict and are both data opera-

tions, they form a data race. For similar reasons, P 0’s data write on s forms a data race with P 1’s test, set and

data write on s. Figure 3b shows an execution of the barrier code of Figure 2b. The execution is data-race-free

because happens-before-1 orders all conflicting pairs of operations, where at least one of the pair is data.
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Note that the execution of Figure 3b does not use critical sections and therefore data-race-free-1 does not

require that all sharing be done through critical sections. Also note that in programs based on asynchronous algo-

rithms [7], some operations access data, but are not ordered by synchronization. For such programs to be data-

race-free, these operations also need to be distinguished as synchronization operations.
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P0 P1

DataWrite,x DataWrite,y

SyncRead,flag

DataRead,xDataWrite,y

(a)

P0 P1

DataWrite,x

Test&Set,s

DataRead,x

(b)

Fetch&Inc,count
Fetch&Inc,count

SyncWrite,flag

Test&Set,s

SyncRead,flag

DataWrite,count

po

po

po

po

po

po

po

po

po

so1

so1

DataWrite,s

po

DataWrite,s

po

po

po = program order, so1 = synchronization-order-1

Figure 3. Executions that (a) exhibit and (b) do not exhibit data races.
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As discussed in Section 2.1, the definition of data-race-free-1 assumes a program that uses machine instruc-

tions and hardware-defined synchronization primitives. However, programmers using high-level parallel pro-

gramming languages can use data-race-free-1 by extending the definition of data-race-free to high-level programs

(as discussed for data-race-free-0 in [1]). The extension is straightforward, but requires high-level parallel

languages to provide special constructs for synchronization, e.g., semaphores, monitors, fork-joins, and task ren-

dezvous. Data-race-free-1 does not place any restrictions on the high-level synchronization mechanisms. It is the

responsibility of the compiler to ensure that a program that is data-race-free at the high-level compiles into one

that is data-race-free at the machine-level, ensuring sequential consistency to the programmer.

3. Data-Race-Free-1 vs. Weak Ordering, Release Consistency, the VAX Model, and Data-Race-Free-0 for

Programmers

This section compares the data-race-free-1 memory model to weak ordering, release consistency, the VAX,

and data-race-free-0 from a programmer’s viewpoint. As stated earlier, the central assumption of this work is that

most programmers prefer to reason with sequential consistency. For such programmers, data-race-free-1 provides
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a simple model: if the program is data-race-free, then hardware will appear sequentially consistent.

Both weak ordering and the VAX memory model state that programs have to obey certain conditions for

hardware to be well-behaved. However, sometimes further interpretation may be needed to deduce whether a pro-

gram obeys the required conditions (as in the concurrent readers case of Section 1), and how the hardware will

behave for programs that obey the required conditions. Data-race-free-1 expresses both these aspects more expli-

citly and formally than weak ordering and the VAX: data-race-free-1 states that a program should be data-race-

free, and hardware appears sequentially consistent to programs that are data-race-free.

Data-race-free-0 and release consistency provide a formal interface for programmers. Data-race-free-1 pro-

vides a similar interface with a few minor differences. The programs for which data-race-free-0 ensures sequen-

tial consistency are also called data-race-free programs [1]. The difference is that data-race-free-0 does not distin-

guish between different synchronization operations; it effectively pairs all conflicting synchronization operations

depending on the order in which they execute. This distinction does not significantly affect programmers, but can

be exploited by hardware designers.

The programs for which release consistency ensures sequential consistency are called properly labeled pro-

grams [11]. All data-race-free programs are properly labeled, but there are some properly labeled programs that

are not data-race-free (as defined by Definition 2.4) [15]. The difference is minor and arises because properly

labeled programs have a less explicit notion of pairing. They allow conflicting data operations to be ordered by

operations (nsyncs) that correspond to the nonpairable synchronization operations of data-race-free-1. Although a

memory model that allows all hardware that guarantees sequential consistency to properly labeled programs has

not been formally described, such a model would be similar to data-race-free-1 because of the similarity between

data-race-free and properly labeled programs.

A potential disadvantage of data-race-free-1 relative to weak ordering and release consistency is for pro-

grammers of asynchronous algorithms that do not rely on sequential consistency for correctness [7]. Weak order-

ing and release consistency provide such programmers the option of reasoning with their explicit hardware condi-

tions and writing programs that are not data-race-free, but work correctly and possibly faster. Data-race-free-1 is

based on the assumption that programmers prefer to reason with sequential consistency. Therefore, it does not res-

trict the behavior of hardware for a program that is not data-race-free. Nevertheless, for maximum performance,

programmers of asynchronous algorithms could deal directly with specific implementations of data-race-free-1.

This would entail some risk of portability across other data-race-free-1 implementations, but would enable future

faster implementations for the other, more common programs.

To summarize, for programmers, data-race-free-1 is similar to release consistency and data-race-free-0, but

provides a more explicit and formal interface than weak ordering and the VAX model. Previous work discusses

- 11 -



-- --

how the requirement of data-race-free programs for all the above models is not very restrictive for programmers

[1, 11], and how data races [2] or violations of sequential consistency due to data races [14] may be dynamically

detected with these models.

4. Data-Race-Free-1 vs. Weak Ordering, Release Consistency, the VAX Model, and Data-Race-Free-0 for

Hardware Designers

This section compares data-race-free-1 to weak ordering, release consistency, the VAX model, and data-

race-free-0 from a hardware designer’s viewpoint. It first shows that data-race-free-1 unifies the four models for a

hardware designer because any implementation of weak ordering, release consistency, the VAX model, or data-

race-free-0 obeys data-race-free-1 (Section 4.1). It then shows that data-race-free-1 is less restrictive than weak

ordering, release consistency, and data-race-free-0 for a hardware designer because data-race-free-1 allows an

implementation not allowed by weak ordering, release consistency, or data-race-free-0 (Section 4.2).

4.1. Data-Race-Free-1 Unifies Weak Ordering, Release Consistency, the VAX Model, and Data-Race-

Free-0 for Hardware Designers

For a hardware designer, data-race-free-1 unifies release consistency, data-race-free-0, weak ordering, and

the VAX model because any implementation of any of the four models obeys data-race-free-1. Specifically,

� all implementations of release consistency obey data-race-free-1 because, as discussed in Section 3, all

implementations of release consistency ensure sequential consistency to all data-race-free programs;


 all implementations of data-race-free-0 obey data-race-free-1 because, again as discussed in Section 3, all

implementations of data-race-free-0 ensure sequential consistency to all data-race-free programs;

� all implementations of weak ordering obey data-race-free-1 because our earlier work shows that all imple-

mentations of weak ordering obey data-race-free-0 [1], and from the above argument, all implementations of

data-race-free-0 obey data-race-free-1;

� data-race-free-1 formalizes the VAX model; therefore, all implementations of the VAX model obey data-

race-free-1.

4.2. Data-Race-Free-1 is Less Restrictive than Weak Ordering, Release Consistency, or Data-Race-Free-0

for Hardware Designers

Data-race-free-1 is less restrictive for a hardware designer to implement than either weak ordering, release

consistency, or data-race-free-0 because data-race-free-1 allows an implementation that is not allowed by weak
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ordering, release consistency, or data-race-free-0. Figure 4 motivates such an implementation. The figure shows

part of an execution in which two processors execute the critical section code of Figure 2a. Processors P 0 and P 1

Test&Set s until they succeed, execute data operations (including one on location x), and finally Unset s. The crit-

ical section code is data-race-free; therefore, its executions on a data-race-free-1 implementation should appear

sequentially consistent. In the execution of Figure 4, P 0’s Test&Set succeeds first. Therefore, P 1’s Test&Set

succeeds only when it returns the value written by P 0’s Unset. Thus, to appear sequentially consistent, P 1’s data

read of x should return the value written by P 0’s data write of x. Figure 4 shows how implementations of weak

ordering, release consistency, and data-race-free-1 can achieve this.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

DataRead,x

DataWrite,x

P0 P1

Unset,s

...

... Test&Set,s

WO stalls P0 until DataWrite completes

WO, RC stall P1 for Unset and (therefore for) DataWrite

DRF1 delays DataRead until DataWrite completes

Test&Set,s

...

RC delays Unset until DataWrite completes

DRF1 stalls P1 only for Unset

po

po

po

po

po

po

po

so1DRF1 need never stall P0 nor delay its operations

Test&Set,s
po

Unset,s

...
po

...

po

...
po

po = program order, so1 = synchronization-order-1

WO = weak ordering, RC = release consistency, DRF1 = data-race-free-1

Figure 4. Implementations of memory models.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Both weak ordering and release consistency require P 0 to delay the execution of its Unset until P 0’s data

write completes (i.e., is seen by all processors). However, this delay is not necessary to maintain sequential con-

sistency (as also observed by Zucker [28]), and it is not imposed by the implementation proposal for data-race-

free-1 described next. Instead, the implementation maintains sequential consistency by requiring that P 0’s data

write on x completes before P 1 executes its data read on x. It achieves this by ensuring that (i) when P 1 executes

its Test&Set, P 0 notifies P 1 about its incomplete write on x, and (ii) P 1 delays its read on x until P 0’s write on x

completes.
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With the new optimization, P 0 can execute its Unset earlier and P 1’s Test&Set can succeed earlier than

with weak ordering or release consistency. Thus, P 1’s reads and writes following its Test&Set (by program order)

that do not conflict with previous operations of P 0 will also complete earlier. Operations such as the data read on

x that conflict with previous operations of P 0 may be delayed until P 0’s corresponding operation completes.

Nevertheless, such operations can also complete earlier than with weak ordering and release consistency. For

example, if P 1’s read on x occurs late enough in the program, P 0’s write may already be complete before P 1

examines the read; therefore, the read can proceed without any delay. Recently, an implementation of release

consistency has been proposed that uses a rollback mechanism to let a processor conditionally execute its reads

following its acquire (such as P 1’s Test&Set) before the acquire completes [12]; our optimization will benefit

such implementations also because it allows the writes following the acquire to be issued and completed earlier,

and lets the reads following the acquire to be committed earlier.

The data-race-free-1 implementation differs from data-race-free-0 implementations because data-race-free-

1 distinguishes between the Unset and Test&Set synchronization operations and can take different actions for

each; data-race-free-0 does not make such distinctions.

Section 4.2.1 describes a sufficient condition for implementing data-race-free-1 based on the above motiva-

tion. Section 4.2.2 gives a detailed implementation proposal based on these conditions.

4.2.1. Sufficient Conditions for Data-Race-Free-1

Hardware obeys the data-race-free-1 memory model if the result of any execution of a data-race-free pro-

gram on the hardware can be obtained by a sequentially consistent execution of the program. The result of an

execution is the set of values its read operations return (Section 2.1). The value returned by a read is the value

from the write (to the same location) that was seen last by the reading processor. Thus, the value returned by a

read depends on the order in which the reading processor sees its read with respect to writes to the same location;

i.e., the order in which a processor sees conflicting operations. Thus, hardware is data-race-free-1 if it obeys the

following conditions.

Data-Race-Free-1 Conditions: Hardware is data-race-free-1 if for every execution, E, of a data-
race-free program on the hardware, (i) the operations of execution E are the same as those of some
sequentially consistent execution of the program, and (ii) the order in which two conflicting opera-
tions are seen by a processor in execution E is the same as in that sequentially consistent execution.

(A processor sees a write when a read executed by the processor to the same location as the write will return the

value of that or a subsequent write. A processor sees a read when the read returns its value. These notions are

similar to those of ‘‘performed with respect to a processor’’ and ‘‘performed’’ [9].)
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The following gives three requirements (data, synchronization, and control) that are together sufficient for

hardware to satisfy the data-race-free-1 conditions, and therefore to obey data-race-free-1.

The data requirement pertains to all pairs of conflicting operations of a data-race-free program, where at

least one of the operations is a data operation. In an execution on sequentially consistent hardware, such a pair of

operations is ordered by the happens-before-1 relation of the execution, and is seen by all processors in that

happens-before-1 order. The data requirement for an execution on data-race-free-1 hardware is that all such pairs

of operations continue to be seen by all processors in the happens-before-1 order of the execution. This require-

ment ensures that in Figure 4, P 1 sees P 0’s write of x before the read of x. Based on the discussion of Figure 4,

the data requirement conditions below meet the data requirement for a pair of conflicting operations from different

processors. For conflicting operations from the same processor, it is sufficient to maintain intra-processor data

dependencies. The conditions below assume these are maintained.

In the rest of this section, preceding and following refer to the ordering by program order. An operation,

either synchronization or data, completes (or performs [9]) when it is seen (as defined above) by all processors.

Data Requirement Conditions: Let Rel and Acq be release and acquire operations issued by proces-
sors Prel and Pacq respectively. Let Rel and Acq be paired with each other.

Pre-Release Condition - When Prel issues Rel, it remembers the operations preceding Rel that are
incomplete.

Release-Acquire Condition - (i) Before Acq completes, Prel transfers to Pacq the addresses and iden-
tity of all its remembered operations. (ii) Before Acq completes, Rel completes and all operations
transferred to Prel (on Prel’s acquires preceding Rel) complete.

Post-Acquire Condition - Let Acq precede Y (by program order) and let the operation X be transferred
to Pacq on Acq. (i) Before Y is issued, Acq completes. (ii) If X and Y conflict, then before Y is issued,
X completes.

The data requirement conditions can be proved correct by showing that they ensure that if X and Y are

conflicting operations from different processors and happens-before-1 orders X before Y, then X completes before

any processor sees Y. This implies that all processors see X before Y, meeting the data requirement. For the exe-

cution in Figure 4, the pre-release condition ensures that when P 0 executes its Unset, it remembers that

DataWrite,x is incomplete. The release-acquire condition ensures that when P 1 executes its successful Test&Set,

P 0 transfers the address of x to P 1. The post-acquire condition ensures that P 1 detects that it has to delay

DataRead,x until DataWrite,x completes and enforces the delay. Thus, DataRead,x returns the value written by

DataWrite,x.

Besides the data requirement, the data-race-free-1 conditions also require that the order in which two

conflicting synchronization operations are seen by a processor is as on sequentially consistent hardware. This is

the synchronization requirement. The data and synchronization requirements would suffice to satisfy the data-

race-free-1 conditions if they also guaranteed that for any execution, E, on hardware that obeyed these
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requirements, there is some sequentially consistent execution with the same operations, the same happens-before-

1, and the same order of execution of conflicting synchronization operations as E. In the absence of control flow

operations (such as branches), the above is automatically ensured. In the presence of control flow operations, how-

ever, an extra requirement, called the control requirement, is needed to ensure the above [3].

Weak ordering, release consistency, and all proposed implementations of data-race-free-0 satisfy the syn-

chronization requirement explicitly and the control requirement implicitly (by requiring ‘‘uniprocessor control

dependencies’’ to be maintained). Since the key difference between implementations of the earlier models and

the new implementation of data-race-free-1 is in the data requirement, the following describes an implementation

proposal only for the data requirement conditions. In [3], we formalize the above three requirements and give

explicit conditions for the synchronization and control requirements. A conservative way to satisfy the synchroni-

zation requirement is for a processor to also stall the issue of a synchronization operation until the completion of

preceding synchronization operations and the write operations whose values are returned by preceding synchroni-

zation read operations. A conservative way to satisfy the control requirement is for a processor to also block on a

read that controls program flow until the read completes.

Note that further optimizations on the data requirement conditions and on the implementation of the follow-

ing section are possible [3]. For example, for the release-acquire condition, the acquire can complete even while

operations transferred to the releasing processor are incomplete, as long as the releasing processor transfers the

identity of those incomplete operations to the acquiring processor. For the post-acquire condition, it is not neces-

sary to delay an operation (Y) following an acquire until a conflicting operation (X) transferred to the acquiring

processor completes. Instead, it is sufficient to delay Y only until X is seen by the acquiring processor, as long as a

mechanism (such as a cache-coherence protocol) ensures that all writes to the same location are seen in the same

order by all processors. Thus, the releasing processor can also transfer the values to be written by its incomplete

writes. Then reads following an acquire can use the transferred values and need not be delayed.

4.2.2. An Implementation Proposal for Data-Race-Free-1 that does not obey Weak Ordering, Release Con-

sistency, or Data-Race-Free-0

This section describes an implementation proposal for the data requirement conditions. The proposal

assumes an arbitrarily large shared-memory system in which every processor has an independent cache and pro-

cessors are connected to memory through an arbitrary interconnection network. The proposal also assumes a

directory-based, writeback, invalidation, ownership, hardware cache-coherence protocol, similar in most respects

to those discussed by Agarwal et al. [4]. One significant feature of the protocol is that invalidations sent on a

write to a line in read-only or shared state are acknowledged by the invalidated processors.
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The cache-coherence protocol ensures that (a) all operations are eventually seen by all processors, (b) writes

to the same location are seen in the same order by all processors, and (c) a processor can detect when an operation

it issues is complete. For (c), most operations complete when the issuing processor receives the requested line in

its cache. However, a write (data or synchronization) to a line in read-only or shared state completes when all

invalidated processors send their acknowledgements. (Either the writing processor may directly receive the ack-

nowledgements, or the directory may collect them and then forward a single message to the writing processor to

indicate the completion of the write.)

The implementation proposal involves adding the following four features to a uniprocessor-based processor

logic and the base cache-coherence logic mentioned above. (Tables 1 and 2 summarize these features.)

� Addition of three buffers per processor -- incomplete, reserve, and special (Table 1),

� Modification of issue logic to delay the issue of or stall on certain operations (Table 2(a)),

� Modification of cache-coherence logic to allow a processor to retain ownership of a line in the processor’s

reserve buffer and to specially handle paired acquires to such a line (Table 2(b)),

� a new processor-to-processor message called ‘‘empty special buffer’’ (Table 2(c)).

The discussion below explains how the above features can be used to implement the pre-release, release-

acquire, and post-acquire parts of the data requirement conditions. (Recall that ‘‘preceding’’ and ‘‘following’’

refer to the ordering by program order.)

For the pre-release condition, a processor must remember which operations preceding its releases are

incomplete. For this, a processor uses its incomplete buffer to store the address of all its incomplete data opera-

tions. A release is not issued until all preceding synchronization operations complete (to prevent deadlock) and all

preceding data operations are issued. Thus, the incomplete buffer remembers all the operations required by the

pre-release condition. (To distinguish between operations preceding and following a release, entries in the incom-

plete buffer may be tagged or multiple incomplete buffers may be used.)

For the release-acquire condition, an acquire cannot complete until the following have occurred regarding

the release paired with the acquire: (a) release is complete, (b) all operations received by the releasing processor

on its acquires preceding the release are complete, and (c) the releasing processor transfers to the new acquiring

processor the addresses of all incomplete operations preceding the release. For this purpose, every processor uses

a reserve buffer to store the processor’s releases for which the above conditions do not hold. On a release (which

is a write operation), the releasing processor procures ownership of the released line. The processor does not give

up its ownership while the address of the line is in its reserve buffer. Consequently, the cache-coherence protocol

forwards subsequent requests to the line, including acquires that will be paired with the release, to the releasing
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(a) Contents and purpose of buffers
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(b) Insertion and deletion actions for buffers

Table 1. Key buffers for aggressive implementation of data-race-free-1.

processor. The releasing processor can now stall the acquires paired with the release until conditions (a), (b), and

(c) above are met.

Table 2(b) gives the details of how the base cache-coherence logic can be modified to allow a releasing pro-

cessor to retain ownership of the released line in its reserve buffer, and to service acquires paired with the release

only when (a), (b), and (c) above are met. To retain ownership of a released line, the releasing processor stalls

release operations from other processors to the same line and performs a remote service for other external requests

to the same line. The remote service mechanism allows the releasing processor to service the requests of other
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-
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YesCache line replace-
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reserve buffer.
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Requests from other processors forwarded to this processor
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YesAcquire Stall request until special buffer empties and

paired release (in reserve buffer) completes, send
to acquiring processor the released line and en-
tries of incomplete buffer tagged as preceding the
release, request acquiring processor to not cache
the line, inform directory that this processor is re-
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(b) Modification to cache-coherence logic at processor
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All incomplete buffer entries
corresponding to a release deleted
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(c) New processor-to-processor message

Table 2. Aggressive implementation of data-race-free-1.
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processors without allowing those processors to cache the line. The mechanisms of stalling operations for an

external release and remote service for other external operations are both necessary. This is because stalling data

operations can lead to deadlock and servicing external release operations remotely would not let the new releasing

processors procure ownership of the line as required for the release-acquire condition. Meeting conditions (a),

(b), and (c) above requires the processor to wait for its release to complete and its special buffer to empty, and to

transfer contents of its incomplete buffer to the acquiring processor.

For the post-acquire condition, a processor must (a) stall on an acquire until it completes, and (b) delay a

following operation until the completion of any conflicting operation transferred to it on the acquire. For this pur-

pose, a processor uses a special buffer to save all the information transferred to it on an acquire. If a following

operation conflicts with an operation stored in the special buffer, the processor can either (a) stall or (b) delay only

this operation, until it receives an ‘‘empty special buffer’’ message from the releasing processor. The releasing

processor sends the ‘‘empty special buffer’’ message when it deletes the address of the release paired with the

acquire from its reserve buffer. For simplicity, an acquiring processor can also stall on the acquire until its special

buffer empties to avoid the complexity of having to delay an operation for incomplete operations of multiple pro-

cessors.

This completes the implementation proposal for the data requirement conditions, assuming a process runs

uninterrupted on the same processor. To handle context switches correctly, a processor must stall before switch-

ing until the various buffers mentioned above empty. Overflow of the above buffers can also be handled by mak-

ing a processor stall until an entry is deleted from the relevant buffer.

The above proposal never leads to deadlock or livelock as long as the underlying cache-coherence protocol

is implemented correctly, and messages are not lost in the network (or a time-out that initiates a system clean-up is

generated on a lost message). Specifically, the above proposal never stalls a memory operation indefinitely since

(i) the proposal never delays the completion of issued data operations, and (ii) the proposal delays an operation

only if certain issued data operations are incomplete. Thus, the above proposal does not lead to deadlock or

livelock.

5. Data-Race-Free-1 vs. Other Models

Previous sections have shown how the data-race-free-1 memory model unifies weak ordering, release con-

sistency, the VAX model, and data-race-free-0. This section first summarizes other memory models proposed in

the literature, and then examines how data-race-free-1 relates to them.
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The IBM 370 memory model [19] guarantees that except for a write followed by a read to a different loca-

tion, operations of a single processor will appear to execute in program order, and writes will appear to execute

atomically. The 370 also provides serialization operations. Before executing a serialization operation, a processor

completes all operations that are before the serialization operation according to program order. Before executing

any nonserialization operation, a processor completes all serialization operations that are before that nonserializa-

tion operation according to program order. The processor consistency [11, 16], PRAM [22] and total store order-

ing [25] models ensure that writes of a given processor appear to execute in the same order to all other processors.

The models mainly differ in whether a write appears to become visible to all other processors simultaneously or at

different times. The partial store ordering model [25] is similar to total store ordering except that it orders writes

by a processor only if they are separated by a store barrier operation. The model known as release consistency

with processor-consistent special operations [11] is similar to release consistency with sequentially consistent spe-

cial operations except that it requires special operations (syncs and nsyncs) to be processor-consistent. The

concurrent-consistency model [26] ensures sequential consistency to all programs except those ‘‘which explicitly

test for sequential consistency or take access timings into consideration.’’ The slow memory model [18] requires

that a read return the value of some previous conflicting write. After a value written by (say) processor Pi is read,

the values of earlier conflicting writes by Pi cannot be returned. The causal memory model [5, 18] ensures that

any write that causally precedes a read is observed by the read. Causal precedence is a transitive relation esta-

blished by program order or due to a read that returns the value of a write.

Data-race-free-1 is based on the assumption that most programmers prefer to reason with sequential con-

sistency. Concurrent consistency is the only model above that explicitly states when programmers can expect

sequential consistency; however, the conditions that give sequential consistency seem ambiguous and are difficult

to relate directly to data-race-free-1. The 370 model does not explicitly state when programmers can expect

sequential consistency; however, the previous sections on data-race-free-1 can be used to determine a sufficient

condition as follows. The serialization operations are analogous to the synchronization operations of weak order-

ing; therefore, the 370 appears sequentially consistent to data-race-free programs where serialization operations

that access memory are interpreted as synchronization operations and every write serialization operation is pair-

able with every read serialization operation.

For the remaining models, it is difficult to determine exactly when programmers can expect sequential con-

sistency. If the assumption that programmers prefer to reason with sequential consistency is true, then as stated,

the above models are harder to reason with than data-race-free-1. In the future, we hope to specify the above

models using the approach of data-race-free-1; i.e., specify the models in terms of a formal set of constraints on

programs such that the hardware appears sequentially consistent to all programs that obey those constraints. We

call this approach the sequential consistency normal form. We will investigate if such specifications provide
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greater insight and lead to more unifications.

6. Conclusions

Many programmers of shared-memory systems implicitly assume the model of sequential consistency for

the shared memory. Unfortunately, sequential consistency restricts the use of many high performance uniproces-

sor optimizations. For higher performance, several alternate memory models have been proposed. Such models

should (1) be simple to reason with and (2) provide high performance. We believe that most programmers prefer

to reason with sequential consistency. Therefore, a way to satisfy the above properties is for a model to appear

sequentially consistent to the most common programs and to give these programs the highest performance possi-

ble. The models of weak ordering, release consistency (with sequentially consistent special operations), the VAX,

and data-race-free-0 are based on the common intuition that if programmers distinguish their data and synchroni-

zation operations, then correct execution can be guaranteed along with high performance. However, each model

formalizes the intuition differently, and has different advantages and disadvantages with respect to the other

models.

This paper proposed a memory model, data-race-free-1, that unifies weak ordering, release consistency, the

VAX model and data-race-free-0, and retains the advantages of each of them. Hardware is data-race-free-1 if it

appears sequentially consistent to all programs that are data-race-free. Data-race-free-1 unifies the four models by

providing a programmer’s view that is similar to that of the four models, and by permitting all hardware allowed

by the four models. Compared to weak ordering, data-race-free-1 provides a more formal interface for program-

mers since it explicitly states when a program is correctly synchronized (data-race-free) and how hardware

behaves for correctly synchronized programs (sequentially consistent). Also, data-race-free-1 is less restrictive

than weak ordering for hardware designers since it allows an implementation that weak ordering does not allow.

Compared to release consistency, data-race-free-1 is less restrictive for hardware designers since it allows an

implementation that release consistency does not allow. Compared to the VAX model, data-race-free-1 provides

a more formal interface since it explicitly states when a program is correctly synchronized and how hardware

behaves for correctly synchronized programs. Compared to data-race-free-0, data-race-free-1 is less restrictive

for hardware designers since it allows implementations to take different actions on different types of synchroniza-

tion operations.
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