ANALYSIS OF MULTI-MEGABYTE
SECONDARY CPU CACHE MEMORIES

by

Richard Eugene Kessler

Computer Sciences Technical Report #1032

July 1991

ANALYSIS OF
MULTI-MEGABYTE SECONDARY CPU CACHE MEMORIES

by

RICHARD EUGENE KESSLER

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
(Computer Science)

at the
UNIVERSITY OF WISCONSIN-MADISON
1991

© copyright by Richard Eugene Kessler 1991
All Rights Reserved

Analysis of Multi-Megabyte Secondary CPU Cache Memories

Richard Eugene Kessler

This dissertation investigates multi-megabyte secondary caches. In a multi-level cache hierar-
chy, secondary caches service processor memory references that cannot be serviced by smaller and
faster primary caches. With faster processors and expanding main memories, a multi-megabyte
cache is increasingly vital because it shields processor memory references from costly main
memory accesses, even when the processor references a large address space. Multi-megabyte
secondary caches allow processors to execute at the speeds they are capable of, even when there is a
large processor-to-main-memory speed gap.

This analysis uses a new collection of memory address traces that is appropriate for multi-
megabyte cache simulation. These traces thoroughly characterize several large workloads, and are
long enough (billions of instructions) to overcome multi-megabyte cache cold-start. This disserta-
tion includes the first comparison of two previously-proposed trace-sampling techniques that can
reduce long-trace simulation requirements: set sampling and time sampling. Under a range of con-
ditions, set sampling produces more accurate cache performance estimates with less trace data than
time sampling.

This dissertation examines many alternative cache designs. It shows that multi-megabyte
secondary caches are extremely useful with large processor-to-main-memory speed gaps. Further-
more, associativity is needed for smaller secondary caches, but may not be necessary in multi-
megabyte caches; multi-megabyte cache block sizes should be larger than for smaller caches, and
the block size that equals the fixed latency and transfer time miss penalty components is a good
design point.

Finally, this dissertation introduces and solves the problems caused by the interaction of vir-
tual memory and real-indexed multi-megabyte caches. Since the placement of pages in main
memory also places data in the cache, a poor page placement will cause poor cache performance.
This dissertation introduces several new careful page mapping algorithms to improve the page
placement, and shows that they eliminate 10%-20% of the direct-mapped real-indexed cache misses
for the long traces. In other words, this dissertation develops software techniques that can make a
hardware direct-mapped cache appear about 50% larger.

ii

Acknowledgements

There are so many that helped put this dissertation together that I don’t know where to start.
Perhaps most importantly, I want thank the National Science Foundation and the University of
Wisconsin Alumni Research Foundation for financially supporting my graduate career through fel-
lowships. Digital Equipment also helped financially through an internship during the summer of
1989. My advisor, Mark Hill, was always a source of drive and inspiration. Mark patiently
corrected many of the errors in this dissertation. The mistakes that remain in this dissertation, how-
ever, are mine. Without him, this thesis would not exist.

I also owe a lot to Anita Borg and David Wall, and the rest of DEC’s Westemn Research
Laboratory. They developed the trace-gathering system that I needed to get the quantitative (i.e.
trace-driven simulation) results for this dissertation. I am grateful to Joel Bartlett, Renato De
Leone, Jeremy Dion, Norm Jouppi, Bob Mayo, and Don Stark for providing traceable applications.
Paul Vixie and Colleen Hawk also helped store the traces. Mike Litzkow and Miron Livny were a
great help in adapting Condor to the requirements of these simulations. Paul Beebe and the Sys-
tems Lab were able to satisfy the enormous computing needs of this dissertation.

I thank many others for their useful feedback. David Wood made numerous useful comments.
He was closely involved with the trace-sampling work. Guri Sohi made many critical comments
that greatly improved this dissertation. I also wish to thank Jim Goodman and Parameswaran
Ramanathan for serving on my committee. Special thanks to Harold Stone for his useful comments
on the research in this dissertation.

Last, but not least, I am grateful to my brothers, sisters, and parents for helping me keep things
in proper perspective. Finally, I will be forever grateful to Lisa Snow, both for helping to find
errors, and for just being there.

iii

Table of Contents

Chapter 1. INrOQUCHON.......coviiieiirires ettt 1
1.1. Dissertation Overview and ContribUtioNS.........ocoevviviiniiennnceseni e 2
Chapter 2. Background and Cache Performance ARalysis.........cocvmiersessmnnnsiscninimcninns. 5
2.1, INITOAUCHON. vt vuirriereeeeereerereretereeneeeseestesseeseesesnesssrarsssanesesnassbasssnsssobs sossonss taasnssssunssnsussssess 5
2.2. Virtual MemOTry CONCEPLScoveurimirmruiessrnsrnissnssssssssssssssstssssssssasnsssassmsssssssusnessacsssssssens 5
2.3. Set-Associative CPU €ache CONCEPLS. ...ovcirniriirmninisrmenemnnmninsssssisssisssnsnaneannsessssssseas 6
2.4. Previous Cache ANAlYSiS........cccevueeriruieniriininineres s innsses e sssesissssssssssasssansnss ssenssssessases 9
2.4.1. Hardware MODNILOTINE.....cccvvevervireirueiiniiiinntestsissssnssesssssssstessstss cness s ensassssssssacsssssascne 9
2.4.2. Analytical MOAEHNEc.vovriiiiriiriinieie sttt s s s s 10
2.4.3. Trace-Driven SHNULAONveveeernirsnrciissiris s snesrressasssstasars s s e ress s e s sasonses 10
2.4.3.1. Gathering Address TTaCES.......ccuveireiirmrmnnrsesesrstsia sttt st st st enen 11
2.4.3.2. Cache Analysis Using Address TTacescocovevvvrieeniicnniiiniiiinsisine i 13

2.5. Cache Performance MELTICS......cccoveieernrereeienniniiisinsisneinisssesssssnsssesssssstesnsnssnsssssnsnnesssssens 14
2.6. Statistical TEChNIGUEScccveverrueirmmieiereniinsnis e s srssssstsss st sas s st s s sn s it 17
2.7. The Trace-Driven Simulation Environmentcevvrvminininininiceninnneniiiene. 18
2.8, CONCIUSIONS. ..c..eeirrerrerirteseerereessestessessssosestesessessessessesesssnsesasssresssnassasesatsssassnsanassassassesssscans 20
Chapter 3. Long Traces For Cache Analysis.........cccoovnmnisemniiiniisrnissnsss s 22
3.1, INTOQUCHON. ... e eeirivirerctersre e e s seesesss e csnssesssrasae e ss saasas e sstansasese s ssn b e sn s s sanasaobsassasssse 22
3.2. The Trace Gathering and Storage MeChaniSm.........cooveeceseniiinnniniinen s 23
3.2.1. Gathering LONg TTACES ...cccoveririiriiininiriisisisse et suss s en s s e s 23
3.2.2. StOrNG LONE TTACES.....eccitriririrmnrirrersreremisset st cssstsssess st sere s s et ss sttt 25
3.3. A Description of the WorkIOadseveieenininiiiiiiin e 30
3.4. Simulation Results from the TTACES...........cciverirreriniinnerenisinss et s 30
3.4.1. Instruction Mix and Memory USAZE.........ocvuvuirirmerrnnissserinsessestininisnsssssnssnsnsssssssneses 30
3.4.2. The Multiprogrammed TTACESerurreererienniessecniiinent s 33
3.4.3. Miss Frequencies in Multi-Level Cache COnfigurations ... 35
3.4.4. Secondary Cache Inter-Miss DiStriDUtONScc.evnvivecnnmiimniinni s 39
3.5. The Advantages 0f LONG TTACESc.coveirminnrsrnesicressiscsiii it 44
3.5.1. Capturing More Workload BeRavior ..o 45
3.5.2. Overcoming Cache INitialiZation ..o s 48
3.6, CONCIUSIONS.......oeeveeeereireerirereesnesessenssssessestseessresteuebesrabasaestasssensasteasssassansstseneabasssssnsrassans 54
Chapter 4. Trace-Sampling TEChNIQUEScovevrreriserrenisseresitsiti e 56
4.1, INTOAUCHON. ... it icveerieetiitiesereresnerereenonsssessssstssr s st orasasasasaasssnessnss sosssrssrsssmesaasabassartasessenss 56
4.2, Set SAMPLNEceerreeerreeiririiaisisrirer et st st st b sb s a s e b s s e 58
4.2.1. Obtaining Unbiased Estimators from Set Samples.........coouiiemniimimnimininnsins 58
4.2.1.1. Constructing the Set SAMPIE.....c.cvuvuerriirrmrneinusesestst i s 58

4.2.1.2. Estimating MPI With a Set SAmPIe......cccoviieiininiiiinninnnen 61

4.2.2. What Fraction of the Full Trace is Needed? ... 62
4.2.3. Advantages and Disadvantages of Set Sampling.......cocvemeemeniiiiinii 69
4.3, TiMeE SAMPINE.......coerererererreisesiseressesesssesiris e ssrearsssressse st asasasssrssstonsras st srsb b s e b st b b stnes 69
4.3.1. Obtaining Unbiased Estimators from Time Samplescooeeciniiniiiiiinnn, 69
4.3.2. What Fraction of the Full Trace is Needed?.........ccvmmimevcnnieiiinii, 78
4.3.3. Advantages and Disadvantages of Time Samplingc.cocccvcvmmuniniinieisiiannn. 86
4.4, CONCIUSIONS.viviiueeesereesaesesereeresnereresestetssssssesesssssasrasssstassesessssssutostnssertessssassssesssuensssssoss 87
Chapter 5. Memory System Design With Multi-Megabyte Caches........ccooiviiiiiiiniincnnisis 89
5.1, INITOAUCHION.cvevre v cerrre e seaseseaseaeessesessestmestssstsasasssnnsesesssssesassntsnsssssstsssssssnssnmanasnsnssensasassas 89
5.2. Importance of Multi-Megabyte Cachesccivinnninnnniiiissssn 90
5.3. Importance of the CPU Cache HIi€rarchyoceoeiciiiininnninmiiinsse s 91
5.4. The Primary CaChes.......cocveeieriiiinisniriirriissiissssnss s esssssensessssssssssssssstensssasssssssssecs 93
5.5. Secondary Cache Size ChOICEcovveriiiviitienienniesresest sttt o 95
5.5.1. Effect of Processor-Main Memory Speed Gap.......cocvvevrivinnnninnicninniiisiniannsssnsienes 95
5.5.2. The Effect of WOrkload CROICE.......c.evecveviererrismnsiiiieiesenssinsentsnsssssissssstessn e ssssssnasanse 96
5.5.3. Effect of Speed Degradation With Larger Caches..........cooevviiniiiiinnniesnscsces 97
5.6. Secondary Cache Associativity AILEMALVES.......ccoeerriivinieivensscstniiisien s 99
5.6.1. The Usefulness 0f ASSOCIALVILYccveeeercererssserenisssieesnssiniseinmrensssssssssiesscssnssssssessesses 100
5.6.2. Replacement POLCY EffECtS......ovivirrmnieinnnienineisnesinisiienninsn s s sasasssssns 102
5.6.3. Effect of Speed Degradation With ASSOCIALVILY.....ceeemceemniicriniiiiiiinininiessnecses 103
5.6.4. Inexpensive Associativity Implementationscceveeerrieniininmnsinennnnmnn s 106
5.7. Secondary Cache Block Size AIEMALIVES.......ccocoveiieiiirieninnmsnniniientstsninenssssscsssscssses 112
5.8. Inclusion Design AleIMALIVES......covviiertirireruerisrersinesestsiscssceierinestsnsisisatstasssnsssss s sssssnensies 115
5.9. CONCIUSIONS. .. .cverreererirrerverserentesessesssseessossessessassessisssnssensessusasssnsssesssstessssisssssasanessasatassassesss 118
Chapter 6. Page Placement Algorithms for Real-Indexed Caches.........oiiiiniiniicncnnnns 120
6.1, INTOAUCHON. ...cevvevvecvirieeeretesessnssersesessesseseseseeassrast e e s bess et ansastasesstoses sase st s atnnesantatasassseans 120
6.1.1. PTEVIOUS WOTK ..ouveiuriereriarsesssetessessesssesesanasssssssessssessensssensssssenessssssssstssssssssassssonsssessass 121
6.1.2. Contributions Of this ChapLer..........ccccuviviirirenimeiinienese et s e 122
6.2. Motivation for Careful Page Mapping.......cccoceiremeernniinonnniinc e secscenes 124
6.2.1. Page Placement in Cache BiNsS........cccovniiinininnincnciiscii s i 123
6.2.2. A Simple Static Page Conflict ANalysisc.cccovvercneneiiini s 124
6.3. Careful Mapping IMpIEMERLAONScoevrireresmreessese st s sssessesssese 128
6.3.1. PaZE COLOTING ...cooveuereerenieeereerenserissesinscssastsesssssenssessssss et sessssss s aast st snssassasanasssssestseases 129
6.3.2. Bill HOPPINE. c.vveverurerceeeereeneicsmaiisise s sbssess s s sss s s sttt sansn st st s st s st s snsesc s 130
6.3.3. BESE Bill.u..coviuieeiececeieierereseerensiset st ssas e ses s e sas st e e et s e s snebe b et h s s b a0 131
6.3.4. HICTATCHICAL......ucovererireirivectereerecsse s sresese e seresra s s ba e eraes e b e st st s asacn e s st st sheabenesRnanan e snats 134
6.4. Trace-Driven Simulation Performance AnalySiS.........coceeienerinoennens it , 138
6.4.1. The SIMULALOT ...coveeeiretereeretereseeseses st secsesss s sa s e s s tesrssnesasssasssasessabtss e s ensssaassasaaassos 139
6.8.2. RESUILS.c.cecvirrerieerieieeseesensrsesssesessstasassesesssssesssssssesssssnsassatessanmessssssensessssssessssassnsanssans 140
6.4.2.1. The Usefulness of Careful Page Mappingcovvvenievecrieninicnieninsinenneniesinnn. 140
6.4.2.2. Static Page Conflict MinimizZation........covuereeiiennsnscnneniiiiiiiii s seces 145
6.4.2.3. Careful Mapping AIEMALIVESccverrrsrerereresssssenessssssssssmiiisisiessastsnss s ssonsesssnes 147
6.4.2.4. Does PID-Hashed Virtual-Indexing Approximate Real-Indexing?..........cccovcevunn. 148

v

6.4.2.5. Page Size Performance EffectS ..o 150

6.4.2.6. The Effect of Main Memory CONENHONccvvviivmnenmnesiniinnnnene e 151

6.5, DISCUSSIOM c.vvnvieierirereirererirrse e s eretsreseseesesaenbestersas st sareresbe st sbrebesaesa s assasbant st sebassasarsssasnssens 153
6.6, CONCIUSIONS. c.vvviveesveeneisterterieteste e eree e ereese e e sabeses it sa e sabsa s esbasb e b sb s et e abesebe st e se s e s s s enes 154
Chapter 7. Summary and FUture WOrkcouevemmencnnnninniii e 156
7.1, SUIMITMIATY .. oo eevieeeeectecetsiene s ebestsa e sssr s e aesasaea ot sa e s aese bt sa b b s R e shaRs S b s st SR aa e TR st s s bt n st sn s 156
7.2 FULTE WOTK ..oiviiieereirenieteietseesaesesaseesesneesesesussmsastessesssrasssasssassssnssse st ssesmse suarassisnenssanes 158
APPEIAIX A.oveiririreeiereerese st s e e b et bR R s 160
TAPPENAIX B ..ottt R R R AR 164
BibHOGIapRy. ...cooceieeiccer e s s s 168

vi

List of Figures

Chapter 1.
1.1. Hierarchical Memory System EVOLUtiONcccoeivviinimenieninninienin e 3
Chapter 2.
2.1. Virtual to Real Address Translationcviuiniirniinienisnniniee et 7
2.2. Set-Associative CPU Cache INAEXING ...veevvererrrrceererniesiensinsoseesmmeinineneesesesssssacisnssseens 9
2.3. Trace-Driven SIMUIAtON ...vcceeveeiirinrr it vasrssrsssse st essanssrssstesanssunssnassasass 11
2.4. Cache Performance MELTICSccooviveerecrismnsesrisiiiersessnnsssessansssmsssesesssessessssnesansesssnasnsssnsas 15
2.5. Simulation of Homogeneous Hierarchical Configurations...........cceveeericnsineninicnnnnes 19
2.6. Parallel Simulation With CONAOTccvciiivinciiiiiinine s 20
Chapter 3.
3.1. Code Expansion FOT TTACINEGccvuuriiviriinierernssrstnie ettt st cncnns 24
3.2. Concatenating Multiple Trace BUffers ... 25
3.3. The Phases Of Trace COMPIESSIONcciviiviiiiirireiririesteentrsteitnse et sbesanssssessseseae 26
3.4, Basic Block Compression COAEcccuiviimienierineniineiesiestsceestec st sssene e 27
3.5. Basic Block Decompression COdE........o.ccuvieiinrireniriiieieniaisinntsnsee et 28
3.6. Mult2.2 Processes Classified by Execution Length........coveiinnninnn. 35
3.7. Mult2.2 Processes Classified by Memory USage........coevemeennmnnnenieneneceninnnnmniinos 36
3.8. Miss Reduction for Doubling ASSOCIALIVILYccvviiierriirnnnieiininiinnne e 40
3.9. Miss Reduction for Doubling Size.........cocevvneivinmiinininnininesnesin s 41
3.10a. Inter-Miss Density of Multl, Multl.2, and MUult2ccoveimnninnnniiin 42
3.10b. Inter-Miss Density of Mult2.2, TV, and SOL........comeivienenieiiniiee 43
3.10c. Inter-Miss Density of Tree and LiN........cooiiiiniicnne 44
3.11a. Variability of Multl, Multl.2, and MUlt2.........ccccommnienmennnniisnnn e 46
3.11b. Variability of Mult2.2, TV, and SOTccermrernnninise it 47
3.11c. Variability of Tree and Lin ..o 48
3.12. Fraction of Misses that are COMPUISOTY .c.evuvivvirmimisienienininieenessnie s e s 49
3.13. Cumulative Initialization References for Beginning of Mult1.2 ..o 52
3.14. Memory Referenced Over Length of Trace......oveveeiciinininiiicne 53
Chapter 4.
4.1. Sampling as Vertical and Horizontal Time-Space SHCeScvvveiiviinriiniirniiininienns 57
4.2. Set Sampling on the MUlt].2 TIACE ...uuueeeiriiveriinisesesesene e 63
4.3. Distribution of Set Samples from the Mult].2 TTacecccocvvmevenmeccnieniniiiiin 64
4.4. Range of Performance With Set-Samplesccoeevenennnmniiicn 67
4.5. Accuracy of Time Sampling with MUltL.2 ..o 80
4.6a. Accuracy of Time Sampling with Multl, Mult2, Mult2.2, and TICC....coeeeerereeeeeerreeeeene 82
4.6b. Accuracy of Time Sampling with Tv, Sor, and Lin........covveeennii 83

vii

4.7. Accuracy of Time Sampling for Different Cache Sizescoevveiiniiiniiiiniinn, 84

4.8. Range of Time-Sampling Estimate for MUult1.2 ... 85
4.9. Time-Sample DiStriDULIONS.c.coceeiiiiriniiiiiiine et s 86
Chapter 5.
5.1. Memory Traffic Reduction With Multi-Megabyte Cacheccoooviniiiiiiinniniiin 91
5.2. The Simulated Cache CONfigUIAtiON........cccccvrieririesiirnirnieninrsesrese st senees 92
5.3. Portions 0f SCPI fOr MUILL.2c.oovrriinieiintene st sessnssssse s sttt ss s sessas 94
5.4. Effect of Miss Penalty on SCPI for MUltl.2.......c.ooivininnnmeniniieisessienns 96
5.5. Effect of Workload on Cache Size ChOICEccceiiiiiiiimiinieniminsenninc s 97
5.6. Effect of 10% Speed Degradation Per Cache Size DOUblNgcoocciviiiiiviininnencinninnn 98
5.7. Break-Even Access Time Penalties for Cache Size DOublingcccocovvmniiieniinnisiiinseneee 100
5.8. Performance Over a Range of ASSOCIAtIVItIES .u.oueieviireieeenincreieecne s 101
5.9. Associativity Performance With 10% Speed Degradation...........coccccvviiniinninoniinsenens 105
5.10a. Direct-Mapped to 2-Way Break-Even Implementation Penaltiesooueiemnnininee 106
5.10b. Direct-Mapped to 2-Way Break-Even (BIOW-UD)coveereniiiniimiminiininnsisssisessnensnnnes 107
5.11. Implementing Set-ASSOCIALVILYiivreereriirieinentntetsesscreirir s e 108
5.12. Improved Implementations of Serial Set-ASSOCIALVILY. ..ocveemeiiriiriniiinieneic s 109
5.13. Performance Over a Range of BIOCK SizZeS.......coviiininiinninnincne 114
Chapter 6.
6.1. Virtual Memory and Set Indexing INteraCtioncoeiieninenenniniiiiiinsss i 121
6.2. A Virtual-Indexed Bin PLACEMETNL........ccveceeeieiicinieiniiiiinisnsssssrasssnesesestssstsssssesssnnsannasassse 123
6.3. Random and Careful Real-Indexed Bin PlacementS......ccuurineeeeniecnnieniiniininnniiececens 125
6.4. Cache Placement CONLICES ..ovurrerrrireeriererniiniesiinsiessessiassassenesestesnesiesssessanssssesisanssasnassssase 127
6.5. Random Mapping COnfliCScouvuniirinriiiennniene st s st 128
6.6. Bin Choice Code for Page COIOTNGccccovirermerininienniinnennesiisiniciiniiesnsasessssaasacas 130
6.7. Page Placement By Bin HOPPING.......cocvivirerereienensnini et sinsecnes 131
6.8. Bin Choice Code for Bin Hopping e ereeereeeteeteoreestestreatenre et s eeae et et s e s e s e srsetnsas 132
6.9. Code t0 Choose AMONE BiMS....c..occviveiiiiiiiineriinis st e 133
6.10. Bin Choice Code for Best Bincccoveericeriiiiiiiiiiinirn st snasns e 133
6.11. Page Placement by BeSt Bill ... 134
6.12. Page Placement Using Hierarchycooeeeennnniieniin 136
6.13. Bill TTEE TTAVEISAL ..cuvieveiitieeecrrrieceieenrerseseeerestesresssesaassnssrasssassssse s asntosssastsesnantsssasasssssssss 135
6.14. Mapping Tree NOdeSs t0 BINS ..o 137
6.15. Bin Choice Code for Hierarchicalccccivcniuenminiimesnsmnieicssr st 138
6.16. LRU List Implementation With Available Page Frames............ccovviiiinnniinnn. 139
6.17. Mult2.2 Results for Different Page Mappings......coovievercenieniniiniiiinnccn 141
6.18. Direct-Mapped Hierarchical Miss Reductions for AL Tracesccooiviieisinscicnenns 142
6.19. Mult2.2 Careful Mapping IMPrOVEMENL........cvuerirmmrreiermiesessiinniinsiins s 144
6.20. Mult1.2 Results for Different Page Mappings........occoeimevemimniennneninccniinninece 144
6.21. COnMlicts fOr MUI2.2 ..o ieeeiieeerenree s creetesnsaestssres s ssss s sessassssatssessncaassane s s e s sr s snsas e ssnss 146
6.22. Hierarchical Reduction vs. Conflicts Eiminated.........coovvmnnrmnienenninnnniiininne. 147
6.23. Virtual and Real Indexing COMPATiSONcccoviiitrnimniininennnncsese i 150
6.24. Virtual and Real Indexing Associativity IMprovement ... 151

viii

List of Tables

Chapter 3.
3.1. The Types of Preprocessed Trace ENtries.......coviveeoienniniini s 29
3.2. A Description of the Traced Programsc.cccvverinnnccnireiii e 31
3.3. A Description of the Studied WOTKIOAdS.......ccovvvevevinneniic s 32
3.4. Instruction Information on the TTACESccviiireniiniieimre s e 33
3.5. Memory Requirements Of TTACES......c.ccoreierereminienncine sttt 33
3.6. Process Statistics of Multiprogrammed TTacescoceveviinnrrreninninniiiiiene 34
3.7. Primary Cache MPL.......c.ccooiiiiirimeni s s san 36
3.8. Secondary Cache MPL.........cooiiiiiiiiiinr sttt 38
3.9. Instructions to Fill Primary Cachescccuviririiiininnnieninncneni e 49
3.10. Instructions to Fill Direct-Mapped Secondary Caches.........ccveevenencencinnnniinnience 50
3.11. Instructions to Fill 4-way Secondary Cachesoovivmeiienninnininiin e 51

3.12. Instructions t0 Warm Cache 10 KIEe.....oviiiiiiiriirirerrecireiresesnenisiernreesersnrsansnasssssesssanensens 52

3.13. Trace Length for Five Misses Per BIock Frameccoiveeniiiniee 54
Chapter 4.
4.1. Errors of Different Set-Sample MPI ESHMALEScoveoveereviirininiiiiniiiicnne 62
4.2. Set Sampling Coefficients of Variation for Direct Mappedccooccovivmiininnnniiencnens 65
4.3. Set Sampling Coefficients of Variation fOr 2-Way.......cccoeemnnniimne, 66
4.4, Set-Sampling Error PrediCtion..... ..o 68
4.5. Accuracy of Cold-Start Techniques for MUltl.2 ..o 72
4.6. Accuracy of Cold-Start Techniques With Direct-Mapped Caches.........oooveeinicncneens 73
4.7. Accuracy of Cold-Start Techniques With 4-Way Set-ASSOCIaLVILYocovvevviiiininiinnnes 74
4.8. Scoring of Different Cold-Start TEChNIGQUES......veeeeeeiiiniiiiiiitie s 75
4.9. 1 and the Accuracy of its Estimator (;lspm) ... 76
4.10. Accuracy of INITMR Time-Sample MPI ESHMALESccocovvccinnimiiiinniiiiiiie e 77
4.11. Individual Versus Merged [Lsplit ESHMALONcoocvievmiimcniiimnninisiiss s 79
Chapter 5.
5.1. Primary Cache PErfOormarncecouveeienenrerereneienescseni s 94
5.2. Effects of Associativity on Cache Performance ... 102
5.3. Improvement of Replacement PONCIESovovcueeeemiecriiinni e 104
5.4. Expected Probes of Associativity IMplementationscocoueeeveeiiiiniinnncnes 110
5.5. Read Probes of Inexpensive Associativity Implementations.............coeeveniiiinniiiniinns. 111
5.6. B1OCK Size AIEINAIIVES ..icoververrrereereessiensersesirecrtirestneserens s asssess s et sensessnes s s e senness s anes 115
5.7. Implicit and Explicit Inclusion Invalidate FreqUenCycoovevviiniiniinnc s 117
Chapter 6.
6.1. Maximum Conflict Fraction ApProxXimationsccccoeeeveerinrmieniensenenennenniinsie s 129

ix

6.2. Careful Mapping COMPATISONccceeueeerieiiriiriieitnsisin e esssssssesses s e e e sessseneseos 148

6.3. Performance of Mapping Schemes for Mult2.2.........ccooovinvemininnniinnnnccscciineennes 149
6.4. Cache MisSes VS. PAZE SIZ€ccovervireniiiniiiiiiiintirn ettt et 151
6.5. Memory Referenced vs. Page Size ... 151
6.7. Cache and Page Misses for Memory COnNeNtionN.........coovvueriereninirenininniesseisesenmenesnensssnns 153

List of Definitions

Chapter 2.
2.1. Definitions for Virtual MEImMOTIYcvvveereniiiiminieiiissessscssnessisssessssnssanseansssssssssessonee 5
2.2. Definitions fOr CaACES......civiieeierrererceieeseeereesteriesinesassrrsssaesssssnesaressessesasessnesnassanssasssenassssnns 7
Chapter 4.
4.1, SEL SAMIPLEvvirrercneereennc ettt bbb r s er s s s s b e s e st et s e R s s e e 59
4.2. Constant-Bits SAMPIEccccovevererriinerieiiiiisiiie it saesssrassteseses st st nssa e s s sraeas 59
Appendix A.
A.1. Page Mapping FUNCHOM ..ot arss s ssen e 160
A.2. Page Frame and Cache Bin COITeSpondencecoovveerrnmcnreenniinnininnenissisn s 160
A.3. Cache Size Independent Mapping FUNCHONocvvvevviiiieneeninccecec st 161
A4 Bit-Reversed Bill TTEEcccceverriiice e e necscteeieastasissasssessessssssssssesstaesassnssssasssiesnsesssnnes 161

xi

Chapter 4.
4.1. When a Constant-Bits
Appendix A.

A.1. Value of BRBT Node
A.2. Size Independence of

List of Theorems

Sample is @ Set SAMPIE ...c.vovirvivviiniiiric

..

HIETArCRICAL cooveeieeceeveeeerereiieeeesssssrtrareesessasosssassosssernsrrsesaanaaresssesoss

xii

Chapter 1

Introduction

The memory system is a critical component of any high-performance computer system. Memory
speed is often a major component of the perceived execution speed of the computer since the processor
can only execute as fast as the memory system provides data. Computer users would prefer a memory
that is both infinitely large and infinitely fast, or at least one that is large enough and fast enough. The
challenge is to design a cost-effective memory system that meets these goals.

Rapid technology change always alters the memory system design problem, making previous
designs an insufficient solution, and new research essential. Memory densities are dramatically improv-
ing: main memories of hundreds of megabytes will be common in the future. Processors are getting fas-
ter: processors will execute hundreds of millions of instructions in a single second. With more process-
ing and memory capabilities, users solve different and larger problems than previously envisioned.
These technology and usage changes reshape the problems presented to the memory system designer.
As memory systems evolve, design decisions must be constantly reevaluated.

This dissertation analyzes a memory system that is motivated by increasing processing speeds and
expanding main memories. While main memories are getting much larger, they are not getting much
faster. This creates a speed gap between the processor and main memory. The processor can perform
hundreds of operations in the time it takes to service a single main memory request, so memory
accesses must be rare. With this large speed gap, it becomes particularly difficult to meet the expecta-
tions of the user: a fast and large memory. While a given memory may be large enough, it is probably
not fast enough.

The problem is that larger memories are inherently slower than smaller memories because of phy-
sical limitations. Given this problem, it may at first seem impossible to build a memory system that has
both a large capacity and a high speed. Fortunately, there is an elegant design solution that overcomes
these physical limitations. A smaller (faster) and a larger (slower) memory are configured

2

hierarchically, yet they appear as a single memory because the faster memory transparently caches the
frequently-referenced contents of the slower memory. The average speed of the hierarchy is nearly the
speed of the fastest memory because it services most references (locality of reference [DENNG68]). The
largest memory decides the capacity of the hierarchy because it services all the other references that the
smaller one(s) cannot. At no burden to the programmer, hierarchical memory systems bridge the large
speed gap between processing and memory by simultaneously using the speed and capacity advantages
of small and large memories.

Figure 1.1 shows the evolution (from left to right) of hierarchical memory systems to fill the
processor-memory speed gap. Technology changes push designs to the far right of the figure: to the
memory system examined in this study. Virtual memory (on the far left) is the earliest transparent
hierarchical structuring of mechanical (disk or drum) and electronic main memories
[FOTH61, KILB62, KIEL82]. Main memory could successfully bridge the speed gap between processors
and mechanical storage when it could service references at the speed of the processor. Faster processors
create another speed gap since large main memories cannot equal processor speeds. Another hierarchy
level bridges this gap: cache memory. Caches are essential for the processor-main-memory perfor-
mance gap just like virtual memory is essential for the main memory and disk gap. Caches are faster
(but smaller) than main memories, so they can satisfy processor references more quickly. Caches
greatly improve memory system performance, at no burden to the programmer.

With even faster processors, a single cache becomes an insufficient buffer between the processor
and main memory. A two-level cache configuration is necessary. Again, an addition of another level to
the hierarchy allows the capacity advantages of the large cache to be combined with the speed advan-
tages of the smaller cache. The large cache reduces the frequency of main memory accesses, which is
essential because they take so long, but a large cache is too slow to directly service the processor. This
leads to the configuration on the far right of Figure 1.1, one with smaller primary and larger secondary
CPU caches. This two-level cache configuration gracefully tolerates a processor-memory speed gap of
even a hundred or more. The primary caches service most processor references, and the secondary
cache services most of the references that escape the primary caches. Split primary caches provide high
bandwidth to the processor; separate instruction and data caches allow instruction and data references to
be serviced simultaneously.

The technology changes that drive hierarchical memory systems to two cache levels are evident in
Figure 1.1. Microprocessor speeds have improved by a factor of one hundred over the last decade while
main memory speeds have improved by only 50% in the same period. CPU caches fill this speed gap
by pushing the processor up in the hierarchy. Memory sizes have grown by several orders of magni-
tude. Caches also grow with each evolutionary generation. These large caches can satisfy most of the
references from even the largest workloads.

1.1. Dissertation Overview and Contributions

This study focuses on the evaluation and design of the evolutionary two-level cache configuration
depicted on the far right in Figure 1.1. In particular, this dissertation concentrates on large secondary
caches. Most previous cache analyses focus on smaller primary caches because only recent technology
advances and increasing workload sizes necessitate the larger caches as a part of a two-level cache
configuration. Evolutionary trends suggest that these caches will be multiple megabytes, an order of
magnitude larger than the previous generation of caches. The scope of this study is restricted to

Sns
CPU Inst | | Data | |Primary
32K | | 32K | |Caches
50ns 5011SV\M/v
CPU Cache Secondary
8K-128K N\ 1M-16M
500ns 500ns 500ns J,
Main Main Main
64K-512K 2M-8M 128M-512M
50ms 50ms 50ms

Figure 1.1. Hierarchical Memory System Evolution.

This figure shows the evolution of hierarchical memory systems (from left to right) to fill the gap between
processor and memory speeds. At the top of the hierarchy is the processor (CPU), and at the bottom is
non-volatile (mechanical) storage. In the middle, there are several levels of memory, both cache and main,
with sizes given. The latency required for a transfer between levels is also given. The latencies and sizes
depicted are only examples. This dissertation studies secondary caches in a configuration like the one at
the far right.

uniprocessors because they continue to push the limits of low-cost computational performance, though
multi-megabyte secondary caches are equally or more useful for multiprocessors.

While primary cache and main memory design considerations are much the same as in the previ-
ous generation, the new secondary caches are fundamentally different. Secondary caches are different
from primary ones for two reasons. First, secondary caches will be as large as main memories once
were, much larger than previous (or future) primary caches. Second, primary caches directly service
processor references, while secondary caches service only the references not satisfied by the primary
caches. Most previous research has focused on primary cache design. This dissertation studies the
secondary cache, which sees memory references with very different characteristics.

Although they are of similar size, multi-megabyte secondary caches are fundamentally different
from previous main memories. One difference is the time to access the next hierarchy level: disk
accesses take many orders of magnitude longer than main memory accesses. This latency difference
makes secondary cache design very different. Secondary caches can use the main memory much more
frequently than previous main memories could access the slow disk.

The differences in multi-megabyte secondary cache design motivate the research in this disserta-
tion. The first component of this research involved gathering tools appropriate for analyzing multi-

4

megabyte secondary caches. As memory systems evolve, the tools used to evaluate them also must
evolve. This dissertation describes the implementation and use of new cache performance analysis
tools. By evaluating multi-megabyte secondary caches in the proper framework, new insights into their
behavior and design are evident.

Chapter 2 defines the basic concepts related to virtual memory and CPU caches, and gives the
default parameters that are assumed throughout the rest of this dissertation. It also surveys some impor-
tant previous cache performance analysis studies, and shows trace-driven simulation to be an effective
performance analysis tool for cache memories. It introduces the MPI and SCPI cache performance
metrics, and describes the statistical techniques used throughout this dissertation. It then describes a
simulation environment that allows trace-driven simulation results to be gathered quickly. Chapter 2
establishes the basis for the rest of the research included in this dissertation.

Chapter 3 then describes the collection of superior traces for the analysis of multi-megabyte
caches. These traces predict the workloads that will execute on future high performance processors that
have main memories of hundreds of megabytes. The traces are one hundred times longer than previous
traces, and are taken from workloads that are ten times larger than previously traced. Chapter 3 further
shows the advantages of very long traces for multi-megabyte cache analysis.

The problem with long traces is the enormous computing resources needed to simulate with them.
Chapter 4 discusses trace-sampling techniques that use only a portion of the long trace references, and
consequently reduce the required simulation time, to get accurate cache performance results. Sampling
can reduce simulation time by more than an order of magnitude while introducing only small errors.

Chapter 5 gives more detailed motivation for the two-level hierarchical cache configuration shown
in Figure 1.1. It shows that multi-megabyte caches are needed as the processor-memory speed gap
reaches a factor of one hundred. It then discusses some key design considerations of multi-megabyte
secondary caches: block size, associativity, and multi-level inclusion.

Chapter 6 examines the interaction of virtual memory and set-associative CPU caches. Because
of their interaction, the virtual to real page mapping affects the placement of data in the cache. Chapter
6 introduces the problem caused by this interaction: page conflicts. It also introduces a simple model to
measure the quality of naive page placement in the cache. This model suggests that 30% of pages may
be poorly placed when they are naively mapped to page frames. Chapter 6 introduces and examines
practical page mapping techniques that improve the placement of data in the cache and, consequently,
improve cache and memory system performance. Trace-driven simulation shows that careful page
mapping eliminates 10%-20% of direct-mapped real-indexed cache misses. Thus, careful page map-
ping can cause a cache to act much larger, at no hardware cost.

Finally, Chapter 7 discusses the conclusions of this research, and areas for future research. This
dissertation presents the analysis required to understand the performance and design issues involved
with multi-megabyte secondary caches.

Chapter 2

Background and Cache Performance Analysis

2.1. Introduction

This chapter gives the memory system background needed for the analysis of the subsequent
chapters. In Section 2.1 and Section 2.2, this chapter discusses definitions and default parameters of the
virtual memory and cache configurations examined throughout this dissertation. Section 2.3 surveys the
most important previous cache performance studies, and motivates the use of trace-driven simulation.
Section 2.4 describes the cache performance metrics used throughout this dissertation. Section 2.5 sum-
marizes the statistical techniques used in Chapters 4 and 6. Section 2.6 then describes a simulation
environment that takes advantage of levels of homogeneity and parallelism. This chapter discusses the
tools used in the subsequent research in Chapters 3, 4, 5, and 6.

2.2. Virtual Memory Concepts

This section summarizes key concepts of virtual memory that are used throughout this disserta-
tion. Definition 2.1 gives key definitions and default parameters related to virtual memory.

Definition 2.1. Definitions for Virtual Memory.

° Page - A fixed-size, aligned, and contiguous portion of virtual memory that is
managed as a unit. The default page size is 16 kilobytes.

e Page Frame - Physical memory that can hold a page. Typically, this refers to
main memory. The number of page frames times the page size is the size of the
main memory. The default main memory size is 128 megabytes.

6

® Page Fault - An exception that occurs when a referenced page is not held in the
main memory. Usually, the operating system stops the user-level program that
faulted, loads the page from disk into main memory, and restarts the program.

) Page Mapping (Placement) - The relationship between virtual memory pages
and page frames. The page mapping specifies where a given page is stored.

® Page Mapping Function (Policy) - The algorithm that determines the page map-
ping.

e Page Replacement - The removal of a page from main memory to make room for
anew page. This may require writing the replaced page back to disk.

® Page Replacement Policy - The algorithm that chooses the page(s) that will be
removed from main memory. Replacement policies tend to choose pages that
were not recently referenced. The default is to replace the least-recently-used

page.

The goal of virtual memory is to provide the user with a unified view of a large and fast memory,
although the physical memory is really structured hierarchically. Two separate address spaces provide
this view. The user references virtual addresses while real addresses index into the physically avail-
able memory. The virtual memory system manages the memory in pages. At any given time, a virtual
memory page may either reside in a (physical) main memory page frame or it may be on disk. That is,
each page maps to page frames in the main memory or disk memory. When there are no page faults,
the system translates each virtual (or page) address to a real (or page frame) address and the main
memory is directly accessed. This address translation is depicted in Figure 2.1. Because pages (frames)
are properly aligned, the translation does not modify the offset of an address within a page (i.e. the bot-
tom address bits are unchanged). Translation does modify the upper address bits. It determines the
page frame corresponding to a virtual page by consulting the page mapping, often a page table. Occa-
sionally, the page table shows that a virtual page is not contained in the main memory. Then, a page
fault awakens the system software, and a page rearrangement resolves the fault. Pages may need to be
written-back to the disk because of the page fault.

Virtual address translation is typically a fully associative mapping of pages to page frames. This
means that any page can be stored in any page frame in main memory. This mapping flexibility allows
the system software to choose many different maps of pages to page frames. It also allows considerable
flexibility in deciding which pages will reside on the disk and which will be placed in main memory.
Typically, recently used pages are held in the main memory, and unreferenced pages reside on the disk.
With this policy, the page fault frequency will be low if there is enough locality of reference. The page
fault frequency is a key metric of the performance of a virtual memory system. The more often faults
occur, the more often the disk must be accessed. Since a disk access is so slow (millions of instructions
can be executed during a disk access), page faults must be rare for good performance.

2.3. Set-Associative CPU Cache Concepts

This section summarizes key concepts of caches that are used throughout this dissertation.
Definition 2.2 gives key definitions and default parameters related to caches.

Virtual Page Page Offset Virtual Address

Address
Translation

1 |

Real Page Frame Page Offset Real Address

Figure 2.1. Virtual to Real Address Translation.

This figure shows the translation from virtual addresses to real addresses. The virtual page number
translates into a real page frame number.

Definition 2.2. Definitions for Caches.

) Block - A fixed-size, aligned, and contiguous portion of memory that is managed
as a unit. A block is similar in function, but is typically much smaller than, a vir-
tual memory page. In this dissertation, the primary cache block size is 32 bytes
and the secondary cache default block size is 128 bytes.

® Block Frame - A cache memory location that can store a block. The size of the
cache is the number of block frames times the size of a block. Each primary
cache contains 32-kilobytes worth of block frames. The secondary cache size
varies from 128-kilobytes to 16-megabytes.

. Set - The block frame(s) that can store a block. Each block indexes to a particular
set, and only the block frames within that set can hold the block.

° Cache Miss - A hardware-handled exception that occurs when the processor
references a block that is not in the cache. The cache replaces another block from
the same set, and loads the referenced block into the cache to service the refer-
ence.

° Associativity - The number of block frames in a set, or the number of block
frames where any given block can be stored. The primary caches are direct-
mapped (associativity of one) and the associativity of the secondary caches range
from one to four.

e Indexing (Placement) - The selection of a set using index bits from the address
of a reference. If the index bits come from the virtual (real) address, the cache is
virtual-indexed (real-indexed). Except for Chapter 6, virtual-indexing is used
throughout this dissertation. The virtually-indexed secondary caches use
process-identifier (PID) hashing so that common virtual addresses do not index to
the same set’. Virtual-indexed PID-hashing approximates real-indexing. Note
that all the virtually-indexed caches used in this dissertation are tagged with PIDs,
and that the cache entries are not flushed at process switches.

1. For each address space (or process) an 8-bit PID is exclusive-ored with the upper (virtual) index bits to
choose the set.

8

° Block Replacement - Removing a block from the cache to make room for a new
block. In a write-back cache, this may require writing the replaced block into
main memory.

) Block Replacement Policy - The algorithm that chooses the block that will be
replaced when space must be allocated. The default is a random block from the
set.

e Write Policy - Decides when writes propagate to the next level in the hierarchy.
Write-through implies that updates immediately propagate when any write occurs.
Write-back implies that ui)dates occur at block replacement. Write-back is
assumed in this dissertation”.

e Multi-Level Inclusion - The property that the contents of a cache closer to the
processor must always be contained in a cache further from the processor
[BAEWS8]. It is particularly useful when maintaining coherency in a shared
memory multiprocessor or in the presence of I/O devices. Inclusion is not main-
tained between the primary and secondary caches in this dissertation, except in
Section 5.8. Inclusion between the CPU caches and the main memory is main-
tained in Chapter 6.

The function of a CPU cache is similar to virtual memory: the cache holds a dynamic portion of
the blocks that service most memory references. The design of caches is considerably different from
the design of virtual memory, however. Hardware manages caches while software manages virtual
memory misses. The major reason for this is, as suggested in Figure 1.1, that the time for a CPU cache
miss is much less than the time for a page fault. Software intervention is useful and affordable when a
page fault costs millions of instructions. Software intervention is too slow for cache misses, so
hardware must service them as quickly as possible. A cache is set-associative rather than fully associa-
tive. This means that each cache block indexes to a set, and the block can only be stored in the few
block frames in that set. Hardware set-associativity implementations allow very fast associative access
to blocks stored in the cache.

Figure 2.2 shows the operation of a 2-way set-associative cache. The bottom bits of the address
are the offset within a block, much like the page offset. Set-associativity, unlike full page associativity,
extracts index bits from the address to choose the set where the block will reside. The index bits are
typically in the middle of the address. The cache compares the upper tag bits of the address against
other tags in the set. When the cache holds a block, its tag is stored for later comparison. When the tag
bits of the address match a stored tag, the block is in the cache (a hit). When a referenced block is not
found in the cache (a miss), it replaces another block in its set so that later references will find the block
(later references will hit).

Figure 2.2 depicts a two-way set-associative cache because there are two cache memory banks.
This dissertation also examines associativities of one and four. With 1-way, or direct-mapped, there is
only a single bank, meaning that each block can only reside in a single cache block frame. Direct-
mapped is the opposite end of the associativity spectrum from the full associativity of virtual memory.
A 2-way or 4-way set-associative cache has more mapping flexibility than a direct-mapped cache

2. Additionally, the cache is write-allocate, meaning that on write misses, the new block is loaded and
then immediately updated in the cache.

Tag Index Offset | Address
|] |]
Bank 0 Bank 1
N
> Set
7/
U
A Compare and
7 ngrose
Hit/Miss ‘ Data
N

Figure 2.2. Set-Associative CPU Cache Indexing.

This figure shows the operation of a 2-way set-associative cache. The index bits choose the set. The asso-
ciative matching hardware decides if the cache contains the block referenced by the address.

because there are more frames where a given block can reside. On the other hand, a direct-mapped
cache can be faster than caches of higher associativity since its design is simpler.

As with virtual memory page faults, cache misses tend to occur infrequently because of locality of
reference. The more often there are misses, the more often the next slower memory in the hierarchy
must be accessed. Misses must be sufficiently rare so that their performance degradation is not too
high. The cache miss frequency is a key cache performance metric that is estimated throughout this
dissertation.

2.4. Previous Cache Analysis

This section surveys many previous cache performance studies. It discusses hardware monitoring
and analytical models, and shows that trace-driven simulation is a powerful tool for the performance
analysis of cache memories.

2.4.1. Hardware Monitoring

The most precise way to measure cache performance is to take direct measurements by monitoring
the operation of a cache. This often involves measurement hardware designed specifically for a given
system. For example, Clark, et al., discuss microcode histogram hardware for the VAX 11/780 and
8800 [CLARS3, CLAESS, CLBK88]. The histogram counts determine many cache performance metrics,
including cache miss frequencies, misses per instruction, and cycle time effects on the average

10

instruction. Wood describes the embedded SPUR monitoring hardware, which also measures many
cache performance metrics, but is an internal part of the SPUR cache design [WOOD90], rather than a
plug-in measurement device.

Hardware monitors give the most accurate cache performance results, but they are costly and can
only measure existing cache configurations. It is extremely useful to test a range of cache
configurations since trends and fundamental cache performance factors can be determined. Hardware
monitoring may not be a cost-effective alternative for the analysis of a wide range of configurations.

2.4.2. Analytical Modeling

Analytical modeling is much less costly than hardware performance monitoring, and is flexible
enough to estimate performance over a wide range of configurations. Strecker shows that simple equa-
tions can predict cache miss ratios with different process switching [STRE83]. Haikala estimates cache
performance with process switching using a Markov Chain model, given the LRU stack distribution
[HAIK84]. Smith and Goodman use a loop reference model to predict instruction cache performance
and show that set-associativity can be better that full associativity [SMIG85]. Thiebaut and Stone
develop analytical techniques to estimate the cache footprint left by an executing process for use in
predicting cache performance with process switching [THIS87]. Voldman, et al., [VOMHS83] and
Thiebaut [THIES8, THIES9] show that fractal analysis can predict cache performance. Agarwal, et al.,
develop a model that counts start-up, non-stationary, and interference effects on cache performance esti-
mates [AGHHS89]. Singh, et al., use empirical curve-fitting to predict cache performance [SIST88].
Higbie develops a cache performance model based on rules-of-thumb [HIGB90].

The problem with these models is that it is difficult to establish confidence in their results without
direct comparison to more accurate results. Analytical models are most useful when they increase
understanding and intuition. For example, simple rules-of-thumb such as *‘The miss rate of a direct-
mapped cache of size X is about the same as a 2-way set-associative cache of size X/2’’ [HENP90] or
“Doubling the cache size decreases the miss rate by 25%’’ [HIGB90] are good first-cut approximations,
even if they are not always correct. Analytical models may not be appropriate when accuracy is
required, but they are useful when more accurate workload models are not available or when simulation
time is not affordable.

2.4.3. Trace-Driven Simulation

This dissertation uses trace-driven simulation for cache analysis because simulation overcomes
the limitations of hardware monitors and analytical models. Trace-driven simulation uses memory
reference traces to model cache behavior. Unlike hardware monitors, a wide range of cache
configurations can be cost-effectively examined with trace-driven simulation. Unlike analytical
models, simulation produces accurate results, at least to the limits of the available traces. Hundreds of
previous cache performance studies have used trace-driven simulation, including Smith’s excellent sur-
vey [SMIT82]. In the process, it has been established as powerful tool for cache performance evalua-
tion.

Figure 2.3 depicts the production of trace-driven simulation cache performance results. The idea
is to capture the processor-memory references under realistic conditions, then feed the references into a
cache simulator. The first, and most important, phase in the process is gathering the trace data from a
given workload. This is done by the trace-gathering mechanism, a component of the traced system.

11

The trace data describes the memory reference behavior of the processor, and may be stored for later
use. The simulators of the second phase recreate the memory references using the trace data.

Workloads

Traced System

Traces (On Tape)

Simulator

Results
Figure 2.3. Trace-Driven Simulation.
This figure shows the major components of any trace-driven simulation study.

The second phase of trace-driven simulation is the generation of simulation results using the pre-
viously captured trace data. Note that while the trace data is gathered only once, it can be used often.
The simulator interprets the trace data and gives cache performance results for desired cache
configurations. It extracts each reference from the trace and submits them to the simulated cache, just
as the real references are submitted to the real cache. The simulator steps through the actions that the
cache the cache would execute, so the cache performance estimate of the simulator is an accurate indi-
cator of cache performance for the traced workload. By varying the simulated cache configuration, the
simulator can capture the performance of many caches.

The next two subsections describe previous work related to the trace gathering and usage phases
of trace-driven simulation.

2.4.3.1. Gathering Address Traces

It is unfortunate that the most important component of any trace-driven simulation study, the
traces themself, receive so little attention in the literature. Any trace-driven simulation is only as good
as the traces; it is important to gather traces that properly characterize the workloads of the simulated
machine. Although all sequences of memory references tend to exhibit locality of reference, the exact
memory reference behavior contained in a trace has a large effect on cache performance. Clark, et. al.,

12

show that trace-driven simulation performance estimates can be optimistic because complete memory
reference behavior is not available in the traces [CLAE85]. Smith wams that trace-driven simulation
results vary greatly for different architectures and workloads [SMIT85]. Itis useful to obtain traces from
a variety of workloads to determine their differences and cache performance effects.

Many traces have been gathered by either simulating architectural behavior or stepping through
the execution of a program using operating system facilities to control the execution of a program.
Entries are written into the trace at each execution step, corresponding to program execution. The sim-
plicity of these techniques is useful, but it is time-consuming to gather these traces, and may be difficult
to include operating system or multiprogramming references. Agarwal, et al., argue that hardware
microcode modifications can be an effective mechanism to gather traces that include all references, user
and operating system [AGSH86,AGAR87, AGHHS88]. Altered microcode writes out trace entries for
each executed instruction. Since the hardware mechanism requires little software support, operating
system references can be traced. Agarwal, et al., show the importance of operating system references to
correctly predict cache performance: operating system references are significantly different from user
references; they may increase the cache misses in trace-driven simulation by 50% [AGHHS88]. While
this is an important achievement, the difficulty is that the microcode modifications can be expensive,
inflexible, and are only useful for microcoded machines.

Borg, et al., developed an alternative tracing technique that uses code modification to trace pro-
grams [BOKL89, BOKW90]. The application code is modified to output trace data at specific points.
The main advantage of code modification is that it can be implemented entirely in software, no
hardware changes are required. This mechanism gathered the multi-billion-instruction traces described
in Chapter 3. Properly interleaved multi-process trace data can be collected by code modification with
operating system and compiler support. With the code of the operating system also modified, operating
system references can even be gathered. Using similar techniques, Stunkel and Fuchs collect and
analyze multicomputer traces [STUF89, STIF91]. Eggers, et al., [EGKK90] describe a tracing scheme
that (using compiler data flow analysis) requires fewer trace entries than the two previous schemes,
similar to the Abstract Execution of Larus [LARU90]. PFC-Sim also eliminates many entries
[CAKP91]. The advantage of fewer trace entries is lower trace storage requirements and less execution
time distortion. The disadvantage is that trace data interpretation is more complex.

Much trace data storage is required to collect the long traces needed to analyze multi-megabyte
caches. Samples introduced an effective compression technique to reduce trace data storage require-
ments without information loss [SAMP89]. It combines Ziv-Lempel [WELC84] compression with dif-
ferencing of the trace data, giving dramatic storage space reductions for traces. A variant of this tech-
nique, described in Chapter 3, compresses the traces used in this dissertation.

Techniques with information loss can also reduce trace data requirements. Smith’s stack deletion
and snapshot method [SMIT77] eliminate much trace information with only small effects on fully-
associative simulation results. Stack-deletion eliminates many references to the most-recently-used
items, while the snapshot method eliminates many time-contiguous references. The idea is that many
most-recently-used or time-contiguous items will hit in the cache anyway, so there is no need to simu-
late them; all that is needed is a proper estimate of the number of misses in a trace. Puzak’s trace (tape)
stripping [PUZA85] is stack deletion (restricted to one most-recently-used item) for set-associative
caches. References are stripped away by simulating the full trace on a small direct-mapped cache and
recording only the misses. Puzak showed that, provided some restrictions are upheld, the stripped trace

13

produces the same number of set-associative cache misses as the full trace. Wang and Baer subse-
quently extended trace-stripping for write-backs and multiple block sizes [WANG89, WANB90].
Agarwal and Huffman introduce a technique that eliminates references by exploiting spatial locality
[AGAHO90].

Sampling techniques also reduce trace data requirements. Their cost is also an information loss.
Puzak introduced set sampling (congruence class sampling), which eliminates all full trace references
except those to the sampled sets. The sampled sets estimate the performance of all cache sets. Laha, et
al. [LAPI88] advocate time sampling, using many short time-samples of a full trace to estimate cache
performance. Individual time-samples can be statistically combined to produce a picture of the full
trace. Chapter 4 analyzes both set sampling and time sampling in detail.

2.4.3.2. Cache Analysis Using Address Traces

Many previous studies of uniprocessor cache performance used address traces, far too many to
reference them all in this document. For one example, the first paper describing the details of a CPU
cache, the one describing the IBM 360 Model 85 cache [LiPT68], included trace-driven simulation
results to validate their design choices. In another example study, Kaplan and Winder show the perfor-
mance tradeoffs of different cache configurations [KAPW73]. A milestone in CPU cache research was
reached with the survey of Smith [SMIT82]. This survey examines many basic aspects of cache design,
including replacement policy, write policy, block size, and virtual versus real indexing. The block size
analysis was later expanded [SMIT87]. Smith also presents an extensive bibliography [SMIT86] of stu-
dies on the topic of CPU caches, many of these papers are described in his survey.

Easton and Fagin point out a danger of trace-driven simulation: the cold-start problem [EASF78].
When traces are short, cache initialization effects may dominate performance, particularly with large
caches. Since the multi-megabyte caches considered in this dissertation exacerbate the cold-start prob-
lem over that of smaller caches, Chapters 3 and 4 pay particular attention to cold start. Except in Sec-
tion 4.3, all miss frequency results given in this dissertation are cold start, that is, they assume the cache
starts from the empty state at the beginning of a simulation. Cold-start biases the results by at most a
few percent because the traces that are used are very long.

Recent studies by Hill {HILL87, HILL88] and Przybylski, et al. [PRZY88, PRHH88] characterize
the performance of various cache configurations. They point out that higher associativity does not
necessarily mean better performance since more associativity may increase the time it takes to retrieve
data from the cache. Hill and Smith [HILS89] further analyze associativity by classifying misses as one
of three types: conflict, capacity, or compulsory. Conflict misses could be eliminated with higher asso-
ciativity and serve as a measure of the potential usefulness of associativity. Capacity misses are due to
limited cache size, and compulsory misses are due to the first references to cache blocks. Przybylski
has also examined the impact of different block sizes and fetch policies [PRZY90].

Przybylski, et al. further point out that there is a limit on the average speed (hits and misses) that
can be achieved with a single level cache [PRHH88]. While larger caches have fewer misses, they are
slower. Beyond some point, multi-level caching is required to improve average access time.

Short and Levy present simulation results of multi-level cache configurations [SHOLS88]. The
results show that multiple levels caches give good performance and that write-back caches may give the
highest performance. Baer and Wang [BAEW88] present the necessary requirements to implement a
very restrictive form of inclusion in a cache hierarchy. The study of multi-level cache configurations by

14

Przybylski, et al., [PRHH89] points out that the frequency of cache misses in a secondary cache is
largely independent of the lower level caches provided the cache is sufficiently large compared to the
size of the upstream caches (about eight times). They also mention that secondary caches need not be
as fast as primary caches (since they are not accessed on all memory references). Higher associativity
and larger cache size is more useful in secondary caches since slower data withdrawal can be tolerated
to reduce the frequency of misses. Slow implementations of associativity may even be useful in secon-
dary caches, as pointed out by Kessler, et al., [KEJL89]. Wang, et al., [WABL89] present organizational
details and simulation results of a multi-level virtual-real cache hierarchy that maintains inclusion.
Borg, et al., present simulation results of multi-level cache configurations with multi-megabyte caches,
and show that long traces are useful for the analysis of large caches [BOKL89, BOKW90]. Mogul and
Borg further consider the costs of context switching in large caches [MOGB91]. Bugge, et al., also
analyze design considerations of large caches [BUKB90]. Mudge, et al., also discuss some cache design
considerations of a high-performance uniprocessor [MUBB91, OLMB91]. Chapter 5 discusses many of
these design considerations for multi-megabyte caches.

2.5. Cache Performance Metrics

With a multi-level cache hierarchy, an analysis of the performance of the configuration can be
difficult because there are many components. Each component of the memory system has an impact on
overall performance; thus, a performance metric that can isolate the effects of each is needed. Optimi-
zation of the performance metric also should correspond to minimization of the total execution time of
the workload.

Figure 2.4 depicts the relationship between four different cache performance metrics. Miss ratio,
the cache misses divided by the number of times the cache is referenced, is the most commonly used
one. Miss ratio is a simple and intuitive measure of the way a cache is performing. Unfortunately, miss
ratio is often inadequate for optimizing cache designs; minimal miss ratio does not imply maximal per-
formance because miss ratio does not factor in cache timing parameters (hit and miss times) and usage
frequency (how often the cache is referenced).

Effective access time is a measure of the average amount of time required to access a memory
location using a cache. It adds timing information to the miss ratio estimate. Effective access time isa
superior metric to compare different cache configurations when the timing changes from one
configuration to the next one: a lower effective access time implies better performance.

Though effective access time cures one problem with miss ratio, it also may be inadequate, partic-
ularly for cache configurations with multiple caches like the multi-level cache hierarchy examined in
this dissertation. The problem with effective access time is that it does not consider cache access fre-
quency. Consequently, it may not gauge the effect of a cache on overall system performance. For
example, a secondary cache may have a considerably higher effective access time than a primary cache.
This does not mean that the secondary caches are performing more poorly than the primary caches. On
the contrary, secondary cache misses may still have a smaller effect on the execution speed of the pro-
cessor because the primary caches are referenced much more frequently.

This dissertation uses the performance metrics shown on the right side of Figure 2.4, misses per
instruction MPI and stall cycles per instruction SCPI, because they correctly factor in the frequency of
the cache accesses. This is essential when considering the multiple caches of a multi-level hierarchy.
SCPI measures the average impact of cache misses on the execution of each instruction. SCPI is one

15

Reference
F .
Miss requency Misses]?er
Ratio Instruction
ah (MPI)
Timing Timing
Reference
Effective Frequency Stall Cycles
Access) Per Instruction
Time 7| (SCPI)
SCPICACHEI
SCPICACHEZ
¥
SCPI
CPIOTHER
CP1

Figure 2.4. Cache Performance Metrics.
This figure shows the relationship between four alternative cache performance metrics.

component needed to estimate CPI, or the average cycles required to execute each instruction. (Hen-
nessy and Patterson use SCPI to calculate CP/ in this way [HENP90].) It puts each of the instruction,
data, and secondary caches in their proper perspective in the hierarchy as a whole; it allows the perfor-
mance effects each cache to be compared with the other caches, and with altemnative implementations of
the same cache.

Chapters 3 and 4 focus on techniques to estimate MPI. MPI is important because it, along with
timing information, is needed to calculate SCP/. Chapter 5 adds in timing to the MPI estimates, pro-
ducing SCPI, so that alternative cache designs can be compared. This dissertation then reverses itself
(from a metrics standpoint), and Chapter 6 focuses again on MPI. Chapter 6 considers only software
techniques to improve cache performance; the timing analysis is not required because software cannot
change the hardware timing.

This dissertation uses a simple SCPI calculation. Each CPU cache in the hierarchy adds a com-
ponent to the total SCPI:

SCPI; = MPI; X Tmiss;. 2.1

MPI, is the misses per instruction from cache i and Trmiss; is the average time taken to service miss (in

16

cycles) in cache i, the miss penalty3. The total SCPI for a hierarchical cache configuration is:

SCPI = 3 SCPI; 2.2)
ie HIERARCHY
with i ranging over the caches in the hierarchy. For the two level configuration in this dissertation (Fig-
ure 1.1 on the right):

SCPI = SCPlicacHE + SCPIpcacHE + SCPIscacHE-

It measures the average cycles lost because of cache misses, an important component of the execution
time of a traced workload. SCPI is closely related to the CMC of [BUKB90]. Ideally, SCPI should be
small relative to the average cycles taken to execute each instruction, so the processor speed determines
the execution speed. With a high SCPI, system speed would be dominated by the memory system per-
formance, rather than the processor performance.

Note that the calculation of SCPI; in Equation 2.1 assumes a constant miss penalty. This is an
approximation of the true effects of each miss. In particular, the costs of write-backs are not modeled.
A write-buffer that performs the writes *‘in the background’” is assumed; it allows the processor to con-
tinue while the write is being completed. Without a write buffer, the performance loss from dirty
misses would be higher since the dirty block needs to be removed before the new one is fetched. With a
write-buffer, the processor need only stall when the write-buffer is not successful in hiding the latency
of the write. In the SCPI calculation, a perfect write-buffer is assumed. This assumption is realistic for
large write-buffers [PRHH89].

The weakness with this calculation of SCPI is that it does not count some important memory Sys-
tem performance effects. For example, 1/O latencies to support virtual memory are neglected to restrict
the scope to CPU cache performance. SCPI may include miss latencies that could be eliminated by
overlapping with other operations. This dissertation does not consider lockup-free caches, which allow
miss latencies to be overlapped with other cache hits [KROF81, SOHF91]. It also does not consider that
on a cache miss the requested data could be returned first, satisfying a reference early and allowing the
processor to continue rather than waiting for an entire cache block to be fetched, which also allows miss
latencies to be overlapped. This overlapping could make Trmiss a pessimistic estimate of the actual time
for a miss; consequently, SCPI would be pessimistic. On the other hand, SCP/ also may be an optimis-
tic estimate of CPU cache performance since contention (because of dynamic memory refresh, or I/O
requirements) for memory resources is not factored into Equation 2.1. That is, queueing delay for main
memory is not considered. Contention could increase the time for a cache miss, making both Tmiss and
SCPI optimistic.

Despite its shortfalls, SCPI is a powerful CPU cache performance analysis tool for multi-level
cache hierarchies. First, it is simple, and can be calculated with only the MPI and Tmiss of each cache
in the configuration. SCPI abstracts many implementation details of a real system. The results are not
dependent on the issue rate of the processor, for example, so they are equally valid for a superscalar pro-
cessor as one that can only issue a single instruction per cycle. Despite its abstraction, SCPI is a reason-
able estimator of the overall performance of a given CPU cache configuration. Another advantage is
that breaking SCPI into its constituents isolates the importance of each component to the system perfor-
mance as a whole. The relative magnitude of each component of SCPI emphasizes the importance of

3. The miss penalty of the primary caches is the time for a secondary cache hit.

17

the corresponding cache misses to overall system performance and can be used to direct efforts toward
performance improvement. By abstracting details, SCPI allows attention to be narrowed to the most
fundamental factors in cache performance.

In this study, Tmissicacue = Tmisspcacue = 10 cycles. Tmissscacug Will range from 30 to 200
cycles for different cache configurations, with a default of 100. The default parameters, for example,
could correspond to a processor with a 5-nanosecond (ns) cycle time, where 50-ns is required to transfer
a 32-byte block from the secondary to the primary caches, and 500-ns is required to transfer a main
memory block of 128-bytes to the secondary cache, as depicted in Figure 1.1.

2.6. Statistical Techniques

Statistical techniques are used for two purposes in this dissertation: (1) to measure sampling errors
(in Chapter 4); and (2) to establish the level of confidence in results (Chapter 4 and Appendix B).

Chapter 4 uses several sampling error measurement techniques, depending on the situation. When

there is only a single estimate that is to be compared to a true value, a good error measure is the relative

(MPIeslimate "'MPIIrue)

error: , where MPI,,,, is the true value and MPI,gims is the estimate. When
MPI,,,

there are multiple estimates, a better measure is the coefficient of variation of the estimates:

1 n
'\/ —~ 21 (MPI; —MPl,y..*
CV= o . 2.3

MPly, @3)

where MPI; is the j-th of n estimates. This coefficient of variation is used to measure the average sam-

plmg errors in this dissertation when all n=N out of N possible samples are available, or when

- ZMPI = MPI,,.. The coefficient of variation is the standard deviation (or the root-mean-squared
j=1

error) divided by the mean.

When sampling is used in practice, MPl,,, is estimated with MPI, oan = i MPI;, where n is the
j=1

number of estimates gathered (n <N). To establish confidence that MPI,. an jis near MPI,,, without
knowing the value of MPI,,,,, it is useful to calculate a 90% confidence interval. Chapter 4 and Appen-
dix B use simple statistical techniques to calculate 90% conﬁdence intervals for MPI,,,,, assuming that
the MPI; estimates are normally distributed and mdependent To calculate the confidence intervals,
the coefﬁment of variation of the mean of a sample of size n from a (possibly) finite population of size
N is first estimated:

\/ — }:(MPI ~MPI 0n)?

=1 N—-n
\/ . 2.4)
MPIM,,\/Z N-1

This equation calculates CVEST ., (the estimated coefficient of variation of MPI,,.,,) similar to the

CVEST mean =

way Equation 2.3 calculates CV, but it reduces it by a L factor because MPI,,.,, is the mean of n

\

4. The central-limit theorem suggests that the normal assumption is accurate when the sample size (n) is
large, or when MPlj is the sum of many random variables [MILF77].

18

MPI;’s. '\’ x:'; is a finite population correction factor [MILF77], which is only needed when n is

close to N, because in other cases it is close to one. Note that this correction implies that CVEST .4,
approaches zero as n approaches N because MPl,.qn = MPly,,, when n=N. (This correction is not
needed in Appendix B because N is very large.) If CVEST,,,, were exact, the normal distribution
would be directly used to estimate confidence intervals, but since CVEST.., is an estimate, the
student-t distribution is used. Using the student-t, MPI,,,, is bounded (with 90% confidence) below by
MPI,0n(1 — tgo%,,,.qCVEST,,,ea,,) and above by MPIl0,(1 + tgo%,n_1CVESTmean). 190%,n~1 is the
value of the student-t statistic that has a tail of 5% (on each end) for n—1 degrees of freedom. For
example, 902, -1 = 1.833 for n = 10. Note that the confidence interval is centered around MPI,,,,,. If
the MPI; estimates are nearly normally distributed, or if n is large, MPI,,, will be within this interval
90% of the time.

2.7. The Trace-Driven Simulation Environment

Trace-driven simulation provides accurate results for a variety of cache configurations, but its cost
is large simulation times, particularly for the trace lengths needed with multi-megabyte caches. One
alternative for more efficient simulation would be to use an algorithm that produces many results with a
single pass through the trace data. This algorithm, called stack simulation, was pioneered by Mattson,
et al., [MAGS70]. Thompson and Smith extended stack-simulation so that write-back traffic could be
calculated, in addition to the miss ratio [THOS89]. Concurrently, Hill and Smith also extended stack
simulation in several ways [HILL87,HILS89]: forest simulation gathers results for several direct-
mapped caches concurrently, and all-associativity simulation simulates multiple set-associative caches
concurrently. Wang and Baer combined these extensions, introducing an all-associativity simulation
algorithm that produces write-traffic results in addition to miss ratios [WANG89, WANB90].

These simulation techniques can reduce simulation times, but they have a cost. One disadvantage
is their increased complexity. Also, though stack simulation has been extended for write-back traffic in
addition to miss ratios, it still restricts the performance metrics that can be gathered during a simulation.
Another disadvantage is their large memory requirements. Memory requirements are particularly
important when simulating multi-megabyte caches; they can even dominate other concerns.

An alternative technique for fast simulation takes advantage of the homogeneity inherent in multi-
ple simulations of hierarchical cache configurations. Since the primary cache configuration is constant
throughout this dissertation, and its behavior is often independent of the secondary cache configuration,
multiple secondary caches can usually be simulated while simulating the primary cache only once. Fig-
ure 2.5 depicts this idea. Since the primary caches satisfy most of the references, most of the simulation
time is spent on the primary caches. Eliminating these simulations is a big savings. Many secondary
simulations can be completed with a single primary simulation. A concern with this implementation is
that the simulator requires a large amount of memory. This concern was alleviated by minimizing the
storage required to simulate each cache block frame. Usually, only a single word (4-bytes) is required
per block, so even a 16-megabyte secondary cache simulation (with 128-byte blocks) needs only 512-
kilobytes.

The homogeneity in Figure 2.5 saves much simulation time at no accuracy loss. The same effect
could be extracted by saving primary cache misses (and write-backs!) when simulating only the pri-
mary caches, and later simulating the secondary caches using the saved references. This extraction is

19

The Simulator

4)

Primary
Caches Secondary » Results
Data
Trace Data
Inst
Secondary » Results

N J

Figure 2.5. Simulation of Homogeneous Hierarchical Configurations.

This figure shows the structure of the simulator. A single pair of primary caches is simulated, rather than
one for each secondary configuration. The secondary cache references (from primary cache misses) are
submitted independently to each secondary cache, and results are obtained for each.

cumbersome when there are many intermediate traces, as is true for the simulations in Chapter 6, where
each trace is modified by many different virtual to real address translations, producing many different
traces. Another problem with saving the intermediate traces is that primary cache simulations are not
always the same for all hierarchical configurations. For example, when enforcing inclusion between the
primary and secondary cache levels (see Chapter 5), the primary cache behavior will be different for
each secondary cache, and a brute-force simulation of each two-level configuration is required for pre-
cise results. The simulator in Figure 2.5 can adapt to the inclusion case by simulating only a single
secondary cache configuration with each primary cache simulation, while an intermediate trace is com-
pletely inadequate for this case. Alternative techniques need to be used to speed up simulations when
there is no primary cache homogeneity for different secondary caches.

Parallelism across simulations further reduces the simulation time beyond the homogeneity of pri-
mary caches. To use this effectively, multiple processors are required. Fortunately, the University of
Wisconsin has a powerful tool that allows idle workstations to be used, called Condor [LiL.M88]. Con-
dor monitors all the workstations in the Computer Science Department. Users submit jobs to Condor,
and the jobs are executed when an idle workstation becomes available. Except during peak hours of the
day, Condor was consistently able to provide access to more processors than was needed to complete
the simulations needed for this dissertation. The only interruptions in service occur when users return
to idle workstations, in which case Condor retreats to a previous checkpoint and restarts the job on
another idle workstation.

Figure 2.6 depicts the parallel condor configuration. The arrows show the trace data flow. A
monitor process on the single home workstation (Ham-And-Cheese) continuously reads trace data off
tape and stages (caches) it in a disk. While executing on idle workstations, the simulators read the trace
data off the staging disk and across the network to do the simulations. The monitor process manages
the synchronization so that the correct trace data is staged always.

20

Idle Workstation

Trace Data

56

Ham-And-Cheese
/7

/ “a Idle Workstation
i
Staging

Area

Figure 2.6. Parallel Simulation with Condor.

This figure shows the architecture of the parallel trace-driven simulation environment with Condor. The
arrows show the trace data flow.

As many as twenty idle workstations can be used with the Condor environment shown in Figure
2.6. Using the primary cache homogeneity optimization with the paratlelism of Condor, results for hun-
dreds of hierarchical configurations could be gathered in nearly the same amount of time needed for a
single naive simulation. A large bottleneck in this parallel design is the single processor that is the
source of the trace data. Reading the data off the staging disk and transferring it over the network
requires much computation. Most often, however, this did not limit the simulation speed. The biggest
bottleneck was the single tape drive. It was not feasible to use manual intervention to switch tapes, so
each tape would monopolize the tape drive for extended periods. Since only a single trace was stored
on each tape, all simulations running at the same time had to use the same trace data. Often, there was
not enough parallelism within a single trace to utilize the parallel Condor system fully. Simulations
using one tape had to be completed before the next tape was inserted to start a new batch of simulations.

This parallel simulation environment was extremely useful. Without it, many results in this disser-
tation would not be available. Several years of simulation were condensed to a few months with Con-
dor.

2.8. Conclusions

This chapter first defines and describes key definitions of virtual memory and caches used
throughout this dissertation, together with the assumed default parameters. Then, it surveys the state-
of-the-art research regarding cache analysis and design. Since memory system performance has such a
dominant effect on overall system performance, it has been examined by many previous researchers.
The importance of trace-driven simulation has been established. This dissertation uses trace-driven
simulation extensively; it overcomes the limitations of previous trace-driven simulation studies. In par-
ticular, Chapter 3 discusses traces that remove the length and size limitations of previous traces, and
Chapter 4 examines trace-sampling techniques that can reduce trace-driven simulation resource require-
ments.

21

This chapter describes the cache performance metrics used throughout this dissertation. In partic-
ular, it introduces MPI and SCPI as metrics that take into account the frequency that a cache is
accessed. This is important for comparison and performance optimization with multi-level cache
hierarchies. SCPI further considers the timing information needed for comparison of alternative cache
configurations. This chapter also discusses the statistical techniques used in Chapters 4 and 6. Finally,
it describes a parallel trace-driven simulation environment that allows for rapid accumulation of trace-
driven simulation results. The environment allows hundreds of simulations to be completed in the same
time that only a single simulation could otherwise be completed. Chapters 5 and 6 could not be com-
pleted without the simulation capabilities described in this chapter.

22

Chapter 3

Long Traces For Cache Analysis

3.1. Introduction

Many current (1991) traces are too short. Traces containing one million memory references or
less have been used to analyze systems with caches of 128-kilobytes or more, stretching the ability of
the traces to provide accurate results because large cache initialization takes too long. This chapter stu-
dies the creation and usage of traces capturing billions of instructions. These traces overcome the
length limitations of many previous traces and are useful in analyzing the performance of multi-
megabyte caches.

This chapter builds on the trace-gathering mechanism developed at The Western Research
Laboratory of Digital Equipment Corporation [BOKL89,BOKW90]. This mechanism uses new
software-based techniques to gather massive amounts of trace data. Trace compression is added to the
trace gathering mechanism so that even billions of instructions can be efficiently stored on tape. The
traces come from memory intensive (by the standards of today) workloads, with a working set of 40-
megabytes to 100-megabytes. This chapter shows that the traces are suitable for the analysis of caches
up to 16-megabytes because they overcome cache initialization and capture many program execution
phases.

Section 3.2 of this chapter discusses the trace gathering mechanism and issues related to it, with
the trace compression techniques outlined in detail. Section 3.3 presents the traced workloads. Section
3.4 shows general characteristics of the traces, including miss frequencies of multi-megabyte caches.
Section 3.5 shows that long traces capture many phases of execution that introduce substantial varia-
tions in cache performance, even over execution intervals of 100 million instructions or more. By cap-
turing these phases, long traces accurately characterize the entire execution of a workload, rather than
just a portion of the execution. The same section also shows that a trace of a billion or more

23

instructions may be needed to initialize multi-megabyte cache configurations fully.

3.2. The Trace Gathering and Storage Mechanism

The first part of this section discusses the mechanism used to collect the traces used in this disser-
tation. The section then describes the data compression techniques used to minimize the storage space
required by the traces. It also gives the format of the stored trace data.

3.2.1. Gathering Long Traces

When gathering memory address traces, the end goal is to extract an accurate representation of the
memory references of an appropriate workload efficiently. A large part of the difficulty of this process
is to capture the trace without distorting the true characteristics of the workload. One would like to
include all references in the trace, user and operating system. This gives the most realistic characteriza-
tion of system memory reference behavior.

1t is difficult to gather traces that include all references. One way is to simulate the system. Given
the source code for the operating system and the capability to simulate the hardware, the entire execu-
tion of the system could be simulated. This simulator could then be modified to write trace data captur-
ing the memory reference behavior of the simulated processor. While it is possible to build such a
simulator, it would be complex, and it would run much slower than the real machine. Properly simulat-
ing time-dependent events, such as interrupts, could be difficult.

Hardware tracing schemes can gather traces with less execution time distortion. A good example
is the ATUM (Address Tracing Using Microcode) scheme [AGSH86]. ATUM modified the microcode
of a DEC VAX® processor so that entries are written into a trace buffer as each memory reference exe-
cutes. These hardware modifications distort the execution speed of the processor by only a factor of ten
when traces are gathered. While ATUM can quickly gather traces that closely represent the true
memory references of the processor, a serious restriction of the ATUM approach is the finite trace
buffer, which limits the length of the traces that can be gathered. This technique gathered traces of only
500,000 memory references [AGSH86]. ATUM is appropriate with microcoded processors when these
lengths are adequate, but it is inadequate for the trace lengths required with multi-megabyte caches.
The most critical deficiency of ATUM, however, is that it is completely unacceptable for an un-
microcoded processor, as in this study.

Anita Borg and David Wall at DEC Western Research Laboratory (WRL) developed a software
technique (more completely described by Borg, et. al [BOKL89]) to gather traces from the WRL Titan
[NIEL86], a ‘‘RISC’’ machine. The Titan runs a modified version of the Unix™ operating system. The
mechanism used to gather the traces was code modification. Changes were made to the system software
of the Titan, namely the operating system and the compiler, to gather the traces. The compiler creates
traceable versions of applications with a special flag. This special compilation modifies the code so that
special procedures, trace procedures, execute at appropriate points. These procedures write information
in a trace buffer (of 32-megabytes) so that the memory reference behavior of the given program can be
reconstructed. Figure 3.1 shows how the expanded code writes trace entries at the beginning of each
basic block of instructions’ and before each load and store. Since loads, stores, and instruction fetches

5. Digital Equipment Corporation Trademark.
6. AT&T Bell Laboratories Trademark.

24

are the only memory references made by the Titan, each memory reference is accounted for, though the
exact positioning of loads and stores within basic blocks is not specified by the trace data®,

Original Code:
locl: Load R3,12 (R5)
Sub R5,R5,R2
Add R4,R4,R3
Store B (R5),R4
Branch RS5,loc3
loc2: Sub R6,R6,R2

Expanded Code (Symbolic):

new_locl: Call Trace_Inst(5,1locl)
Call Trace_Load((R5)+12)
Load R3,12(R5)
Sub R5,R5,R2
Add R4,R4,R3
Call Trace_Store((R5)+8)
Store 8 (RS5),R4
Branch R5,new_loc3

new_loc2: Call Trace_Inst (8,l1loc2)
Sub R6,R6,R2

Figure 3.1. Code Expansion For Tracing.

This figure shows an example of the code modifications of a hypothetical machine that would occur when
tracing an application by code modification. The original code is at the top and the traceable code is
below. Traceable code on the Titan is about a factor of two larger than the original code and executes
about ten times slower when tracing.

Tracing by code modification retains many advantages of the ATUM tracing technique, including
a modest execution time distortion of only a factor of 10, since code modification on the Titan is similar
to microcode modification on the VAX. Both tracing mechanisms write information into a fixed size
trace buffer to reconstruct the memory reference behavior of the processor. All traced user processes
write in the same trace buffer; the trace is ordered in the sequence that the memory references execute.
The difference of this technique from ATUM is that modified code is more flexible and can do many
more things than the modified microcode. Carefully crafted trace procedures, with the modified Titan
kemel, manage the synchronization among different processes writing in the trace buffer, ensuring that
the trace reflects the true user memory reference pattern of the processor under real system workloads.
This mechanism gathered traces including the proper execution interleaving of multi-process references
for this dissertation. A later version of the mechanism could trace operating system references and user
references by code-modifying the operating system to write in the same trace buffer. Unfortunately,
this feature was not available at the time these traces were collected. The traces used in this dissertation
include only user references.

7. A basic block of instructions is a contiguous block of instructions that are always executed in sequence.
Each block has a single entry point and a single exit point.

8. The positioning of loads and stores within a basic block could be determined by analysis of the source
code, but no attempt was made to do so.

25

The ability of the Titan compiler to do instruction scheduling and register allocation [WALP87]
allows traceable code to be generated via a flag to the modified compiler. The compiler automatically
inserts branches to trace code at the proper points to write the trace. Although the code of a traced pro-
gram includes the code needed to write to the trace buffer as well as the original code, the basic block
trace entries do not include any effect of the instructions inserted for tracing. That is, the code
addresses in the trace buffer are those that would have been executed by the untraced program, though
the code size increases by a factor of two. This modified-code tracing mechanism is similar to that used
by Stunkel and Fuchs [STUF89], Eggers, et al. [EGKK90], and Larus [LARU90]. Since Titan instruc-
tions can only be one word, basic block trace entries need only contain the beginning address and the
number of instructions in the block. Loads and stores require only a single word in the trace buffer to
store the address of the memory access.

Similar to the ATUM tracing technique, the size of the trace buffer limits the length of a contigu-
ous trace. Since a single trace buffer cannot hold long enough traces, it is necessary to concatenate
many short traces to produce a long trace, as pictured in Figure 3.2. As the trace buffer becomes full,
the operating system stops the traced programs and starts an analysis program to read the trace data out
of the buffer. Once the analysis program completes, the traced programs continue executing until the
trace buffer is again filled. The difficulty in this concatenation of traces is to maintain the fluidity (or
seamlessness) of the trace. That is, the concatenated trace should look as if it were a trace extracted
from a single (infinitely large) trace buffer. The Titan operating system modifications maintain fluidity
because traced user programs do not execute while the analysis program reads data from the trace
buffer. Once the trace buffer empties, the traced programs continue tracing from the point where they
stopped when the trace buffer became full, so the concatenation of consecutive trace buffers gives a
continuous trace that can be billions of instructions or more.

A4

System Execution

i, Trace .| Analysis Program \/\ .1, Trace
L T 0 ¢

N ~ - -
~ ~ .
\/\ S s 27 /\/

Composite Trace
Figure 3.2. Concatenating Multiple Trace Buffers.

This figure shows a single multi-billion-instruction trace resulting from the concatenation of many trace
buffers worth of data. System execution consists of periods of trace data gathering interleaved with execu-
tions of the analysis program. The analysis program concatenates consecutive trace buffers into a single
contiguous trace. Operating System support minimized the distortions introduced by the time-gaps
between the tracing.

3.2.2. Storing Long Traces

A version of the analysis program wrote the trace data to tape storage for later use. To minimize
the amount of storage required by the trace data, the data was compressed before it was stored. The
compression used techniques similar to those used by Samples [SAMP89]. At no information loss, this
method reduced trace storage requirements by an order of magnitude. The space required to store the
compressed traces varied for different workloads. At the minimum, an average of 0.38 bits was

26

required to store each memory reference of the traced workloads. Most of the workloads required from
two to three bits for each memory reference. This allowed many billions of memory references to be
stored on a single 2-gigabyte cartridge tape.

Figure 3.3 shows that the compression scheme separates into two phases, the preprocessing and
Unix compress phases. The goal of the preprocessing phase is two-fold: (1) to compress most basic
blocks into single word trace entries, and (2) to prepare the trace for the compress phase by dif-
ferencing current addresses with previous addresses. Rather than storing an entire address in the trace
data, a difference can be stored. The preprocessing phase inserts in the trace for the ith address, A (i),
the difference between address i and address i —1:

TH=AW)—-AG-1)
where T (i) is the trace difference for address i. The decompression algorithm reconstructs the original
addresses from the differences using the equation:
n=i
A =A0)+ X T,
n=1
which can easily be calculated by maintaining an accumulator of past values of T'(n), as in the follow-

ing C code fragment:

accumulator = accumulator + current_trace_difference;
current address = accumulator:;

: Compressed
Trace Preprocessing/ Unix Tface
Data Differencing Compress > o

Figure 3.3. The Phases of Trace Compression.

This figure shows the execution phases of the trace compression program. The preprocessing phase com-
bines double word basic block trace entries into single words and does differencing. The output of this
phase is then compressed using Unix compress, which is extremely effective in reducing the amount of
trace data and results in no information loss.

The address differences coming from the preprocessing phase can be regular because of the local-
ity (both spatial and temporal) of memory references. For example, a trace of the differences of
memory references is extremely regular when array elements are accessed in sequential order; addresses
i,i+1,i+2, .. would be differenced as 1, 1, 1, The preprocessing phase encodes all address as
differences: regularity is the key goal of preprocessing.

Unix compress is a version of Lempel-Ziv [WELC84, ZIVL76, ZIVL78] lossless compression.
The basic idea of compress is that it compresses variable length input strings into single output code
words. When compress recognizes an input string (by comparing it with previous input strings), the
associated code word is output, rather than the entire input string. Compress is a single pass algo-
rithm that executes in O(n), where n is its input length. The compression ratio of compress depends
on the length of the input string that can be associated with an output code word: the longer each string
is, the more efficient the coding. As shown by Samples, compress is very effective with an input of

27

differenced trace data. Differencing gives a regular input for compress, so it is easier to associate
long input strings with small output code words.

The preprocessed trace data contains basic blocks, loads, and stores. In the original (unprocessed)
trace data, a basic block takes two words. The preprocessor will often compress these <address,
instructions> pairs into single words. the C code in Figure 3.4 shows the algorithm used to do this.
Each <address, instructions> pair gets an index in a fixed size, circularly managed, previous basic
block array. When a block is found in the array, the full two-word transfer is avoided, and only the sin-
gle word index is output. In effect, this technique (done in the preprocessing phase) is similar to those
used in compress to associate input strings with output code words. Compress is more general

and can encode variable length input strings, whereas, this scheme does fixed-length encoding making
use of application-specific knowledge.

struct arraystruct save bblocks[NUMBER_IN_ARRAY];
int saveindex = 0;

Output_Basic_Block Entry(address, instructions)
int address;
int instructions;

{

int index;

index = Associative_ Lookup(address, instructions);
if (index == NOT_SEEN)
{
index = saveindex;
saveindex = (saveindex + 1) % NUMBER_IN_ ARRAY;
Remove_Table (index) ;
save_bblocks[index] .address = address;
save bblocks[index].instructions = instructions;
Insert_Table (index) ;
Long_Basic_Block (address, instructions);
1
else

Short_Basic_Block(index);

Figure 3.4. Basic Block Compression Code.

This figure shows C code in the compression preprocessing phase to compress most double-word basic
block trace entries into single words. Figure 3.5 shows the corresponding decompression code.
Associative_Lookup(), Insert Table(), and Remove Table () functions (procedures)
manage a means to match <address, instructions> pairs to an index of the previous basic block array hold-
ing the corresponding pair associatively, through hash table [AHHUSS5] or other means.

Long Basic_Block() and Short_Basic_Block () pass their arguments as trace data to the next
phase of compression.

Figure 3.5 shows the decompression code that corresponds to the basic block compression code in
Figure 3.4. It builds the array of previously seen <address, instructions> basic blocks as they appear.
The previous basic block array built during decompression precisely mirrors the array built during
compression since it is constructed in exactly the same manner, with exactly the same replacement pol-
icy. So, the indices into the basic block array are guaranteed to indicate the same <address, instruc-

tions> pair in both the compression and decompression phases, so decompression can reconstruct the
full trace data.

28

struct arraystruct previous_bblocks [NUMBER_IN ARRAY];
int previousindex = 0;

Long_Basic_Block (address, instructions)
int address;

int instructions;

{

int index;

index = previousindex;

previousindex = {(previousindex + 1) % NUMBER_IN_ARRAY;
previous_bblocks[index] .address = address;
previous_bblocks[index].instructions = instructions;
simulate_basic_block(address, instructions);

}

Short Basic_Block (index)
int index;
{
simulate_ basic_block (previous_bblocks[index] .address,
previous_bblocks[index].instructions);

Figure 3.5. Basic Block Decompression Code.

This figure shows equivalent C procedures in the decompression algorithm for the trace data to extract the
<address, instructions> pairs from the instruction trace data. Figure 3.4 shows the corresponding
compression code. These procedures are called when a corresponding short or long instruction entry is
seen in the trace data. They call procedures that simulate the instruction memory references.

Table 3.1 shows the eight types of entries included in the preprocessed trace data. Each 32 bit
word in the trace data includes a three bit type identifier and the rest of the 29 bits hold different infor-
mation depending on the entry type. Along with the short and long basic block types, each of which is
differenced, there are two types each for loads and stores. The preprocessor partitions loads and stores
depending on whether they access the stack or the data (non-stack) area so that the address differencing
can extract locality within each. Differencing should produce a more regular output string if it takes the
address differences from the same memory segment. Whereas interleaved accesses to both the data and
stack areas could result in large, more varying differences that jumped from one area to another, the
differences between consecutive references to the stack (and data) would likely be more closely spaced
and regular. This splitting of data and stack references required the decompression phase to maintain
multiple accumulators, one for the stack and one for data.

The preprocessing phase also includes differenced entries that denote a change between user and
kernel mode, or a change to the TLB (Translation Look-aside Buffer). The processor is in user mode
during execution of user programs and kernel mode while the operating system is executing. The trace
gathering mechanism inserts trace entries each time the processor switches between user and kernel
modes. Using these change mode entries, the interpreter of the trace can learn the address space that
each reference should be interpreted in (equivalently, which process is executing), and whether the
references are from user programs or the operating system. Software manages the Titan TLB, so the
operating system is aware each time it changes a slot in the TLB, and it can place entries in the trace
buffer to denote the change. The kemel never TLB faults since it uses real addresses; TLB changes
only modify the virtual address space of the user processes. A change TLB entry in the trace data

29

Preprocessed Trace Entry Types

| Type Description
Long A two word entry specifying the <address, instructions> pair describing the traced basic
Basic block. The first word in the trace specifies the number of instructions in the block, the
Block second specifies the word address of the block.
Short A single word entry specifying an index into an array of previous long basic block en-
Basic tries. The index extracts the <address, instructions> pair that describes a basic block by

Block maintaining previous long basic block entries.

Load A single word entry specifying the address of a load to the stack area.
Stack
Store A single word entry specifying the address of a store to the stack area.
Stack
Load A single word entry specifying the address of a load to a non-stack area.
Data
Store A single word entry specifying the address of a store to a non-stack area.
Data
Change | A single word entry specifying that the processor changed from user to kemel mode or
Mode vice-versa. If the processor is changing to user mode, an 8-bit process identifier (PID) is
included to determine the execution environment that the following references should be
simulated in.

TLB A two-word entry specifying a change in a TLB (translation look-aside buffer) entry.
Change | The first word includes the PID and virtual page of the TLB change. The second word
denotes whether the entry concems the data or instruction TLB, whether the entry isto
validate or invalidate the TLB entry, where in the TLB the entry should be placed, and
what is the real page corresponding to the given virtual page.

Table 3.1. The Types of Preprocessed Trace Entries.

This table shows the eight different types of preprocessed trace entries. They include loads, stores, and
basic block, and entries to update the simulated TLB (Translation Look-aside Buffer) and change between
kernel and user modes. Addresses are virtual while in user mode, but real addresses are used in kernel
mode.

includes the PID (process identifier) and virtual page number to identify a unique page in a given virtual
address space. When the operating system validates a TLB slot, the corresponding real page frame
number is also included. All TLB slot changes are recorded in the trace data once tracing starts. This
allows the interpreter of the trace data to maintain the TLB contents corresponding to each traced pro-
cess.

Unfortunately, the contents of the TLB while tracing is not enough to know the real address that
would have corresponded to virtual addresses when not tracing. Since the trace data includes those
addresses that would have been referenced by the untraced code, and the processor executes the traced
code, the instruction addresses in the trace are different from those executed by the processor. In other
words, the extra code inserted for trace-gathering distorts the page mapping. The mapping for the
modified code is in the TLB, but the mapping for the unmodified code may not be, so the real addresses
corresponding to the instruction virtual addresses in the trace may not be in the TLB. This makes it
difficult, and perhaps impossible, to use the TLB information successfully for virtual to real translation.
System behavior, including the virtual to real page mapping, would be different when running the
smaller code sizes of the untraced code rather than the traceable code.

The long trace gathering and storage mechanism described in this section gives the ability to trace
multi-process user-only references with little distortion, and allows the trace data to be efficiently stored
for later use. It allowed traces of several billions of instructions to be gathered and used for this study.

30

The next section discusses the use of this trace gathering mechanism to extract traces suitable to analyze
multi-megabyte caches.

3.3. A Description of the Workloads

In choosing which applications to trace, it is important to keep in mind that the traces will
influence the configuration of future CPU caches. It is likely that future workloads will be much like
current workloads, although future workloads will surely fully utilize both the large main memories and
the faster processors suggested in Chapter 1. Future workloads will execute many more instructions
and use much more memory to solve bigger problems. This section discusses traces taken from work-
loads that predict the larger workloads of future systems.

A suite of applications that are large consumers of main memory (by 1990 standards) form the
base of the workloads. All the programs solve important problems. They require large amounts of
memory because the problem they are solving is large, not because they are poorly written programs.
As subsequently shown, these memory-intensive applications can exercise the multi-megabyte caches
examined in this dissertation. A cache simulation study would be uninteresting if the workloads fit
comfortably in the caches.

Table 3.2 describes the programs that were traced. Scientific, Computer-Aided Design (CAD),
and Compiled Scheme (A LISP dialect) programs form the bulk of the large programs. These are
rounded out with some often used Unix utilities, including all phases of C compilation on the Titan.
This collection of programs reflects those used in an engineering and research environment, heavy users
of computer resources. Each of these programs were compiled into traceable code, with full optimiza-
tions enabled (including register allocation), except where noted.

Table 3.3 shows the combinations of the traced programs making up the different traced work-
loads. The larger programs were uniprogrammed workloads while the smaller programs were grouped
into multiprogrammed workloads. The selected workloads range from a scientific program (Sor), to a
Scheme (LISP-dialect) program (Tree), and a multiprogrammed workload (Mult1).

3.4. Simulation Results from the Traces

A suite of traces were collected from the workloads shown in Table 3.3, one from each unipro-
grammed workload and two from each multiprogrammed workload, for a total of eight traces. The two
traces from each multiprogrammed workload are the result of different process switch intervals, as will
be discussed in section 3.4.2.

3.4.1. Instruction Mix and Memory Usage

Table 3.4 shows some general instruction statistics on the traces. The lengths of the traces range
from three billion to six billion instructions, much longer than previous traces. They represent substan-
tial portions of the execution of the workloads.

The fraction of instructions that are loads is constant at 30% for the traces other than Lin, while
the fraction of stores varies considerably among the workloads in Table 3.4. Excluding the Lin trace,
the load fraction is more stable than the store fraction for the different workloads. This observation is
consistent with data for various ‘‘CISC’’ workloads and architectures [SMIT85]. Though Lin may
invalidate the observation, it seems to hold often.

31

A Description of the Traced Programs
| Program Description
Make A Unix program to maintain, update, and regenerate groups of programs. The make pro-

gram generated a sequence of compiles and loads. It made calls to cc, rm, and cat. Code
size: 148 kilobytes.

Cc The C compiler front end. Its main purpose is to start the C pre-processor, C compiler,
Mahler Compiler, and loader. Code size: 45 kilobytes.

Cpp The C language preprocessor. Code size: 62 kilobytes.

Ccom The first phase of C compilation on the Titan. Code size: 397 kilobytes.

Mc The Titan Mahler [WALP87] Intermediate Language Compiler. Code size: 877 kilobytes.

Xld The Titan loader. Code size: 758 kilobytes.

Cat Unix utility to concatenate files. Code size: 37 kilobytes.

Cp Unix utility to copy files. Code size: 37 kilobytes.

Vi/Ex Unix text editor. Code size: 361 kilobytes.

Ps Unix utility to read process status. Code size: 127 kilobytes.

Ls Unix utility to list directory contents. Code size: 127 kilobytes.

Rm Unix udlity to remove a file. Code size: 37 kilobytes.

Tcsh Unix shell program. Code size: 348 kilobytes.

Magic A VLSI layout editor [OUHMS5]. Magic includes many features not found in other edi-
tors including design rule checking, routing, and plowing. Code size: 2.1 megabytes.

Grr A Printed Circuit Board Router built by Jeremy Dion [DION88]. Code size: 483 kilo-
bytes.

Tv A Circuit Timing Verifier built by Norm Jouppi [Jour87]. Code size: 291 kilobytes.

Sor A Successive Overrelaxation algorithm contributed by Renato De Leone [DEMASS] that

uses sparse representations of extremely large matrices. It is written in Fortran, and was
compiled without optimizations since the Fortran compiler available was experimental.
Code size: 98 kilobytes.

Linear A program to analyze the power supply of circuits by solving linear systems of equations
via sparse matrices [STAH89]. Code size: 102 kilobytes.
Tree A compiled Scheme [BART89] (a LISP dialect) program contributed by J oel Bartlett that

builds a tree data structure and searches for the largest element in the tree. The garbage
collection method used by the Scheme compiler is important to the behavior of Tree.
The data area is split into two halves, only one of which is used at any given time. Gar-
bage collection occurs whenever one half of the data space has been spent, causing the
(clean) data to be transferred to the other half of the data space. Code size: 406 kilo-
bytes.

Table 3.2. A Description of the Traced Programs.

This table contains a description of the programs used to collect the trace data. They consist of CAD,
scientific (Fortran), and Scheme (Lisp-like) programs with some common Unix utilities (most notably the
collection of programs that are the C compilation environment). The code size listed is that of the untraced
code.

A large portion of the variability in the store fraction can be attributed to the overhead of saving
registers for procedure calls. Whereas Sor performs few procedure calls, Tree frequently makes recur-
sive procedure calls, so Tree has nearly twice as many stores. Recursion can cause extra register state
saving on a machine like the Titan that does static register allocation at compile time. The value of a
register may need to be saved each time it is reused by a different procedure instance. The load fraction
may not vary as much as the store fraction because register restores are a smaller portion of the loads.

The basic block size is an important metric of the traces since the tracing mechanism only recog-
nizes a basic block rather than each instruction. The larger the basic block, the more inaccurate is the
ordering of the instruction references with the loads and stores, though the ordering doesn’t matter as

32

A Description of the Workloads

Workload Description

Multl A multiprogram workload consisting of: (1) Make C compiling portions of the Magic
source code, (2) Grr routing the DECstation 3100 Printed Circuit Board (16 megabytes),
(3) Magic Design Rule Checking the MultiTitan CPU chip (20 megabytes), (4) Tree
given 10 megabytes of working space solving the same problem as the Tree workload,
(5) another Make that largely consists of a call to XId to load the Magic object code (20
megabytes), and (6) an infinite loop shell of interactive Unix commands (cp, cat, ex, rm,
ps -aux, Is -1 /*). The trace skipped about the first billion instructions so the larger pro-
grams, Gir, Magic, Tree, and X1d, were able to initialize their large data structures and

start using them.

Mult2 The Multl workload excluding the X1d (Make) run (5) and the Tree program (4). Mult2
has a lower degree of multiprogramming and is smaller than Multl1.

Tv A uniprogram workload of Tv analyzing the timing of the MultiTitan CPU chip

[JoDB87,J0TD89]. Tv required 12.5 billion instructions to complete the timing analysis.
About the first 10 billion instructions build a very large linked data structure. The final
2-3 billion instructions traverse the structure. The end of the execution of Tv was cap-
tured on tape.

Sor A uniprogram workload of the Sor program doing matrix manipulations on a 800,000 by
200,000 sparse matrix with approximately 4 million (0.0025%) of the matrix entries be-
ing non-zero. About the first billion instructions create the large matrices. The rest of
the program is the matrix operations. The trace captures a portion of the matrix opera-
tions, excluding initialization.

Tree A uniprogram workload consisting of the Tree program. Tree has two major phases that
were traced. About the first half of the instructions build a large tree structure that
represents a Unix-like hierarchical directory structure. The rest of the instructions search
this tree to find the largest member,

Lin A uniprogram workload of Linear analyzing the power supply of a register file. Normal-
ly, the program tries to minimize the amount of work it must do by combining circuit
structures. The trace was collected by disabling some of these combining operations to
produce a bigger problem, possibly reflecting the larger problems of the future.

Table 3.3. A Description of the Studied Workloads.

This table consists of a description of the user-only (no kernel references) workloads used in this study.
Four workloads are uniprogrammed and two are multiprogrammed workloads. The uniprogrammed work-
loads consist of the largest programs. Several smaller programs were grouped with some standard Unix
programs to produce the multiprogrammed workloads.

much because this dissertation uses split instruction and data primary caches. The average basic block
sizes shown in Table 3.4 represent the dynamic average size, that is, it is the average basic block size of
instruction entries in the trace data. They are stable for the traces other than Sor. Tree and Mult2 have
the smallest average basic block size while Sor has the largest at over 2.3 times the minimum. The Sor
results are not too surprising since scientific programs are generally considered to have larger basic
blocks than other programs.

Table 3.5 lists the active and referenced memory for each trace. The active memory is an estimate
of the average amount of memory that was active (mapped to any traced process) during the trace. The
referenced memory is the amount of unique memory (in 128-byte blocks) referenced by the trace. The
active memory of the traces ranges from 40-megabytes to 100-megabytes. This is large for 1990, but
may be common for the large memories soon to be available.

The total memory referenced by the traces ranges from 7-megabytes to 72-megabytes. For the
uniprogrammed traces, the referenced memory is always less than the memory that was actively

33

Instructions Basic
Trace Block
Billions Loads Stores Size

Multl 30 % | 16% | 65
Multl.2 39 32% 16% 6.5
Mult2 3.6 30% 12% 6.1
Mult2.2 3.7 30% 12% 6.1
Tv 6.0 28% 11% 6.9
Sor 38 29% 8% 14.3
Tree 4.0 31% 19% 6.1
Lin 3.6 40% 13% 7.7

Table 3.4. Instruction Information on the Traces.

This table shows the length of the traces used in this study (in billions of instructions), the fraction of in-
structions that are loads and stores, and the average basic block size (in instructions).

Memory (Megabytes)

Trace Active Referenced
Multl 73 36
Multl.2 75 69
Mult2 40 58
Mult2.2 40 59
Tv 96 72
Sor 62 58
Tree 64 62
Lin 57 7

Table 3.5. Memory Requirements of Traces.

This table shows the active and total memory requirements of the traces (in millions of bytes). The active
memory was estimated by examining the status of the traced processes while being traced. The referenced
memory is the amount of unique memory (in 128-byte blocks) referenced by the trace.

available for the processes. Note, however, that the active memory of the Mult2 traces is considerably
smaller than the referenced memory. Since these traces represent the complete execution of many
processes, the total referenced memory can be larger than the amount of memory that was active at any
moment since active processes die and new ones restart.

3.4.2. The Multiprogrammed Traces

An important statistic of each multiprogrammed trace is the process switch interval, or the number
of instructions that are executed by a process before another process uses the processor. Table 3.6
shows the switch intervals for the multiprogrammed traces. The target process switch interval is the
maximum number of instructions that could be executed between process switches. There are several
reasons why the actual process switch interval (measured in instructions executed) for these traces is
less than the target: (1) The Titan may not be able to execute at its peak rate because of cache misses,
data dependencies, etc.; (2) The operating system execution time (when there is no tracing) subtracts
from the interval; and (3) Processes wait for I/O or other external events, relinquishing control of the
processor before the full interval is used. The result is that the measured process switch interval in each
trace is about half the target.

34

Switch Interval (instrs.) Processes
Trace Target Actual Active
Multl 200,000 138,000 6
Multl.2 400,000 196,000 6
Mult2 200,000 134,000 4
Muit2.2 400,000 214,000 4

Table 3.6. Process Statistics of Multiprogrammed Traces.

This table shows the target and actual process switch interval and an estimate of the number of active
processes at any moment in the multiprogrammed traces. The target process switch interval was the max-
imum number of instructions that could be executed between each switch. It was measured using a simple
infinite loop program designed to execute instructions rapidly.

The process switch intervals of the multiprogrammed traces, hundreds of thousands of instruc-
tions, are high compared to some previous traces. For instance, the ATUM traces average around 10 to
20 thousand memory references between each switch [AGHH88]. The increase in process switch inter-
val is appropriate because of increasing processor speeds, since the time between process switches tends
to be constant across different systems. Thus, as the speed of the processor increases, the number of
instructions executed between each switch will increase. For example, Clark, et al., show that the con-
text switch headway for the VAX 8800 (19000) is about three times that of the VAX 780 (6000), a
nearly linear increase with processor performance [CLBK88]. The switch intervals for the traces were
adjusted to values that should be appropriate for future high-performance processors. Mogul and Borg
used similar switch intervals [MOGB91].

Table 3.6 shows that the multiprogrammed traces represent the concurrent execution of many
processes. Though only about four or six processes are active at any given moment, there are references
from many more included in the trace. For example, Mult2.2 has only four processes estimated active
at any moment, yet the trace contains the execution of 176 different processes. This occurs since many
processes complete and new ones start in their place. Furthermore, though only four or six processes
are active at any given moment, some are suspended waiting for other processes to complete. For
example, the Cc program does nothing other than start and wait for the Cpp, Ccom, and Mc processes in
succession.

To understand more fully the processes included in these traces, this section examines the Mult2.2
trace in more detail. Figure 3.6 partitions the Mult2.2 processes by the number of instructions they exe-
cute. The left graph shows that most of the processes execute for about 100,000, 10 million, or 100 mil-
lion instructions. By far the largest share of the instructions in the trace are from processes that execute
for ten million instructions or more. Only two processes (probably Magic and Grr) execute for more
than 100 million instructions during the trace. The right graph shows that these two processes contri-
bute the most instructions to the trace. Though small in number, the long-running processes have a
dominant effect on the trace.

A similar scenario exists when the processes are partitioned by the amount of memory they refer-
ence, as in Figure 3.7. The left graph shows that most of the processes reference from 100-kilobytes to
1-megabyte. The right graph shows that these 1-megabyte processes contribute the largest portion of
the instructions in the trace, but not by much. The larger processes contribute a substantial portion,
though there are few of them. For example, only a single process references more than 10-megabytes of
memory, yet it contributes over 25% of the instructions.

35

R 27% 38%% 3 41% ﬁ%
2 % 7/ g~ 9% //
%g Z éé §°?3 /ZZ
;58 10% / gi’ /

NA RN
DA% A |y o AL

Figure 3.6. Mult2.2 Processes Classified by Execution Length.

This figure partitions the processes in the Mult2.2 trace by their execution length (in instructions). On the
left, the number of processes in each class is shown. On the right, the number of instructions executed by
the processes in each class is shown. The partitions are by factors of ten. For example, the bar labeled
““IM’’ has statistics for processes that have 100,000 to one million instructions included in the trace. Note
that some scales are logarithmic.

3.4.3. Miss Frequencies in Multi-Level Cache Configurations

This section expresses shows MPI's (and relative MPI changes) for the base two-level
configuration that is shown in Figure 1.1 and further described in Section 2.3, with default parameters
also given in Section 2.3. By showing the cache performance effects of the traces, this section exposes
the trace characteristics that effect cache design. Chapter 5 delves further into multi-megabyte cache
design issues.

Table 3.7 shows the miss frequencies of the primary instruction and data caches for the different
traces. With this primary cache configuration, the data cache has a higher MPI than the instruction
cache.

The MPI results in Table 3.7 provide some insight into the traced workloads. For the instruction
cache, the multiprogrammed traces have higher MP/ than the uniprogrammed traces. The opposite is
true for the data cache. The good instruction locality and poorer data locality of the uniprogrammed
traces is likely a result of the scientific nature of several of the applications. Tight loops ranging over
large amounts of data will tend to give lower instruction cache and higher data cache miss frequencies.
This is exactly the behavior of the Sor and Lin traces, which have virtually no instruction cache misses.

A comparison of the results from the multiprogrammed traces with different process switch inter-
vals shows a slight tendency toward lower MPI’s with the longer switch intervals. This is expected
since each process switch results in a reloading of the primary caches; the data of the other processes
corrupted the primary caches since the last time the process ran [SMIT82]. Although hundreds of
thousands of instructions execute between each process switch, switching-induced cache reloading is

36

140

120

26%

7

le+09

100

Number of Instructions
1e+08

RN

(]
\©
~
¢ :
o 11%
N 6% 7/
- V.1 7 1% 05 |
IM M 10M 1G IM M 10M AG
Bytes Accessed By a Process Bytes Accessed By a Process

Figure 3.7. Mult2.2 Processes Classified by Memory Usage.

This figure partitions the processes in the Mult2.2 trace by the memory they use. On the left, the number
of processes in each class is shown. On the right, the number of instructions executed by the processes in
each class is shown. For example, the bar labeled ‘‘1M’’ has statistics for processes that access 100,000 to
one million bytes. Note that some scales are logarithmic.

MPIx1000 of Primary Caches
Trace Instruction Data

Multl 5.5 9.7 (37%)
Mulel.2 5.8 8.1 (33%)
Mult2 6.1 8.2 (37%)
Mult2.2 5.5 7.4 (36%)

Tv 2.6 17.4 (8%)

Sor 0.0 22.9 (60%)

Tree 49 124 21%)
Lin 0.0 3.7 (3%)

Table 3.7. Primary Cache MPIL.

This table shows the miss frequency, expressed as misses per one thousand instructions (MPIx1000) for
the split primary instruction and data caches for each trace. For the data cache, the fraction of misses that
cause the write-back of a dirty cache block is also given in parentheses. As mentioned in Section 2.3, the
instruction and data caches are each 32-kilobytes with 32-byte blocks.

still a factor in the performance of the caches. The Mult1.2 trace does have a slightly higher instruction
cache MPI than Mult1, although Mult1.2 has a longer switch interval. This anomaly is likely a result of
the different execution phases of the Mult1 workload covered by the two traces. The Mult1.2 trace cap-
tures a early portion of the workload that Multl does not.

Table 3.7 also shows the fraction of data cache misses that require writing back a dirty cache
block. With write-back caches, writes are not immediately propagated to the secondary cache. Instead,
the cache saves the value of the updated cache block until it must be replaced (as the result of a cache
miss). Only then is the updated value of the cache block transferred to the secondary cache. The

37

fraction of data cache misses that cause these write-backs varies substantially across the traces, from a
low of only 3% with the Lin trace up to 60% for the Sor trace. The multiprogrammed and Tree work-
loads display moderate behavior, with about 30% of the cache misses requiring a write-back. The Lin
and Tv workloads expend a large portion of their references reading data, and only update small por-
tions of it. The Sor trace modifies the largest portion of the cache blocks in the data cache, though
Table 3.4 shows that it has the lowest fraction of instructions that are stores. This means that the local-
ity of writes is much lower with the Sor trace; it modifies small portions of many cache blocks, increas-
ing the write-back frequency of the cache.

Table 3.8 shows the MPI of a variety of secondary caches, with sizes ranging from 256-kilobytes
to 16-megabytes and associativities ranging from direct-mapped to 4-way associative. The results vary
substantially across workloads, just as with the primary caches. This validates the results shown by
Smith [SMIT85]. Many workloads like those in this study will give the best conclusions, much better
than a single workload. Had resources allowed it, even more workloads would have been used in this
study.

Sor has higher MPI’s than the other traces. This is consistent with the observation that scientific
workloads often have poor cache performance because of poor locality of reference. Sor makes frequent
traversals through extremely large array structures that represent sparse matrices. Its locality is poor
since the traversals through the array purge cache entries before they can be reused. Associativity does
not help Sor’s MPI much; it actually increases MPI for some larger caches. Smith and Goodman show
that associativity can be detrimental to cache performance with looping references [SMIG85], as when
arrays are being traversed. These results corroborate this observation. Chapter 5 further shows the
abnormal cache effects of Sor.

The 16-megabyte caches give extremely low miss frequencies, often well below one miss per
thousand instructions. This is not surprising since the 16-megabyte cache is extremely large, larger than
many current main memories. Indeed, the 16-megabyte cache is large enough to hold from 15% to 50%
of the 40 to 96 megabyte workloads. Without the focus of this study toward larger workloads, these
caches would likely not have been exercised as well. Though the cache is large, the same trends that
hold for the smaller caches also holds for the larger cache. For example, the results in Table 3.8 show
that MPI is approximately halved each time the cache size is quadrupled. (Equivalently, the miss ratio
decreases by 30% each time the cache size doubles [STON90].) This is as valid for the 16-megabyte
cache as for the other caches. Thus, the 16-megabyte cache is not so large that misses never occur, it is
just large enough so that the MPI is low. Chapter 5 shows that low miss frequencies may be necessary
for good performance when the cache miss penalty is large. Of course, if the miss penalty is smaller, or
if smaller workloads are used, small caches may do sufficiently well and 16-megabyte caches may not
be needed.

For the secondary caches, similar to the case with the primary caches, the Mult2 traces show a
consistent reduction in MP/ with increasing process switch interval. For the 256-kilobyte cache, and for
the direct-mapped caches, the reduction with increasing interval also holds for the Mult1 traces. The
Mult1 traces do not follow this pattern for the larger, more associative caches, however. Again, this
anomaly is likely because of the differences in the phases of execution captured in Multl and Mult1.2.

Table 3.8 also shows the fraction of secondary cache misses that cause the write-back of a dirty
cache block. Similar to the data cache results, the fraction varies widely from trace to trace. For exam-
ple, it ranges from 1% to 73% for a 1-megabyte 4-way set-associative cache. Usually, it is near 30% to

38

MPI'x1000 For Secondary Caches (Direct-Mapped)

Trace Secondary Cache Size
256K M 4M 16M
Muitl 3.49(25%) 1.5527%) 0.71038%) 0.33(47%)
Multl.2 3.14(26%) 145(29%) 0.69(39%) 0.32(50%)
Mul2 3.16(31%) 1.24(33%) 0.61(40%) 0.26(48%)
Mul2.2 2.82(33%) 1.18(35%) 0.59(41%) 0.27(48%)
Tv 6.13(10%) 2.63(14%) 1.88(16%) 1.03(21%)
Sor 19.44(61%) 14.77(72%) 1.54(73%) 1.97(44%)
Tree 5.13(11%) 2.16(17%) 0.59(45%) 0.30(69%)
Lin 1.39(2%) 1.16(1%) 0.09(7%) 0.02(0%)
MPIx1000 For Secondary Caches (2-Way)
Trace Secondary Cache Size
256K M 4M 16M
Multl 2.95(23%) 1.1931%) 0.55(43%) 0.26(52%)
Multl.2 2.62(25%) 1.18(31%) 0.56(43%) 0.28(55%)
Mule2 2.38(29%) 10135%) 0.52(42%) 0.24(49%)
Muit2.2 2.15(31%) 098(336%) 0.51(43%) 0.22(51%)
Tv 4.46(12%) 231(15%) 1.76(17%) 0.98(21%)
Sor 18.84(63%) 14.66(73%) 1.76(75%) 1.92(44%)
Tree 4.59(10%) 1.81(17%) 0.49(52%) 0.26(80%)
Lin 1.33(1%) 1.10(1%) 0.06(13%) 0.02(0%)

MPIx1000 For Secondary Caches (4-Way)

Trace Secondary Cache Size
256K M 4M 16M

Multl 2.79(23%) 1.07(33%) 0.52(44%) 0.26(52%)
Multl.2 2.50(25%) 1.1032%) 0.53(45%) 0.27(56%)
Mul2 2.17(30%) 095(35%) 0.50(43%) 0.23(51%)
Mult2.2 1.99(31%) 093(37%) 0.49(44%) 0.22(51%)
Tv 3.69(13%) 228(15%) 1.76(17%) 0.96(22%)
Sor 18.68(63%) 14.55(73%) 8.00(76%) 2.03(45%)
Tree 4.35(10%) 1.75(17%) 0.47(54%) 0.25(81%)
Lin 1.31(1%) 1.08(1%) 0.04(23%) 0.02(0%)

Table 3.8. Secondary Cache MPIL.

This table shows the cache miss frequency (expressed as misses per thousand instructions) for direct-
mapped (top), 2-way set-associative (middle), and 4-way set-associative (bottom) secondary caches. In
parentheses, the fraction of cache misses that cause the write-back of a dirty block is also shown.

50%. It often increases with cache size and associativity. This is precisely when the cache MPI
decreases and blocks are retained for longer periods of time in the cache. The increasing fraction of
write-backs likely occurs because longer block residence times increase the probability that a trace
writes a block while it is resident. This is not always the case, however. The fraction decreases for the
Sor trace as the cache size increases from 4-megabytes to 16-megabytes. Ultimately, for all workloads,
the fraction of misses that cause write-backs has no clear trends for different associativities and cache
sizes, though it tends to increase with lower miss frequencies.

In addition to the absolute miss frequencies as given in Table 3.8, relative performance differences
also expose the cache performance effects and differences of the traces. This analysis answers

39

questions such as: What is the reduction in MPI produced by increasing associativity from direct-
mapped to 2-way with the different workloads? What is the reduction in MP/ produced by doubling the
cache size? The answers to these questions help to decide, for each trace, whether a larger cache with a
slower access time will be better than a smaller cache with a higher MPI.

Figure 3.8 shows the miss reduction that occurs when doubling the associativity. This is the frac-
tion of the misses in the cache of lower associativity that were eliminated in the cache of higher associa-
tivity. The different boxes show the miss reduction occurring when the associativity is doubled from
direct-mapped and 2-way, respectively. The increase from direct-mapped to 2-way eliminates a sub-
stantially larger portion than 2-way to 4-way does. This is consistent thh the observations of others,
including Hill and Smith [HILS89], who measure ‘‘miss ratio spread” The advantages of doubling
the associativity decreases with increasing associativity.

Again, the Sor trace stands out in the data in Figure 3.8, showing negative reductions because of
its looping behavior. In general, the uniprogrammed traces seem to gain less from increasing associa-
tivity than do the multiprogrammed traces. This can be attributed to the higher locality of reference of
the multiprogrammed traces. The uniprogrammed traces also have a considerably wider range of
behaviors: the miss reduction in going from direct-mapped to 2-way ranges from 8% to 25% with the
multiprogrammed traces while the same range is -3% to 34% for the uniprogrammed traces. This is due
to the similarity of the multiprogrammed traces, and the averaging effect of including many different
programs in them.

Figure 3.9 shows the miss reductions when doubling the size of direct-mapped caches. Over the
range of cache sizes, the multiprogrammed traces show a reduction of 30% or more. The unipro-
grammed traces again show a higher range of behavior than the multiprogrammed traces, but, the mean
reduction is similar.

The comparison of Figure 3.8 with Figure 3.9 shows that doubling the cache size eliminates more
misses in a direct-mapped cache than doubling the associativity. This does not follow the 2:1 “‘rule of
thumb’’ that the doubling of either the size or associativity of a direct-mapped cache produces about an
equivalent miss reduction [HENP90]. Instead, these virtual-indexed results show cache size increases to
be more important in reducing the MPI than associativity increases. Section 5.6 of Chapter 5 examines
why the 2:1 rule may not hold for multi-megabyte caches.

3.4.4. Secondary Cache Inter-Miss Distributions

Beyond the MPI, the inter-miss distribution is important. This distribution gives the likelihood
that the number of instructions executed between consecutive misses is a given value. It characterizes
the timing of the secondary cache misses (i.e. main memory accesses). Figures 3.10a, 3.10b, and 3.10c,
display the probability density curves of the inter-miss times for direct- mapped secondary caches 10

9. The miss ratio spread measures the amount that the higher-associativity MP/ increases when the associ-
ativity is halved. If x is the miss reduction for doubling associativity, the miss ratio spread (for halving) is
x/(1 - x).

10. Figures 3.10a, 3.10b, and 3.10c, only show the inter-miss intervals that are less than 500 instructions.
For the 1-megabyte 4-megabyte, and 16-megabyte caches (respectively), this captures 79- 83%, 72-73%, and
57-61% of all Mult inter-miss times, 91%, 89%, and 84% of the Tv inter-miss times, 93%, 87%, and 52% of
the Sor inter-miss times, 81%, 56%, and 23% of the Tree inter-miss times, and 76%, 54%, and 13% of the
Lin inter-miss times.

40

Miss Reduction for Doubling Associativity

15% | !
% 13%
Multl
2
B /i“'/‘ﬁﬂﬁcﬁﬁéﬂ 256K_1-2Way
118% |
Multl.2 O 1 19% 256K _2-4Way
SRR 13% O
[s 1M_1-2Way|
77777777777 A25%
%——l 19%
Mul2 . 1IM_2-4Way
N
4M_1-2Way
= @ —
4M_2-4Way
Mul2.2 &
Y 16M_1-2Way
Q
e T—. <
&= 27%16M_2-4Way|
Tv
Sor
Tree S NSNS 18%
15%
B 77 4%]
——16%
Lin
|

] |
0 0.1 0.2 03
Reduction (Fraction of Misses Eliminated)

Figure 3.8. Miss Reduction for Doubling Associativity.

This figure shows the fraction of misses eliminated by doubling the associativity from direct-mapped to 2-
way (1-2) and 2-way to 4-way (2-4) for each trace and several different secondary cache sizes.

41

Miss Reduction for Doubling Cache Size

i
Multl

Mult1.2

Mul2 30%
8%
|40%
Mult2.2 0%
o 31% 4M
% - .
= {42%

5%

Reduction (Fraction of Misses Eliminated)

Figure 3.9. Miss Reduction for Doubling Size.

This figure shows the fraction of misses that could be eliminated by doubling the cache size for the various
traces. For example, the entry for a 1-megabyte cache denotes the fraction of misses that would be elim-
inated by instead having a 2-megabyte cache for that trace. These results are shown for secondary cache
sizes ranging from 256-kilobytes to 4-megabytes.

Figures 3.10a, 3.10b, and 3.10c show that the short inter-miss intervals occur frequently, particu-
larly with the multiprogrammed workloads. For example, 1450 instructions of the Multl.2 workload
execute on average between each 4-megabyte miss, yet 50% of the inter-miss intervals are less than 100
instructions. This shows that the misses tend to be clustered in time. The density curves are shown out
to an interval of 500 instructions, which captures most of the intervals. While there are enough long
intervals to balance out short ones, the short intervals are the largest portion of the misses.

The multiprogrammed traces have inter-miss distributions that are more skewed toward the
shorter intervals than the uniprogrammed traces. Process switching may lead to short inter-miss inter-
vals when process state is reloaded at each switch. The multiprogrammed traces also may have many

42

Miss Interval Distribution for Muitl

N
<O
20
K
- N»
-_‘;ffo [\\'
] v
[+ ‘\
'8 8 s \’\\ -~
SR N P
N7 \,:§. e
o | L N R, e P I | e e) S |
0 100 200 300 400 500
o Miss Interval Distribution for Mult1.2
Q-
o
.;; o. o "
R
b -y —\ 1]
= ‘
-
'&Dﬂ \\‘
8l .
A \i‘ —
-z \&\:‘_‘ X
o] e e T LU N Ny W S——
0 100 200 300 400 500
« Miss Interval Distribution for Mult2
-
'I
2ol
§d7h
O]
2 |t
==l
=N \
Ka)
[s]
eul 1%
A S \\\ 7/\1\
=7 Na
< '\§ "N'M'\;__} T SLDE UL ot i, D J --..-L_.. p——J
0 100 200 300 400 500

Inter-Miss Time (Instructions)

Figure 3.10a. Inter-Miss Density of Multl, Mult1.2, and Mult2.

This figure shows the inter-miss probability density of the Multl (top), Multl.2 (middle), and Mult2 (bot-
tom) traces for 16-megabyte (dashed), 4-megabyte (dot-dashed), and 1-megabyte (dotted line) direct-
mapped secondary caches with block sizes of 128-bytes. Each line denotes the probability that the inter-
miss interval (measured in instructions executed) occurs. The probability is aggregated over intervals of
10, thus there is a point every 10 instructions on the x-axis. Note that the scales change.

43

Miss Interval Distribution for Mult2.2

N
]
sl o
g = I
5] "
[
a;__/_'
£
3 \
gk X\ .
\:4\\0
0 100 200 300 400 500
Miss Interval Distribution for Tv
g—-\
gl
Z;od \
= /
2 ol \
v O
Sl \
=
£
m sy
ES
A
5
o N
- N e N PN AN e L 1
0 100 200 300 400 500
-« Miss Interval Distribution for Sor
3.
Zel o
ol
g | L
A .
o, .
= S A,
R
= R
g ¢
\ \,'_
o \-\""XT.\‘—L“’—-——--_‘____ O Lol P B O, J
0 1 200 300 400 500

Inter-Miss Time (Instructions)

Figure 3.10b. Inter-Miss Density of Mult2.2, Tv, and Sor.

This figure shows the inter-miss probability density of the Mult2.2 (top), Tv (middle), and Sor (bottom)
traces for 16-megabyte (dashed), 4-megabyte (dot-dashed), and 1-megabyte (dotted line) direct-mapped
secondary caches with block sizes of 128-bytes, like Figure 3.10a. Note that the scales change.

44

Miss Interval Distribution for Tree

b8
<
I
=3
|72 u— B
21,0,
% §_| ‘,'I :‘ ‘ 'l “'
2 -\/r N '/.\\ : 1y
- \\‘\ .~ X A "' ‘|’ PRaY
o NN N N N S e e e |
0 100 200 300 400 500
- Miss Interval Distribution for Lin
S[!
‘I
© K]
=< .
.“.‘é < 'I‘ ,
[8_ :) ":
= o "
E g_ n‘ J l: :n "‘ ¢ !
2& honoon s
—8 a o] \ m . "] \' "
D‘: S— "\‘ J N :'\' ‘/" " 'N‘ 7“ ; | " l‘l“ »
d ® ,\ . . :,n 'lll‘ of , 'lc 5\ et
o \V”‘\]\\ R n’/\‘. l/ &l \. ‘%\l'a *s\‘:, w /\ A /: WA
N ER A AR A AN B SAN R AN RAN PR S NV M) TN ~
0 100 200 300 400 500

Inter-Miss Time (Instructions)

Figure 3.10c. Inter-Miss Density of Tree and Lin.
This figure shows the inter-miss probability density of the Tree (top) and Lin (bottom) traces for 16-
megabyte (dashed), 4-megabyte (dot-dashed), and 1-megabyte (dotted line) direct-mapped secondary
caches with block sizes of 128-bytes, like Figure 3.10a. Note that the scales change.

short inter-miss intervals at the beginning of process execution. The uniprogrammed traces, in particu-
lar Tree and Lin, do not show as much of a bias toward short inter-miss intervals. The misses of Lin are
much more evenly distributed among the different intervals. The most likely reason is the low cache
contention for Lin; the application behavior dictates the inter-miss interval, not cache contention.

The consequence of short inter-miss intervals is that the main memory access frequency will be
bursty. This may worsen queueing delays for the main memory, and reduce the effectiveness of write-
buffers.

3.5. The Advantages of Long Traces

This section examines two advantages of multi-billion-instruction long traces. The first advantage
is that they can more fully capture the cache behavior of a traced workload and relate cache behavior to
algorithmic phases of the workloads. More trace data allows far more phases of execution to be
accounted for. The second advantage is that long traces can mitigate the cold-start problem. With
many misses over long periods of time, cache initialization is only a small factor in the MPI estimate.

45

3.5.1. Capturing More Workload Behavior

If a long trace can capture more of the execution of a workload, cache behavior for the workload
can be more fully characterized. The result of the phase behavior of programs is that MPI over time
may best be described as non-stationary, even when the behavior is aggregated over execution intervals
of many millions of instructions. It is difficult to predict cache behavior over the entire execution of a
non-stationary workload without characterization of all (or most) of the program phases.

Figures 3.11a, 3.11b, and 3.11c show the miss behavior of all the traces for secondary cache sizes
of 1-megabyte, 4-megabytes, and 16-megabytes. They also show the compulsory MPI. Compulsory
misses are caused by the first reference in a trace to a unique memory location (128-byte block). The
compulsory MPI is a measure of the minimum cache MP/ when cache blocks are demand-loaded. Itis
exactly the infinite cache miss ratio.

The behavior of the uniprogrammed traces can be related to the algorithms of the traced program
[BOKWO90]. The scientific Sor trace may best exemplify this. Its array traversals cause periodic jumps
in the MPI. The Tv program spends a long time building a large intermeshed data structure that it then
traverses near the end of its execution. The flat beginning of the Tv MPI curve shows the building of
the data structure, while spikes near the end show its traversal. The behavior of the multiprogrammed
traces is much more difficult to relate to the underlying algorithms in the workload since all the dif-
ferent processes concurrently contribute to the MPL.

Cache performance can change dramatically over the length of the traces, although each point
given in the graph is the aggregate of 100 million instructions. A difference of a factor of ten in the
cache MPI may easily occur over the length of the traces. The actual range varies widely from trace to
trace. For example, the maximum MPI is 4.5 times the minimum MPI for the Multl.2 4-megabyte
cache, while the maximum is 154 times the minimum for the same Tv cache. Any trace sample of 100
million instructions or less could estimate the MPI anywhere between the the maximum and minimum,
so it is important to have trace data that includes many hundreds of millions, or billions, of instructions.

Beyond the cache MPI, the compulsory (or infinite cache) MPI provides much information on the
traced workloads for multi-megabyte caches. This information would be difficult to obtain without
long traces. A large portion of the misses caused by the multiprogrammed traces are compulsory, par-
ticularly with the 16-megabyte caches, even after the simulation of billions of instructions. The fre-
quent birth and death of new processes in the multiprogrammed workload causes this; both the series of
compiles and the simple UNIX commands contribute to the compulsory misses throughout the lifetime
of the trace. The Tree and Sor workloads eliminate compulsory misses by the end of the trace because
their memory usage stabilizes. Tv allocates new memory throughout its lifetime, even as execution
completes.

Figure 3.12 shows the fraction of all misses that were compulsory over the length of the trace.
50% of the misses in the 16-megabyte direct-mapped cache were compulsory with the multipro-
grammed traces, a large portion. This shows that with multi-megabyte caches, many misses may be
compulsory since the caches have such low MPI’s. Short traces would likely estimate the compulsory
MPI even higher than these values because much trace context is needed to determine which references
are compulsory; long traces are extremely useful for this kind of analysis.

46

Multl MPI Over Time

Misses Per 1000 Instructions

Mult1.2 MPI Over Time

Misses Per 1000 Instructions
\-— -
—_ -

2.5

1.5

Misses Per 1000 Instructions
0.5
~ ¥
i
]
1]
,
.

P | i —} t) e~
0 0.5 1 1.5 2 2.5 3 35
Instructions Executed (Billions)

Figure 3.11a. Variability of Muitl, Mult1.2, and Mult2.

This figure shows the MPI behavior of the Mult1 (top), Multl.2 (middle), and Mult2 (bottom) traces for an
infinite (solid line) cache, 16-megabyte (dashed), 4-megabyte (dot-dashed), and 1-megabyte (dotted line)
direct-mapped secondary caches with block sizes of 128-bytes. Each point is the average value for the pre-
vious 100 million instructions. Note that the scales change.

47

- Mult2.2 MPI Over Time
mN_
o
8 .
o NP A v
=] L
v A
EV‘!_ y RO [
Ll ¥ - -
§ . 'r‘ A “”\ ’1 ~~~ ,.--\\
-~ ’
'—'.-4—-‘\ l' ‘\ " /‘ b ‘\’
5 N a‘ * ! . l‘ ¢ \"_
A e TN T '/- T TN~ /‘\—\
§2~\ ~ u:/\ \ / i TN AU N
A P — N A ,/
o I]
0 1 2 3 4
< Tv MPI Over Time
AL
2] . F
= . [} A
-gﬁ— :Q :‘ 1
Q Y A}
gl IR T
@ . v
& » Y ' ,,\ '
o~ " w L1V \.‘
§ " ., Vo / \
’ \
- O :: 4 ‘ -’ \\\
o ' \
5.1 X RN
8 L l" -l"l " \
A 1 v ’ \I' \’l/
L N ',) .\‘ ’ S~
’ ‘ ~ -
EO S~ oo e s e) y -~ P T ———
0 1 2 3 4 5 6
Sor MPI Over Time
Vel
Q-
»
=t
go " "l
e ¥ ! .
DA Il Iu :‘\ X R LB N :‘\ ,’\ Pt " ! » [
g ' L 't ! ! ' ‘\ L L} b l‘\ l" "\ !
E’ln ' ! L for, ' ¢ ' (Y +os o ! ' [) ! y !
ol U T T S S T S S S R v !
v 2 [! vy, ' [P . [. ! v, \ ¢ . ! L)
§ v Vo Mooy, ' !) ‘e Ve v ! - ‘,' P “:
- ol v 't ', ' ' 'l ' [! ' \
o \1 :/\",‘ /\ |"‘/\|‘ :,_\” . . /4‘ PN n/\ ’\‘(/
& T P A AN A A L Y NI
3 ‘/ y / \' : ’ . ’ \\ v - ’
3113—- ‘ \ g K \ / \/ \l
Z N '
- e e TN T e e TN e N T e e N L uni—
N g ~ | | |
0 1 2 3 4

Instructions Executed (Billions)

Figure 3.11b. Variability of Mult2.2, Tv, and Sor.

This figure shows the MPI behavior of the Mul2.2 (top), Tv (middle), and Sor (bottom) traces for an
infinite (solid line) cache, 16-megabyte (dashed), 4-megabyte (dot-dashed), and 1-megabyte (dotted line)
direct-mapped secondary caches with block sizes of 128-bytes. Each point is the average for the previous
100 million instructions. Note that the scales change.

48

Tree MPI Over Time

o~
7
g
QS ol]
8 v N
' \
gln—- [\
17}
5 L A
<t} 'o Vo - TN - .-
g !
—) = L]] .
[" 1/
& e o) ' \
[~ (!
17— . ’ IS PN '
= JRP R O ‘ RN PRI tealLt S _.__ - o — =
o :-"«-—-—-—;_-:—_*-_-.._-,‘____==t=-===¢/-—\1—-J~———1
0 1 2 3 4
Lin MPI Over Time
N —
g "
]
g ‘ “ - / ' 1'-~l
D ‘ 1y P a 't
) te e \ \ \] [l
g - S SO
. \ A [P . , '
2 ’ \ e A L . '
e ¢ \ . (X v N 1
' . 'y ~ ¢
- ! v ' '.
: : v '
53 ’ 4 [
Gal : :
[] ’)
a s
E - ' _/5 J\/-N-,—-\
ol ==z £t~ | Py e 1 | | {
0 0.5 1 1.5 2 2.5 3 35 4

Instructions Executed (Billions)

Figure 3.11c, Variability of Tree and Lin.

This figure shows the MPI behavior of the Tree (top) and Lin (bottom) traces for an infinite (solid line)
cache, 16-megabyte (dashed), 4-megabyte (dot-dashed), and 1-megabyte (dotted line) direct-mapped
secondary caches with block sizes of 128-bytes. Each plotted point is the average value for the previous
100 million instructions. Note that the scales change.

3.5.2. Overcoming Cache Initialization

Cold start is a big problem with large caches. This section shows that very long traces are needed
to overcome multi-megabyte cold-start by showing that many instructions are required to meet several
previous definitions of when caches are warm.

Cache initialization is the process of filling an empty cache, tuming it from cold to warm. Easton
and Fagin [EASF78] define the warm start miss ratio to be the miss ratio with a full cache. The cache
must be completely filled before the cache becomes ‘‘warm’’; every cache block frame must be refer-
enced at least once. Table 3.9 shows the number of instructions required to fill the primary caches com-
pletely from empty.

Table 3.9 shows that a trace of millions of instructions may be required to initialize the data
caches fully, and that the instruction cache is often not even initialized after billions of instructions from
the uniprogrammed traces. The multiprogrammed workloads require ten million instructions or more to
initialize the instruction cache entirely. Millions of instructions may be required to initialize the data
cache. The restrictive direct-mapped cache placement causes these large initialization lengths because
it takes a considerable amount of time to reference every cache block frame. Fully associative caches,

49

Fraction of Misses that are Compulsory

Multl ¥ //’ ~ lon |
Mult1.2 7z 45%
Mule2 /) s19%
Mult2.2 . 48%

Tv KN 10%

Trace
]
|

Sor 6%

Tree // / // 2%

— —
[l 1 (]

unll /] ,

0 02 04 0.6 0.8 1
Fraction Compulsory

S

Figure 3.12. Fraction of Misses that are Compulsory.

This table shows the fraction of misses that were compulsory in 1-megabyte, 4-megabyte, and 16-
megabyte direct-mapped caches. For each trace, the fraction of the misses of a 16-megabyte cache is the
largest fraction (un-hatched box), with the smaller 4-megabyte cache fraction (half-hatched) and the smal-
lest 1-megabyte cache fraction (cross-hatched).

Instructions to Warm Cache (Millions)
Primary Caches

Trace Instruction Data
Multl 85.8 35
Multl.2 9.7 1.8
Mul2 364 0.5
Mult2.2 48.8 36
Tv 5581992.7 123
Sor o0 0.2
Tree o0 1.5
Lin oo 13.5

Table 3.9. Instructions to Fill Primary Caches.

This table shows, for each trace, the number of instructions required to reference every cache block frame
in the split primary caches. A value of infinity denotes that the cache was not filled over the entire length
of the trace.

the type studied by Easton and Fagin, do not require as many instructions to initialize the cache fully
since there is much more (re)placement flexibility. The results for the primary caches are not encourag-
ing since the major focus of this study is on multi-megabyte secondary caches. These considerably
larger caches can require even longer initialization times since they have many more cache blocks.

50

Table 3.10 shows the instructions needed to fill different direct-mapped secondary caches entirely.
These results show that billions of instructions may be required to fill these multi-megabyte caches
fully, and some traces could not properly initialize the largest caches, even with several billions of
instructions. Sor required considerably less time to fill the cache because its frequent traversals of large
amounts of memory touched the cache block frames more rapidly. The multiprogrammed traces could
not reference every cache block frame in the 16-megabyte cache, although much more than 16-
megabytes of memory was referenced over the billions of instructions in the traces. The instructions
required to initialize the 4-megabyte cache fully ranges from 21 million instructions for the Sor trace to
2.55 billion for Lin, and the multiprogrammed traces required nearly a billion instructions. Again, the
direct-mapping was a factor in the long initialization times of these large caches.

Instructions to Warm (Millions)
Trace Se(iondary Cache iize (Megabyteisg
Multl 45 964 oo
Multl.2 93 1001 o0
Mult2 127 670 o0
Mult2.2 118 581 oo
Tv 213 1028 4956
Sor 4 21 185
Tree 48 196 798
Lin 552 2548 oo

Table 3.10. Instructions to Fill Direct-Mapped Secondary Caches.

This table shows the number of instructions required to reference every cache block frame in direct-
mapped secondary caches.

Table 3.11 shows the initialization times required for 4-way set-associative secondary caches of
the same size. The comparison with the direct-mapped caches shows that the flexibility of higher asso-
ciativity significantly reduced the cache initialization time. The multiprogrammed traces were able to
initialize the 16-megabyte cache fully here, but it still took billions of instructions. The required trace
length for the multiprogrammed traces was approximately halved by changing the caches to 4-way set-
associative from direct-mapped. Ten millions of instructions were required to initialize the 1-megabyte
cache fully, and hundred millions of instructions were needed for the 4-megabyte cache. The Lin trace
did not initialize the 16-megabyte cache because it did not reference 16-megabytes over the length of
the trace.

Though the Easton and Fagin definition of a warm-start miss ratio is a safe one, the large amount
of trace data that is required to initialize a multi-megabyte cache fully, especially with limited associa-
tivity, can make the definition too costly. The use of this definition to analyze the multi-megabyte
caches considered in this work would lead to discarding much of the information contained in the
traces. Even the information contained in reference strings that never entirely fill the cache is useful
and should preferably not be wasted only on cache initialization.

These motivations prompted a new definition of a warm cache by Agarwal, et al., [AGHH88].
They define a cache to be warm either when the cache saturates as it becomes full, or when the trace
saturates. A trace saturates when the original working set is loaded into the cache. They suggest that a
uniform way to decide when a simulated cache meets this definition is to detect a knee in the graph of

51

Instructions to Warm (Millions)

Trace Seclondary Cache iize (Megabywis6)
Multl 24 267 1820
Multl.2 50 242 1604
Mul2 43 407 2826
Mult2.2 47 397 1860
Tv 115 580 3420
Sor 1 8 93
Tree 48 196 798

Lin 507 2534 oo

Table 3.11. Instructions to Fill 4-way Secondary Caches.
Shown are the traced instructions required to fill 4-way set-associative secondary caches.

the cumulative initialization references over the length of the trace, where an initialization reference is
the first reference to a cache block frame during a cold-start simulation. The knee indicates a slowdown
in the rate that cache block frames are being filled. Both trace saturation and cache saturation can cause
the knee: cache saturation because the cache is already full and trace saturation since few new blocks
are being loaded.

Figure 3.13 plots the cumulative initialization references for 1-megabyte, 4-megabyte, and 16-
megabyte caches over the first 300 million instructions of the Mult1.2 trace. There are no obvious signs
of trace saturation since the curves increase smoothly. Cache saturation seems the dominant factor in
deciding the threshold, but one might get an altered perspective by changing the scaling of the axis. As
an arbitrary choice, the cache was considered warm about when 80% of the cache blocks were filled.
From the data in Figure 3.13 (and other data), 20 million instructions warmed the 1-megabyte cache,
while the 4-megabyte and 16-megabyte caches required 120 and 700 million instructions.

For all the traces, Table 3.12 shows the trace lengths required to warm a cache using the warm
definition of Agarwal, et al., (and the 80% rule). All the traces were able to meet the new definition for
all cache sizes. In particular, Lin and the multiprogrammed traces were able to warm the 16-megabyte
cache since the cache saturated. Comparison with the results in Table 3.10 shows that considerably
shorter traces meet the conditions of the new definition. For instance, it reduces the trace length
required by Tv by more than a factor of five for all cache sizes.

Though the definition of Agarwal, et al. decreases the loss of information required to warm a
cache, a billion instructions may still be needed just to warm up the larger caches used in this study.
The warm time is so large is because it takes many instructions to reference large amounts of memory.
Locality of reference implies that small areas of memory will be referenced over short periods of time,
while only over long periods will large amounts of memory be referenced. Figure 3.14 shows the
memory referenced by each trace over time. The workloads show varying degrees of locality. Sor
references most of the memory it uses quickly. This shows its poor locality. The memory referenced
by the multiprogrammed traces increases almost linearly over the entire range of instructions, perhaps
because a substantial portion of misses is a result of the continuous startup and completion of smaller
processes. Billions of instructions from these memory-intensive traces may be required to reference
16-megabytes of memory. Clearly, billions of instructions will be needed to warm a 16-megabyte
cache.

52

Initialization References for Mult1.2

'," ”—""—AM
L4 -
‘ /-—'
:, ,/
Lol B -
P
O't y
3 ! 4
= | 7
. — 1]
S ale /
2ol /
%)
5 . / 16M
T ! /
o]
= o<t /
Safr /
S /
3]
£ |/
!
[T
U
]
o | | | | J

|
0 50 100 150 200 250 300
Instructions (Millions)

Figure 3.13. Cumulative Initialization References for Beginning of Mult1.2.

This figure plots the cold misses for the beginning of the Mult1.2 trace, expressed as a fraction of the total
cache size, for 1-megabyte, 4-megabyte, and 16-megabyte direct-mapped secondary caches with block
sizes of 128-bytes.

Instructions to Warm (Millions)

Trace Seclondary Cache fize (Megabytflzs6)
Multl 20 40 500
Multl.2 20 120 700
Mult2 20 80 700
Mul2.2 40 130 1000
Tv 50 190 1000
Sor 10 10 90
Tree 40 160 600
Lin 230 800 1000

Table 3.12. Instructions to Warm Cache to Knee.

This table shows the number of instructions required to warm 1, 4, and 16-megabyte direct-mapped caches
with 128-byte blocks using the definition of Agarwal, et al. [AGHHS88] from each trace.

Cache warming is not required to remove the cold-start bias. Altemnatively, bounds on cache per-
formance can be determined, and the cache can be considered warm when the bounds are sufficiently
small that cold start is not a problem. Stone advocates having enough misses per simulated cache block
frame (MPB) so that the cache MPI estimate will be accurate [STON90]. The cache need not be full for
a high MPB, yet it can still be considered warm. An accurate MP/ estimate can be obtained if the MPB
is sufficiently high because the cold-start (or initialization) references are a small factor in cache MPI

53

Memory Referenced by Traces

X Muitl eMultl.2 +Mult2 eMult2.2
aTv OSor aTree vLin) " j

20 30 40 50 60
| | ! |

Memory Referenced (Megabytes)

10

|] l
1 1.5 2 2.5 3

Instructions (Billions)

-

Figure 3.14. Memory Referenced Over Length of Trace.

This figure shows the memory referenced from the beginning of each trace, calculated by the number of
unique 128-byte blocks referenced, over the first three billion instructions of each trace.

estimates.

An MPB of five is considered sufficient to warm the cache because the cold-start error will then be
at most 12.5% of the unbiased MPI if half the cold-start references are guessed to be misses, and the
other half are counted as hits. Table 3.13 shows the number of instructions required from each trace to
produce an MPB of five (the MPB counts cold-start references). The results show that several billion
instructions are needed from most traces to get an MPB of five with a 16-megabyte cache, 1 billion
instructions will usually give an MPB of five for 4-megabyte caches, and 100 million instructions will
usually give an MPB of five for 1-megabyte caches. The Lin trace was unable to obtain an MPB of five
for the larger caches since it referenced smaller amounts of memory over the length of the trace.

Note that the trace length required for an MPB of five increases faster than the inverse of the MPI
increases with cache size. This is because there are more block frames as the cache size increases. If
the MPI decreases by 30% with each cache size doubling, the trace length must increase by a factor of
eight when the cache size quadruples to obtain the same MPB value. (Equivalently, the trace length
should increase in proportion to the cache size raised to the power 1.5 [STON90]. The next chapter also
verifies this required trace length increase.) This leads to long required trace lengths, even traces con-
taining of billions of instructions, particularly for cache sizes in the multi-megabyte range.

54

Instructions (Millions) for an MPB of §

- Direct-Mapped Cache

Trace M AM 16M
Multl 20 50 2280
Multl1.2 30 250 1860
Mule2 30 460 2520
Mult2.2 50 440 2430
Tv 130 630 4090
Sor 10 20 310
Tree 130 590 2710
Lin 500 2800 oo

Instructions (Millions) for an MPB of 5§

2-way Cache Size

Trace M aM 16M
Multl 30 70 2690
Multl.2 40 290 2260
Mult2 50 590 2640
Mult2.2 50 570 2870
Tv 130 650 4180
Sor 10 20 320
Tree 190 790 2910

Lin 800 3300 o0
Instructions (Millions) for an MPB of §

4-way Cache Size

Trace M 4M 16M
Multl 30 70 2720
Multl.2 40 330 2310
Mult2 50 630 2780
Mult2.2 50 590 2910
Tv 130 660 4190
Sor 10 20 300
Tree 200 790 2980

Lin 800 oo oo

Table 3.13. Trace Length for Five Misses Per Block Frame.

This figure shows the number of instructions required (in Millions) to produce five misses per simulated
cache block frame for direct-mapped (top), 2-way set-associative (middle), and 4-way set-associative (bot-
tom) secondary caches with block sizes of 128-bytes. Results are shown for 1-megabyte, 4-megabyte, and
16-megabyte caches.

3.6. Conclusions

The first portion of this chapter describes the mechanism (implemented at DEC WRL
[BOKL89, BOKW90]) used to gather the long traces used in this dissertation. Code modification of pro-
grams at compile time allows the efficient tracing of the memory reference behavior of programs while
they are executing, slowing execution time by only a factor of ten while increasing the code size by
only a factor of 2.1. The code of traced programs writes entries in a trace buffer so that a cache simula-
tor can reconstruct all the memory references by analyzing the trace data. This trace gathering mechan-
ism collects proper multiprocess memory reference interleavings since all processes write into a com-
mon trace buffer. It also overcomes trace length limitations using operating system modifications that

55

allowed many smaller traces to be concatenated into a single long trace with little distortion in the
fluidity of the trace; the trace data appeared as a single long trace.

This chapter also describes the techniques used to compress and store the trace data. Techniques
similar to those introduced by Samples [SAMP89] helped store the traces in a small amount of space.
Each memory reference in the traces required only a few bits of storage.

A suite of workloads that are large consumers of memory (by the standards of 1990) were traced
since future workloads will likely be larger, and, since large workloads can exercise multi-megabyte
caches. The traced programs were combined into both uniprogrammed and multiprogrammed work-
loads that use memories up to 100-megabytes. The workloads are a prediction of the workloads of
future engineering workstations. They included CAD (C), scientific (Fortran), Scheme (LISP dialect),
and Unix utility programs. A large portion of the references within the multiprogrammed traces come
from large processes that run for hundreds of millions of instructions. This chapter analyzes the traces
in detail. It gives miss frequencies for a variety of large secondary caches and the primary caches.
Doubling the cache size decreases the MPI by a larger amount than doubling the associativity of the
cache.

The traced workloads have widely varying memory access characteristics, even across 100 million
instructions or more. Long traces capture the variability in the various phases of application execution
to more properly characterize their memory reference behavior. Long traces can be used to understand
program behavior by relating cache performance to changing execution phases. Compulsory misses are
a significant factor in the performance of the large caches in this study. Long traces capture more work-
load behavior and allow cache performance to be more adequately characterized.

Long traces overcome the large cold-start effect that occurs when simulating large caches with
short traces. Even with several different definitions of a warm cache, billions of instructions may be
needed to initialize the larger caches considered in this study. The next chapter examines techniques to
minimize the cold-start bias in short traces (time-samples). It shows that traces of billions of instruc-
tions are not required for accurate mean cache MPI prediction. Still, long traces are extremely useful so
that multi-megabyte cache initialization is only a small portion of a cache simulation. Long traces are
most flexible since they allow many different cache performance metrics to be gathered without sophis-
ticated cold-start reduction techniques.

56

Chapter 4

Trace-Sampling Techniques

4.1. Introduction

The previous chapter showed that long traces (including the memory references of many instruc-
tions) are desirable for multi-megabyte cache performance analysis. Long traces capture many phases
of a workload’s execution, each of which may have widely varying cache performance. Cache perfor-
mance is more accurately characterized with memory references from the execution of more algo-
rithmic phases over a longer time. Long traces also mitigate the effects of cache initialization, or cold
start [EASF78], even in multi-megabyte caches. Long traces would always be used if it weren’t for the
difficulty in obtaining them, their large storage requirements, and the long simulation times required to
use them.

This chapter is the first comparison of different trace-sampling techniques. Trace-sampling tech-
niques can accurately estimate mean cache performance using fewer resources than with long (full)
traces. Trace sampling greatly reduces simulation (and storage) requirements because it uses only a
small fraction of the full trace references. With a fixed tracing budget, trace samples can give a better
cache performance estimate than long traces because the samples can capture cache performance over a
longer time frame. This chapter focuses on the accuracy and resource savings of trace sampling by
comparing the simulation results from full-trace samples to the full-trace simulation results. Figure 4.1
illustrates a full trace in a time-space diagram, where every memory access is explicitly shown to refer-
ence a cache set. This chapter compares the two different trace-sampling techniques that sample the
full trace by slicing this diagram. Set samples are horizontal slices in the time-space diagram, while
time samples are vertical slices. Each sample includes only a portion of the full trace references.

57

Time-Space Diagram of Memory References

E — Vertical Slice
: : X
X X : ‘;
! I T A S, XX
Cache X X X X
Sets ol [X XX o *_}
(Space) X XX ! :
E E Horizontal Slice
l i i X
XiX X 5
! ' X X
: i X
x | s
E : X_,

Time —
Figure 4.1. Sampling as Vertical and Horizontal Time-Space Slices.

This figure shows a time-space diagram pictorially representing the memory references within a trace dur-
ing a simulation. Each memory access occurs at a certain time and references a particular cache set. The
vertical and horizontal slices represent time samples and set samples of the full trace, respectively. Real
traces are much longer than the trace depicted.

Puzak introduced set sampling (congruence class sampling) in his thesis [PUZA85]. Set sampling
estimates cache performance by simulating only a portion of the cache sets over the entire trace. A set
sample is a probe into the cache that captures the behavior of some cache sets. If all sets are statistically
identical, then a sample of only a few sets for a long enough period will give accurate cache perfor-
mance estimates [HEISS0].

Laha, et al., advocated time sampling to reduce trace data requirements [LAPI8S8,I.AHABR]. Time
sampling selects time-contiguous references from the full trace. The idea of time sampling is to simu-
late short intervals of the full trace. A time sample is a probe into a trace at a random point that cap-
tures cache behavior over a short period. Since traces exhibit widely varying memory reference charac-
teristics over long execution periods, different time samples may give entirely different cache behavior,
as evident from the results presented in Chapter 3. Laha, et al., have previously shown that 35 time-
samples can adequately characterize cache behavior.

This chapter compares both the usage flexibility and accuracy of set samples and time samples.
The usage flexibility of a sample is the range of cache configurations where it can be used. Usage flexi-
bility is essential because it may be difficult or expensive (perhaps even impossible) to resample, and it
may determine when samples can obviate full traces. Ideally, any performance metric of any cache
could be measured with a single fixed set of samples. In practice, both set samples and time samples
are only useful for a limited range of cache configurations. This chapter shows how to create usage-
flexible set-samples, and how to detect when time samples should or should not be used.

This chapter compares the mean multi-megabyte cache misses per instruction (MPI) predictions of
set sampling and time sampling using the traces described in Chapter 3. Two conditions are useful for
sampling accuracy: (1) individual samples should give unbiased estimates, and (2) the sample size

58

should be large enough to minimize sampling error. For (2), rather than counting sets or individual
time-samples, the fraction of trace data required for an acceptable sampling error is measured. The
resource savings of set sampling and time sampling is then directly compared.

For unbiased set sampling, sets must be properly probed: all the full trace references to each sam-
pled set, and no others, should be contained in the sample. This chapter introduces usage-flexible
constant-bits samples that are (unbiased) set samples for multi-level caches whose set-indexing bits
contain the constant bits.

The cold-start problem can bias short time sample results because the cache state is unknown at
the start of a time sample [EASF78]. This chapter compares several techniques to reduce the cold-start
bias: Laha, et al., lessen cold start by initializing individual cache sets rather than initializing the entire
cache, and Stone does the same for direct-mapped caches [STON90]; Agarwal, et al., stitch together a
longer trace out of shorter time samples [AGHH88]; and Wood, et al., predict the initialization
(unknown) reference miss ratio using a renewal-theoretic model [WOHK91]. For thirty time-samples
from the traces used in this dissertation, this chapter shows that the Wood, et al., technique minimizes
the cold-start bias. Though the bias is greatly reduced, time samples of ten million instructions or more
may still be required to overcome it.

The 10% sampling goal of this chapter is: errors of less than 10% (with 90% confidence) using
less than 10% of the full trace data. Set sampling meets the 10% goal, but time sampling may not
because hundreds of extremely large time-samples may be required for the desired 10% accuracy. Time
sampling may only be more useful when the timing of references and the interaction among sets is
important. Given that sample usage restrictions can be tolerated, set sampling gives more accurate
multi-megabyte cache MPI estimates using less of the full traces.

Section 4.2 introduces constant-bits set-samples, shows the set-sampling errors for different frac-
tions of the full trace data, and develops techniques to establish the level of confidence in set-sampling
results. Section 4.3 compares the cold-start reduction techniques, states sufficient conditions to remove
the time-sample cold-start bias, shows the time-sampling accuracy for different fractions of the full
trace data, and develops techniques to establish confidence in time-sampling results. Finally, Section
4.4 summarizes the results of this chapter.

4.2. Set Sampling

Set sampling is the first trace-sampling technique examined in this chapter. This section discusses
key considerations in producing and using set samples: (1) how to construct usage-flexible set-samples,
and how to get unbiased and accurate MPI estimates from them; (2) what fraction of the trace data
(equivalently, what fraction of the sets) is needed for a desired accuracy, and how can the sampling
accuracy be estimated using only the sampled data?

4.2.1. Obtaining Unbiased Estimators from Set Samples

4.2.1.1. Constructing the Set Sample

A key to obtaining accurate estimates from a set sample is properly constructing the sample, or
choosing the references that should be included in or excluded from the sample. When sampled, a
simulated set should see (or receive) precisely the same references as in the full trace simulation. This
can be guaranteed if the sample contains either all or none of the full trace references to each sampled

59

Setn.

Definition 4.1. Set Sample.

A set sample contains exactly the subset of accesses from a full trace that reference a
portion of the sets, the sampled sets. The accesses also must occur in the same order in
the sample as in the full trace.

A sample of the full trace references may be a set sample for one cache, while it is not a set sample for
another cache. The sample is not a set sample if it includes at least one, but not all, of the references to
a cache set. For example, a cache with a larger block size will have fewer sets; references to a single set
may only be a portion of the references to a set when the block size is larger.

In effect, there are restrictions on the use of an individual set sample. To permit analysis of many
caches with different block sizes, associativities, and number of sets, a sample must meet a wide range
of restrictions. Puzak randomly selected sets [PUZA85], but this method is inflexible and inadequate for
multi-level cache simulations since it assumes fixed set-indexing. Primary cache set-indexing is dif-
ferent from the secondary cache set-indexing, so a random selection of secondary cache sets is probably
not a random selection of primary cache sets; for example, a sample of a single secondary cache set
may not be a set sample for the primary cache because it may include only some (not all) of the refer-
ences to a single primary cache set. The constant-bits sampling technique introduced in this chapter
produces a single sample that includes references to many sets, and can be used with a wide range of
caches, including multi-level configurations with varying primary and secondary cache set-indexing.

The simple constant-bits sample construction technique selects the portion of memory accesses
that have given values for some address bits.

Definition 4.2. Constant-Bits Sample.

A constant-bits sample of a full trace, for bits i € CONSTANT (the constant bits), re-
tains only those references whose addresses have given constant values in bit positions i
of their address, and preserves their ordering.

For example, a constant-bits sample including about 1/4 of the memory accesses included in the full
trace selects only those addresses that have zeroes in two address bits, such as bits five and six (assume
bit zero is the low order bit and byte addresses). Bits five and six are then the constant bits of this sam-
ple. Theorem 4.1 proves that a constant-bits sample is a set sample exactly when the set-indexing bits
of the cache contain the constant bits.

Theorem 4.1.

Consider a set-associative cache that uses simple address bit-selection'?

to choose the

11. This condition may not be sufficient if the cache organization includes prefetching or timing-
dependent behavior.

12. This means the set-indexing bits come directly from the address of the memory access [SMIT82].
With other than simple bit-selection cache indexing, the scenario is more complicated. In particular, since
PID-hashing is used in this study, care is taken to ensure that the hashed index bits did not overlap with the

60

set that a reference will access. A constant-bits sample (Definition 4.2) from an arbi-
trary full trace is a set sample (Definition 4.1) if and only if the set-indexing bits,
INDEX, of the cache contain the constant bits CONSTANT (CONSTANT #QJ) (i.e.
CONSTANT S INDEX).

Proof - The correct access orderings are clearly upheld with a constant-bits sample, so
this proof ignores ordering to concentrate on whether the sample includes either all or
no references to each set.

Necessary Condition -

A contradiction (contra-positive) will be shown. Suppose the indexing bits do not
contain the constant bits, that is, there exists a bit i such that i e CONSTANT and
{i} MINDEX =@. An address that differs only in bit i could be constructed from
any address contained within the sample. This address would index to the same
set in the cache as the address it is constructed from, yet it would not be contained
in the sample. This implies that only some references to the given set from an
arbitrary full trace may be contained within the sample, which further implies the
sample is not a set sample.
Sufficient Condition -

A contradiction is again shown. Consider two references in the full trace that
index to the same set, one that is from the sample and another that isn’t. Two
such references must exist when a sample is not a set sample. The addresses of
these references cannot be the same, for if they were, they would either both be
included or excluded from the sample. Let DIFF be the bit positions that the two
addresses differ, note that DIFF (M INDEX = since both addresses index to the
same set. It also must be true that DIFF (M CONSTANT # & since an address
can be included in the trace while the other is excluded only if they differ in the
bits in CONSTANT. This means there must exist an i such that i € CONSTANT
and {i} M INDEX =@, which implies that the indexing bits contain the constant
bits.

Thus, the usage restrictions of a constant-bits sample can be precisely stated. For example, the sample
with constant bits five and six would be a set sample for bit-select caches whose block sizes are less
than or equal to 32 bytes and whose cache size divided by associativity is greater than or equal to 128
bytes.

Cache hierarchies impose the strictest restrictions on the use of samples, but constant-bits samples
can tolerate them. When the indexing bits of all caches in a multi-level hierarchy contain the constant
bits, a sample is a set sample for the hierarchy as a whole because the sampled sets of all caches in the
hierarchy see (receive) the same references as they would with the full trace. The constant bits in this

study were chosen so that the constant-bits samples are set samples for all the two-level cache
configurations.

constant bits, so the constant-bits samples are also set-samples. Note that though this study uses virtual-
indexing, the constant-bits technique is equally applicable to real-indexed caches, and it even works with
hierarchical configurations including both real and virmal indexed caches if the constant bits are below the
page boundary.

61
4.2.1.2. Estimating MPI With a Set Sample

M.
Given a set sample i, the obvious way to estimate MP/ is by MPI; = ~I~'-, where MPI; is the misses
i

per instruction estimate for set sample i, /; is the number of instruction references included in i, and M;
is the number of misses in the simulation of i. While this calculation of the MPI estimate may make
intuitive sense, it produces poor results. Consider several iterations of a tight instruction loop that lim-
its the instruction accesses to a single set. The different iterations of the loop could cause misses to
occur in all sets, though all instruction references are to only a single set. The MPI estimate from the
rest of the sets would be infinite. Alternative MPI calculations must be considered to solve this prob-
lem.

M;
This chapter estimates the MPI of a set sample i by MPI; = —f—;(i}-, where [is the number of
i
instructions in the full trace, and f; is the sampling correction for / with set sample i. If f; is the fraction
M:
of instruction references included in set sample i, fi(instr), then this equation is precisely ~—I-5- since
:

fixI =1I;. Other straightforward f;’s are: the fraction of memory references (instruction and data)
included in the set sample, fi(refs), the fraction of data (non-instruction) references, fi(data), or the
fraction of sets included in the set sample, fi(sets). fi(sets) is the simplest of these options. No infor-
mation from the trace data itself is needed to calculate fi(sets); it associates an equivalent portion of
each instruction with each cache set, which is intuitive because any instruction (load or store) can cause
a cache miss in any set.

For the traces considered in this dissertation, Table 4.1 shows the estimation errors relative to the
full trace MPI, given by the coefficient of variation'> of the MPI; estimates using the different f;'s.
fi(sets) gives MPI; estimates with coefficients of variation errors that are an order of magnitude smaller
than for the other f;’s. This simple f;(sets) is superior because the different samples have nearly the
same number of cache misses, even though the number of references (or instructions) is not the same.
That is, M; is nearly the same as M; for any given i and j. Using any other f; based on the references
included in a sample gives inaccurate results since it adds an unneeded random factor to MPI;.

The Sor and Lin traces in Table 4.1 illustrate the inaccuracies of f;(instr). These are both
scientific codes; the large errors are a result of the isolation of instruction references to a few sets, as
expected from the previous example. Note that for these two traces, fi(data) is more accurate than
fi(refs) because the data references are more evenly distributed across the sets than are instructions.

For all the set-sampling results given in this chapter, fi(sets) is used. Besides the references con-
tained in the set sample, this requires knowing f(sets)x I for the sample, but this is only a tiny amount
of added information.

13. This deviates slightly from the standard terminology. Normally, the coefficient of variation is the
standard deviation divided by the (simple arithmetic) mean. Strictly speaking, this only holds for fi(sets).
For the other f;’s, Table 4.1 gives the root-mean-squared error (relative to the full trace MPI) of the MPI;’s,
divided by the full trace MPI.

62

Coefficient of Variation of MPI Calculations (percent)
Trace Full Trace f; Technique
MPIX1000 | fi(sets) fi(instr) frefs) fdata)
Multl 0.70 2.3% 35.2% 34.5% 87.7%
Mult1.2 0.69 1.9% 28.9% 31.7% 75.8%
Mult2 0.61 1.9% 24.2% 27.7% 64.3%
Mult2.2 0.59 1.3% 24.3% 25.6% 60.2%
Tv 1.88 0.6% 139.0% 85.7% 182.7%
Sor 7.54 0.3% oo 339.0% 86.2%
Tree 0.59 6.8% 1919% 1482% 249.7%
Lin 0.09 7.6% 00 886.3% 265.2%

Table 4.1. Errors of Different Set-Sample MPI Estimates.

This table shows the coefficient of variation (relative to the full trace MPI) of the MPI; results for different
f’s. These results are for a 4-megabyte direct-mapped secondary cache and set samples of 1/16 the full
trace.

The coefficient of variation is calculated as in Equation 2.3 in Section 2.5. MPI,,,,, is the full trace MP/ in
that equation, and 7 is the number of samples that constitute the full trace (n = 16 for different set samples
of 1/16 the sets).

4.2.2. What Fraction of the Full Trace is Needed?

This section examines the accuracy of the mean performance estimates obtained when set sam-
pling with different numbers of sets, or equivalently with different fractions of the full trace. This study
considers sample usage flexibility important, so only single constant-bits samples (each containing the
references to many sets) are used. Since the constant-bits technique does not select randomly from the
sets, but instead selects sets based on address bits, set samples of full traces that unevenly reference
their address space could give inaccurate performance estimates. Any individual set sample could be a
biased estimator of MPI because some sets are underutilized or overutilized compared to the others.
This section examines the variations in performance estimates across set samples to find any effect of
the non-random set selection in constant-bits set-samples.

Figure 4.2 compares the estimates obtained from 16 set samples of the Mult1.2 trace (each about
1/16 of the references of the full trace) with the actual cache performance over time. The figure shows
the MPI of the full trace and the MPI estimates of the set samples for a 4-megabyte secondary cache.
Note that the four constant bits are at the same address position for each sample. The 16 set samples,
and their corresponding MPI estimates, come from the 16 different values of these four constant bits.
The lines are difficult to distinguish on the graph. This shows that there is little deviation in the set-
sample MPI estimates for different values of the constant bits. The MPI variations among the samples
are modest when compared to the full trace MPI over the intervals of 100 million instructions. Similar
behavior for the other traces examined in this study make set sampling promising. No correlation
between the values of the constant bits and the accuracy of the set-sampling performance estimator was
found. Non-random set-selection did not bias any individual set-sampling performance estimates for
the Mult1.2 trace. Constant-bits set-samples gave accurate performance estimates with all the traces
used in this study. Constant-bits samples were found to be equally or more accurate than random sam-
ples.

Using time-intervals of 100 million instructions, Figure 4.2 shows that set samples correctly esti-
mate cache performance across different execution phases, as shown by The peaks and valleys in the

63

Set-Sampled Mult1.2 MPI Over Time

1.5 2 25 3

1

0.5

Misses Per 1000 Instructions

| |
2 3 4
Instructions Executed (Billions)

0

Figure 4.2. Set Sampling on the Multl.2 Trace.

This figure shows the actual MPI’s (solid line) with the predicted MPI’s from each of 16 different set sam-
ples (dotted lines) for the Multl.2 trace. Each set sample contains 1/16 of the trace data of the full trace.
4-megabyte direct-mapped secondary cache results are shown. Each point is the average over the previous
100 million instructions of the full trace. Bits 8-11 (bit zero is lowest-order bit) of the byte addresses are
the constant bits.

MPI over the trace. The differences in MPI are large for different phases, but each set sample follows
each peak and valley extremely closely. The inclusion of references from many phases is a major
advantage of set sampling over time sampling. In contrast, a time sample contains references from only
a few phases.

Figure 4.3 plots the distribution of the MPI; estimates for the Mult1.2 trace. The figure shows the
distributions for samples of 1/4, 1/16, and 1/64 of the trace data. Note that there are 4, 16, and 64 sam-
ples that produce each distribution, respectively. The performance estimates from the 1/4 samples are
close to the true value of 0.69 misses per thousand instructions for the full trace, confined to only two
bins about this mean in Figure 4.3. The distribution of the set samples becomes more spread out as
each sample includes a smaller portion of the full trace. This is not surprising since the sample includes
references to fewer sets; larger random fluctuations will inevitably occur. The 1/64 samples have a
considerably more sparse distribution, only confined over a range of 15 bins, but still mostly within
10% of the mean.

Notice that the distributions shown in Figure 4.3 look normal. Since the statistics represented in
this distribution are the mean for many individual sets, the central limit theorem suggests that the distri-
butions should be normal (if the sets are independent) [MILF77]. The Kolmogorov-Smirmov one-
sample test was used to compare the 1/64 sample distributions (normalized) to the standard normal dis-
tribution [DEGR75]. The quantitative results are not shown, but qualitatively the results were mixed for
the different traces. Some multiprogrammed traces fit the normal curves closely, while some extreme
samples resulted in a poor fit with Tree and Lin.

Table 4.2 shows coefficients of variation of the set-sample MPI’s for direct-mapped secondary
caches. It shows that larger samples are more accurate than smaller samples; this is expected because
the larger samples have more sets to even out the variations across sets. The coefficient of variation of

. . . . N T
the mean of n independent random variables (with the same mean and variance) is ——= tmes the

\n

64

Distribution of Set-Samples for Multl.2

% N N N L B L B B
)
g o4 D¥mEEY -
= L |
2 03
2
g 02p -
5
Moo I_E‘E —
o1l 10 10 |I—E| 1B IS

0.65 0.7 0.75
MPI Times 1000 Estimate

Figure 4.3. Distribution of Set Samples from the Multl.2 Trace.

This figure shows the distribution of MPI; performance estimates from set samples. The x-axis partitions
the set samples into different bins depending on their MPI; (at intervals of 0.01 misses per thousand in-
structions). The figure shows distributions for samples containing 1/4, 1/16, and 1/64 of the Multl.2
trace. 4-megabyte direct-mapped cache results are shown. The constant bits are at bit positions 8-9, 8-11,
and 7-12 for 1/4, 1/16, and 1/64 samples, respectively.

coefficient of variation of the individual random variables. Thus, if the sets are independent, the
coefficient of variation should decrease as the square root of the number of sets in the sample [STON90],
or it should be halved each time the sample size is quadrupled. Indeed, the results show this trend. For
example with the 4-megabyte cache for Mult1.2, the two sample size quadruplings from 1/64 to 1/16 to
1/4 reduces the coefficient by 54% and 53%.

The coefficients of variation in Table 4.2 with 1/4 of the sets included in the sample are small,
usually less than 2% of the actual mean; Tree has the largest one at 6% for the 4-megabyte cache. For
1/64 samples, the variations are also acceptable, often less than 5% and always less than 15% of the
true mean; Tree and Lin traces have the largest ones at 14% and 15%, respectively. Generally, the
errors from the set-sampling MPI estimates are reasonable considering the trace data reductions. If the
set-sample MPI’s are normally-distributed14, the the relative error of over 90% of the MPI samples will
be less than +1.65 times the coefficient of variation. For most of the 1/16 samples in Table 4.2, 1.65
times the coefficient of variation is well under 10%, so a set-sampling trace reduction factor of 16 gives
errors less than 10% with at least 90% confidence. This suggests that set sampling meets the 10% sam-
pling goal.

Table 4.2 shows a slight tendency for variations to decrease with larger caches. There are several
reasons why this might occur. The larger caches have more sets and thus there is less competition for
individual sets than with the smaller caches, so the variances between the performance of individual
sets could be smaller. Furthermore, even though the samples are a fixed portion of each trace, they con-
tain the references to more sets in the larger caches, and more averaging always reduces statistical devi-
ations. More data needs to be gathered to find if there is a relationship between error and cache size.

14. Figure 4.3 suggests the distributions are normal. Additionally, the samples are the sum of hundreds or
thousands of individual sets, so the central limit theorem [MILF77] suggests that the distributions of the sam-
ples should be close to normal if they are independent.

65

Set-Sampling Coefficients of Variation (percent)

. Full Trace Fraction of Sets in Sample

Trace Size | yrpreio00 | 1/4 e e

M 1.55 1.7% 4.3% N/A
Multl 4M 0.70 1.4% 2.3% 4.8%
16M 0.33 1.0% 1.6% 2.7%

1M 145 0.8% 2.9% N/A
Multl.2 4M 0.69 0.9% 1.9% 4.1%
16M 0.32 0.4% 1.5% 3.2%

M 1.24 0.8% 3.4% N/A
Mul2 4M 0.61 1.0% 1.9% 2.9%
16M 0.26 1.1% 2.3% 3.3%

1M 1.18 0.4% 2.7% N/A
Muli2.2 aM 0.59 0.6% 1.3% 2.5%
16M 0.27 0.7% 1.8% 3.4%

1M 2.63 0.7% 1.9% N/A
Tv M 1.88 0.2% 0.6% 2.1%
16M 1.03 0.5% 0.6% 2.0%

M 14.77 0.1% 0.4% N/A
Sor iM 7.54 0.1% 0.3% 0.7%
16M 1.97 0.0% 0.0% 0.1%

M 2.16 4.1% 5.6% N/A
Tree M 0.59 5.3% 6.8% 13.6%
16M 0.30 1.8% 4.1% 6.5%

IM 1.16 0.5% 3.3% N/A
Lin iM 0.09 2.0% 7.6% 15.0%
16M 0.02 0.0% 0.3% 0.5%

Table 4.2. Set Sampling Coefficients of Variation for Direct Mapped.

This table shows the actual MPI of the full trace for direct-mapped caches, and the coefficient of variation
of the set-sampling MPI estimates, calculated as in Table 4.1. The samples contain 1/4, 1/16, and 1/64 of
the trace data in the full trace. Some entries are marked N/A because the PID hashing overlapped with the
constant bits so the samples were not set samples.

Such an error reduction could make set sampling even more useful as cache sizes continually increase.

Table 4.3 shows 2-way set-associative results like the direct-mapped results given in Table 4.2.
Often, an associativity increase from direct mapped to 2-way reduces the set-sampling coefficient of
variation by more than 50%. Set-sampling accuracy improves with higher associativity because set-
associativity eliminates cache conflict misses [HILS89]. In direct-mapped caches, conflicts cause a sub-
stantial portion of the misses. A particularly bad conflict can cause large direct-mapped set-sampling
errors because the conflicting set misrepresents the behavior of the other sets.

A large range in the distribution of the set samples is undesirable since it can lead to large varia-
tions in the cache performance estimated from an individual sample. Figure 4.4 shows the range of the
set samples for 4-megabyte secondary caches to more fully understand their accuracy limitations.
There is a substantially different range in the distributions for the different traces. The multipro-
grammed traces exhibit similar behaviors; the range of the sample values is modest, even for 1/64 of the
full trace. The Tv and Sor traces also have small ranges. However, the Tree and Lin traces have con-
siderably larger ranges. This is closely related to the larger errors shown by Tree and Lin in Table 4.2.

66

Set-Sampling Coefficients of Variation (percent)
. Full Trace Fraction of Sets in Sample
Trace Size | ypreioo0 | 14 116 16
M 1.19 1.2% 2.2% N/A
Multl 4M 0.55 1.0% 1.7% 3.0%
16M 0.26 0.8% 1.6% 2.3%
M 1.18 0.7% 1.6% N/A
Multl.2 4M 0.56 0.5% 1.2% 2.2%
16M 0.28 0.5% 1.3% 2.1%
M 1.01 0.3% 1.9% N/A
Mul2 4M 0.52 0.6% 1.2% 2.0%
16M 0.24 0.9% 1.9% 3.3%
M 0.98 0.3% 1.8% N/A
Muli2.2 4M 0.51 0.5% 1.5% 1.9%
16M 0.22 0.9% 2.1% 3.5%
M 2.31 0.2% 0.6% N/A
Tv 4M 1.76 0.3% 0.3% 1.6%
16M 0.98 0.3% 0.7% 1.9%
M 14.66 0.0% 0.3% N/A
Sor 4M 7.76 0.0% 0.2% 0.5%
16M 1.92 0.0% 0.0% 0.1%
1M 1.81 2.3% 3.7% N/A
Tree 4M 0.49 0.8% 1.5% 3.8%
16M 0.26 0.3% 0.4% 1.1%
M 1.10 0.3% 2.6% N/A
Lin 4M 0.06 1.2% 6.0% 9.8%
16M 0.02 0.0% 0.3% 0.5%

Table 4.3. Set Sampling Coefficients of Variation for 2-Way.

This table shows the MPI of the full trace for 2-way set-associative caches, and the coefficient of variation
of the MPI estimates, similar to Table 4.2.

The 1/64 samples from Tree and Lin were examined in more detail to find the cause of the wider
performance range across the set samples in the direct-mapped case. For both the Tree and Lin traces,
two of the 1/64 set-samples produced markedly higher direct-mapped MPI’s than the rest of the sam-
ples. These set samples are the cause of both the high maximum and the low minimum in Figure 4.4;
the two samples with higher MPI’s bidsed the full trace MPI upward, causing the low minimum. The
same two samples did not produce the highest MPI estimates for the 2-way set-associative caches. This
shows that the cache conflicts that were eliminated by higher associativity caused the large direct-
mapped Tree and Lin sample estimates, as previously suggested. The performance estimate obtained
from any set sample could be biased by a heavily-conflicting set. Notice that the range of the sample
estimates is much smaller for 2-way set-associativity because conflicts are eliminated.

Given an individual set-sample, it would be useful to estimate the error of its MP/ estimate, using
only the information contained within the sample. The coefficients of variation shown in Tables 4.2 and
4.3 were calculated using the full trace information. Instead, coefficients of variation can be estimated
from the sample itself using the techniques from Section 2.5. Since MPI; is the mean MPI from many
sampled sets within sample i, its coefficient of variation can be estimated by measuring the variations
among the sets within sample i. Table 4.4 compares the average estimated coefficient of variation of
the MPI;’s (the ‘‘individual’’ column) with the actual coefficient of variation of the MPI;’s (the actual
values come from Table 4.2) for a 4-megabyte direct-mapped cache. It also compares the average

67

Range of Set-Samples (Direct-Mapped)

Mu [089f Qg '+ 1 T T T
Mui2| o091 PR 113
mulz | 094[ZR J1.07
g Mu22] 0.95[T 1107 |
= Tv 0.96[[J1.05 i
Sor B 0.99(811.02 _
Tree | 0.88| KL/ [L71]
Lin |[0.81 , LKKV /A I I | | L 176
09 1 11 12 13 14 15 16 17
Range of Set-Samples (2-Way)
Multl oos[L J110 ! ‘ ! [' o
1.04

Multl.2 0.93 .
Mult2 0.95 1.05

g Mu22| 0.95[[AH]1.03]
= v 097[f]103 |
Sor 099[[J1.01

Tree| 091 PRI]1.08
Lin [0.81 /R 770 | 1123 | | | |

0.9 1 1.1 12 13 14 15 16 1.7
Fraction of Full Trace MPI

Figure 4.4. Range of Performance With Set-Samples.

This figure shows the range of the set-sample MPI estimates for 4-megabyte direct-mapped (top) and 2-
way set-associative secondary caches with block sizes of 128 bytes. The ranges are given relative to the
MPI of the full trace for 1/4 (smallest cross-hatched box), 1/16 (hatched), and 1/64 (largest unfilled box)
sample sizes.

estimated coefficient of variation obtained with (constant-bits) batches of the sampled sets, rather than
individual sets. Batching partitions (or batches) the sets within a sample, averages the sets within a
batch together, and treats the batch means just as if they were individual sets’™.

The coefficient of variation results in Table 4.4 show that the individual estimate tends to be
larger than both the batched estimate and the actual value. This is especially true for the Sor results.
The difference in the estimates occurs because the sets within the sample (and within the batches) are
not a random selection. The overlap of the Sor arrays in the virtual-indexed cache causes large contigu-
ous chunks of the cache sets to thrash more than other chunks. Since the MPI differences are large
across chunks, the MPI variance of individual sets is large. However, both constant-bits set-samples
and constant-bits batches get equal pieces of each chunk, so their MP/ estimates are a much more accu-
rate estimate of the true MPI across all sets.

15. There are fewer batches than sets, but the batch means have a lower variance and a more normal dis-
tribution.

68

Sample Coefficient of Variation Batched 90%

Trace : Confidence

Size Actual o Estimates Interval
Individual Batched Successes (%)

1/4 1.4% 1.4% 1.0% 75.0%
Multl 1/16 2.3% 3.0% 2.9% 100.0%
1/64 4.8% 6.0% 5.7% 93.8%
1/4 0.9% 1.0% 0.8% 100.0%
Multl.2 1/16 1.9% 2.2% 2.0% 100.0%
1/64 4.1% 4.4% 4.0% 89.1%
1/4 1.0% 0.9% 0.7% 100.0%
Mult2 1/16 1.9% 1.9% 1.9% 87.5%
1/64 2.9% 3.8% 3.3% 93.8%
1/4 0.6% 0.8% 0.5% 100.0%
Mul2.2 1/16 1.3% 1.7% 1.9% 100.0%
1/64 2.5% 3.5% 3.2% 96.9%
1/4 0.2% 0.4% 0.6% 100.0%
Tv 1/16 0.6% 0.9% 0.8% 100.0%
1/64 2.1% 1.8% 1.4% 79.7%
1/4 0.1% 0.6% 0.1% 100.0%
Sor 1/16 0.3% 14% 0.3% 100.0%
1/64 0.7% 2.9% 0.8% 95.3%
1/4 5.3% 2.2% 2.0% 50.0%
Tree 1/16 6.8% 4.3% 3.9% 68.8%
1/64 13.6% 6.5% 6.2% 78.1%
1/4 2.0% 3.6% 3.0% 100.0%
Lin 1/16 7.6% 7.2% 5.1% 87.5%
1/64 15.0% 12.9% 12.5% 96.9%
1/4 90.6%
All 1/16 93.0%
1/64 90.8%

Table 4.4. Set-Sampling Error Prediction.

This table shows results for a 4-megabyte direct-mapped secondary cache. The actual coefficient of varia-
tion (taken from Table 4.2) and the average estimate for individual and batched sets are shown. Also, the
table shows the probability that the batched 90% confidence interval contained the full trace MPI.

The mean coefficient of variation estimate from all set-samples is shown, calculated as shown in Equation
2.4 in Section 2.5. MPI,,.,, from Equation 2.4 refers to the MP/ estimate from a particular set-sample (it is
called MPI; in this section). MPI; from Equation 2.4 is the MP/ estimate from a particular set (or batch) j
within that set-sample. N is the number of sets (batches) in the entire cache, and n is the number of sets
(batches) in that set-sample.

Using the batched coefficient of variation estimate, confidence intervals can be calculated as
shown in Section 2.5. The 90% confidence interval for set sample i contains all values in the range
MPI(1 + 1.895xCV;), where CV; is the coefficient of variation estimate (for MPI;), and MPI; is the MPI
estimate for i. Table 4.4 shows the fraction of times that this 90% confidence interval contained the full
trace MPI. The results show that, in general, this fraction is 90% or more. The success rate is lower for
Tree because conflicts distorted the set-sample MPI estimates. Though the intervals were inaccurate for
Tree, these simple batched confidence intervals are generally excellent for establishing the level of
confidence in results. Since the average of 1.895xCV; is always less than 10% for 1/16, these results
also confirm that set sampling meets the 10% sampling goal.

69

4.2.3. Advantages and Disadvantages of Set Sampling

The most important advantage of set sampling is that it meets the 10% sampling goal for our
simulations: less than 10% errors with less than 10% of the full traces. The accuracy of set sampling
may improve as the cache size increases. This makes it appropriate for multi-megabyte caches. The
constant-bits technique provides a simple way to build flexible set-samples. References are either saved
or discarded depending on the values of certain bits in the address of the reference. A set sample
automatically includes references from many execution phases, so an individual sample can accurately
characterize the MPI of a full trace, including its MPI phase-distribution. The reduced trace data
requirements of set sampling allows for simulation of longer traces, and therefore more algorithmic
phases, in a smaller amount of time. Besides the data reduction, set sampling also reduces the memory
required to simulate a given cache configuration. A set sample containing 1/ 16 of the full trace needs
to simulate only 1/16 of the sets. For example, the performance of a 4-megabyte cache can be
estimated with a 1/16 set-sample using the same amount of memory needed for a full trace simulation
of a 256 kilobyte cache.

Set sampling does have its limitations. A major disadvantage is that a set sample for one cache
may not be a set sample for another cache. Thus, once a study chooses the constant-bits, a sample is
only useful for a portion of the overall cache design space. There are even multi-level cache
configurations such that no set samples exist, as when the block size of the secondary cache is larger
than a primary cache. To avoid resampling, take care to ensure that a sample of a full trace is a set sam-
ple for the range of cache configurations being studied. This can be a difficult task, particularly when
the range is large.

Another problem is that set sampling limits the performance metrics that can be gathered.
Although the attention in this chapter focuses on estimating mean MPI, there are other important cache
performance metrics that are difficult to gather when set sampling. The timing of interactions between
accesses contained in different set samples is lost. For example, this might be important when estimat-
ing the performance of a write-buffer shared by all sets. Since the write-buffer handles write-back (or
write-through) requests from all sets, it will be difficult to estimate its performance accurately knowing
only the references to a portion of the sets. Thus, set sampling may not be appropriate for this type of
analysis. Nevertheless, for those cases where set sampling is sufficiently flexible, it can be extremely
useful.

4.3. Time Sampling

The alternative to set sampling is to characterize a trace with time samples. This section discusses
key questions in producing and using time samples: (1) how to get unbiased MPI estimates from a sin-
gle time-sample; and (2) what fraction of the trace data is (or equivalently, how many time samples are)
needed for a desired accuracy, and how can the sampling accuracy be estimated?

4.3.1. Obtaining Unbiased Estimators from Time Samples

Obtaining accurate, unbiased estimators of mean MPI from individual time samples is difficult.
The problem lies in eliminating the cold-start, or initialization, bias. By default, caches are often
assumed to begin a time-sample simulation in the empty state. This implies that the first references of a
time sample initialize the cache by loading new data in the cache. These initialization (or unknown)
references are often assumed to be misses, since it is unknown whether they would have missed if the

70

cache were fully initialized. This approximation gives pessimistic (biased) MPI estimates because
some references that initialize cache would have hit in a fully initialized cache. While it is a reasonable
approximation for a long trace with a small cache, it is inaccurate for all but the biggest time-samples
with the multi-megabyte caches considered in this dissertation. To find the exact number of misses in a
time sample, it is necessary to know the state of the cache at the beginning of the sample. Unfor-
tunately, this state is typically not known'®. Furthermore, Chapter 3 shows that a time sample of many
millions of instructions may be required to initialize a multi-megabyte set-associative cache fully, so it
is prohibitively expensive to generate the cache state. Therefore, an effective time-sampling technique
must not depend on knowledge of the initial cache state.

Several cold-start reduction techniques have been proposed; this chapter compares five different
ones. The first, called COLD, is the default case that simply ignores the cold-start problem and assumes
that all initialization (or cold start) references are misses. The second, called HALF, attempts to warm
the cache to remove the cold-start bias. The first half of a time sample partially initializes the cache, and
the rest estimates the MPL.

These two simple techniques are included with three more sophisticated ones. PRIME warms
individual cache sets rather than the entire cache. It counts secondary cache references only after the
corresponding set has been primed, that is, after initialization of all block frames in the set. For direct-
mapped caches, the first reference to each set (the one that primes the set) is used only for priming, and
the cache simulator counts the rest of the references to estimate the steady state miss ratio [STONSO].
For higher associativities, the simulator counts references only when it touches a non-most-recently-
used block frame after set priming [LAPI88]. PRIME directly estimates the secondary cache local miss
ratio, not MPI, so all PRIME accuracy measurements compare the miss ratio'’. These compares are
nearly equivalent to MPI compares because MPI equals the local miss ratio times the secondary cache
references per instruction. They are not exactly equivalent because primary cache initialization alters
the secondary cache references per instruction.

STITCH approximates the state of the cache at the beginning of a sample by the state of the cache
after the simulation of the previous sample. That is, the cache simulator stitches the samples together
and simulates them as a single trace [AGHHS88]. The simulator uses the first 1/4 of the instructions
from the stitched trace to warm the cache.

The final cold-start reduction technique is INITMR. INITMR estimates W, the fraction of cache
initialization references that would have missed had the cache been warm. The actual misses, 4, are
those that would occur when simulating a given time-sample starting with a warm cache. A=M +uU,
where M is the known misses and U is the initialization (unknown) references during the cold-start
simulation of this time-sample (note that the simulation does not assume that initialization references
are misses). INITMR estimates W by {Lgpy;, for each time-sample [WOHK91]. {lgpy; depends on (1) the

16. Przybylski estimated the cache state by prefixing previously-referenced blocks onto the beginning of
time samples {PRZY88]. With many trace-gathering techniques, it is impossible (or extremely difficult) to
determine this prefix. Furthermore, with multi-megabyte caches the storage space required for the prefix can
be as large as the time-sample itself.

17. This secondary cache local miss ratio is the secondary cache misses per secondary cache reference
(aggregated over all sets) [PRHH89]. The simulator uses Primary cache misses and write-backs (from both
primed and unprimed primary cache sets) to prime secondary cache sets. PRIME does not directly estimate
the secondary cache MPI because primary cache misses, not instructions, prime the secondary cache sets.

71

fraction of time that cache block frames hold blocks that will not be referenced before being replaced,
and (2) the fraction of block frames that the simulator initializes during the cold-start simulation of a
sample. When the samples could not estimate (1), it was assumed to be 0.7.

To give a statistically significant comparison of the alternative cold-start elimination techniques, it
is necessary to extract many samples from each trace and average the results. This focuses the attention
on reducing the cold-start bias of a set of time-samples from a given workload, rather than an individual
sample. The rest of Section 4.3 compares averages, rather than comparing each individual sample
value. Thirty samples of length 100 thousand, 1 million, 10 million, and 100 million instructions were
taken at equal intervals from each full trace used in this dissertation. The availability of the full traces
allows the state of the cache at the beginning of each time-sample to be determined, and thus the
unbiased (or true) misses of the thirty samples could be precisely calculated. Unbiased means there is
no cold-start problem because the caches are properly initialized at the start of the sample. This section
evaluates the cold-start elimination techniques by comparing their estimates to the average of the
unbiased samples. In other words, this section finds how well the techniques eliminate the cold-start
bias. Note that the unbiased average of the thirty samples is not the true value for the full trace. Section
4.3.2 varies the number of samples and compares MPI estimates to the full trace MPI to leam the sam-
pling error. This section concentrates only on the bias, not the sampling error.

The comparison between the techniques is not simple. Simulations were run for the thirty sam-
ples of each trace. The simulated secondary caches are 1-megabyte, 4-megabyte, and 16-megabyte
direct-mapped and 4-way set-associative with block sizes of 128 bytes. For different sample lengths,
Table 4.5 shows the cold-start bias of the different cold-start reduction techniques using the thirty
Multl.2 samples. The data in Table 4.5 is for direct-mapped caches. The most striking characteristic is
the large bias with the shortest samples and the biggest caches. The initialization references dominate
the COLD estimates, for example. None of the techniques can eliminate the cold-start bias when the
sample length is too short. Table 4.5 shows that the COLD estimates are always larger than the
unbiased MPI, as expected. HALF and STITCH typically overestimate the unbiased MPI, while
PRIME underestimates. Over the direct-mapped caches and sample lengths, INITMR produces the
most accurate estimates for the thirty time samples from Mult1.2.

The results for the Mult1.2 trace in Table 4.5 are typical, though they change for different work-
loads. Table 4.6 shows errors for all traces used in this dissertation. The data in the table is for direct-
mapped caches and samples of 10 million instructions. It shows that the accuracy trends are the same
across the different traces. The Lin trace is an exceptional case where considerably lower unbiased
MPI’s caused much larger errors. Similarly to Table 4.5, the results in Table 4.6 show that PRIME
underestimates the unbiased MPI of direct-mapped caches. This is consistent with the observations of
Laha, et al., [LAPI88]. STITCH produces substantial overestimates for all the traces except Sor. The
overestimation of STITCH agrees with the results in Wood’s appendix on stitching [W0OOD90]. With
the huge matrix traversals of the Sor workload, however, stitching gave an optimistic cache state esti-
mate at the beginning of each sample. Normally, previous accesses have cleared out the cache while
the data is being accessed. With stitching, there is a chance that useful data may have been available at
the end of the previous sample of Sor. HALF tends to overestimate, particularly with the larger caches,
but it is more accurate with longer samples. For the 16-megabyte cache with Multl.2, HALF has a
100% bias with the 10 million instruction samples.

72

Cache Sample | True Sample .

Size Length | MPIX1000 COLD HALF PRIME STITCH INITMR
0.1 1.73 +254% +150% -13% +198% +103%

IM 1 1.45 +88% +74% -50% +57% +21%
10 1.57 +16% +2% -18% +2% +2%

100 1.48 +2% -3% -3% +0% +0%

0.1 0.87 +594% +387% -80% +439% +123%

AM 1 0.70 +262% +234% -13% +164% +63%
10 0.77 +66% +25% -51% +27% -5%

100 0.72 +12% -3% -23% +6% -2%

0.1 0.35 +1629% +1093% -97% +1201% +400%

16M 1 031 +699% +625% 91% +448% +100%
10 037 +200% +103% -80% +90% -3%

100 0.33 +67% +32% -61% +5% -17%

Table 4.5. Accuracy of Cold-Start Techniques for Mult1.2.

This table shows the accuracy of the cold-start techniques for several sample lengths and direct-mapped
caches with the Multl.2 trace. For each cold-start bias reduction technique, the table shows the relative er-
ror of the estimated average MPI of the thirty time samples from the unbiased average MPI of the samples.
(The secondary cache local miss ratio relative error, not the relative MP/ error, is shown for PRIME.) An
error of 100% means the estimate is double the unbiased value while an error of -50% means the estimate
is half the unbiased value.

To find the effect of associativity on the alternative cold-start elimination techniques, Table 4.7
shows the same results as Table 4.6 for 4-way set-associative caches, rather than direct-mapped. The
change in the errors of PRIME may be the Iargest between the tables. With higher associativity, the
heuristic compensation of Laha, et al., reduces the PRIME underestimation bias. The simulator counts
references to a primed 4-way associative set only when it touches a non-most-recently-used block,
rather than counting immediately after set-priming as in the direct-mapped case. This heuristic
removed the bias of PRIME with some success, but often its MPI estimate is still substantially in error.

Table 4.8 scores the different cold-start techniques based on the accuracy of their estimates and
the comparison with the other estimation techniques. The table shows the times the estimate is within
10% of the unbiased value (10%) and the times the estimate is the closest (in percent) to the unbiased
value (Win). Over all the cache configurations, traces, and sample lengths, INITMR produces the best
estimates. INITMR had the most estimates within 10% of the unbiased value: 69 of 192. This is over
twice as many as COLD, PRIME, or STITCH, and is 15% more than HALF. INITMR also produces
the most accurate result about three times more often than any of the other techniques: 63% of the time
INITMR was as good as or better than the others. When the time-sample lengths are short, or barely
long enough, INITMR is superior to any of the other techniques examined in this study. As the sample
lengths increase to where cold start is a smaller factor, HALF is also good. INITMR is generally the
best cold-start reduction technique of those examined in this study.

There are several important problems with PRIME that make it less accurate than INITMR. The
first is that PRIME is unsuccessful at removing all biases. Since the simulator counts the hits immedi-
ately following the priming of the set before any later misses, counting references immediately after set
priming underestimates. This is particularly troublesome for direct-mapped caches. The heuristic com-
pensation of Laha, et al., improves its estimates for caches of higher associativity [LAPI88], but it is still
often inaccurate. The second important problem is that PRIME wastes the references used to prime the

73

Cache | True Sample
Trace Size MPIX1000 COLD HALF PRIME STITCH INITMR
M 1.45 +18% +5% -18% +23% +0%
Multl 4M 0.62 +77% +27% -50% +52% -11%
16M 0.28 +233% +114% -80% +131% -12%
M 1.57 +16% +2% -18% +2% +2%
Multl.2 4M 0.77 +66% +25% -51% +27% -5%
16M 0.37 +200% +103% -80% +90% -3%
M 1.21 +18% +2% -26% +23% -3%
Mul2 4M 0.60 +70% +31% -62% +53% -24%
16M 0.25 +264% +168% -85% +147% -9%
M 1.18 +19% +15% -27% +29% -1%
Mult2.2 4M 0.62 +71% +50% -61% +56% -13%
16M 0.29 +233% +180% -84% +141% -3%
M 2.55 +4% -0% -33% +32% 2%
Tv 4M 1.76 +15% +9% -56% +37% 4%
16M 0.95 +79% +61% -76% +71% +37%
M 15.68 +0% -0% -5% -11% -0%
Sor M 8.08 +18% +2% -18% -8% +6%
16M 2.00 +190% +60% -76% -8% +114%
M 2.00 +13% -0% -10% +29% -1%
Tree M 0.51 +107% +8% -50% +43% +24%
16M 0.30 +217% +35% -17% +69% +18%
M 0.75 +20% +7% -29% 0% +16%
Lin 4M 0.06 +1113% +535% -62% +217% +903%
16M 0.01 +4648% +2248% ---% +873% +1037%

Table 4.6. Accuracy of Cold-Start Techniques With Direct-Mapped Caches.

For samples of 10 million instructions, this table shows the accuracy of the cold-start techniques for several
direct-mapped caches with all the traces. The errors are calculated as in Table 4.5.

cache sets. Many references can be consumed initializing a set, particularly with larger set-
associativities. For several sample lengths and secondary caches, PRIME lost so much information that
it could not produce a statistically significant estimate.

Trace stitching also produces MPI estimates that are less accurate than INITMR. Usually,
STITCH overestimated the unbiased MPI. STITCH did better with the longer samples because the time
between the samples is shorter. With samples that are closely spaced in time, the cache state at the end
of a previous sample may closely predict the state at the beginning of the next sample, but it doesn’t in
general. INITMR is superior in this study.

The simple HALF scheme produces better estimates than either PRIME or STITCH. For the
longest samples, as many estimates are within 10% of the unbiased mean with HALF as with INITMR.
This suggests that HALF is a useful technique for long samples. Over the widest range of sample
lengths, however, INITMR is superior to HALF.

An accurate estimate of the initialization reference miss ratio, j, is an important contribution of
INITMR. Table 4.9 shows W values and the accuracy of the ﬁspm estimates of INITMR. Previous
researchers postulated that . values should be in a range similar to the miss ratio of the cache [STON90].
Similar to Wood, et. al [WOHKO1], these results show . values much larger than that, as high as 92%.
1 depends on the fraction of time that a cache block frame is uselessly retained in the cache; it has little
relationship to the overall cache miss ratio.

74

- Cache | True Sample . \
Trace Size MPIX1000 COLD HALF PRIME STITCH INITMR
M 0.94 +21% -5% 6% +36% -11%
Multl M 0.44 +106% +29% -51% +80% 4%
16M 0.22 +313% +157% -99% +167% -8%
M 1.20 +15% -5% 9% +6% -1%
Multl.2 4aM 0.60 +81% +21% -40% +43% +1%
16M 0.32 +232% +118% -57% +104% -3%
M 092 +14% -5% -18% +33% -16%
Mult2 4M 049 +84% +34% -64% +68% +2%
16M 0.22 +316% +202% -18% +170% -9%
M 0.96 +16% +10% -14% +38% -10%
Mult2.2 aM 0.52 +84% +54% -52% +73% -1%
16M 0.25 +285% +221% +15% -161% -14%
M 2,14 +4% 2% -22% +32% -2%
Tv aM 1.53 +14% +6% +12% +39% -8%
16M 0.82 +99% +75% +195% +87% +32%
M 15.46 +0% -0% +0% -11% -0%
Sor iM 8.57 +9% -1% -12% -8% 2%
16M 2.17 +158% +34% -81% 4% +60%
M 1.60 +11% -3% 9% +35% -6%
Tree 4M 041 +124% -5% -32% +70% +18%
16M 0.25 +263% +38% +83% +77% -17%
M 0.69 +26% +6% +9% +6% +21%
Lin 4M 0.02 +2763% +1322% +81% +778% +1797%
16M 0.01 +4648% +2248% ---% +873% +1037%

Table 4.7. Accuracy of Cold-Start Techniques With 4-Way Set-Associativity.

For samples of 10 million instructions, this table shows the accuracy of the cold-start techniques for several
4-way set-associative caches with all the traces. The errors are calculated as in Table 4.5.

A major contribution of Wood, et. al [WOHKO91], was a renewal-theoretic model of block
residences in the cache as generations. One generation of a cache block frame is the time that it holds a
given block. A cache block frame is dead when the next reference to it causes a miss that loads a new
block (and starts a new generation). When the assumptions of the renewal-theoretic model of Wood, et.

al, hold, p = % where D is the average dead time, and G is the average generation time. In practice,

D/G is a good estimate of the fully initialized w although the assumptions of the model are violated.
Furthermore, the behavior of y can be estimated by ﬁspm when the sample does not entirely initialize
the cache. [Lgpj is a function of both D/G and the fraction of the cache that the simulator initializes by
the end of the sample. When the sample entirely initializes the cache, ﬁspm is the estimated value for
D/G. When the sample initializes only a small portion of the cache, ﬁspm decreases because W is
smaller; the first initialization references are less likely to be misses than the later ones.

Table 4.9 shows decreasing values for | as the cache size increases and the sample length
decreases. This is precisely when the portion of the cache that the sample initializes decreases, which
confirms that the first initialization references are less likely to be misses and that p is smaller when the
sample initializes less. Examination of values for set-associative caches, beyond the direct-mapped
cache results shown in Table 4.9, shows similar . behaviors, though the absolute values of W tended to
increase slightly with associativity.

75

Cache Sample COLD HALF PRIME STITCH INITMR

Size Length

(Mill) 10% Win | 10% Win | 10% Win | 10% Win | 10% Win

0.1 2 0 2 5 0 2 0 0 0 9

IM 1 2 1 4 4 3 5 2 3 5

10 4 2 15 13 7 1 4 3 12 8

100 16 5 16 7 16 6 6 2 16 12

0.1 0 0 0 0 0 1 1 2 1 13

aM 1 0 0 0 1 1 2 2 1 4 13

10 1 0 6 6 0 1 2 1 10 8

100 7 1 14 4 3 2 5 3 12 7

0.1 0 0 0 0 0 0 0 0 0 16

16M 1 0 0 0 0 0 0 1 2 0 14

10 0 0 0 0 0 1 2 4 6 11

100 0 0 3 2 1 0 5 9 5 5

0.1 2 0 2 5 0 3 1 2 1 38

All 1 2 1 4 5 4 7 5 5 7 32

10 5 2 21 19 7 3 8 8 28 27

100 23 6 33 13 20 8 16 14 33 24

All All 32 9 60 42 31 21 29 29 69 121

Table 4.8. Scoring of Different Cold-Start Techniques.

This table scores the accuracy of the different cold-start techniques for all the different traces. It gives a
““10%” point each time the average estimate of thirty time-samples is within 10% of their unbiased aver-

age. It givesa “Win’’ point each time the estimate is closest (log(%) closest to 0.0) of all schemes
to the unbiased average of the thirty samples. Multiple points are awarded on ties, so the winners may not
be constant for each row. The maximum points is 192 in each category at the bottom. The scores shown
are the sum for direct-mapped and 4-way caches.

L split is more accurate when the cache size is smaller and the sample is longer. There are two rea-
sons for this: (1) i can be more tightly bounded as the cache becomes more fully initialized, and 2)
more misses give a more accurate estimate of D/G. When a sample fully initializes a cache during a
cold-start simulation, the p value for the sample tends to be close to D/G, making prediction simple. It
is more difficult to predict p when the sample does not fully initialize the cache, however, because |
then depends on the distributions of the generation and dead times. ﬁspm does not use knowledge of
these distributions. Instead, it is the middle value between upper and lower bounds given by Wood, et.
al [WOHK91]. These bounds tighten as the fraction of the cache initialized by a sample increases.
Thus, the error of figy); decreases with the initialization fraction, provided D/G is known. D/G can be
estimated remarkably well with few cache block frame lifetimes, but more lifetimes give a higher accu-
racy. More lifetimes can be provided by a longer sample.

The combination of a more fully initialized cache and many misses leads to the most accurate esti-
mates of p as the sample length increases and the cache size decreases. When the samples are too short,
Table 4.9 shows that ﬁspm can poorly estimate . The Lin samples are a particular example of this,
where samples of 100,000 instructions initialize about 0.11% of the 16-megabyte cache, an extremely
small portion. This leads to a poor estimate by ﬁspm.

The ultimate usefulness of INITMR is determined not by the accuracy of the . estimate, but by
the accuracy of its MPI estimates. Inaccuracies in the W estimates do not translate into MPI

76

i Values (and Error of L)
Trace Cache Sample Length (Millions of Instructions)
Size 0.1 1 10 100
IM | 0.25(68%) 0.28 (115%) 0.49 (3%) 0.65 (-4%)
Multl 4M | 0.12(102%) 0.15 (186%) 0.38 (-25%) 0.66 (-14%)
16M | 0.05 (258%) 0.09 (380%) 0.26 (-19%) 0.50 (-35%)
IM | 0.21(111%) 0.36 (40%) 0.54 (11%) 0.63 (0%)
Mult1.2 4M | 0.13 (96%) 0.21 (98%) 0.41 (-12%) 0.65 (-11%)
16M | 0.08 (143%) 0.12 (121%) 0.27 (-11%) 0.49 (-36%)
M | 0.19 (67%) 0.35 (27%) 0.59 (-14%) 0.67 (-2%)
Mult2 4M | 0.10 (73%) 0.24 (39%) 0.46 (-39%) 0.63 (0%)
16M | 0.05 (230%) 0.14 (146%) 0.25 (-15%) 042 (-18%)
IM | 0.18 (102%) 0.37 (33%) 0.58 (-6%) 0.68 (-3%)
Mult2.2 4M | 0.13 (83%) 0.25 (41%) 0.44 (-27%) 0.62 (-2%)
16M | 0.09 (90%) 0.15 (81%) 0.27 (-11%) 042 (-1%)
IM | 0.20(70%) 0.47 (-21%) 0.74 (-21%) 0.82 (1%)
Tv 4M | 0.15 (40%) 0.39 (25%) 0.62 (-27%) 0.75 (0%)
16M | 0.08 (148%) 0.24 (50%) 0.38 (62%) 0.45 (33%)
M | 0.92(-56%) 0.90 (-17%) 0.91 (-5%) 0.91 (-5%)
Sor 4M | 0.55 (47%) 0.54 (15%) 0.55 (15%) 0.55 (7%)
16M | 0.17 (17%) 0.18 (200%) 0.30 (122%) 0.58 (-9%)
IM | 0.14 (369%) 0.24 (71%) 0.51 (-32%) 0.65 (-12%)
Tree 4M | 0.04 (1450%) 0.13 (122%) 0.41 (-22%) 0.76 (-29%)
16M | 0.03 (729%) 0.11 (223%) 0.35 (-28%) 0.71 (-60%)
M | 0.25(5%) 0.36 (43%) 040 (115%) 0.66 (32%)
Lin 4M | 0.02(1178%) 0.05 (418%) 0.08 (758%) 0.17 312%)
16M | 0.01(1621%) 0.03 (463%) 0.05 (277%) 0.16 (61%)

Table 4.9. L and the Accuracy of its Estimator ({Lgpiit)-

This table shows average w values for the thirty samples and the error of the INITMR ﬁspm average esti-
mates (+100% means the estimate is double of the true value and -50% means the estimate is half the true
value). These results are shown for direct-mapped secondary caches and several sample lengths.

inaccuracies of the same magnitude. INITMR mitigates the effect of p errors because it includes known
misses, in addition to misses from initialization references, in the MPI estimate. Known misses are
those that are not a result of an initialization reference.

For the thirty samples of different lengths taken from each trace, Table 4.10 shows the error of the
INITMR MPI estimates. The results clearly show that samples of 100,000 instructions are too short to
overcome the cold-start bias of the large caches considered in this dissertation. (This is not too surpris-
ing since the largest caches contain over 100,000 cache block frames!) INITMR cannot accurately esti-
mate MPI when the simulation spends most of the references initializing the cache. This is why an
accurate estimate of the MPI of the larger caches is difficult with the shorter samples, and it is also why
the Lin estimates are inaccurate. INITMR requires many known misses to obtain an accurate estimate
of the MPI. This is partially because p cannot be accurately estimated without many known misses:
known misses are needed to estimate the fraction of time that block frames hold blocks that are not
referenced before being replaced (D/G). Furthermore, with many known misses (M >> U), accurate
approximation of L is less essential because known misses are a larger portion of the total misses. In
Table 4.10 the cases where initialization references fill at least half the cache and there are more known
misses than initialization references are marked with a '*’. These markings occur with longer samples

77

and smaller cache sizes since a larger portion of all misses are known misses in these cases. Larger
caches require more instructions to initialize, which implies a larger sample is needed for the same
accuracy.

Trace Cache | Full Trace | Sample Length (Millions of Instructions)
Size | MPIx1000 0.1 1 10 100
Multl M 1.55 86% 47% 0%* 0%*
4M 0.70 156% 120% -11% -3%*
16M 0.33 281% 335% -12% -17%
Multl.2 IM 1.45 103% 21% 2%* 0%*
4M 0.69 123% 63% -5% -2%*
16M 0.32 400% 100% -3% -17%
Mult2 M 1.24 49% 20% -3%* 0%*
4M 0.61 48% 39% -24% 0%*
16M 0.26 212% 146% 9% -3%
Mult2.2 M 1.18 127% 24% -1%* 0%*
4M 0.59 127% 60% -13% 0%*
16M 0.27 170% 106% -3% 8%
Tv M 2.63 36% -10% 2%* 0%*
4M 1.88 34% -9% 4% 0%*
16M 1.03 145% 39% 37% 12%
Sor M 1477 41% -3%* 0%* 0%*
4M 7.54 -27% 44% 6%* 0%*
16M 1.97 83% 386% 114% -2%*
Tree M 2.16 249% 36% -1%* 0%*
4M 0.59 1407% 121% 24% -1%*
16M 0.30 796% 198% 18% -37%
Lin M 1.16 -30% -14% 16% 1%*
4M 0.09 1437% 946% 903% 113%
16M 0.02 2567% 1318% 1037% 176%

Table 4.10. Accuracy of INITMR Time-Sample MPI Estimates.

This table shows the relative error of the time-sample INITMR MPI estimates over a range of direct-
mapped secondary cache sizes and sample lengths. The error is the difference between the average MPI
estimate of the thirty samples and the unbiased average MPI of the thirty samples (as a percent of the un-
biased average). A ‘*’ denotes the constraints that: (1) the caches were at least half initialized by the sam-
ples (on average, U > 0.5xCacheSize), and (2) there were more known (non-initialization) misses than ini-
tialization references (on average, M > U).

When the ratio of known misses to unknown misses increases, the maximum error of INITMR
shrinks. The assumption that none of the initialization references miss (.=0.0) gives a lower bound on
the unbiased MPI. Similarly, the assumption that all initialization references hit (A =1.0) gives an
upper bound. Since ﬁsplit gives a more accurate estimate of | than either the lower bound or the upper
bound, the error of the MPI estimate from INITMR is usually much smaller than these bounds, particu-
larly with more known misses.

When there is a **’ in the entry in Table 4.10, INITMR always produces estimates within 10% of
the unbiased values. This is a useful property of INITMR: when the constraints listed in Table 4.10 are
satisfied, the resulting MPI estimates are unbiased. Unfortunately, simulations require sample lengths
of millions of instructions to meet these restrictions with multi-megabyte caches. For the traces in this
study, samples of 1-10 million instructions were usually enough for 1-megabyte caches, 10-100 million
instructions for 4-megabyte caches, and 100 million instructions or more are needed for 16-megabyte

78

caches. These results agree with the rule-of-thumb that trace length should be increased by a factor of
eight each time the cache size is quadrupled [STON90]. Accurate results could be obtained with shorter
samples if the MPI’s of the traces were higher. With the larger caches, the Lin trace has MPI's that are
too low to get enough misses, even with samples of 100 million instructions, but the Sor trace had high
enough MPI’s to produce good estimates with much shorter samples.

Table 4.10 shows INITMR results for direct-mapped caches, but similar results have been
observed for caches of higher associativity. Since these caches have a lower MPI and more initializa-
tion references, simulations require longer samples to produce the same ratio of known misses to initial-
ization references. This makes it more difficult to obtain accurate MPI estimates. However, with a
sufficiently high ratio of known to initialization references, accuracy is assured with set-associative
caches just as with direct-mapped caches.

Results from multiple samples can be unified in several ways with INITMR. An alternative to
calculating an individual llsplit for each sample, as done in all other results in this section, is to merge
the statistics of the samples and produce a single I:lspm that is used for all. The potential advantage of
merging is a more accurate D/G estimate. The disadvantage is that different phases of execution could
cause large differences in the actual p across samples, even if the samples come from the same full
trace; treating them the same could lead to inaccuracies. Furthermore, some samples could inordinately
bias ﬁspm and consequently distort the MP/ estimate.

For the thirty samples of 10 million instructions taken from each full trace, Table 4.11 shows the
accuracy of individual and merged flgp); calculations. For the merged Rspiiy D and G are calculated
with the statistics of the generations from all samples, disregarding the differences in the generations
across samples. The fraction of the cache that is initialized is the average over all the cold-start simula-
tions.

Table 4.11 shows that there is a slight advantage to the individual ﬁspm calculation. This is true
over all the sample lengths and associativities. It shows that merging statistics from multiple samples,
even if the samples come from the same full trace, may not give accurate results. The phase changes
across the different samples leads to distortions in the INITMR MPI estimate when the samples are
merged. While merging may be a good idea for samples that are similar, these samples were
sufficiently different to produce poor results. This chapter uses the individual calculation of ﬁspm.

4.3.2. What Fraction of the Full Trace is Needed?

This section finds the time-sampling error by comparing time-sample mean MPI estimates to full
trace results. It shows the errors for varying portions of the full trace data, or equivalently when the
sample size is constant, varying numbers of time-samples. The MPI estimate from a single time-sample
has a much larger variance than the MPI estimate from a set-sample of the same size because each
time-sample captures only one (or perhaps a few) phases of workload execution. Even over long inter-
vals of execution, the MPI of different time samples fluctuates widely because cache performance
changes with the different execution phases. This makes it necessary to have many time samples to
predict the mean MPI of a full trace accurately. More samples scattered across the entire execution of
an application will improve estimation accuracy, but they also may increase required storage space and
simulation times; the sample size and the number of samples gives the trace data requirements for time
sampling.

79

, Full Trace et Calculation
Trace Size | \ipre1000 | Individual Merge
™ 155 0% 1%
Multl 4M 0.70 1% -10%
16M 0.33 -12% 21%
™ 145 % 3%
Multl2 4M 0.69 -5% 11%
16M 0.32 3% 17%
™ 124 3% 3%
Mul2 4M 0.61 24% -20%
16M 0.26 9% 35%
™ 118 1% 0%
Mul22 4M 0.59 -13% -16%
16M 0.27 3% 24%
™ 763 2% 0%
Tv aM 1.88 4% 2%
16M 1.03 37% 3%
™M | 1477 0% 0%
Sor 4M 7.54 6% 5%
16M 1.97 114% 190%
™ 7.16 1% 0%
Tree 4M 0.59 24% 34%
16M 0.30 18% 39%
™ 116 16% 19%
Lin 4M 0.09 903% 1014%
16M 0.02 1037% 1562%

Table 4.11. Individual Versus Merged [Lg,y;¢ Estimation.

This table shows the errors of different ways to calculate {igp); (for the thirty samples). The alternatives
are to calculate ﬁspm for each individual trace or to calculate a single merged ﬁspm for all the samples.
The table shows errors of the MPI estimates from the unbiased MPI of the samples. The results are for
direct-mapped caches and samples of 10 million instructions.

Figure 4.5 illustrates this sampling effect for the Mult1.2 trace; the left graph illustrates the case
where there is no cold-start bias (unbiased). Each shaded area corresponds to time sampling with a dif-
ferent sample length. The area displays, for varying portions of the trace data, the interval where 90%
of the MPI estimates fall (5% of the estimates are above and 5% are below). Each individual MPI esti-
mate consists of samples spaced periodically across the full trace to capture pieces of as many different
execution phases as possible. Since a unique portion of the trace data produces each MP/ estimate, the
number of MPI estimates is inversely proportional to the trace data fraction. The areas are in the shape
of a cone with a certain thickness along the y-axis and length along the x-axis. With no cold-start bias,
all the cones are almost centered on the ratio of 1.0, which says that the sample estimates correctly
predict the full trace MPI (on average). The left-most edge of each cone represents a single sample; the
thickness of the edge is the interval where 90% of the single-time-sample MPI estimates fall. Shorter
sample lengths produce longer cones because a single sample is a smaller portion of the full trace data.
The distinctive cone shape is produced because adding more samples (i.e. using a larger portion of the
full trace data) reduces the variance of the aggregated MPI estimate. Note that the cone thickness may
not strictly decrease with increasing fractions of the trace data because each estimate captures different

. . . . 1
execution phases for each fraction. The cone thickness decreases by approximately a — factor as the

Nn

number of sample:s19 (n) increases because the standard deviation of the sample mean decreases at

19. The number of samples at a given fraction of the trace data is the distance from the left end of the
cone. The number of samples at the right end of each cone is 30 one hundred million instruction samples and

80

approximately that rate.

Unbiased INITMR Estimates

J lll”lll i IIIHIII 1 llll”ll LI R BLLLR!

1 Million Instructions

10

1 llllllll ¥ llll”ll 1 IIIHH' LB

L DL R AL
L L LA

10 Million Instructions

Illllll

Ratio of Sample Estimate to Full Trace MPI
1

- 100 Million Instructions -
! Ll s 1l Lol fded JEELL v ond il NN BN
@ 0.001 0.01 0.1 1 0.001 0.01 0.1 1
Fraction of Full Trace Data Fraction of Full Trace Data

Figure 4.5. Accuracy of Time Sampling with Mult1.2.

This figure has areas (cones) for different sample lengths from the Multl.2 trace showing the accuracy of
time sampling for a 4-megabyte direct-mapped secondary cache. The left graph shows the unbiased accu-
racy results while the right graph is for the INITTMR Estimates. For a given fraction of the full trace data,
the enclosed interval shows where 90% of the MPI estimates fall. The left end of each area corresponds to
a single sample. The dotted lines show the mean 90% confidence intervals (upper and lower bound) for
each sample size.

Figure 4.5 also shows the average 90% upper and lower confidence bounds (dashed lines) for each
cone. Section 2.5 shows how to calculate the confidence intervals. Note that the log scale distorts the
lower bound; the average upper and lower bounds are (linearly) equi-distant from the center of their
corresponding cone. With only a few samples, the 90% confidence intervals may not successfully con-
tain the true mean 90% of the time because the MPI of the individual time samples is not normally dis-
tributed. With 30 or more samples, however, the 90% confidence intervals typically did contain the true
mean 90% or more of the time. This shows that the confidence interval techniques from Section 2.5 are
appropriate with 30 or more samples.

The shape of the cones (and their corresponding average confidence bounds) suggests the need for
many samples. At a given fraction of the full trace data, the accuracy of time sampling is the thickness
of the cone. The cone may be narrow enough (or equivalently, the variance of the sampling estimates
may be small enough) only after hundreds of samples from the Mult1.2 trace. Laha, et al., suggest that
35 samples were enough to characterize their traces [LAPI88]. The cones in Figure 4.5 suggest that, in
general, more samples may be needed, particularly for high accuracy with the shorter sample lengths.
Instead of strictly using 35 samples, it is better to have more samples as the sample length decreases to
keep accuracy (cone thickness) constant. It is intuitive that more samples should be used since, in the

3000 one million instruction samples.

81

extreme case, 35 samples of a single instruction could hardly be expected to estimate an MPI of about
one per thousand instructions. The variance of the sample MP/ estimates is slightly larger with smaller
samples because each sample includes less trace data, so more samples are needed for a desired accu-
racy. For example, with no cold-start bias, to ensure with 90% probability that the MPI error is less
than 10%, 200 samples of 1 million instructions, 65 samples of 10 million instructions, and 20 samples
of 100 million instructions may be required. This is roughly a factor of three increase as the sample
size decreases by a factor of ten.

Placing the cones for different sample lengths on the same graph in Figure 4.5 allows and exami-
nation of the tradeoffs among different sample lengths. For large fractions of the trace data with no
cold-start bias, all sample lengths give estimates near the true mean MPI of the full trace. The cones for
the shorter sample lengths are more narrow at a given fraction of the full trace data because there are
many more samples to reduce the variance of the MPI estimate. This means that a smaller fraction of
the full trace is needed to assure a given accuracy with shorter samples. In the absence of cold-start
bias, it is better to have many small samples than a few large ones because more smaller samples cap-
ture more execution phases; samples of a single instruction would give the most accurate results at a
fixed portion of the trace data.

But the cold-start bias plays an important role in time-sampling accuracy. The previous section
shows that the bias is larger for shorter samples than for long samples. Although INITMR minimizes
the bias, it does not eliminate it entirely. The graph on the right side of Figure 4.5 shows the time-
sampling results using INITMR to compensate for cold start. This graph is similar to the one with no
cold-start bias (on the left) except that the 1-million instruction cone shifts away from the value of 1.0
where it correctly predicts the full trace mean MPI (on average). This shift occurs because the cold-
start bias could not be eliminated by INITMR. INITMR may either overestimate or underestimate |,
and consequently the cones are either shifted up or down. The overall shape of the cones remains
largely unchanged, which suggests that INITMR preserves the distribution of the sample MPI estimates,
except for the bias.

Figures 4.6a and 4.6b show the INITMR cones for the rest of the traces. In Figure 4.6a, the mul-
tiprogrammed traces have similar cones to Mult1.2. The cold-start bias is larger for Mult2 and Mult2.2,
however; samples of 10 million instructions are insufficient to remove the bias in the 4-megabyte cache.
Tree gives wide cones with few samples because the sample variance is high, but the cone thins out
well because larger portions of the full trace data reduce the variance of the MPI estimate. For single
samples (the left edge of the cones), Tree has wider intervals with 10 million instruction samples than
with the 1 million instruction samples. While the range of the Tree 1 million instruction samples is
much larger than the range of the 10 million instruction samples, 90% of the 1 million samples fall
within tighter bounds because there are many more samples and more cushion for extreme sample
values.

Figure 4.6b shows that the Tv MP/ estimates also have a high variance with few samples, and the
cone thickness does not decrease as quickly as the other traces with larger trace data fractions. The
phase behavior of Tv causes this. For much of the trace, it is building its large data structure. When Tv
traverses the structure for a short time at the end of the trace it gives much worse cache performance
and there are many phase changes. It is difficult to capture the true mean performance of this final Tv
stage with only a few time samples. The Sor trace cones are abnormal because they appear asymmetric
about their center, with lower values captured in the cone. This occurs because the time samples of Sor

82

INITMR Estimates for Multl INITMR Estimates for Mult2

T l|l||ll‘[T lllllﬂ] UL RERLL T llllllf

10

T 11T}

/
S |
TTTTT
—_—

[

LR T lullll‘l T Illlllrl T llll"f

/

1
¥
1
'
L
¥
'
1
1
1

Ratio of Sample Estimate to Full Trace MPI
1

10\ =
0
"": | ll|ll|ll 1.1 lllllll [| lllllll i1 1 LLLL 1 ﬁlllllll I lllll“l 1 1 III|II| [N NEEE]
e 0.001 0.01 0.1 1 0.001 0.01 0.1 1
Fraction of Full Trace Data Fraction of Full Trace Data
INITMR Estimates for Mult2.2 INITMR Estimates for Tree
2 i1 lll"ll i1 llll"l L D | lll"ll 1 | Illlu] i ¥ l|ll|l' L B llllll' LI |I|IIII T ¢ TULHEE

LBLLILR]

-

I |

llllll

Ratio of Sample Estimate to Full Trace MPI

10 a4
"": 1 i Illll|l i l()mll 1.1 lllIlI' 1 (I i 1 Illllll [| lll()llll‘ 1 1 l|lIIlI 1 L Lttt
< 0.001 0.01 0.1 1 0.001 0.01 0.1 1
Fraction of Full Trace Data Fraction of Full Trace Data

Figure 4.6a. Accuracy of Time Sampling with Multl, Mult2, Muit2.2, and Tree.

This figure shows accuracy cones like those in Figure 4.5 for the Multl, Mul2, Mult2.2, and Tree traces.
The areas correspond to time-sample lengths of 1, 10, and 100 million instructions. The enclosed area
shows where the MPI estimates for 4-megabyte direct-mapped secondary caches fall with 90% probability.
The dashed lines show the average estimated 90% confidence interval (upper and lower bound).

83

INITMR Estimates for Tv INITMR Estimates for Sor
™TT Illnl

10

] |ll|lll| 1 llllllll T VT 1 llll”l' L) Illll"l 1 ll'lllll L IRRRL

Ll L il}
LR
1 1 111}

i
i
1

i lIIlHl

1 lllllll
1 lll'lll

0.1
1 lll“l
i llll|l
11 llllll

Ratio of Sample Estimate to Full Trace MPI

01

1 llllllll 1 IIIIIH' 1 llllllll Lkl L LLLL 1 Illlllll 1 llllllll i llllllll Ll L Liill

o 0.001 0.01 0.1 1 0.001 0.01 0.1 1
Fraction of Full Trace Data Fraction of Full Trace Data

INITMR Estimates for Lin

% i IIIIHI' i llll”l' i llllllll LR L L

LR RRL
bt 1 11l

10

T IIIIIII
1 Illllll

T
i

Ratio of Sample Estimate to Full Trace MP!

— 1 llllllll i |||nul 1 Illllll‘ I EEEET)

e 0.001 0.01 0.1 1
Fraction of Full Trace Data

Figure 4.6b. Accuracy of Time Sampling with Tv, Sor, and Lin.

This figure shows accuracy cones like those in Figure 4.5 for the Tv, Sor, and Lin traces. The areas
correspond to time-sample lengths of 1, 10, and 100 miilion instructions. The enclosed area shows where
the MPI estimates for 4-megabyte direct-mapped secondary caches fall with 90% probability. The dashed
lines show the average estimated 90% confidence interval (upper and lower bound). Note that these graphs
are at a different scale.

84

tend to have a bi-modal distribution, with either high or low MPI’s. The low portion of the Sor curve
shows that the low values occurred more than 5% of the time. The poar MPI estimates of INITTMR for
the Lin trace are evident. The cold-start bias dominates the Lin results, particularly for shorter sample
lengths, since the MPI is so low.

Cache size has a large effect on INITMR time-sampling accuracy. Figure 4.7 shows the Multl.2
cones for 1-megabyte and 16-megabyte caches. The cones are similar to the 4-megabyte cones in Fig-
ure 4.5, but their shape changes, showing the different distribution of MPI estimates for the different
cache sizes. By comparing with the INITMR results in Figure 4.5, the larger cold-start effect with
bigger caches is evident. While samples of 1 million instructions were clearly insufficient for the 4-
megabyte cache, they have a smaller bias for the 1-megabyte cache. This implies that accuracy can be
achieved with a smaller portion of the full trace data, less than that needed with the 4-megabyte caches.
The cones for the 16-megabyte cache all show a cold-start bias in Figure 4.7. This illustrates the need

for long samples to analyze these large caches, more than one hundred million instructions of the traces
considered in this dissertation.

1M INITMR Estimates for Mult1.2

16M INITMR Estimates for Mult1.2
Bl

11T

LI | lllul‘l‘

i 1 1114

1 Illllll' ¥ Illl”ll ¥ Illll”! L] lllll!g
-

1 lllll|

1

Ratio of Sample Estimate to Full Trace MPI

1 llll!lll H llIIIlll] IlHlIll Lt LLLLL

0.001 0.01 0.1 1
Fraction of Full Trace Data

1 llllllll 1 llllllll

L.l lllllll

0.001 0.01 0.1 1
Fraction of Full Trace Data

Lol il

0.1

Figure 4.7. Accuracy of Time Sampling for Different Cache Sizes.

This figure shows Mult1.2 accuracy cones like those in Figure 4.5 for direct-mapped secondary caches of
1-megabyte and 16-megabytes. The areas correspond to time-sample lengths of 1, 10, and 100 million in-
structions. The enclosed area shows where the MP/ estimates for the secondary caches fall with 90% pro-
bability. The dashed lines show the average estimated 90% confidence interval (upper and lower bound).

Since the range of the MPI estimates is as important as the interval that 90% of the estimates fall
in, Figure 4.8 shows the range of the estimates for the Mult1.2 trace. It can be considerably higher for
few samples, particularly for the shorter sample lengths. The range grows as the sample length
decreases since with shorter samples there is greater opportunity for variance. Furthermore, there are
more samples included in the statistics for the shorter samples, which increases the probability of an
extreme value. The range of an individual cone decreases as the amount of trace data increases, of
course, since more samples average together to moderate the values.

85

Range of INITMR Estimates for Mult1.2

¥ Illllll ¥ lll!l”l ¥ lllllll! L) llllll§
3

B

i

E: .
= o]
8~ 3
E -
S - NN e
s SIS z
E et
£ .
-
2s 3
s E :
5 F .
v B .
3
L Pl
ey O -l
& F 1
é 1 1 IIIIIII] 1 IIIIII‘ 1 L Illllll 1 t 111l
e 0.001 0.01 0.1 1

Fraction of Full Trace Data

Figure 4.8. Range of Time-Sampling Estimate for Mult1.2.

This figure shows Mult1.2 accuracy cones where 90% of the estimates fall, similar to those in Figure 4.5,
with the enclosing range of all the estimates. The areas correspond to the MPI estimates of a 4-megabyte
direct-mapped cache with time-sample lengths of 1, 10, and 100 million instructions.

The cones for the different workloads illustrate that obtaining accurate time-sampling results
requires solving two sub-problems: removing the cold-start bias (centering the cone about 1.0 on the
graph), and removing the sampling error (using enough samples t© be in the narrow portion of the
cone). To the first order, these problems are independent of each other; the thickness of the cone (or the
variance of the MPI estimates) is the same with or without the bias, and the cold-start bias is present for
the shorter time-samples no matter what fraction of the trace data is used. This decoupling of the prob-
lems is useful since it allows them to be solved independently. If a cold-start simulation of a sample
has more known than initialization misses and fills the cache at least half full (i.e. if it satisfies the con-
straints listed in Table 4.10 of Section 4.3.1), INITMR can remove the cold-start bias. Then, a large
enough portion of the full trace data will ensure accurate results. The problem is that the cold-start con-
straints require long time-samples, and many samples are needed to reduce the sample variance and the
thickness of the cone.

Time sampling becomes less effective for larger caches because the coid-start problem is worse.
The problem is bad enough that time sampling may not meet the 10% sampling goal for the largest
caches. Given the sample length increases needed for larger caches, and since many samples are
needed, roughly 2/3 more trace data is required each time the cache size is doubled. Accurate time sam-
pling requires much trace data with large caches. For example, with Mult1.2 (Figure 4.5), the 10 mil-
lion instruction samples must be used rather than the 1 million ones because of the cold-start bias. To
get the 10 million instruction cone within 10%, at least 10% of the full trace data is needed. Bigger

86

caches require an even larger portion of the trace data because the cold-start bias is worse. Even the
100 million instruction samples from Multl.2 were not long enough to eliminate the bias for a 16-
megabyte cache. Consequently, the sampling goal cannot be met. The need for ever-larger trace data
quantities with larger caches is a distinct disadvantage of time sampling.

In considering INITMR to this point, only its accuracy in predicting the mean MPI has been
shown. Prediction of the distribution of the individual samples is also useful to characterize the MP/
time-behavior. For the 10-million instruction samples from Mult1.2, Figure 4.9 compares the distribu-
tion of 300 INITMR MPI time-samples, the same 300 unbiased MP/ time-samples, and the unbiased
MPI of all 390 samples across the full Mult1.2 trace. All of the distributions are similar. This shows
that 300 samples can adequately characterize the full 390 samples in the trace. Furthermore, although
the samples were not long enough to receive a *’ in Table 4.10, INITMR still gives a similar distribu-
tion to the unbiased samples. This shows that INITMR preserves the MPI distribution of time samples,
even when the samples are too short.

Distribution of Time Samples for Mult1.2
i | i] | |] |] ! | i

300_INITMR
O
300_Unbiased
]
All_Unbiased
|

Relative Frequency

3.0

MPI Times 1000

Figure 4.9, Time-Sample Distributions.

This figure shows, for samples of 10 million instructions from the Multl.2 trace, the distribution of the
MPI samples for a 4-megabyte direct-mapped cache. The x-axis partitions the samples into bins based on
their MPI; a portion of all samples fall in each bin. The figure shows the distribution of all 390 unbiased
samples from the full trace, 300 unbiased samples, and the same 300 INTTMR sampies.

4.3.3. Advantages and Disadvantages of Time Sampling

The major problem with time sampling is cold start, which is exacerbated by multi-megabyte
caches. INITMR is the most accurate cold-start reduction technique considered in this chapter. It is
accurate because it predicts the initialization reference miss ratio (). A sample should fill at least half
the cache and have more known misses than initialization references for accurate INITMR estimates.
Unfortunately, these are rigorous requirements for all but the largest time-samples. One implication of
this is that cold start imposes stringent usage restrictions on an individual time-sample, similar to the
restrictions on set-samples, since the time-sample must be long enough to mitigate the cold-start bias.
For the traces used in this dissertation, a 1-megabyte cache needs samples of 1-10 million instructions.
The required sample length increases by about a factor of eight for each cache size quadrupling.

87

When time sampling eliminates the cold-start bias, enough samples will ensure accurate results.
Many samples are needed to capture adequate portions of each execution phase, even 100 or more. This
is a disadvantage as compared to set sampling since single set-samples automatically capture pieces of
each execution phase and their corresponding cache performance variations. For the traces used in this
dissertation, the number of samples should be increased by about a factor of three as the sample size is
reduced by a factor of ten. Since time sampling requires so many large samples, it is difficult to meet
the 10% sampling goal. Furthermore, the required fraction of the trace data increases with cache size,
which suggests time sampling will be even less desirable with larger future caches.

Any full trace is only a time-sample, so time sampling techniques are always useful. Time sam-
ples retain the timing of the memory references; time-dependent behavior and the interactions among
different cache sets can be modeled. Time sampling also may conform to the limitations of existing
trace gathering mechanisms. For example, the ATUM trace gathering mechanism produces short time-
samples because of finite trace buffers [AGSHS86].

4.4. Conclusions

The examination of multi-megabyte caches requires large amounts of trace data. Long traces
overcome cold start and provide the most information about a workload’s cache performance, but finite
resources make them difficult to obtain and use. Trace sampling can reduce the computation and
storage requirements of trace-driven simulation by an order of magnitude. It can give the most accurate
estimate of true mean cache performance because more cache behavior from more workloads can be
examined with a fixed tracing budget. This dissertation chapter is the first comparison of set sampling
and time sampling, two previously proposed trace-sampling techniques.

An important aspect of any sample is how flexible it is, or the range of cache configurations for
which it can be used. Both set samples and time samples have usage restrictions. A constant-bits
method that produces set samples for the largest range of hierarchical cache configurations was intro-
duced in this chapter; it selects references based on the values of their address bits (constant bits). With
a single set-sample, the explorable cache design space is well defined: set samples are useful when the
cache set-indexing bits contain the constant bits. The restrictions on time-sample usage are a little more
vague: time samples are useful when the cold-start bias can be removed. Under the widest range of
conditions, the initialization reference miss ratio estimation of INITMR gives superior cold-start bias
reduction. INITMR gives accurate results when the cache is at least 50% initialized by the sample, and
when there are at least as many known misses as initialization references. These restrictions require
long time-samples. For the workloads examined in this dissertation, a 1-megabyte cache needs time
samples of up to 10 million instructions, and a 16-megabyte cache needs time samples of 100 million
instructions or more,

For the traces used in this dissertation, set sampling produces better mean MP/ estimates with less
trace data than time sampling; set sampling met the 10% sampling goal of less than 10% errors with
less than 10% of the full trace data. Provided sample usage restrictions can be tolerated, set sampling is
better than time sampling when estimating mean cache MPI. One reason for its success is that set sam-
ples include references from many execution phases, rather than just one or a few like a single time-
sample; a single set-sample retains much of the phase-dependent cache behavior, while many time-
samples are needed to capture the same effect. Another reason for the relative success of set sampling
is the time-sampling cold-start problem, which dictates the minimum time-sample length, particularly

88

for large caches. In this study, time sampling could not meet the 10% sampling goal for the largest
caches. Time samples may only be more useful when the timing of references or the interactions
among sets is important.

This chapter simulates a variety of multi-megabyte secondary caches of different size and associa-
tivity for several different traces. The comparison shows that cache size and associativity have an
important effect on the set-sampling vs. time-sampling comparison. Both size and associativity
increases make set sampling more desirable: size increases because time sampling requires more trace
data as cache sizes increase (about 2/3 more for every cache size doubling), and associativity increases
because the conflict misses from individual sets are less likely to bias individual sample results. These
trends make set sampling extremely useful for multi-megabyte cache analysis, and even more useful for
the ever larger caches of the future.

89

Chapter 5

Memory System Design With Multi-Megabyte
Caches

5.1. Introduction

Whereas many other cache design studies focus on smaller caches, this chapter focuses on multi-
megabyte cache design. Using traces of large workloads, this chapter shows that high-performance
memory systems with multi-megabyte caches can greatly improve performance beyond what is avail-
able with smaller caches. A multi-megabyte cache at the bottom of a two-level CPU cache hierarchy
reduces the main memory access frequency required to support processor references, and consequently
eliminates most of the performance loss due to cache misses, even when each miss is very expensive.
Together with faster primary caches that service most references, multi-megabyte secondary caches can
allow even the fastest processors to execute near their maximum speeds.

This chapter finds many similarities between the design of multi-megabyte caches and smaller
caches, as well as many differences. For multi-megabyte caches, the results of this chapter confirm that
2-way set-associativity gives much of the performance benefits of higher associativities, which was
well-known for smaller caches [HILS89]. As a striking difference, the results also show that the perfor-
mance improvement from doubling associativity is smaller than the improvement from doubling the
size of a direct-mapped cache; this contradicts Patterson and Hennessy’s 2:1 rule of thumb for smaller
caches [HENP90]. This chapter finds that set-associativity is most necessary in a secondary cache when
the cache is not much larger than its primary caches. It also shows that direct-mapping performs so
well with the largest caches (e.g., caches that are 32 or more times the primary cache size) that an
increase in associativity beyond direct-mapped could worsen performance; this extends the work of Hill
[HILL87, HILL88] and Przybylski [PRZY88, PRHHS9], who showed that direct-mapping outperforms

S0

higher associativities in large primary caches (e.g., greater than 64-kilobyte). This chapter shows that
non-random replacement policies eliminate many cache misses in some workloads, but few in others, so
random replacement may still be preferred because it is easy to implement. This chapter also finds that
equalizing the memory access and transfer time latency components usually gives a near-optimal block
size, a result that Przybylski [PRZY90] and Smith [SMIT87] showed for smaller caches. Finally, this
chapter discusses the implementation of hardware multi-level inclusion in a uniprocessor system.

Trace-driven simulation results from the traces described in Chapter 3 form the basis for the
analysis of this chapter. Section 5.2 examines the need for muiti-megabyte caches, emphasizing the
reduced memory traffic that they allow. Section 5.3 motivates the hierarchical cache configuration that
is assumed throughout this dissertation, the one depicted on the far right in Figure 1.1. (Section 2.2
gives definitions and default parameters of caches.) This chapter uses the SCP/ cache performance
metric, introduced in Section 2.4, because it is important to add timing to the MP/ estimates obtained
from the previous chapters when comparing alternative cache designs. Section 5.4 discusses primary
cache design considerations. Section 5.5 shows the affect that different cache sizes can have on the pro-
cessor stall time, pointing out the affect of main memory speeds, workload choice, and cache speed
degradation on preferred cache size. Section 5.6 considers alternative secondary cache associativities
and Section 5.7 considers different cache block sizes. Section 5.8 considers the implementation of
multi-level inclusion. Section 5.9 summarizes the results of this chapter.

5.2. Importance of Multi-Megabyte Caches

With faster processors and expanding main (DRAM) memory sizes, the design of a memory sys-
tem to satisfy processor demands becomes a more difficult problem. Future processors will be able to
execute 100 or more operations during the same time it takes to service a single main memory refer-
ence, so the slow main memory access time can dominate processing speeds unless main memory
accesses are rare. Future main memories will grow to hundreds of megabytes and more, so it is inevit-
able that future applications will reference much more memory, especially since faster processors allow
larger problems to be solved. This section shows that multi-megabyte caches require only very infre-
quent main memory accesses, which allows them to satisfy the challenging requirements of future com-
puting environments. The next section shows how cache hierarchies can provide the fast access times
of a smaller cache together with the low main memory access requirements of multi-megabyte caches.

For the traces described in Chapter 3, Figure 5.1 shows the ratio of the main memory traffic with a
4-megabyte cache divided by the main memory traffic without a cache inserted between the processor
and the main memory. (When there is no cache, every instruction requires at least one main memory
access.) The main memory traffic reduction of multi-megabyte caches has two components: access fre-
quency reduction and bandwidth reduction. The access frequency is the number of times that a contigu-
ous block of memory is either read or written (the secondary cache is write-back, so all main memory
accesses either read or write large blocks). The access bandwidth is the number of data words that the
main memory either reads or writes (excluding address and control information). Both traffic reduction
components are important to the performance improvements obtained with multi-megabyte caches.
Frequency reduction may be more essential than bandwidth because bulk data transfers are often con-
siderably more efficient than smaller, more frequent, data transfers.

The results in Figure 5.1 show that the multi-megabyte cache greatly reduces access frequency for
each trace; the access frequency with the multi-megabyte cache relative to the access frequency without

91

Memory Traffic After Multi-Megabyte Cache

2 033 ! ! l l | 21 I
3 03|
2
5 0.25 - (>5. g
z o2 O:@3
S g g
5] 0.15 - = /M
-
2
= 0.1p
[+
jo} .
g 0.05 0.02
~ 0 0. 7y 0.
M Mul22 Muli2

Trace

Figure 5.1. Memory Traffic Reduction With Multi-Megabyte Cache.

This figure shows the memory access frequency and bandwidth reductions with a 4-megabyte cache
memory for the traces of this study. It shows the ratio of results relative to the values without a cache in-
serted between the processor and memory, including both instruction accesses and data accesses. The
cache is direct-mapped with a block size of 128-bytes, and is write-back.

the cache is usually too small to see. The cache reduces bandwidth to a lesser extent because each main
memory access occurs as the result of a cache miss, so each access involves the transfer of entire cache
blocks, which are considerably larger than the single-word loads and stores required by the processor.
Nevertheless, the 4-megabyte cache often gets a factor of 20-50 bandwidth reduction, and always
reduces the access frequency by more than a factor of 100. The Sor trace gives traffic ratios that are
considerably larger than the other traces. This shows the poor Sor cache performance, which will
become more evident as this chapter progresses.

This is the first study to analyze multi-megabyte caches, perhaps because they have not become
cost-effective and necessary until recently. Traffic reductions like those shown in Figure 5.1 are
required when main memory access times are high enough and cannot be overlapped with other useful
work. Smaller caches cannot achieve these traffic reductions with these large workloads. This chapter
examines the design alternatives and requirements of these multi-megabyte caches.

5.3. Importance of the CPU Cache Hierarchy

Multi-megabyte caches reduce main memory traffic, but that alone is inadequate for a high-
performance memory system. A multi-megabyte cache has a much faster access time than main
memory, but it is not fast enough. Figure 5.2 shows the multi-level cache configuration introduced in
Chapter 1 that solves this problem. This multi-level structuring solves the speed problems of the
multi-megabyte cache because the faster primary CPU caches service most references, and the muld-
megabyte secondary cache services only the misses in the primary caches. The primary instruction
(ICACHE) and data (DCACHE) caches are split so that they can concurrently service both an instruc-
tion and data access, but both primary caches share the use of a unified multi-megabyte secondary cache
(SCACHE). A main memory reference occurs only when there is a miss in both the primary and the
secondary cache. This hierarchical structuring bypasses the speed limitations of multi-megabyte

92

caches, yet it retains their storage capacity (and infrequent misses). Of course, adding another level also
increases the complexity of the design since the interactions between all elements of the memory sys-
tem must be considered. The need for ever-faster memory accesses outweighs the disadvantages of

increased complexity, however, and multiple levels of CPU caches are certain to be prevalent in many
future designs.

7 Y

ICACHE | |DCACHE| | Frimary

Secon
Cacggry

(SCACHE)

Main
Memory

Figure 5.2. The Simulated Cache Configuration.

This figure represents the assumed cache configuration used throughout this dissertation. It consists of split
primary (level 1) instruction (ICACHE) and data caches (DCACHE) backed up by a shared secondary

(level 2) cache (SCACHE) and main memory. (It is the same configuration depicted on the far right in
Figure 1.1).

Other recent studies focus on CPU cache hierarchies for bridging the CPU-main memory speed
gap [BUKB90, PRHH89, SHOL88, WABL89]. While implementation technology demands a multi-level
cache hierarchy, often with small primary caches and larger secondary caches, a cache hierarchy alone
is not adequate to ensure good performance. Without a multi-megabyte secondary cache, a hierarchy
will not sufficiently reduce main memory access frequency. This dissertation focuses on hierarchies
including multi-megabyte secondary caches at the bottom.

A great many options become available to CPU cache designers when considering multiple-levels
of caches, too many to be immediately examined. In practice, structural constraints often dictate por-
tions of the design. For example, if the primary caches are constrained to reside on the processor chip,
their size may be fixed for a given processor implementation. This study restricts the primary caches to
32-kilobytes each. This restriction is appropriate since a design using commercially-available proces-
sors, or any fixed-primary-cache processor design, would be similarly constrained. This study also only

93

considers direct-mapped primary caches, as advocated by Hill [HILL88] and Jouppi [JOUP89]. This
dissertation further prunes the design space by considering only two-level hierarchical configurations.
For the near future, two levels in the CPU cache hierarchy will be both practical and useful since they
provide the advantages of a multi-level hierarchy, limit the complexity, and fit well with the physical
design of computer systems.

The focus of this dissertation is on secondary multi-megabyte cache design, not primary cache
design or hierarchy design. Though this dissertation considers only a limited range of the multi-level
cache design space, many results also apply to many different hierarchies. Provided the secondary
caches are large compared to the upstream caches, secondary cache performance is largely independent
of the number of hierarchy levels or the particular primary cache configuration [PRZY88].

5.4. The Primary Caches

Table 5.1 shows local miss ratios (misses divided by references) and SCPI (stall cycles per
instruction) components for the data and instruction caches of 32-kilobytes each with block sizes of 32-
bytes. Section 2.4 of Chapter 2 discusses the advantages of the cache performance metrics MPI (misses
per instruction) and SCPI. SCPI factors in both the cache reference frequency and timing so that the
effect of cache misses is evident. The results for the different traces show that the miss ratio of the
instruction cache is consistently smaller than the miss ratio of the data cache. However, since the pro-
cessor uses the instruction cache more frequently than the data cache (loads and stores are only 40% of
the instructions), the effect of the instruction cache misses on processor performance (SCPIicacHE) 18
considerably closer to that of the data cache (SCPIpcacug)- This is one indication that (local) miss ratio
can be a misleading indicator of the performance effects of a cache. Both MPI and SCPI correctly
account for the cache access frequency and the fraction of accesses that cause misses, allowing the
effect of misses on performance to be properly characterized. Miss ratio may obscure the cache access
frequency and give a misleading characterization. Therefore, this dissertation uses MPI and SCPI rather
than miss ratio. This chapter uses SCPI in many cases to compare alternative cache configurations
because it includes the timing behavior of a cache, as well as the miss frequency. This is important
because the timing may change with different cache configurations.

The data in Table 5.1 shows that the SCPI components resulting from the primary caches can
reach a value of 0.2 although the cache sizes are 32-kilobytes each. While it is not the major focus of
this thesis, primary cache design is important to the performance of the memory system hierarchy. For
the Mult1.2 trace, Figure 5.3 emphasizes the contributions of each cache in the hierarchy by showing
the fraction of SCPI that is a result of the misses from each component of the hierarchy. Clearly, a large
portion of SCPI results from the primary caches. Their contribution to overall memory system perfor-
mance should not be ignored.

Recognizing the importance of primary caches to memory system performance, several recent
studies propose enhancements to primary cache design that allow processors to realize their high perfor-
mance potential. For primary caches, particularly instruction caches, prefetching may be used to over-
lap the latency of secondary cache accesses with useful work. Smith [SMIT82] describes several pre-
fetching options, some of which were examined by Hill [HILL87]. Farrens and Pleszkun [FARP89]
advocate the use of queues that allow instructions to be fetched before they are used. Jouppi [Joupr90]
advocates stream buffers that prefetch sequential locations after cache misses. Jouppi also introduces
victim caches, small fully-associative buffers to eliminate conflict misses in direct-mapped caches, and

94

Local Miss Ratio of Primary Caches
Trace ICACHE DCACHE
Multl 0.0055 0.0202

Multl.2 0.0058 0.0171
Mul2 0.0061 0.0196

Mul2.2 0.0055 0.0176

Tv 0.0026 0.0444
Sor 0.0000 0.0613
Tree 0.0049 0.0248
Lin 0.0000 0.0070
SCPI For Primary Caches

Trace S CP / ICACHE S CP / DCACHE
Multl 0.06 0.10

Mult1.2 0.06 0.08
Muir2 0.06 0.08

Mult2.2 0.06 0.07

Tv 0.03 0.17
Sor 0.00 0.23
Tree 0.05 0.12
Lin 0.00 0.04

Table 5.1. Primary Cache Performance.

This table shows the local miss ratios (top) and SCPI components (bottom) for the primary instruction and
data caches (Tmissicacue = Tmisspcacue = 10). (Section 2.4 of Chapter 2 defines SCPI and Tmiss.) The
MPI of this configuration for these traces is SCPI/10 (and is also given in Figure 3.7 of Chapter 3).

Figure 5.3. Portions of SCPI for Multl.2.

This figure shows the division of SCPI of 0.21 into components due to instruction, data, and secondary
cache misses for Multl.2. The secondary cache is direct-mapped of size 4-megabytes with a block size of
128-bytes.

finds them particularly useful for data caches. Data cache design becomes more difficult and important
as processors are fast enough to execute more than one instruction during the time it takes to access the
cache memory. Sohi and Franklin [SOHF91] introduce a lockup-free [KROF81] primary data cache
organization that meets processor data memory bandwidth requirements under such conditions. These
studies show that primary cache design should not be neglected.

95

5.5. Secondary Cache Size Choice

Perhaps the most important secondary cache design consideration is size. The advantage of a
larger cache is a lower MPI. Unfortunately, a larger cache also has a higher cost, requires more space,
and has a slower access time than a smaller cache. This section examines these tradeoffs. Section 5.5.1
considers the effects of slower main memory access times, shows that a larger cache is desired, but does
not factor in the implementation considerations of a larger cache. Section 5.5.2 shows that the desired
cache size depends on the workloads executed on the machine. Finally, Section 5.5.3 factors in some
implementation considerations of cache size increases, for a more balanced perspective of the perfor-
mance implications of cache size increases.

5.5.1. Effect of Processor-Main Memory Speed Gap

As processor speeds increase relative to the access times of main (DRAM) memories, main
memory accesses become more costly. If techniques cannot be developed to eliminate or overlap these
large latencies, a high performance memory system must reduce the frequency of main memory
accesses or they will dominate processor performance.

Figure 5.4 shows that the reduced MPI of multi-megabyte caches becomes more essential as the
main memory access time increases. For the Mult1.2 trace, the figure shows the SCPI values for dif-
ferent cache sizes with Tmiss ranging from 30 to 200 cycles. The results make the optimistic assump-
tion that the secondary cache access time is independent of cache size (Tmissicacye and TmisSpcacHE
are constant, unlike Section 5.5.3). Note that SCPI does not approach zero with increasing cache size
because the primary cache misses also contribute a portion of the SCPI. (Table 5.1 shows that
SCPIicacur and SCPIpcacyg sum to 0.14 for Multl.2.)

The magnitude of Tmissscacyg is crucial to the secondary cache size choice. While a system with
a 128-kilobyte secondary cache might provide a sufficiently low SCPI with Tmissscacue = 30, cache
sizes of 1-megabyte or more are required for similar performance with the higher main memory access
times. For example, as the dotted lines in Figure 5.4 show, more than a 1-megabyte cache is needed for
the same SCPI as a 128-kilobyte cache as Tmissscacyg increases from 30 to 100 cycles. This is more
than a factor of eight size increase. Similarly, the cache size must be at least 4-megabytes for the same
SCPI when Tmissscacyr increases to 200 cycles.

Tmissscacye consists of several components. The first portion, and perhaps the largest, is the
fixed latency of a memory access. This is the part that is independent of the amount of data transferred
(the block size). It includes the time to send the address to the main memory, cycle the memory array,
and return the first portion of the data. The second portion of Tmissscacye is the time required to
transfer the remaining portion of the cache block, which depends on the bandwidth of the cache-main
memory interconnect and the block size. Queueing delay also could be a large portion of the main
memory access time. The combination of these factors can lead to delays of hundreds of cycles for fast
processors. Tmissscacye could easily be 100 cycles when each cycle is five nanoseconds or less. In
multiprocessors, the cache miss latency only gets worse.

The secondary cache needs to be large enough to make SCPI small. An SCPI of 0.5 will slow a
processor that executes a single instruction per cycle, and it will devastate the performance of a proces-
sor that executes multiple instructions per cycle. That is, the memory system becomes the performance

bottleneck as processor speeds increase, so a small SCPI reduction can greatly improve processor per-
formance.

96

0.8

SCPI

| | L. ! L. | J
128 256 512 1024 2048 4096 8192 16384

Secondary Cache Size (Kilobytes)

Figure 5.4. Effect of Miss Penalty on SCPI for Mult1.2.

This figure shows the Stall Cycles Per Instruction (SCPI) versus the secondary cache size for the Multl.2
trace With various main memory access times (Tmissgcacye = 30, 100, and 200 Cycles). The direct-
mapped secondary caches have block sizes of 128-bytes.

5.5.2. The Effect of Workload Choice

The type of programs for which a memory system is being designed have a large effect on its
design. If working set sizes are no more than 512-kilobytes, a 512-kilobyte cache may be more than
enough to provide good performance. On the other hand, a program that references large amounts of
memory with poor locality will perform poorly with a small cache. Since the traced workloads used in
this dissertation reference large amounts of memory, this study favors larger caches. This bias was
intentional since the appearance of larger main memories (100-megabytes and more) is expected to
bring larger workloads. As more resources become available, users naturally adjust to utilize them,
both by increasing the size of previous applications and by creating new applications.

Figure 5.5 shows the difference in performance for the different workloads captured in the traces.
There are large differences in SCPI that result from the various memory reference behaviors included in
the trace data. The Sor trace has the worst performance, its SCPI is much higher than for the rest of the
workloads. Sor operates on representations of large, sparse, matrices. This leads to large locality sets.
It is widely accepted that caches perform poorly with scientific workloads. A counter-example to this
generalization is Lin. Lin is another scientific program that uses sparse matrices, yet gives good cache
performance because it has much higher locality. This shows that scientific workloads are not always
hard on caches; SCPI depends on the locality of the workload.

One could argue that the Sor workload is not an average workload, and one might even argue that
its SCPI is pathological. Even so, the Sor results point out one important fact: when choosing a secon-
dary cache size, the applications that can efficiently execute on the system are also being chosen. The
Sor workload would perform poorly on a system with only a 1-megabyte secondary cache (and the 100

97

SCPIL

128 256 512 1024 2048 4096 8192 16384
Secondary Cache Size (Kilobytes)

Figure 5.5. Effect of Workload on Cache Size Choice.

This figure shows the Stall Cycles Per Instruction (SCPI) versus the secondary cache size of the different
traces considered in this study. The secondary caches are direct-mapped with block sizes of 128-bytes and
TmiSSSCACHE = 100.

cycle secondary miss penalty), while the multiprogrammed workloads perform well. If scientific appli-
cations like Sor are expected, a larger cache size might be preferred.

Figure 5.5 shows that multiprogramming does not necessarily lead to poor cache performance.
The multiprogrammed traces give the second lowest SCP/ overall, below the uniprogrammed Sor, Tv,
and Tree SCPI results. The SCPI of the multiprogrammed traces are almost the same, probably because
of the similarity of the traced workloads. Mult1.2 (Mult2.2) has a slightly lower SCPI than does Multl
(Mult2), showing the well known result that cache efficiency improves with increasing process switch
interval [SMIT82]. This is fortunate since switch intervals are likely to increase with the faster proces-
sors of the future. However, with hundreds of thousands of instructions executed between process
switches, the locality of the workload is a more important determinant of cache performance than the
process switch interval. Multl (Multl.2) has a higher multiprogramming level and more memory
active at any time than Mult2 (Mult2.2), which gives it slightly higher SCPI values.

5.5.3. Effect of Speed Degradation With Larger Caches

Not surprisingly, since there was no penalty to increasing the cache size, the results in Figure 5.5
shows that SCPI is minimized with larger caches. But larger caches tend to be slower than smaller
caches because they have a wider fanout and fanin. This speed degradation of larger caches can be

98

factored into the SCPI model by increasing the access time of the larger secondary caches. This section
starts by considering the SCPI with different caches if there is a 10% access time increase for each dou-
bling of the cache size. Figure 5.6 shows SCPI versus the cache size with the 10% degradation per per
secondary cache size doubling. The results are similar to Figure 5.5, except that the SCPI increases
with larger caches.

"
o~
4

SCPI

Y T 2 d
128 256 512 1024 2048 4096 8192 16384
Secondary Cache Size (Kilobytes)

Figure 5.6. Effect of 10% Speed Degradation Per Cache Size Doubling.

This figure shows the Stall Cycles Per Instruction (SCPI) versus the secondary cache size of the different
traces considered in this study. The secondary caches are direct-mapped with block sizes of 128-bytes and
Tmissscacuye = 100. The latency of a secondary cache access increases by 10% with each doubling of the
secondary cache size (Tmissicacye and Tmisspcacne are eight cycles for the 128-kilobyte cache and in-
crease by 10% each time the cache size is doubled).

In Figure 5.6, many traces show SCPI reaching its minimal value at a cache size below 16-
megabytes, usually 8-megabytes. With a 10% degradation in secondary cache access time per size dou-
bling, a 16-megabyte cache would probably not be preferred over an 8-megabyte cache. The 8-
megabyte cache does not minimize SCPI for all the traces, however. Tv and Sor have monotonically
decreasing SCPI values with increasing cache size, even with the 10% speed degradation. For those
two workloads, the advantage of the reduced MPI always outweighs the slower access time of larger
secondary caches (up to 16-megabytes).

An alternative way to examine the access time and miss reduction tradeoffs is to find the max-
imum access time penalty that can be tolerated in a larger cache while keeping SCPI constant. Using
the parameters of the SCPI model, the question is: by how much can Tmissicacue and TmisSpcacHEe

99

increase as the cache size is doubled (while SCPIscacyr decreases) so that SCPI does not increase as a
result? This is the break-even access time penalty, Tpreakeven- (Przybylski also uses a breakeven
analysis [PRZY88].) Of course, for an implementation of the larger cache size to be preferable, the
actual implementation time penalty should be considerably smaller than Tp,.okeven SO that SCPI is
smaller with the larger cache. Tpyeqieven iS @ useful measure showing the access time tolerance as the
cache size is doubled.

The break-even access time penalty is simply calculated using the formula for SCPI. The higher
secondary cache access times can be equated to the fewer main memory access times as in the follow-
ing equation:

(MPIicacue +MPIpcachE) T breakeven = TMissscacneAMPIscacuE (.1

where Tpreakeven iS the break-even access time penalty and AMPlIscacpg is the decrease in MPlscachr
with the larger cache size. This can then be solved for Tpreateven. Note that this calculation assumes that
Tmissscacue i not adversely affected by the cache speed slowdown, only Tmissijcacye and
Tmisspcacye increase. That is, the latency of a secondary cache access increases, but the latency of a
secondary cache miss does not with a cache size doubling.

Figure 5.7 shows Tyreakeven fOr different secondary cache sizes with the different traces (as a per-
cent of the normal secondary cache access time of ten cycles). Some break-even penalties are more
than 100%, indicating that the secondary cache access time could be doubled to twenty cycles when a
cache size doubling and the SCPI would still be reduced. This suggests a performance improvement for
larger cache sizes, even if the access time of the secondary cache is substantially worsened.

For most of the traces, Thyeakeven decreases with increasing cache size. This shows the decreasing
need for larger caches as the cache size is increased. As SCPlscacye becomes a smaller and smaller
portion of the total SCPI, SCPI shrinks by a smaller amount when doubling the cache size. Then, the
smaller MPI reduction cannot compensate as much for a slower access time.

For the Tv, Sor, and Lin traces, Threakeven d0€s not monotonically decrease with cache size. Inter-
mediate cache sizes instead maximize Tiyegkevens ANd Threakeven is lower for the smaller and larger cache
sizes. This abnormal behavior is because AMPIscacug is not constant. AMPIgcacne is maximized at
the intermediate-sized caches, while the smaller and larger caches have lower AMPIscacyg values. At
the intermediate cache sizes, MPlgcacue drops precipitously because the cache suddenly holds the
working set, and SO Tpregheven 1S large.

Figure 5.7 shows that, particularly for the smaller cache sizes, Tpreakeven is slightly smaller for the
multiprogrammed workloads with longer process swiich intervals. This shows that a longer interval
reduces the need for a larger secondary cache.

5.6. Secondary Cache Associativity Alternatives

Another important secondary cache design consideration is the associativity of the cache, or the
number of locations where a given block can reside in the cache. This section examines the effect of
different associativity implementations. The structure of this section is much like the previous one
(5.5). Section 5.6.1 shows the SCPI improvement produced by associativity if there is no access time
implementation penalty of increased associativity. Section 5.6.2 shows the MPI improvement of
sophisticated replacement policies. Section 5.6.3 brings in the timing considerations of associativity
increases. Finally, Section 5.6.4 considers inexpensive implementations of set-associativity.

100

250
1

aS0r

200
|

, 150

Maximum Access Time Penalty (Percent)

128 256 512 1024 2048 4096 8192
Secondary Cache Size (Kilobytes)

Figure 5.7. Break-Even Access Time Penalties for Cache Size Doubling.

This figure shows break-even access time penalties (as a percent of the secondary cache access time) for
doubling the cache size. This is the maximum percentage that Tmissjcacye and Tmisspcacyg can be in-
creased beyond ten cycles when the cache size is doubled that does not allow SCPI to increase
(Tmissscacye =100). A value of 100% implies a cache of twice the size and a twenty cycle access time
will give the same SCPI. The secondary caches are direct-mapped with block sizes of 128-bytes.

5.6.1. The Usefulness of Associativity

There is more mapping flexibility with a set-associative cache than with a direct-mapped cache.
This flexibility provides the motivation for set-associativity: a lower MPI. The motivation is strong for
secondary caches. Primary caches satisfy most of the processor references, but the rest must be serviced
by the secondary cache. This makes the (local) miss ratio of secondary caches much higher than a pri-
mary cache of the same size [KEJL89, PRHH89]. Higher secondary cache associativity can satisfy a
larger portion of the primary cache misses. Since the major task of a secondary cache is to reduce the
MPI, it may seem that higher associativity is clearly advantageous. However, the potential disadvan-
tage of increased associativity is a slower access time, and probably more hardware, since more cache
block frames must be searched on a given access. A slower secondary cache access time may only be
affordable because the secondary caches are accessed less frequently than the primary caches.

To consider the potential of associativity, Figure 5.8 plots SCPI versus the cache associativity for
a range of secondary cache sizes with the Mult1.2 workload. These results make the optimistic assump-
tion that associativity and cache size changes cause no increase in secondary cache access time (Section
5.6.3 factors in some implementation timing considerations); the only changing parameter in these
results is the MPI. As expected, higher associativities reduce the MPI and thus reduce the SCPI.

The results in Figure 5.8 show that, for the Mult1.2 trace, associativity substantially reduces the
SCPI of the smaller caches, but, is less useful for the larger caches. The higher MPI in the smaller
caches leaves much opportunity for associativity miss elimination. With the larger caches, however,
associativity is less needed since direct-mapped caches already perform well. This conclusion is

101

Ve

= | i |

i -

o %

—x128K

il \

o ~——€256K
Bl ' —512K
& 0\\@‘

_ 1M
v % SishSM
g . w—
i]]
< 1 2 4
Associativity

Figure 5.8. Performance Over a Range of Associativities.

This figure shows the Stall Cycles Per Instruction (SCPI) versus cache associativity for the Multl.2 trace
over a range of cache sizes. The block size of the secondary caches is 128-bytes. The results make the op-
timistic assumption that associativity and cache size changes do not increase secondary cache access time.

consistent with several studies of non-hierarchical configurations [HILL88, PRHH88]: once the (local)
miss ratio becomes sufficiently low, there is not much performance gain from higher associativity.
While associativity is worth considerable design effort for the smaller caches, with a larger cache the
effort is less necessary (for this trace and these parameters). Were the main memory access time or the
MPI higher, however, a different decision might be reached.

The 2:1 “‘rule of thumb’’ says that a cache size doubling and an associativity doubling produce
about the same direct-mapped cache performance improvement [HENP90]. The Mult1.2 results in Fig-
ure 5.8 (and Chapter 3) are a counter-example to this rule. They show that a cache size doubling
changes the direct-mapped SCPI by about 50% more than an associativity doubling does. The key rea-
son for this contradiction is that multi-megabyte caches index to thousands of sets with little contention.
Virtual-indexing spreads memory locations evenly across the cache, which makes associativity less
beneficial and necessary. Chapter 6 introduces software techniques that make a real-indexed cache per-
form like a virtual-indexed one, in which case a real-indexed cache also violates the 2:1 rule. Multi-
megabyte caches do not follow the 2:1 rule because they have little cache contention and, consequently,
less need for associativity. This is different from the results of previous studies focusing on smaller
designs [HENP9O].

102

For all traces, Table 5.2 shows the SCPI for 1-megabyte caches of varying associativities. The
other traces have similar associativity improvements to those for Mult1.2, though there are large varia-
tions for the different workloads. Again, the Sor trace stands out. It gives a considerably higher SCP/
which does not decrease with associativity because of its looping references.

SCPI For Different Traces
Trace Secondary Cache Associativity
Direct-Mapped 2-Way 4-Way
Multl 031 0.27 0.26
Mult1.2 0.28 0.26 0.25
Mult2 0.27 0.24 0.24
Mul2.2 025 0.23 022
Tv 046 043 043
Sor 1.71 1.69 1.68
Tree 0.39 0.35 0.35

Table 5.2. Effects of Associativity on Cache Performance.

This table shows SCPI values for 1-megabyte secondary caches. It holds all parameters other than cache
associativity constant.

The 2-way SCPI results are about 10% better than the direct-mapped SCPI results, given the
optimistic implementation assumptions. For the 1-megabyte cache with random replacement, an
increase to 4-way set-associativity does not substantially reduce SCPI. This illustrates an important
point that has also been observed for smaller caches [HILS89]: 2-way set-associativity eliminates many
direct-mapped cache conflicts. An associativity increase beyond 2-way provides only modest reduc-
tions in the cache MPI. The next section examines whether a more sophisticated replacement policy
can further improve the performance of set-associative caches.

5.6.2. Replacement Policy Effects

Associativity allows some freedom when choosing where a block will reside in the cache. With a
direct-mapped cache, each block can reside in exactly one frame. With higher associativities, any of the
block frames in the set can hold the block. The added flexibility of associativity thrusts more responsi-
bility on the cache decision making. On a miss, the cache must choose a frame to hold the block. Nor-
mally, the cache must replace another block from the set since all frames are used. The cache replace-
ment policy chooses the block from the set that will be replaced.

Two common replacement policies are random and least-recently-used (LRU) [HENP90]. This
dissertation uses random replacement because it is simple and requires no state information. Random
chooses a random block in the set for replacement. LRU, on the other hand, chooses the block whose
last reference was furthest in the past. LRU requires information about the past references to the set to
make its replacement decision. Since past reference patterns are good predictors of the future, LRU can
significantly reduce the MPI, particularly with workloads that have good locality of reference. How-
ever, the need for storing and updating the LRU information is a disadvantage.

With hierarchical cache configurations there are more replacement policy options than with a sin-
gle level of caches. For example, the secondary cache replacement decisions can be based locally on
the references to the secondary cache; alternatively, the primary cache references may also be a factor.
The options are: should the LRUth block be the last block referenced (locally) in the secondary cache or

103

the last block referenced (globally) by the processor? Note that the two options are different because
the primary caches filter out processor references before they reach the secondary cache. The first
option (local) is easier to implement since only secondary cache references change the set LRU state.
However, the second option (global) may lead to better replacement decisions.

This section compares four replacement policies that were chosen for their intuitive appeal and
implementation simplicity. The first is the simple random policy. The second is a simple LRU policy
based on the local secondary cache references. The third is the same LRU policy, except that write-
backs (from the data cache to the secondary cache) do not affect the LRU ordering of a set. Intuitively,
write-backs should not update the LRU information because they are only a result of primary cache
replacement and are not directly a part of the processor reference stream. The final replacement policy
considers information about primary cache contents. Inclusion-random replaces a random secondary
cache block that is not held in the primary caches?’.

Table 5.3 shows the fraction of the random replacement misses that are eliminated by the final
three replacement policies. The results show that the performance of LRU is largely independent of
whether write-backs update the LRU information. While the MPI’s were improved slightly when
write-backs did not update LRU information, the difference was not significant enough to appear in the
results in Table 5.3.

LRU replacement gives a substantial MP/ reduction for the multiprogrammed traces in Table 5.3.
This is probably because the smaller multiprogrammed processes reference only a small portion of the
cache, so LRU could hold a number of them in the cache at the same time. But the MPI improvement
is modest for the uniprogrammed traces. In fact, LRU increases the Lin MPI compared to random. For
the other (non-Lin) uniprogrammed traces, LRU has only a small advantage over random replacement.
Overall, it is not clear whether it is worth the extra effort to implement LRU replacement in a 4-
megabyte secondary cache. The choice depends on whether behavior like the multiprogrammed or
uniprogrammed traces will predominate.

Table 5.3 shows that inclusion-random improves MPI slightly relative to random replacement.
Though this shows that it is better not to replace secondary cache blocks that are (at least partially) held
in the primary caches, inclusion-random requires considerable design complexity beyond simple ran-
dom replacement, so it is probably not worthwhile for its MPI reduction alone. However, much of this
complexity is already required with inclusion. The motivation for inclusion is more than simply MPI
reduction. Section 5.8 discusses inclusion.

5.6.3. Effect of Speed Degradation With Associativity

The Figure 5.8 results did not have any increased access time effects of associativity. Increasing
associativity may increase the cache access time [HILL88]. A speed degradation with higher associa-
tivity can be factored into the SCPI equations by increasing the secondary cache access time with
increased associativity, just like Section 5.5.3 included the latency increase of a cache size doubling.
Figure 5.9 shows the SCPI for different associativities with a 10% speed degradation for each associa-
tivity doubling. (Hill discusses some associativity implementations that increase the direct-mapped

20. If the primary cache holds all blocks in the set, the simulator chooses a random block for replacement.
Note that since the primary cache block size is smaller than the secondary cache block size, the primary
cache holds only a portion of blocks at any time.

104

Miss Reduction of Replacement Policies
Policy

Trace AsSOC | ; oy LRUNO INCRAND
7 0% 10% %
Mulcl 4 13% 13% 3%
7 % 1% 3%
Multl2 15% 15% 3%
7) 1% 11% %
Mule2 4 13% 13% 3%
o) 0% 10% 3%
Mul22 13% 13% 2%
Tv 3 2% 2% 0%
4 2% 2% 0%
7 3% 3% 1%
Sor 4 5% 5% 0%
o) 5% 5% 7%
Tree 4 6% 6% 1%
= 7 2% 2% 0%
4 | -10% -10% 1%

Table 5.3. Improvement of Replacement Policies.

This table shows the miss reduction of several replacement policies for 2-way and 4-way 4-megabyte set-
associative secondary caches. The miss reduction is the random replacement misses eliminated by the pol-
icy. LRU is a secondary-cache-local least-recently-used replacement policy. Some global LRU sample
results were well under 1% different from the local results here. LRUNO is the same as LRU except
write-backs do not adjust the LRU lists. INCRAND is random replacement except blocks with copies in
the primary cache are not replaced.

access time by about 10% [HILL87].) The results are for 4-megabyte secondary caches.

Figure 5.9 shows that direct-mapped secondary caches gave the lowest SCPI for all traces except
Multl. The MPI reductions of associativity were not substantial enough to overcome the increased
latency of the 10% degradation.

If a 10% degradation is too large, what degradation can be afforded? Similar to the break-even
analysis for cache size doubling, another way to look at the usefulness of associativity is to calculate the
access time implementation penalty that holds SCPI constant with increasing associativity. This is the
break-even access time penalty, Thyeateven, Which can be calculated using Equation 5.1. The question to
be answered for a 2-way associative cache is: by how much can Tmiss;cacyg and Tmisspcacue be
increased when the associativity is increased from direct-mapped to 2-way so that SCPI is not increased
as a result? This gives the implementation leeway available to designers of a cache of higher associa-
tivity. An access time penalty lower than this value will give a lower higher-associativity SCPI.

Figure 5.10a shows the direct-mapped t0 2-way Tpyeakeven (in percent of the normal secondary
cache access time of ten cycles) for different cache sizes. Figure 5.10b shows a blowup of the same
results for cache sizes of 1-megabyte or more. Figure 5.10a shows the high break-even times that pro-
vide large window of opportunity for associativity in the smaller secondary caches. Since the 128-
kilobyte cache is not a lot larger than the instruction and data caches of 32-kilobytes each, a higher
associativity is preferable with the 128-kilobyte cache.

105

4-megabyte SCPI With 10% Degradation
I T I

1.2

1 -
o

Jonn

5o -

=
<t | A

—aTTee

I — = ult’s
<

51.in

o e}
3] ol 1]
$

Associativity

Figure 5.9. Associativity Performance With 10% Speed Degradation.

This figure shows the SCPI of 4-megabyte set-associative secondary caches with a 10% degradation in
secondary cache access time (Tmissicacue and Tmisspcacue) for every doubling of associativity.

The break-even penalty vanishes with increasing secondary cache size. Direct-mapped caches
provide good performance when the cache size is large compared to the size of the CPU cache(s) closer
to the processor. Although associativity eliminates many misses, the MPI of the direct-mapped cache is
already so low that the SCPI can only be decreased by a small amount. In effect, there are decreasing
associativity returns with increasing scale (cache size). These results show that, for these parameters, it
is probably not worth any extra design effort to implement a 16-megabyte 2-way set-associative cache
rather than a direct-mapped cache of the same size.

The multiprogrammed traces have break-even curves that are smoothly decreasing with increasing
secondary cache size in Figure 5.10a. Note that traces with the shorter process switch intervals (Multl
and Mult2) tend to have larger break-even penalties, particularly for the smallest caches. This is a result
of conflicts among the different processes using the cache. More frequent switching exacerbates the

conflicting accesses of different processes. Associativity can reduce MPI in the presence of these
conflicts.

Sor shows the most anomalous behavior in Figure 5.10a. It has negative break-even penalties in
some cases because the MPI actually increases with associativity. This occurs because direct-mapped
caches are the best for reference pattems that loop [SMIG85]. Tree shows smoothly decreasing break-

106

Direct-Mapped to 2-way
Mult2— | I | | l

100% 120%
|
|

§0% ,

6Q%

L 40%

20%,,

Maximum Access Time Penalty (Percent Secondary Access Time)
0%
I

l I D
256K 512K M 2M 4M 8M 16M

Cache Size

-20%

Figure 5.10a. Direct-Mapped to 2-Way Break-Even Implementation Penalties.

This figure shows the direct-mapped to 2-way break-even access time penalty (Tyreakeven) fOr a range of
cache sizes.

even penalties. Tv and Lin both have break-even penalties that are maximal at an intermediate cache
size. This is abnormal and shows that associativity is most advantageous at the intermediate cache
sizes, just like a cache size doubling was most advantageous with the intermediate-sized caches for
these traces.

5.6.4. Inexpensive Associativity Implementations

Associativity can be expensive. Since any block in a set may be referenced on a secondary cache
access, associativity requires a search. Traditional associativity implementations execute this search in
parallel, as shown in Figure 2.2 and Figure 5.11: they read all cache tags of a set in parallel and com-
pare them against the incoming tag. The required tag memory bandwidth and comparators are propor-
tional to the associativity. Alternatively, inexpensive associativity implementations require a
bandwidth of only a single tag [KEJL89]. Figure 5.11 depicts this option. Inexpensive implementations
may be appropriate for secondary caches since secondary caches are accessed much less frequently than
primary caches, and a slower access time may be tolerable. Inexpensive implementations provide the
reduced MPI of set-associativity at the same cost as a direct-mapped cache. The slower access time of
an inexpensive set-associativity implementation may be tolerable if the cache miss penalty is large or

107

© Direct-Mapped to 2-way
LY
& | I |

0

Breakeven Access Time Penalty (Percent Secondary Access Time)

M M 4M M 16eM
Cache Size

Figure 5.10b. Direct-Mapped to 2-Way Break-Even (Blow-up).
This figure shows a blowup of the results shown in Figure 5.10a.

sensitive to increased load, and if a traditional set-associativity implementation cannot be afforded.

This section examines the three inexpensive implementation alternatives described by Kessler, et.
al [KEJL89]. The first is a naive scheme that sequentially scans the tags in a set until it finds a maich,
starting at a random location. Figure 5.12 depicts two improved inexpensive associativity implementa-
tions. Chang, et al., [CHCS87] describe an implementation of the MRU scheme. It scans the tags from
the most-recently-used to the least-recently-used. Of course, the MRU scheme requires information
about the ordering of the blocks to complete its scan. This MRU mformatlon is similar (and perhaps the
same) information required to implement the LRU replacement pohcy The final scheme is called
partial match. Using a partitioning of the comparator bits with a tag memory addressing trick, it first
compares pieces of each tag with the corresponding part of the incoming tag. In effect, the incoming
tag is partially compared to each tag. When the partial compare does not match, the full compare will
not match, so the tag need not be further examined. Each tag that partially matched is subsequently
compared to the incoming tag to find if there is a full tag maich. When a partial match does not give a
full tag match, it is called a false partial match.

21. Note that the MRU information is local to the secondary cache, as with LRU in Section 5.6.2.

108

| T[’\G |
v
INDEX — et ———] e T
I B L1 | —t | | |
0 1 A-1
(a) Traditional
I TAG |

C comparator)

Vi i n
I l
0
INDEX +0 i
INDEX+1 | |

| l |
| | I
| |]
INDEX + A-1 ! | | A-1
I | I
I l I
| | I
| i 3

(b) Serial (Using Naive Approach)

Figure 5.11. Implementing Set-Associativity.

Part (a) of this figure (top) shows the traditional implementation of the logic to find a hit or miss in a A-way
set-associative cache. This logic uses the set-indexing (‘‘INDEX’") field of the reference to select one 7-
bit tag from each of A banks. It compares each stored tag to the incoming tag (““TAG”’). It declares a hit
when a stored tag matches the incoming tag, a miss otherwise.

Part (b) (bottom) shows a serial implementation of the same cache architecture. Here the implementation
reads a stored tags in a set from one bank and compares them serially (the tags are addressed with "IN-
DEX" concatenated with O through A — 1).

To compare these schemes, this section counts the number of probes required by each. A probe is
a reading of the tag or MRU memories. Because the traditional associativity implementation has a high
tag memory bandwidth, it requires only a single probe to decide a hit or miss. In the best case, a naive
scan finds a hit in the first entry, so it needs only a single probe. In the worst case for a hit, or else for a
miss, naive must probe through each tag to make the hit/miss determination. MRU requires at least two
probes in any case since both the MRU and tag memories must be cycled: the MRU cycle selects the
MRUth block, and then the tag memory cycle compares the tags. In the worst case for a hot, or for a
miss, MRU must probe the MRU memory once (at least), and it also must probe the tag memory once
for each tag. The partial match scheme requires at least two probes to find a match (one for the partial
compare and one for the full comparison), but a miss can be determined with only a single partial

109

MRU INFO : :
e | |
— - 0
INDEX I — INDEX + MRU1 T T 1
[I INDEX + MRU2 \. | : } :
MRU1MRU2 MRUA INDEX + MRUA A1
[
I
L1
(a) Using MRU Order
C ITAG 1 1]
7 —(a)
od> @ S
T 1 /! T T
L [I
170 s o}
— L 1T TT|1 INDEX+PMI I o
INDEX + __ B INDEX +PM2 | _| | 1|
<see below> | e coo
-:|[—:—-Jl-——‘A~1 INDEX + PMi ‘ : ; A-1
' I
I bl
L L | L1 |
[T oo |
0 1 A-1
(b) Using Partial Compares

Figure 5.12. Improved Implementations of Serial Set-Associativity.

Part (a) of this figure (top) shows an implementation of serial set-associativity using ordering information.
This approach first reads MRU ordering information (left) and then probes the stored tags from the one
most-likely to match to the one least-likely to match (right). Note *‘+’’ represents concatenate.

Part (b) (bottom) shows an implementation of serial set-associativity using partial compares. This ap-
proach first reads K (K = |T/A]) bits from each stored tag and compares them with the corresponding bits
of the incoming tag. In the second step, this approach serially compares all stored tags that partially
matched (‘“‘PM’") with the incoming tag until it finds a match or it exhausts the tags (right).

compare of all tags, provided there are no false matches. This is a significant advantage of partial: it
requires few probes to find a cache miss.

Table 5.4 shows the expected probes (assuming random tags) for the different schemes for the
associativity A, and the tag memory width requirements. The entries show the speed superiority of the
single probe required by the traditional associativity implementation, but it also shows the high tag and
comparator width requirements needed to support this. For naive, the expected probes for a hit is the
mean of the numbers 1, ..., A, since each tag is equally likely to hit. The MRU probes for hits depends
entirely on the probability that the early entries in the MRU list are used. Since this probability is not

110

known in general, the table gives bounds for a 4-way set-associative example. The partial results
assume random tags, that is, that the probability of a false partial match of K-bits is »—2% The expected
partial probes on a hit includes the minimum two probes plus those due to false partial matches: the

A —1 non-matching tags falsely match with probability of ”21_1(’ but only 1/2 of them will be probed

before the match is found (on average). On a miss, the partial compare approach has superior perfor-
mance compared to the other inexpensive associativity implementations. Naive and MRU require A

and A +1 probes on a miss, but partial expects only a single probe plus _:3% probes from false partial

matches.

Configuration Expected Probes
Assoc- Tag Memory Assume Assume
Method — joiviy Width (bits) Hit Miss
AxT 1 1
Traditional
64 1 1
) A T 1/2)A-1D+1 A
Naive
4 16 2.5 4
A
A T 1+3if; 1+4
MRU i=1
4 16 [2.5] 5
(A-1) A
A max(T, A X 2 4 St 14—
Partial (T, AxK) e 5
4 20 2.05 1.13

Table 5.4. Expected Probes of Associativity Implementations.

For various associativity implementations, this table gives the tag memory width required, and the expect-
ed probes for hits and misses. The table assumes T-bit tags (T’ = 16), K-bit partial compares (K = 5), and
the ith most-recently-used tag matches with probability f; on a hit.

While Table 5.4 shows the expected probes, Table 5.5 shows the actual number required for dif-
ferent inexpensive 4-way set-associative cache implementations. The results are only for read requests
to the secondary cache. The performance for write-backs is less important because they can be done in
the background, and because write-back cache lookups can be eliminated if the primary cache maintains
a pointer indicating where (within a set) a block resides in the secondary cache (the write-back optimi-
zation of [KEJL89]). The required naive hit probes is precisely as expected because the traversal order
is random, and the total for hits and misses is high. The MRU hit probes are usually lower than naive,
and they also tend to decrease with cache size because the MRUth block in each set satisfies a larger
portion of the secondary cache references. The Sor, Lin, and Tv traces are exceptional with MRU
because there are cases where increases in cache size decrease the probability that hits come early in the
MRU list, increasing the required probes. Loops in these applications cause this. Loops can make
MRU less effective because there is less locality.

111

Read Probes (4-Way)
Inexpensive Scheme
Trace Cache Naive MRU Partial Match

Size Hits Total Hits Total | Hits Misses Total

Multl 256K | 2.50 2.75 233 279 | 206 1.13 1.90
1M | 250 2.58 224 239 | 211 1.13 2.06

4M | 250 2.54 209 218 | 2.16 1.12 2.13

16M | 2.50 2.52 204 208 | 234 1.49 2.33

Multl.2 256K | 250 274 231 274 | 206 1.13 191
iIM | 250 260 222 240 | 211 1.13 2.04

4M | 250 255 209 219 | 2.14 1.11 2.11

16M | 250 252 204 209 | 234 148 2.33

Mult2 256K | 250 2.69 238 271 | 206 1.13 1.94
iM | 250 258 219 234 | 210 1.13 2.05

aM | 250 255 207 216 | 215 1.13 2.12

16M | 250 252 204 208 | 235 1.61 2.34

Mult2.2 256K | 250 270 234 268 | 205 1.13 1.93
IM | 250 259 218 235 | 209 1.12 2.04

4M | 2.50 2.55 207 217 | 2.14 1.13 2.11

16M | 250 252 204 208 | 234 1.65 2.33

Tv 256K | 250 277 274 314 | 2.03 1.07 1.86
IM | 250 266 226 256 | 203 1.06 1.92

4M | 2.50 2.63 206 232 | 202 1.04 1.94

16M | 250 2.57 209 223 | 201 1.00 1.96

Sor 256K | 2.50 3.50 224 407 | 203 1.09 1.40
IM | 250 340 236 394 | 202 1.02 1.42

4M | 2.50 3.00 279 3.53 | 201 1.03 1.68

16M | 250 2.60 234 252 1200 1.00 1.93

Tree 256K | 2.50 2.85 2.53 3.10 | 2.03 1.06 1.81
IM | 250 263 233 256 | 204 1.04 1.95

4M | 250 2.54 212 219 | 204 1.02 2.01

16M | 250 2.52 203 207 | 205 1.01 2.04

Lin 256K | 250 3.02 219 317 | 202 1.02 1.67
M | 250 299 209 304 | 202 1.00 1.68

4M | 250 252 2.55 257 | 202 1.00 2.01

16M | 250 2.51 202 203 | 2.05 1.00 2.05

Theory 2.50 [2,51 2.05 1.13

Table 5.5. Read Probes of Inexpensive Associativity Implementations.

For various 4-way set-associative secondary caches, this table shows the probes required for a secondary
cache read access. It shows results for Naive hits and total (hits + misses), MRU hits and total, and partial
match hits, misses, and total. The partial compares of the virtual tags, including PID’s, use 5-bits and the
improved transformation of [KEJL89]. This constant partial compare width may be inappropriate since the
tag width may be reduced with increasing cache size. The table shows the expected results (theory) from
Table 5.4 at the bottom. The best total technique for each row is in Bold.

Because the assumption of random tags is invalid with virtual tags, the 5-bit partial compare
results in Table 5.5 sometimes differ from the expected results in Table 5.4, even though partial hashes
the virtual address bits to make them more random. For the multiprogrammed workloads, the small
caches have nearly the expected performance. For the larger caches, however, the partial tags from the
different address spaces in the multiprogrammed workloads tend to be similar because most programs
use the same portions of the virtual address space, so partial has more false matches and requires more
probes than expected. For the single-process workloads, the partial tags from the single address space

112

are more likely to differ than random, so the required probes are fewer than expected. This occurs
because the dispersion of a single, largely contiguous, address space throughout a large cache leads to
differing tag values since sequential virtual addresses have sequential virtual tag values. The non-
randomness of the partial compare results for the different workloads suggests that one should take care
when deciding which, and how many, bits to use in the partial compares. Real tags would likely be
more random than the virtual tags used here (provided virtual pages are stored in random page frames),
so real-tag results probably would closely follow those shown in Table 5.4.

Partial does the best for all but the largest (16-megabyte) caches. Partial is fast on misses, which
is important because secondary caches have higher (local)miss ratios than do primary caches of the
same size. The superiority of the partial technique with the smaller secondary caches is evidence sup-
porting the importance of fast misses. MRU performs well for the large caches because a large portion
of the hits are to the MRUth block in the secondary cache. This agrees with the observations of So and
Rechtschaffen on primary caches [SORE88]. MRU is effective when there is locality of reference. It is
less effective when the secondary cache is close in size to the primary caches, as in the 256-kilobyte
case in Table 5.5, because the primary cache steals much of the locality from the secondary cache.
Unless an MRU memory can be made particularly fast, partial performs better for the smaller secondary
caches. MRU is often better for the 16-megabyte caches, however. As the cache size increases, MRU
can successfully extract locality from the stream of primary cache misses, so the number of probes on
cache hits is low. Also, since the MPI of the larger caches is lower, the poor performance of MRU on
misses is less important. If the partial compare width decreases with cache size, as may be the case,
MRU can be even more appropriate for larger caches since the partial performance will be degraded.
On the other hand, larger tags, such as those required for 64-bit addresses, may allow a partial compare
width of more than five bits. Then, partial may again be more appropriate.

5.7. Secondary Cache Block Size Alternatives

Another important cache design choice is the block size. Since the secondary caches are the sizes
that main memories have previously been, one might mistakenly expect that secondary cache block
sizes should be the size that pages previously were. The analogy to main memory pages does not hold
because the backing store for the secondary cache (main memory) is orders of magnitude faster than the
backing store for main memory (disk). Page sizes should be larger because once the disk is accessed,
there is only a small additional latency to bring in more data. A larger block size will typically reduce
the MPI because of spatial locality [SMIT82], and it also will reduce the tag memory requirements of the
cache. But since main memory access times are much smaller than disk access times, the cache miss
time can be greatly increased with a larger block size. Furthermore, larger blocks require more memory
bandwidth: if contention for memory resources is a problem, smaller block sizes might be preferred.
The optimal block size is in the middle, between the higher MPI with smaller block sizes and the larger
miss penalty of larger block sizes.

To measure this effect, Tmissscacug is a linear function of the block size that counts both lazency
(fixed) and transfer time (variable) components, as in Smith’s model [SMIT87]. The fixed latency com-
ponent is independent of the block size. It counts the fixed latency component of block transfer, such as
reaching and cycling the main memory. The transfer time component is directly proportional to the
block size and counts the time to transfer each byte of the block. The formula for the block size latency
model is:

113

TmissscacHE = Tlatency + TlransferXB- (5.2)

Tiatency is the latency component, Tiransfer is the transfer time required for each byte of the block, and B
is the block size in bytes.

The best block size depends on the values Of Tigency ad Tyansrer. The architecture of the cache-
main memory communication decides these values. Tgnp, can be reduced by loading the bytes of a
cache block in parallel rather than serially [MATI89]. This may involve having multiple memory banks
operate in parallel, or having a single, wider memory bank. Ti,angr also could be reduced by complet-
ing the fetch of a block in the background after first returning the requested data. While Tiygpgp,, may be
changeable, it is more difficult to reduce Tyency Since a substantial portion of it is the main memory
access time.

The equation for the block size with equal latency and transfer time is:

B = TIatency '
Tlransfer

This block size is an important design option [PRZY90]. For smaller B, the latency can dominate the
time for a cache miss. Sequential memory locations could be loaded into the cache considerably faster
with a larger block size. For larger B, the transfer time can dominate. This can lead to poor perfor-
mance for workloads that tend to reference small portions of many different cache blocks. A designer
might choose the block size where latency equals transfer time since data can be retrieved from the
memory system with no more than twice the minimum time caused by either the fixed latency or
transfer time. This can ensure that the block size is close to optimal for workloads where either latency
or transfer time (or both) is essential to memory system performance.

Figure 5.13 shows SCPI versus the block size with Tyncy = 64 and Ty anper = 0.5 for the Multl.2
trace (the latency equals the transfer time at 128-byte blocks). It shows that 64-byte blocks are best
with the smaller caches, 128-byte blocks are best for a 1-megabyte cache, and 256-byte blocks are best
for the 16-megabyte cache (though it is hard to see). Cache contention in the smaller caches made the
smaller block sizes better; the smaller caches were unable to take advantage of enough spatial locality,
so a large block size resulted in significant amounts of unnecessary data transfer. In the largest cache,
the 256-byte blocks were the best since there was less cache contention. The bigger caches preferred
the increased transfer times of larger blocks so that the fixed latency could be minimized. Except for
the smallest caches, 128-byte blocks perform quite well with the Mult1.2 workload, showing the useful-
ness of the heuristic equalization of latency and transfer time.

To examine the block size alternatives for other workloads, Table 5.6 lists the SCPI of direct-
mapped secondary caches with varying block sizes. The results show the same tradeoff between the
MPI reduction and unnecessary data transfer of larger block sizes. For smaller caches, smaller blocks
are preferred. As the cache size increases, there is less contention so the fixed latency of a memory
operation can be amortized over larger data transfers: larger blocks will give lower SCPI’s. The lowest
SCPI occurs with block sizes of 32-bytes or 64-bytes with a 256-kilobyte cache, 64-bytes or 128-bytes
with a 1-megabyte cache, about 128-bytes with a 4-megabyte cache, and 128-bytes or 256-bytes with a
16-megabyte cache.

The multiprogrammed traces have similar behaviors while the uniprogrammed trace results vary.
The Sor trace is especially interesting. One might expect a scientific program to prefer large block

114

SCPI Comparison (Direct-Mapped Caches)

<,
~ I I | | I
28K
S -
56K
oof -
S
3
ol 12K |
S

04

|
&
2 2

|

A/’/QI'M
N S b — M |
< ? L -+ -+16M
o l | | | |
32 64 128 256 512
Block Size (Bytes)

Figure 5.13. Performance Over a Range of Block Sizes.

For the Mult1.2 trace, this figure shows the SCPI versus the block size for a range of direct-mapped secon-
dary caches. Tigency=64 and Tyanger=0.5.

sizes, particularly when traversing through large arrays. Except for the 16-megabyte cache, smaller 32-
byte and 64-byte blocks give the minimum SCP/ for Sor. The Sor sparse array representations result in
less spatial locality and cause this preference for smaller blocks. However, sparse representations do
not automatically imply that smaller blocks are better. Lin uses sparse arrays but slightly prefers larger
block sizes.

For all the workloads, a 64-byte or 128-byte block gives the minimum SCP/ for the 1-megabyte
cache. Considering that larger block sizes require smaller tag memories, a block size of 128-bytes
seems like a reasonable choice, precisely the block size where the latency equals the transfer time. On
the other hand, if memory bandwidth and contention are a concern, a block size of 64-bytes might be
preferred.

The results in Figure 5.13 and Table 5.6 agree with the results of Smith [SMIT87] and Przybylski
[PRZY90] in that the block size with least SCPI is largely a function of the cache-main memory com-
munication parameters. The secondary cache size is a substantial factor, but the SCPI-minimal block
size varies surprisingly little over cache sizes from 256-kilobytes to 16-megabytes (a factor of 64').
Smaller block sizes are preferred with smaller caches, but the SCP/-minimal size is usually no more
than a factor of two from the block size with equal latency and transfer times (128-bytes). Except for

115

SCPI For Different Traces (Direct-Mapped)
Trace Cache Secondary Block Size (Bytes)
Size 32 64 128 256 512
256K | 061 056 060 074 1.05
Mult1 IM | 039 035 035 041 055
4M | 028 025 024 026 030
16M | 023 020 019 019 020
256K | 057 0.52 054 066 093
Multl.2 M | 037 033 033 037 048
’ 4M | 027 024 023 024 027
16M | 021 019 0.18 0.18 0.18
256K | 058 053 055 065 0.96
Mult2 IM | 036 031 030 033 040
4M | 027 023 022 022 025
16M | 021 0.19 0.18 0.17 0.18
256K | 053 048 049 0.58 0.82
iIM | 034 029 028 030 037
Mul2.2 4M | 025 022 020 021 023
16M | 019 0.17 016 0.16 0.16
256K | 091 090 098 134 200
Tv IM | 058 054 054 060 0.73
4M | 049 045 044 046 0.50
16M | 035 034 033 034 0.36
256K | 195 208 272 424 747
Sor IM | 1.85 180 212 305 5.24
4M | 139 118 119 147 217
16M | 0.85 061 048 042 0.39
256K [0.69 070 083 1.18 1.84
Tree IM | 046 042 045 056 0.80
4M | 028 025 025 027 031
16M | 025 022 021 021 0.22
256K | 027 022 022 020 021
Lin IM | 019 018 019 018 0.17
4M | 0.05 0.05 0.05 005 005
16M | 0.04 004 004 004 0.04

Table 5.6. Block Size Alternatives.

This table shows the SCPI for direct-mapped secondary caches with different block sizes. Tiaiency=64 and
Tyranger=0.5. The bold entries show the lowest SCPI in each row.

the smallest secondary caches, the 128-byte block SCP/ is near the minimal SCPI.

The SCPI-minimal block sizes are larger than those found in [SMIT87], and [PRZY90]. For exam-
ple, Przybylski finds block sizes of 16-bytes to 32-bytes to be optimal for most caches. The smaller
caches and different Tigiency and Tiransrer Values considered in those studies are the cause of this
discrepancy. For the large Tgency values and multi-megabyte caches examined here, secondary cache
block sizes of 64-bytes or 128-bytes were better.

5.8. Inclusion Design Alternatives

An important design choice with multi-level cache configurations is whether the hierarchy will
maintain inclusion. For the two-level hierarchical system examined in this dissertation, inclusion
implies that any memory location held in either of the primary caches also must be in the secondary
cache [BAEWSS].

116

Inclusion can be useful when hardware maintains cache data consistent in the presence of external
accesses to the memory locations. In a uniprocessor system, inconsistencies result from writes to
cached locations by I/O devices. In a shared-memory multiprocessor, inconsistencies result from
updates of cached locations by other processors. Hardware monitors resolve these inconsistencies by
invalidating or updating cached locations when necessary. When maintaining inclusion, a memory
location that is not in the secondary cache is also not in the primary cache. Thus, if a secondary cache
invalidate (or update) was unnecessary, it is guaranteed that a primary cache invalidate (update) also
will be unnecessary. The effect of inclusion is that the secondary cache can filter out many consistency
operations, reducing the communication and interference with the primary caches. Without inclusion
maintenance, any consistency operation could affect the primary caches, so all them may have to be
passed on.

Inclusion is desirable for hardware consistency management, but it has an implementation cost.
While it may seem intuitively clear that a smaller cache should contain a subset of a larger cache, inclu-
sion may be nullified because of block size, associativity, and indexing differences between the primary
and secondary caches. Baer and Wang outline the configuration requirements for a restricted form of
inclusion, where primary cache locations would never have to be invalidated to ensure inclusion
[BAEWS88, WANGS89]. Unfortunately, the requirements for this form of inclusion are strict; often it
requires extremely high associativity in the secondary cache. More general circumstances occasionally
require primary cache invalidations to maintain inclusion.

Wang described two invalidation techniques [WANG89]. Implicit inclusion invalidates the pri-
mary caches each time the secondary cache replaces a block. Explicit inclusion eliminates all unneces-
sary primary cache invalidations since it maintains information denoting whether the primary caches
hold a (perhaps dirty) copy of a replaced block. Both techniques guarantee inclusion by invalidating the
primary cache on secondary cache misses. The difference between the two is that implicit inclusion
requires an invalidation on every secondary cache miss, while explicit inclusion executes only the
invalidations that are required. Since the primary cache block size is smaller than the secondary cache
block size, each primary block can hold only a portion of a secondary block. The extra information
needed by explicit inclusion is a valid bit (or two bits, one each for the instruction and data caches) for
each portion of each secondary cache block frame. When the valid bits are not set, as is often the case,
primary cache invalidations are unnecessary when a secondary cache block is replaced.

Table 5.7 shows the frequency of primary cache invalidations required by implicit and explicit
inclusion with 4-megabyte secondary caches. Each primary cache invalidation applies to both the
instruction and data caches. The implicit invalidation frequency is simply four times the secondary
cache MPI since there are four different 32-byte primary cache blocks contained in each 128-byte
secondary block; only some implicit invalidations actually remove a primary cache block. Not all
secondary cache misses require explicit invalidations; each explicit invalidation removes a primary
cache block. For explicit inclusion, Table 5.7 shows results with random and inclusion-random replace-
ment. Inclusion-random (INCRAND) replaces secondary cache blocks to minimize the primary cache
invalidation frequency. Since the explicit inclusion information is available, replacement decisions
may be improved by taking inclusion information into account. Table 5.3 showed that inclusion-
random replacement reduces the secondary cache MPI. These results show that it also reduces the
explicit inclusion primary cache invalidation frequency. This replacement policy is not an option with
implicit inclusion because the inclusion information is not available.

117

Primary Cache Invalidates Per 1000 Instructions
Implicit Explicit

Trace AssOC. | RAND | RAND INCRAND
1 2.924 0.214 0.214
Multl 2 2.205 0.056 0.007
4 2.062 0.035 0.000
1 2.863 0.189 0.189
Multl.2 2 2.239 0.051 0.005
4 2.116 0.035 0.000
1 2.516 0.185 0.185
Mult2 2 2.062 0.048 0.004
4 1.992 0.033 0.000
1 2.426 0.169 0.169
Mult2.2 2 2.025 0.045 0.004
4 1.957 0.031 0.000
1 7.588 0.162 0.162
Tv 2 7.046 0.050 0.002
4 7.041 0.044 0.000
1 29.616 0.263 0.263
Sor 2 30.630 0.191 0.005
4 31.626 0.179 0.000
1 2.533 0.142 0.142
Tree 2 1.944 0.028 0.001
4 1.859 0.021 0.000
1 0.405 0.025 0.025
Lin 2 0.232 0.003 0.000
4 0.143 0.001 0.000

Table 5.7. Implicit and Explicit Inclusion Invalidate Frequency.

This table shows the frequency of implicit and explicit primary cache invalidates for random replacement
(RAND) and inclusion replacement (INCRAND). The primary caches are split direct-mapped 32-kilobyte
with 32-byte blocks. The secondary cache is 4-megabytes with a block size of 128-bytes. INCRAND is
random replacement except it replaces blocks with copies in the primary cache only when there is no other
choice, as in Table 5.3.

The results in Table 5.7 show that the invalidation frequency is much lower with explicit inclu-
sion. This agrees with Wang’s results for smaller caches [WANG89]. Although secondary cache
replacement is infrequent, required invalidations are at least an order of magnitude more rare, and
inclusion-random replacement almost eliminates them. With associativity and inclusion-random
replacement, invalidations are extremely rare since the secondary cache is so large compared to the pri-
mary caches. There are considerably more explicit invalidations with the direct-mapped secondary
caches. Direct-mapping increases the likelihood of a primary cache invalidation caused by conflicting
secondary cache blocks.

Since a primary cache block may be dirty, primary cache invalidations may have to be executed
before the secondary cache replaces a block. Consequently, the extra implicit invalidations may
increase Tmissscacug and SCPI. Explicit inclusion eliminates many invalidations, but maintaining the
extra inclusion information can be costly. For it to be precise, the information should be updated each
time a block is replaced or loaded from a primary cache. This means that explicit inclusion may
increase Tmissjcacur and Tmisspcacue. and consequently also increase SCPI.

118

Maintaining hardware inclusion has a cost, for one thing a more complex implementation, and
also perhaps a higher SCPI. For multiprocessors with sophisticated hardware cache consistency
mechanisms, inclusion may be necessary. For uniprocessors, however, it may be more appropriate to
maintain cache consistency in software. The operating system can invalidate cached locations when
there is a potential conflict. Then, if memory accessed by 1/O or other devices is not in the cache, there
can be no inconsistencies. Provided that software invalidations are fast, software consistency mainte-
nance can improve system performance and reduce hardware complexity. If software invalidations are
too slow, or if they have to be executed too often because the operating system must conservatively
invalidate, hardware inclusion and consistency may be a better altemative.

5.9. Conclusions

This chapter discusses the motivation for multi-megabyte secondary caches and analyzes design
tradeoffs in these large caches. The two key trends discussed in Chapter 1 motivate multi-megabyte
caches: increasing processor speeds and larger main memories. Without an adequate cache, faster pro-
cessors may wait for main memory too often because each main memory access takes too long. Multi-
megabyte caches are more essential with faster processors because they eliminate much of the main
memory access penalties. The bigger workloads that come with faster processors and larger main
memories even further motivate multi-megabyte caches; Smaller caches may not have high enough hit
ratios with these workloads. CPU cache hierarchies combine the fast access time of a smaller cache
with the storage capabilities of a multi-megabyte cache. A multi-megabyte secondary cache allows the
hierarchy to satisfy memory requests at processor speeds, even when each main memory access is 100
cycles or more.

Several factors determine the best size for a secondary cache. As the cache miss time increases, a
larger cache size is needed for good performance. The results of this chapter show that multi-megabyte
caches reduce the SCPI of smaller caches, even if each cache size doubling increases the cache access
time by 10% or more. The target workload of the system is also an important factor in the cache size
choice. One workload may perform well with one cache while another does not. Larger caches give
good performance for a wider variety of applications.

Associativity is another major design consideration. This chapter shows that an associativity dou-
bling improves direct-mapped multi-megabyte cache performance less than a cache size doubling does,
which differs from the 2:1 rule that says each doubling should have about the same effect in smaller
caches. This chapter also shows that higher associativity is particularly useful only when the secondary
cache is not a lot larger than the primary caches. Direct-mapping performs very well for the largest
secondary caches; associativity increases in the largest secondary caches may not be justified if they
cause any increases in design time, access time, or cost. This chapter shows that LRU reduces MPI for
most workloads. The increased complexity of LRU may not be worthwhile, however, since some work-
loads do not benefit much from it. This chapter also shows that the partial match technique looks like a
primising inexpensive associativity implementation, especially for the smaller secondary caches. MRU
also performs well for the largest secondary caches.

This chapter finds that block sizes of 128-bytes perform well for the traces and parameters in this
study, validating a design choice of equal latency and transfer times that previous studies have advo-
cated. The SCPI-minimal block size is often within a factor of two of the 128-byte block size, and the
128-byte SCPI is usually near the minimum SCPI. This emphasizes that the best block size for a given

119

cache is heavily dependent on the parameters of the cache-main memory intercommunication. Larger
fixed latencies imply that larger blocks are preferred while larger transfer times imply that smaller block
sizes are preferred. Multi-megabyte secondary caches prefer bigger blocks because they can better
exploit spatial locality and mitigate fixed latencies since they have less contention for cache locations.

Inclusion simplifies a hardware consistency mechanism, but its cost can be high, both in terms of
implementation complexity and SCP/ increase. Cache replacement decisions can significantly affect
the number of the primary cache invalidations needed to enforce consistency.

120

Chapter 6

Page Placement Algorithms for Real-Indexed
Caches

6.1. Introduction

This dissertation chapter exposes the affect of virtual memory page mapping on real-indexed
multi-megabyte cache performance. The associativity difference between (virtual memory) address
translation and (set-associative) cache set-indexing implies that the page placement (or page mapping)
in the main memory determines the data placement in a real-indexed multi-megabyte cache. Figure 6.1
shows the combined stages (both virtual memory and cache) that index a virtually addressed memory
location into a multi-megabyte set-associative cache. Multi-megabyte caches require so many set-
indexing bits that some of them must come from above the page boundary. This creates what are called
cache bins. The upper index bits that come from above the page boundary are the bin index and the
group of sets that they select is a bin?2. Address translation selects cache bins only when a cache is
both large and real indexed: small caches have no bins because they get their index bits from below the
page boundary, and virtual-indexed caches get all their index bits directly from the virtual address.

Multi-megabyte secondary caches are likely to be real indexed because the address translation
cost of real indexing can be small enough in secondary caches that the benefits of real indexing exceed
its cost [TADF90, WABLS89]. The previous chapters do not consider real-indexed caches; instead, they
use virtual-indexed caches (with PID-hashing) to approximate real-indexed caches. This chapter exam-
ines the differences between virtual-indexed caches and real-indexed ones, and determines how closely

22. Figure 6.1 depicts bins that are four cache sets. Note that the superset of Goodman [GooD87] is dif-
ferent from a bin. Pieces of a superset span al! bins.

121

Virtual Address Virtual Page Page Offset

bge Offset

Bin Index

Set 0
Set Index Set 1 Bin 0

Set 3

71 Set 4
Cached
Set. 31 Ipin 1 | Blocks

Set_6

Set_ ./
Figure 6.1. Virtual Memory and Set Indexing Interaction.

Set 8
This figure shows translation stages that index a virtually addressed memory location into a large set-
associative CPU cache. The cache takes index bits directly from the virtual address for a virtually-indexed
cache, and it takes the bits from the real address for a real-indexed cache. Any of the A (A is the associa-
tivity) cache block frames in the set chosen by the index bits can contain the addressed memory location.
This chapter only considers multi-megabyte caches with bit-selection indexing [SMIT82].

virtual-indexed cache performance approximates real-indexed performance. The page mapping can
greatly affect real-indexed multi-megabyte cache behavior because address translation places each page
in any of a hundred or even several thousand different cache bins. A poor page placement reduces
real-indexed multi-megabyte cache efficiency because it overutilizes some cache bins and underutilizes
others. This chapter examines the interaction of page placement with real-indexed multi-megabyte
caches, and develops software techniques that avoid poor page mappings, and consequently increase
hardware cache performance.

6.1.1. Previous Work

Few previous studies examine the page mapping real-indexed cache performance effect because it
is only recently that real-indexed caches have started taking set-indexing bits from above the page
boundary. Sites and Agarwal [SITA88] compare the performance of virtual-indexed caches to real-
indexed caches. They find that real-indexed caches perform worse than the corresponding virtual-
indexed caches on the same workloads unless there is frequent context switching.

Only a few systems optimize the page mapping for cache performance. In the Sun 4/110, the
operating system maps instruction pages and data pages [KELL90] to even and odd page frames to parti-
tion the instruction and data references into the 4/110’s SCRAM cache [GOOC84]. MIPS uses a variant
of Page Coloring, described in Section 6.3, to improve and stabilize its real-indexed cache performance
[TADF90].

Many studies optimize the addressing of programs with compiler or user-level optimizations. Fer-
rari [FERR76] surveys many schemes to improve virtual memory performance by referencing fewer

122

pages. Stamos tries similarly to cluster objects and improve virtual memory performance [STAM34].
McFarling [MCFA89] and Hwu and Chang [HWUC89] introduce schemes to scatter commonly used
instructions across direct-mapped caches to reduce instruction cache misses. Cache performance also
improves with algorithm modifications such as matrix blocking [LARW91]. This chapter instead intro-
duces improvements to the operating system memory management software. Though the virtual
memory references cannot be modified by the memory management, the real addresses can.

6.1.2. Contributions of this Chapter

This chapter examines the software page placement effect on multi-megabyte real-indexed cache
performance. It develops software page placement algorithm improvements that can increase multi-
megabyte real-indexed cache performance. The trace-driven simulation results of this chapter suggest
that these software page placement improvements can make a hardware direct-mapped cache appear
about 50% larger, at no hardware cost.

The improved placement algorithms are called careful page mapping algorithms. They are small
modifications to the existing operating system virtual memory management software that improve
dynamic cache performance with better static page bin placement decisions. Most operating systems
map (place) new pages into the main memory by selecting from a pool of available page frames. Nor-
mally the operating system selects an arbitrary page frame from the pool, probably the first one that is
available. In the terminology of this chapter, this arbitrary selection is called random (or naive) page
mapping because the operating system does not know (or care) where it places the page in the main
memory when it chooses an available page frame. Careful page mapping algorithms don’t just map
pages to arbitrarily available page frames. Instead, when the pool allows some mapping flexibility, they
choose one of the available page frames in the pool that best suits some simple static cache bin place-
ment heuristics. These algorithms are low overhead, particularly since they may only execute once
when each page is mapped, while they may improve cache performance each time the processor refer-
ences the pages.

Section 6.2 motivates the static improvements that these careful mapping algorithms rely on, first
qualitatively, then quantitatively. It first shows how the operating system can improve static page bin
placement, and extract many of the advantages of virtual-indexed caches. A simple static analysis then
shows the potential careful mapping static improvements: as many as 30% of the pages from an address
space are unnecessarily in conflict in a direct-mapped cache when using random mapping. This
analysis also correctly predicts that the largest gain from careful page mapping comes when the cache is
direct-mapped.

Section 6.3 describes Page Coloring and introduces several more careful page mapping algo-
rithms. Page Coloring matches the real-indexed bin to its corresponding virtual-indexed bin. Bin Hop-
ping places successively mapped pages in successive bins. Best Bin selects a page frame from the bin
with the fewest previously allocated and most available page frames. Hierarchical is a tree-based vari-
ant of Best Bin that executes in time logarithmic of the number of bins, and is cache size independent
(i.e. it improves static placement in many different cache sizes simultaneously).

Section 6.4 uses trace-driven simulation simulation results to show that the static bin placement
improvements of these policies eliminate cache misses. It shows that careful page mapping eliminates
10-20% of the direct-mapped cache misses from the Chapter 3 traces. This is about half of the
improvement from either doubling the size or the associativity of a direct-mapped cache.

123

Section 6.4 correlates the dynamic cache miss reductions with static page placement improve-
ments. It also compares the performance of the different careful page mapping implementations for one
multiprogrammed trace. This comparison shows that Best Bin eliminates the most misses but that Bin
Hopping and Hierarchical also perform well with a large pool of available page frames, and that
Hierarchical’s size-independence optimizes for many caches. Section 6.4 then shows that virtual index-
ing (with PID-hashing) optimistically estimates real-indexed cache performance, that careful mapping
is effective over a range of page sizes, and that a pool of available page frames that is too large (relative
to the main memory size) can cause more page misses.

6.2. Motivation for Careful Page Mapping

This section motivates the careful page mapping algorithms by demonstrating, first qualitatively
and then quantitatively, the potential static real-indexed page placement improvement of careful map-
ping over random mapping.

6.2.1. Page Placement in Cache Bins

To fully understand how to improve real-indexed cache page placements, it is useful to first under-
stand how (and why) virtual-indexed caches can perform better than real-indexed ones. The placement
of a page in a virtually-indexed cache bin depends only on the placement of the page in the virtual
address space. Figure 6.2 depicts a typical virtual address space and its virtual-indexed bin placement.
The code area, holding the (read only) executable instructions, resides in the lower portion of the
address space, followed by the data area, a modifiable working space of the process. The procedure call
stack grows from the top of the virtual address space downward, and there is a wide separation between
the stack and data areas. The lowest address is zero and the highest address bits are all ones. The vir-
tual indexing in Figure 6.2 places the contiguous code and data pages in the lower bins, and it places the
stack pages in the upper bins. The address space is large enough in this example so that the data
addresses wrap around, and two pages index to some bins. Since virtual indexing places sequential vir-
tual pages in sequential cache bins [SITA88], virtual address spaces that have contiguously-allocated
pages will evenly utilize the cache.

Real indexing is much different from virtual indexing since the address translation shown in the
shaded area of Figure 6.1 determines bin placement. Since the mapping of pages to page frames is usu-
ally fully associative, there may be no relationship between the real-indexed cache bin placement and
the virtual address of a page. Once the operating system places a page in a page frame, the page will
index to the bin determined by the bottom bits, or bin bits, from the page frame number. If the operat-
ing system ignores the values of these bits when it maps virtual memory pages to main memory page
frames, address translation will cause cache bin randomization. Figure 6.3 depicts an example of this
randomization on the left, where pages from the address space in Figure 6.2 are randomly placed in the
real-indexed cache.

The left (random) placement in Figure 6.3 is poor because it puts many pages in the same cache
bins, where they compete for the same cache locations. Competition is undesirable since it can cause
more cache conflict misses [HILS89]. Careful page mapping policies can produce page placements
more like the right side of Figure 6.3 than the left, so that cache bins are evenly utilized and many
unnecessary conflict misses are eliminated. Virtual indexing may have more even bin utilization than
random real-indexing, but a careful page placement makes a real-indexed cache perform more closely

124

A Data Stack
- Stack
Data Stack
Data
Virtual Data C— 3 3 Virtual
Cache — T Address
Bins Data Space
- Data
Code
Code Data
— Code
M Code Data
Pages

Figure 6.2. A Virtual-Indexed Bin Placement.

This figure shows a placement of the pages from a virtual address space in a virtually-indexed cache. The
pages horizontally stacked in a bin are the ones that the virtual-indexing indexes to the bin.

like a virtual-indexed one because it more evenly utilizes the cache bins like virtual indexing does.

6.2.2. A Simple Static Page Conflict Analysis

The difference in the two mappings in Figure 6.3 shows the possible static placement improve-
ments of careful page mapping visually. This section develops a simple model to measure the potential
improvements quantitatively. The metric calculated by the model is page conflicts, C, which is the
number of pages in the cache bins above the cache associativity (A). Once there are more than A pages
in a bin there can be cache contention because the cache can only store A cache blocks in each set.
Thus, when u pages land in a cache bin, there are said to be max (0, u —A) page conflicts for that bin23,
and the total conflicts in a page mapping is the sum of the conflicts from all the pages in each bin. As
an example, with a direct-mapped cache there are six conflicts in the left placement of the address space
shown in Figure 6.3, and there are four conflicts in the right placement of the same address space. Simi-
larly, there are three and zero conflicts for a 2-way set-associative cache.

23. This chapter uses u-A rather than 4 because it more correctly predicts the magnitude of the conflict. If
u was used instead, then conflicts would be minimized by first filling the cache (placing A pages in each bin)
and then placing all the rest of the pages in a single bin; it is unlikely that this mapping would minimize
dynamic cache misses. Similarly, with many pages, static conflicts would be maximized when the pages
were evenly spread across the cache; this would much more likely minimize than maximize dynamic misses.

125

A Random Mapping A Careful Mapping
A Data Stack Data Data Data
Data Code Data
Stack Data
Real Data Code Stack Code Code
Cache — —
Bins Data Data
Stack
Code Data Code Data
M Data Data
— 1/ A7
Page Frames Page Frames

Figure 6.3. Random and Careful Real-Indexed Bin Placements.

This figure shows two placements of the same address space in Figure 6.2 into a real-indexed cache. The
left bin placement might result from random mapping and the right one might be a careful mapping. The
horizontally stacked pages are the (competing) ones that the virtual to real address translation indexes to
the same bin.

The average page conflicts from random mappings can be calculated to quantify the potential

static mapping improvement of careful page mapping. The number of bins of a set-associative cache,
B, is the cache size in pages, N, divided by the cache associativity, A: B = % =2%Ph where depth is

the number of bin-index bits. With random mapping, the operating system maps the U pages from an
address space to page frames by randomly sampling (without replacement!) from a finite population of

page frames (i.e. the main memory). There are P available page frames, and exactly —é—P (an integer)

page frames are in each of the B bins. A hypergeometric distribution gives the probability that exactly u
of the U pages randomly fall in one of the B bins [MILF77]:

‘1 B-1
E)Ce,
u U-u

P(u inbin) = (P) . 6.1)
U

The binomial coefficient

(g) " (a —(;;!)! bl

126

represents the number of ways to choose b elements from a elements (without replacement).

When P is large, the hypergeometric distribution in Equation 6.1 can be approximated by a bino-
mial distribution®*:

P (u in bin) = ((l{)(%)“a - %)U““‘ 6.2)

For many realistic cases, P is sufficiently close to infinity that Equation 6.2 is the same as Equation 6.1,
so it may be used because it is simpler.

Equation 6.3 calculates the expected conflicts of a random placement of U pages using Equation
6.1 (Equation 6.2 also could be used):

min (%,U)
Cag =B 3 (u—A)P(uinbin). (6.3)
u=A+1
It multiplies u —A, the conflict pages, times the probability of ¥ >A pages in a bin to produce the
expected conflict pages in each bin. This times the number of bins gives the total expected conflict
pages.

The bounds on C are also important to know because they gauge the potential static conflict varia-
bility of different placements. The maximum conflicts in a placement of U pages into a real-indexed

cache, C pax, i8:

Comx = U - A ,A) (6.4)

, P|, B
- mm(U—-B{UP

where

U %] is the minimum number of bins that the U pages can be placed in. The complexity of this

equation occurs since it may not be possible to place all U pages of an address space in a single cache
bin when P is finite. As P—-> Equation 6.4 simplifies to

C max =max 0, U —-A)

since all U pages can be placed in the same bin. The minimum conflicts, C iy, Occurs when the pages
of the address space evenly distribute across the bins of the cache, so

C i = max (0, U =N). (6.5)

Figure 6.4 plots C,,, and its bounds for various address space sizes (U). (Note that the address
space size is the number of pages pages referenced in an address space.) In the worst case, the operating
system places all pages in the same bin, so C y,, is linear with the address space size. In the best case,
the operating system evenly utilizes the cache, so no conflicts occur until the cache is full of pages, and
then each additional page adds a new conflict.

Figure 6.5 illustrates the difference between C,,, and C i, more dramatically for direct-mapped,
2-way, and 4-way set-associative caches. It plots the random conflicts less the minimum, or the

24, Both Thiebaut and Stone [THiS87] and Agarwal, et al. [AGHH89], also use binomial distributions for
similar analysis.

127

Conflicts
=

Averag
Z- in

- | 1

0 N 2N 3N
Address Space Size (N is Cache Size)

Figure 6.4. Cache Placement Conflicts.

This figure shows Cayg, Cmax, and Cryy (as calculated by Equations 6.3, 6.4, and 6.5) for various address
space sizes (U). The modeled system is a 1-megabyte direct-mapped (A =1) cache (N =B =64) backed up
by a 128-megabyte main memory, with a page size of 16-kilobytes.

mapping conflicts (Cayg —C min), Which is the potential static conflict savings of careful page mapping.
While random page mapping would average C,,, conflicts, a careful mapping of the pages could reduce
the conflicts close to C . The figure shows that as many as 30% of the pages from an address space
are unnecessarily in conflict with random mapping. This is the potential static improvement available
to careful mapping.

Figure 6.5 shows that the mapping conflicts are maximized at the point where the address space
size equals the cache size. This indicates that the largest potential gain from careful mapping is when
the (active) address space size is about equal to the cache size. Other address spaces also will benefit
from careful mapping, but this is the best case. When the cache is underutilized or highly utilized, care-
ful mapping becomes less useful and necessary because it can remove fewer conflicts.

Figure 6.5 also shows that Cjyp —Cmin decreases with increasing associativity. This shows that
careful mapping is most useful with a direct-mapped cache. In the extreme case, careful mapping can-
not help fully-associative caches because they have no mapping conflicts.

Consider the peak values of the curves in Figure 6.5. This value is interesting because it shows
the potential of careful mapping for a given cache. If a simple computation could determine this value,
it would be an easy way to learn the maximum potential of careful mapping for a given cache.

Let max(Cgayg —C min) be the value for Cavg—Cmin When U =N = BXA and P —> < (Equation 6.2
is used rather than Equation 6.1). It can be shown that

max (Cgye = C mi u-1
lim (avg mm) —
B—300 N

A-1
e Y (A-u) (6.6)
u=0

u!

where e is the natural exponential [ELLG82]. For direct-mapped caches, this is simply ¢!, This means

128

Q
S
3]
£
e}
8q
270
j=7
g
=
4'“\&
[! =

0 N 2N 3N
Address Space Size (N is Cache Size)

Figure 6.5. Random Mapping Conflicts.

This figure shows the difference between the conflicts resulting from a random mapping and the minimum
conflicts, the mapping conflicts (C,y, —Cmin), for different address space sizes and cache associativities
(A=1,2,4). The configuration is a 128-megabyte main memory in 16-kilobyte pages with a 1-megabyte
cache (N=64, B =N/A).

that up to e}, or 36.7%, of pages can be unnecessarily in conflict in large caches when the main
memory size is large. An empirically found closed-form approximation of Equation 6.6 is:

max (Cayg —C min) :Aeu—(logz(A)-f-l). 67
N
This formula is extremely simple, yet it contains much useful information. Table 6.1 lists actual max-
imum conflict fractions for various configurations, and compares them to the estimations given by
Equation 6.6 and Equation 6.7.

In general, the approximations are accurate. Both Equation 6.6 and 6.7 consistently overestimate
the actual maximum fraction of conflict pages over the range of caches studied. Equation 6.6 is slightly
more accurate than Equation 6.7, the empirical equation. Both approximations are more accurate for
the lower associativities.

Usually, the simple closed-form formula given by Equation 6.7 is a good approximation of the
maximum average static mapping gain from careful mapping. Since it depends only on the associa-
tivity of the cache, it shows that the usefulness of careful mapping is more dependent on associativity
than the cache size, page size, or main memory size.

6.3. Careful Mapping Implementations

This section presents four careful page mapping implementations that try to realize the potential
improvements shown in the previous section. The careful mapping algorithms use any pool of available
page frames to utilize the cache bins more fully and minimize the cache contention by the pages from
multiple address spaces. They do not require a pool for correctness, but only to give better placements.

129

Maximum Conflict Fraction
Equation 6.6 Equation 6.7

B A | Actual Value Error Value Error
o4 1 0.36 0.37 1.2% 0.37 1.2%
32 2 0.27 0.27 2.0% 0.27 2.0%
16 4 0.19 0.20 3.7% 0.20 5.7%
8 8 0.13 0.14 1.3% 0.15 12.7%

4 16 0.09 0.10 16.0% 0.11 26.0%
256 1 0.36 0.37 1.8% 0.37 1.8%
128 2 0.27 0.27 2.0% 0.27 2.0%
64 4 0.19 0.20 2.4% 0.20 449
32 8 0.14 0.14 3.2% 0.15 8.3%
16 16 0.09 0.10 4.9% 0.11 14.0%

Table 6.1. Maximum Conflict Fraction Approximations.

This table compares the maximum fraction of mapping conflict pages approximations in Equation 6.6 and
Equation 6.7 with actual values (as calculated by Equation 6.3 with U=N =BxA). The ‘‘actual’’ data in
this table corresponds to a 128-megabyte main memory with 16-kilobyte pages (P = 8192). The top half
corresponds to a 1-megabyte cache and the bottom half corresponds to a 4-megabyte cache.

Of course, a careful page mapping algorithm should preferably produce better placements with a
smaller pool. That way, careful mapping is more adaptable to all pools, small or large, and it can pro-
duce static mapping improvements with minimal page replacement effects (perhaps none).

The algorithms most importantly minimize intra-address-space cache contention, and only secon-
darily do some of them try to minimize inter-address-space contentionzs. They improve the page place-
ment of a single address space in a (unified) multi-megabyte real-indexed cache based solely on the
static criteria shown in the previous section; they do not use any dynamic referencing information for
placement improvementszé. Section 6.4 shows that the static placement improvements of these algo-

rithms eliminate many dynamic cache misses.

6.3.1. Page Coloring

The simplest way to map pages carefully is to force a real-indexed cache to work as if it were a
virtual-indexed cache. This is called Page Coloring. MIPS uses a variant of it [TADF90]. Page Color-
ing minimizes cache contention because successive virtual pages do not conflict in a virtual-indexed
cache, and mostly contiguous address spaces that are smaller than the cache often index into cache bins
without conflict. Given the complexity of current memory systems, the simplicity of Page Coloring is
desirable. The page mapping function simply (equality) matches the bin bits of a virtual page to a real
page frame. When it cannot find a page frame that matches the bits, it chooses any page frame, prob-
ably the first available. Figure 6.6 shows a code fragment that could be used to implement Page Color-
ing. The Careful Coloring () function chooses the bin each time Page Coloring maps a page.
Not shown are more difficult portions of the memory management code that would extract an available

25. Intra-address space conflicts are likely to cause the most cache misses in future processors that execute
hundreds of thousands, or even millions, of instructions within a single address space before each process
switch.

26. Static placement decisions are appropriate because dynamic information, such as cache references
(misses) or page references (faults), may not be available to the page mapper.

130

page from the chosen bin and update system state information accordingly.

VALUE free[NUMBER BINS];

BINTYPE Careful Coloring(vp, pid)
VIRTUALPAGE vp;
PIDTYPE pid;
{
BINTYPE bin;

bin = vp % NUMBER BINS;

if (free[bin]l > 0)
return(bin);
else
return(BIN_OF_ANY AVAILABLE_PAGE);

Figure 6.6. Bin Choice Code for Page Coloring.

This figure shows a ‘‘C’’ code fragment to implement Page Coloring. Careful_Coloring () places
a page in a bin, given the virtual page, vp, to be mapped. The free array contains the number of page
frames available in each bin. The ‘%™ operator is the modulo operator.
BIN_OF_ANY_AVAILABLE_PAGE would likely be the bin of the first available page, but could be the
bin of any arbitrary available page.

More sophisticated Page Coloring implementations are better. As Figure 6.6 shows the imple-
mentation, Page Coloring places commonly used virtual addresses (like the stack, for instance) from
different address spaces in the same real-indexed cache bins, which will lead to excessive inter-address
space contention and, consequently, many cache misses. Page Coloring can solve this problem by
offsetting each address space (or contiguous segment) differently in the cache [TADF90], instead of
directly matching virtual and real bin bits. This chapter considers two versions of Page Coloring: (1) an
exact match of bin bits (as shown in Figure 6.6), and (2) a match of bin bits exclusive-ored with a dif-
ferent PID (process identifier) for each address space. The precise form of Page Coloring used by MIPS
was not known, but they probably don’t use a direct equality bin match.

6.3.2. Bin Hopping

Figure 6.7 shows Bin Hopping, another simple way to equalize cache bin utilization. It allocates
sequentially mapped pages in sequential cache bins, irrespective of their virtual addresses. Bin Hop-
ping reduces cache contention because it sequentially distributes the pages from an address space across
the cache in different bins (until it must wrap around). It exploits temporal locality because the pages it
maps close in time tend to be placed in different bins. If pages mapped together are also referenced
together, this reduces contention.

Figure 6.7 shows a Bin Hopping example where it always finds available page frames in succes-
sive bins. This may not be a common scenario in many systems since there may not be page frames
available for replacement in all bins. Bin Hopping skips some bins when it increments over bins that do
not contain free page frames. This degrades the page placement.

Figure 6.8 shows a straight-forward ‘‘C’’ code Bin Hopping implementation that chooses the bin
placement of a page. The implementation traverses the bins until it finds one with an available page
frame. Then it remembers where it placed the last page, so the next traversal can start from there. Bin

131

Real
Cache ~—
Bins

Bin Pointer

Figure 6.7. Page Placement By Bin Hopping.

This figure pictures a page placement that could occur with Bin Hopping, which maps pages to page
frames in successive cache bins.

Hopping maintains a separate traversal path per address space, so it minimizes conflicts within each
address space separately. The simplicity of Bin Hopping, like Page Coloring, is its largest asset. A
small amount of state information is needed per address space, only the bin where the last page was
placed.

6.3.3. Best Bin

The strength of Page Coloring and Bin Hopping may also be their weakness. The small amount of
saved state information reduces the effectiveness of the mapping function because it precludes sophisti-
cated decision-making. When there are not available pages in all bins, Page Coloring and Bin Hopping
may not produce a good mapping. Instead, a page mapping function can use to advantage information
indicating the previously placed pages in each cache bin. The complete mapping of virtual pages to
page frames contains this information, but it can be costly to extract it. Since the page mapping func-
tion requires only counts of page frames in each bin, execution efficiency is greatly improved by storing
these counts in a readily-available form. The storage space of the counts is modest compared to the
space required for the complete page mapping information.

The count for each bin is the pair <used, free>. Used is the number of previously placed pages
from a given address space, and free is the number of page frames available for placement in this bin.
A straight-forward mapping algorithm sequentially looks at each of the <used, free> pairs (for each
bin) and chooses the bin that best meets the standards of suitability. This algorithm is Best Bin. Like
Bin Hopping, Best Bin ignores the virtual addresses when it maps a page. Best Bin maintains system-
wide free information to show the number of available page frames in each bin, just as Page Coloring
and Bin Hopping do. The added state of Best Bin is the used information per bin for each active
address space. Best Bin reduces contention within each single address space by equalizing these used
values across the different cache bins.

132

VALUE free[NUMBER BINS];
BINTYPE next bin[NUMBER PIDS];

BINTYPE Careful_ Hopping(vp, pid)
VIRTUALPAGE vp;
PIDTYPE pid;
{
BINTYPE bin;

bin = next_bin{pidl;

while (free[bin] == 0)
bin = (bin + 1) % NUMBER;BINS;

next_bin[pid] = (bin + 1) % NUMBER BINS;
return(bin);

Figure 6.8. Bin Choice Code for Bin Hopping.

This figure shows a ““C*’ code fragment to implement Bin Hopping. Careful Hopping() places
page vp in a bin, given the process (or address space) identifier pid indicating the mapping process (ad-
dress space). It will properly terminate provided there is an available page frame. The free array con-
tains the number of available page frames in each bin and the next_bin array contains the bin position
(initially random) for each process (address space).

The Choice () code in Figure 6.9 ranks two bins based on the <used, free> parameters. The
specific rules used for ranking the <used, free> pairs (bins) are, in priority order: (1) the bin must have
at least one free page frame (free = 1), (2) the bin should have the fewest pages used by this address
space (minimize used), and (3) the bin should have the most page frames available (maximize free).
Rule (2) minimizes conflicts within the address space, and rule (3) minimizes conflicts between dif-
ferent address spaces since more available page frames implies that other address spaces underutilize
the bin. If these rules fail to produce a preferable bin, an arbitrary choice can be made.

Figure 6.10 shows ‘‘C”’ code to implement Best Bin. The code is a loop calling the Choice ()
function that incrementally finds the bin that is best. This is a simple implementation, and it assumes
that there is at least one available page frame.

Figure 6.11 depicts an example of a choice made by Best Bin. The <0, 0> bin has the least previ-
ously mapped pages, but it cannot be chosen since there are no available page frames. Of all the <used,
free> pairs, Best Bin chooses the <1, 3> bin because there are several available page frames and only
one previously placed page frame. After choosing the <1, 3> bin, the page mapping function extracts
an available page frame from the bin, maps the virtual page to the real page frame, and changes the <1,
3> pair to <2, 2> to reflect the modified state.

Best Bin requires more memory than the previous mapping algorithms. It requires less storage
with increasing associativity or page size, but more storage with larger caches. Since the number of
page frames from each bin is likely to be small and exact used values are not required for correctness,
short integers can be used to represent each value. An 8-bit byte may be sufficiently large, for example.
Variable overflow on short integers can be easily handled by ‘‘pinning’’ a node at the maximum value,
making the value at a node an approximation of the true value. When using one byte per eniry, only
256-bytes would be required for a used array corresponding to the bins of a 4-megabyte direct-mapped

133

BOOLEAN Choice (left used, left_free, right used, right_free)
VALUE left used, left_ free, right_used, right_free;
{

if(left_free == 0)
return (CHOOSE_RIGHT) ;
else if (right_free == 0)

return (CHOOSE_LEFT) ;

else if (right_used > left_used)
return (CHOOSE LEFT) ;

else if (left_used > right_ used)
return (CHOOSE_RIGHT) ;

else if(left_free > right_ free)
return (CHOOSE_LEFT) ;

else if(right free > left_free)
return (CHOOSE_RIGHT) ;

else
return (ARBITRARY_ CHOICE);

Figure 6.9. Code to Choose Among Bins.

This figure shows a ‘‘C’’ code function used rank aiternative bins. Its arguments are the <used, free>

pairs for each bin and it returns the preferred bin. ARBITRARY CHOICE could be a constant or a ran-
dom variable.

VALUE used[NUMBER PROCESSES] [NUMBER_BINS];
VALUE free[NUMBER _BINS];

BINTYPE Careful_Best (vp, pid)
VIRTUALPAGE vp;
PIDTYPE pid;
{
BINTYPE best bin, bin;

best_bin = 0;
for(bin = 1; bin < NUMBER_BINS; bin++)
if (Choice (used[pid] [best_bin],
free(best_bin],
used[pid] [binl,
free{bin]) == CHOOSE_RIGHT)
best_bin = bin;

return (best_bin);

Figure 6.10. Bin Choice Code for Best Bin.

This Figure shows a *‘C’* code fragment to implement Best Bin page mapping. Careful Best()
places page vp in a bin, given the process (or address space) identifier of the mapping process (address
space). The used array contains the used state information for each process. The free array contains
the number of available page frames in each bin. Figure 6.9 defines the Choice () function.

cache with 16-kilobyte pages.

134

A <2,3>

<1,0>

<1,3> <—— Choose This Bin

<0, 0>
Bins [<used, free> pairs
<1,0>
<2,2>
<1, 1>
v <1, 2>

Figure 6.11. Page Placement by Best Bin.

This figure shows the bin that would be chosen as then best bin by Best Bin using Choice () from Fig-
ure 6.9. Pictured are the <used, free> pairs for each bin. Best Bin will look at all bins and decide that the
<1, 3> bin is best.

6.3.4. Hierarchical

The Best Bin execution time may be linear in the number of bins, which may be too slow when
there are many bins. Alternatively, Hierarchical can choose a bin more efficiently with the aid of a bin
tree structure, as pictured in Figure 6.12. The time complexity of Hierarchical is logarithmic in the
number of bins, much better than linear when there are many bins. Another important property of
Hierarchical is its size independence. This means that it improves the static page placement in many
caches simultaneously. With the proper association of tree leaves to cache bins, the different levels of
the tree correspond to caches with more or less bins. By optimizing each tree level, Hierarchical
improves the static page placement in each cache. This is particularly important with a hierarchy of
real-indexed CPU caches since the page mapping function will eliminate conflicts in all the caches in
the hierarchy simultanéously. It also simplifies software management. For example, it allows machines
with different caches to use the same operating system executable; the same algorithm will eliminate
conflicts in each cache without modification. Size independence also has a simulation advantage: a
cache simulator can concurrently simulate multiple caches with the same size-independent virtual to
real page mappings produced by Hierarchical.

Figure 6.12 shows that a bin tree is a fully balanced binary tree; the value of each leaf node is the
number of page frames in its associated bin. The value of interior nodes is the sum of the values of its
children. The value of the root node of a used (free) bin tree is the number of used (free) page frames.
Hierarchical uses a single free bin tree system-wide, but it needs a used bin tree for each address space,
just as Best Bin needs a bin array per address space and Bin Hopping needs a bin position for each
address space. This chapter uses binary trees; higher branching factors also could be used, but they may
not maintain size independence with all caches.

When Hierarchical maps a new virtual page to a page frame, it traverses the bin trees from the root
to a bin (leaf) at the bottom of the trees. During a traversal, exactly log,(B) choices decide the particu-
lar traversal path. The key determinant of the effectiveness of Hierarchical is the quality of these

135

Real
Cache

Bins

Figure 6.12. Page Placement Using Hierarchy.

This figure pictures cache bins structured as a hierarchical tree, called a bin tree. A tree traversal places
the page in a bin. Decisions at each node, based on the node values, determine the tree traversal direction.
This chapter assumes binary bin trees; trees with higher branching factors also could be used.

decisions. Hierarchical decides the traversal direction by looking at the <used, free> pairs correspond-
ing to the two children of a node. It ranks bins (sub-trees) precisely as Best Bin does, as described in
Figure 6.9. The <used, free> values passed to the Choice () function are interior tree values instead
of the final bin values. Both Hierarchical and Best Bin use the same Choice () because the goals of
the decision are the same in each case. They both minimize contention by equalizing the used values
within each address space separately.

Figure 6.13 shows Hierarchical on a simple example. Traversal starts from the root of the bin
trees. From there, Hierarchical decides based on the <4, 6> and <5, 5> pairs corresponding to its sub-
trees. It chooses <4, 6> since it has less used pages. Next, Hierarchical chooses <1, 3> over <3, 3>,
again because there are less used pages. Finally, it chooses <1, 3> over <0, 0> because <1, 3> has
available page frames. Bin tree traversal is then complete since a leaf node is reached.

Figure 6.13 also shows how Hierarchical updates bin trees after placing the page in the chosen
bin. Tree update, unlike tree traversal, proceeds from a leaf of the tree through the only path to the root
of the tree, updating each node along the way. Similar to the log(B) decisions required to traverse a
bin tree downward, Hierarchical modifies log(B)+ 1 nodes during a tree update. Note that tree update
could be done with tree traversal since Hierarchical knows the changes it will make on the path to the
leaf.

136

Traversal ...

o2 @

<1,3>) o A/

<1,0> @
@ <2,2>

Figure 6.13. Bin Tree Traversal.

This figure shows an example of a bin choice when mapping a virtual page (using the decision heuristic in
Figure 6.9) by <used, free> bin tree traversal with Hierarchical. The right half shows the corresponding
updates that occur after the mapping traversal. The values of the tree nodes are given. The used values of
the leaves show the number of pages already placed in the corresponding bin. The free values of the
leaves show the number of page frames available for replacement in the corresponding bin.

Figure 6.14 illustrates the labeling of tree nodes in a bit-reversed manner. With this labeling,
Hierarchical produces size independent mappings. The labels of the tree nodes are a reversal of the bit
strings obtained from an increasing (binary) ordering of the nodes on a level from left to right. By
definition, the value of a leaf node is the number of used (free) page frames whose bottom bits match
the leaf node label. Since a parent node is the sum of its children values, Appendix A shows that the
value of each tree node is the number of page frames whose bottom bits match the node label.

The low-order (right) digit of the nodes on the left half of the bin tree are all zero while the
corresponding bit is always one for the nodes on the right half. Since the first decision during mapping
decides whether the right or left sub-tree will be traversed, this decision chooses the bottom bit of the
page frame number. This is exactly the conflict elimination decision required for a cache with two bins.
Hierarchical reduces conflicts in a cache with two bins although the tree in Figure 6.14 is specifically
targeted for a cache with eight bins (since there are eight leaves). The essence of cache size indepen-
dence is that when eliminating conflicts in a cache with more bins, conflicts must also be eliminated in
smaller caches.

137

Bit-Reversed Ordering
Figure 6.14. Mapping Tree Nodes to Bins.

This figure shows a relationship of bin numbers to tree nodes that allows Hierarchical to produce size in-
dependent mappings. It is the bit-reversal of numbering the nodes with labels in increasing order from left
to right. :

Bin trees labeled as in Figure 6.14 are called a Bit-Reversed Bin Tree (BRBT). As well as the
number of bin bits, the depth of a cache is the BRBT level with the same number of nodes as there are
bins in the cache. With a BRBT, Hierarchical improves the static page placement in all caches with
depth less than or equal to the depth of the tree. Hierarchical makes the same choices at the upper lev-
els of the bin tree whether the lower levels of the BRBT are filled out or not. To maintain size indepen-
dence, the lower levels only refine the decisions made at higher levels. The mappings produced by
Hierarchical are equivalent with different tree sizes provided the choice among multiple free page
frames within a bin is arbitrary. Appendix A gives a formal proof that Hierarchical produces size
independent mappings.

The implementation of a BRBT is efficient since the trees are fully balanced binary trees that can
be represented using a simple array as a heap (as used by heapsort) [AHHUS8S5] with only 2B —1 entries
required, indexed from 1 to 2B — 1. Each node is identified by its index into the array, the first entry is
the root node. The content of the corresponding array entry is the node value. The power of the heap
representation is that the parents and children of a node can easily be found by performing bit shift and
logical operations on the node identifier. The left child of the node identified by i is 2i and the right
child is 2i+1. The parent of node i is |i/2]. The implementation of these operations on a binary
machine can be particularly efficient.

Figure 6.15 shows code to implement Hierarchical, which uses the decision heuristic in Figure 6.9
and a heap representation of the used and free BRBT’s. Hierarchical requires only twice the memory of
Best Bin. 511 nodes per address space (process) would be required for the used BRBT of a 4-megabyte
direct-mapped cache with 16-kilobyte pages. Similar to Best Bin, each node requires little storage since
its value need not be exact.

Though not explored further in this study, Best Bin and Hierarchical could be merged into a single
algorithm. This algorithm would combine the speed of Hierarchical with the better decisions of Best
Bin. Best Bin could be used to find the best bin at a certain level of the BRBT, then Hierarchical could
further traverse the sub-tree of the BRBT chosen by Best Bin. For example, in a BRBT with 11 levels

138

VALUE used[NUMBER_PROCESSES] [2 * NUMBER_BINS];
VALUE free(2 * NUMBER BINS];

BINTYPE Careful Hierarchical (vp, pid)
VIRTUALPAGE vp;
PIDTYPE pid;
{
int level;
NODE_IDENTIFIER node, left_node, right_node;
BINTYPE bin;

level = 1;
node = 1; /* root node */

while (level < NUMBER_TREE_LEVELS)
{
left_node = 2 * node;
right node = 2 * node + 1;
if (Choice(used[pid] [left_node],
free{left nodel,
used[pid] [right_node]l,
free[right node]) == CHOOSE_LEFT)
left_node;

i

node
else
node = right_node;
level = level + 1;
}

bin = Bit_ Reverse(node - NUMBER_BINS, NUMBER_BIN BITS);
return{bin) ;

Figure 6.15. Bin Choice Code for Hierarchical.

This figure shows a ‘‘C>> code fragment to implement Hierarchical. Careful Hierarchical()
places the page vp in a bin, given the process (address space) identifier of the process (address space) re-
questing the mapping. The used array contains the used bin tree for each process and the free array
holds the system free bin tree, each tree is stored as a heap. Figure 6.9 defines the Choice () function.
The Bit_Reverse () function reverses the bits of its first argument (the second argument gives the
number of reverses) so that the mapping of bins to leaves maintains size independence.

(of depth 10), Best Bin could choose the best of the eight sub-trees at level three in the tree. Hierarchi-
cal could then refine the decision made by Best Bin to level ten in the tree. This example algorithm
could be particularly useful for a system with hierarchical caches of eight and 1024 bins each; Best Bin
would give good mappings for the cache of eight bins, while the mappings would be size independent
for this configuration because Hierarchical was used at the bottom of the tree.

6.4. Trace-Driven Simulation Performance Analysis

This section analyzes the careful page mapping algorithms described in the previous section using
trace-driven simulation. Trace-driven simulation allows the usefulness of the different careful page
mapping algorithms to be measured. This analysis uses the traces described in Chapter 3. It shows that
careful static page placement improves dynamic cache performance.

139

6.4.1. The Simulator

Previous trace-driven simulation results analyzing cache performance assume that operating sys-
tem policies are fixed and independent of the studied caches. This chapter eliminates this assumption.
Since this section examines different virtual page to physical page frame mapping policies, the simula-
tor incorporates memory management policies of the operating system along with hardware cache
management implementations. The simulation results expose the interaction between hardware and
software system components.

The simulator implements a global least-recently-used (LRU) page replacement policy by main-
taining an exact ordering of the page frames from most recently used to least recently used (an LRU
list). (It does not place pages in the pool when a process exits, only when they are least-recently-used.)
The simulator maps a virtual page to a corresponding page frame at the point when the page is first
referenced (demand loading). Though exact LRU may be infeasible to implement in practice, it is a
replacement policy with desirable properties that is feasible to implement in a simulation environment.
The page frame at the bottom of the LRU list, the least recently used one, would normally be the best
candidate page frame for replacement. Rather than requiring that the simulator choose the last page on
the LRU list for mapping, the careful page mapping policies have the freedom to choose among the
page frames near the bottom of the LRU list. That is, the pool of available page frames consists of the
frames at the bottom of the LRU list. Figure 6.16 shows this. The size of the available page frame pool
is constant throughout the simulations of this chapter, even at the beginning of a simulation when the
entire main memory is unmapped. The default pool size is 4-megabytes of the 128-megabyte main
memory in 16-kilobyte pages. The default main memory size is large enough that the simulation
required no process swapping, and the static process scheduling on each trace is used.

5 Free Page Frame Pool
" A
‘—_¥ —_» . = . —_—% _—_-) . .. —_‘—b
Most Recently Used Least Recently Used

Figure 6.16. LRU List Implementation With Available Page Frames.

This figure shows the global LRU list of page frames and the free page frame pool. The simulator main-
tains an exact list of page frames from most recently used to least recently used during real-indexed cache
simulations. When it maps a virtual page to a page frame, the bottom page frames on the list are available
for mapping.

Before starting each real-indexed cache simulation, the simulator initializes the LRU list in a dif-
ferent random order. This models a system that does not differentiate among its page frames and has
been executing for some time; eventually page frames are not in any significant order. Given this ran-
dom ordering, the mapping algorithms have a random sampling of page frames available for mapping at
the beginning of a simulation. As execution continues, the memory reference pattern of the traces and
the previous mapping decisions determine the available page frames.

140

6.4.2. Results

6.4.2.1. The Usefulness of Careful Page Mapping

This section compares Hierarchical mapping to random mapping because Hierarchical’s size-
independence reduces simulation time, and because Hierarchical performs well compared to the other
careful mapping schemes in Section 6.4.2.3. For 1-megabyte (top), 4-megabyte, and 16-megabyte
caches (bottom), figure 6.17 plots 100 million instruction averages of the Mult2.2 misses per instruction
(MPI) for four different simulations, each with a different virtual to real page mapping. The cache per-
formance is different because each simulation has a different pool of available page frames, so each
simulation places the same pages in different page frames, and consequently different cache bins. Note
that random mapping does not imply random page replacement; it means that the simulation places the
page in the page frame at the bottom of the LRU list. Thus, the simulator places the page in a random
(arbitrary) bin, depending only on the page frame number at the bottom of the LRU list.

Figure 6.17 shows, for the Mult2.2 trace, that the careful (Hierarchical) mappings have con-
sistently lower MPI than random (since the solid lines are usually below the dotted lines). This shows
that the static page placement improvements of careful mapping reduce dynamic cache misses for this
trace. Over most of the trace, the careful mapping MPI’s are only a few percent better than random.
But in addition to this small and constant improvement, there are bursts of cache misses from poor ran~
dom page mapping that occasionally double or triple the MPI for the 100 million instruction mtervals
These bursts increase the mean improvement of careful mapping well beyond only a few percent.

To get a better idea of the quantitative dynamic cache performance improvements of careful map-
ping, the average cache MPI when using random and Hierarchical mapping should be determined. To
do this, the results from multiple simulation runs that use different page mappings were averaged.
While the MPI of one simulation is an unbiased estimate of the true mean MPI, Figure 6.17 suggests
that the MPI results from simulations can substantially vary, so it is hard to say how close one simula-
tion result is to the true mean MPI. After running four simulations, most of the four-sample means were
found to be accurate (with 90% confidence) within a few percent, so no more simulations were run.
Fortunately, each trace was long enough so that the individual simulations averaged out much of the
variance in cache performance, and too many long-trace simulations were not needed (which is impor-
tant since each simulation takes days). With shorter traces, many more samples would have been
required for the same statistical significance. Appendix B is provided for those who wish to check the
statistical significance of the results. This is particularly important given that the sample size iS SO
small. This dissertation chapter uses the four-sample means to quantitatively evaluate the improvement
of careful mapping for 1-megabyte, 4-megabyte, and 16-megabyte secondary caches with direct-
mapped, 2-way, and 4-way set-associativity.

Figure 6.18 shows the direct-mapped Hierarchical miss reductions. The Hierarchical reductions
are the relative amount that the four-sample mean Hierarchical MPI is lower than the four-sample mean
random mapping MPI. The figure shows that careful page mapping is useful for a variety of workloads.
Careful mappings eliminate up to 55% of the direct-mapped cache misses from random mapping. On

27. Note that some bursts appear in the random mappings of both the 1-megabyte and 4-megabyte cache
simulations. This occurs since the simulations of different cache sizes are of the same virtual to real page
mapping, and the results are correlated. The results for each individual cache are not correlated, however.

141

Interval MPI for 1IM-4M-16M Caches

!, Hierarchical ,'\
1

TN ! - - - -Random

<o
p—
N
w
N

Misses Per 1000 Instructions
25 0 05 1 15 2 25 3 35

2
|

Hierarchical

1.5

— - - - -Random

0.5

Misses Per 1000 Instructions

0
-

0.1 02 03 04 05 0.6

Misses Per 1000 Instructions

Hierarchical
| |
2 3 4
Billions of Instructions Executed

0

(=]
o

Figure 6.17. Mult2.2 Results for Different Page Mappings.

This figure shows the MPI effect of four different virtual to real mappings generated by Hierarchical (solid
lines) and generated randomly (dotted lines) on the misses of three real-indexed secondary caches. It
shows the average MPI for the previous 100 million instructions of the Mult2.2 trace for 1-megabyte (top),
4-megabyte (middle), and 16-megabyte (bottom) secondary direct-mapped caches. Note that the scales are
different for each graph.

the average over all the traces, careful mapping eliminates about 10-20% of the random-mapping
direct-mapped cache misses. A similar look at the results for the other associativities suggests that care-
ful mapping eliminates about 4-10% of the misses in a 2-way set-associative cache with random
replacement, and about 2-5% of the misses in a 4-way set-associative cache with random replacement
(on average). (The Hierarchical reductions for the higher associativities are given in Appendix B.)
These results verify that the largest gain from careful mapping comes with a direct-mapped cache, as

142

predicted by the simple static analysis of Section 6.2.2. Higher set-associativities can more easily elim-
inate contention without static placement improvements because they spread contending blocks across
the cache block frames in a set. Static improvements that avoid contention are more valuable with

direct-mapping because direct-mapped caches cannot eliminate contention for the same set (block
frame).

Hierarchical Reduction for Direct-Mapped Caches

77 s ' l T
Muitl 16
Multl.2
Mul2 A
5 3%]
Mult2.2 v/ /////%21%
: | 5 16M |
i Tv
Sor
- 4% |
Tree V//////////////////// 37%
30%
1% i
Lin
55%
0 0.1 0.2 0.3 0.4 03

Reduction (Fraction of Misses Eliminated)

Figure 6.18. Direct-Mapped Hierarchical Miss Reductions for All Traces.

This figure shows, for different direct-mapped secondary caches and traces, the Hierarchical reduction,
which is the fraction of the misses produced from random mapping that the careful mapping of Hierarchi-
cal eliminated.

The direct-mapped Hierarchical miss reduction is positive in all cases except once with Lin, where
the MPI slightly increases with careful mapping. The multiprogrammed trace behaviors are similar,
except for Multl.2, where one bad page placement in one simulation biased the results and cut the
direct-mapped Hierarchical reduction in about half (for the 1-megabyte and 4-megabyte caches). Care-
ful mapping doesn’t help Tv much because most of its misses occur while it traverses a large data

143

structure with little locality; careful mapping does not eliminate many misses during this traversal
because the memory locations tend to be randomly accessed, and the Tv address space is too large for
the static placement improvements to eliminate much contention. (Figure 6.5 shows how there is little
room for static mapping improvements when the active address space size is large relative to the cache
size.) The improvements of both Sor and Lin relate closely to the benefits of associativity. There is lit-
tle (or no) careful mapping (associativity) improvement with the 1-megabyte cache, but careful map-
ping (associativity) improves performance greatly for the 16-megabyte cache because some arrays fit
fully in the cache. Careful mapping also gets much of the associativity benefits with Tree, averaging
about a 30% miss reduction. Though the results in Figure 6.18 vary for different traces, most of the rest
of this chapter examines Mult2.2 in detail because of its ‘‘average’’ behavior; the Mult2.2 Hierarchical
reductions are close to the averages for all the traces.

Figure 6.19 shows the Mult2.2 results in another graphical way to put the careful mapping miss
reduction in its proper perspective. By interpolating between the simulation results for different cache
sizes and associativities, it estimates the effect of software careful mapping relative to hardware cache
design changes. The dashed line in the left graph finds the equivalent associativity change of Hierarchi-
cal with a 1-megabyte direct-mapped cache. Careful mapping eliminates more than half the misses of a
random-mapping associativity increase; it is about equivalent to an associativity increase from direct-
mapped to 1.6-way with Mult2.2. For a direct-mapped cache, the dashed line in the right graph com-
pares the careful mapping miss reduction (with a 1-megabyte cache) to the reduction from a randomly-
mapped cache size increase. Careful mapping also eliminates a large portion of the misses eliminated
by a direct-mapped cache size doubling; it makes a 1-megabyte direct-mapped cache act about like a
1.7-megabyte direct-mapped cache for Mult2.2.

Most importantly, careful page mapping reduces mean MP/ (across different page mappings) by
avoiding poor page mappings. Also, a secondarily useful trait of careful mapping is a reduction in the
MPI variance for different runs of a trace. Variance in cache behavior is undesirable because it
increases the execution time variance of a workload. Figure 6.17 shows that the Mult2.2 mappings pro-
duced carefully have less MPI variations than the random mappings because all of the solid (Hierarchi-
cal) lines are much closer together than the dotted (random) lines. The different careful mapping simu-
lations tend to follow an outline that the workload dictates, but the random mapping simulations show
the bursts that are caused by random contention for cache locations. Poor random mappings into the
cache, not the workload references themself, cause many of the random mapping misses.

Although careful mappings eliminate much of the variance in cache performance, they don’t
remove all of it. In more rare circumstances than with random, a careful mapping implementation also
decides poorly. Figure 6.20 shows simulation results of mappings produced randomly and by Hierarch-
ical for the Multl.2 trace. The one Hierarchical mapping (a solid line) shown in Figure 6.20 caused
considerably more cache misses over the first half of Multl.2, but its misses returned near that of the
other Hierarchical simulations for the second half of the trace. This is the bad simulation that biased the
Hierarchical reduction of Mult1.2.

Bad decisions near the start of the trace caused more contention over the phase of execution of the
process that referenced the poorly mapped pages. Once this phase completed, the poor mapping deci-
sions no longer affected the cache misses. This emphasizes the importance of the page mapping func-
tion choosing a ‘‘good”’ mapping. Though the page may only be mapped once, the cost of a poor map-
ping can occur on every reference to the page.

144

1.5
1.5

¥, T I T |

‘. a Direct-Mapped (DM)
A 2-way

o s Dl e —
g g
3 3
E E
B =
% . 4-Megabyte E
vs] T B R T | -
< | <
1¢——pia-Equivalent —ble Equivalent DM Size Increas
| ASfociativity Increafe ' T
ol 1 ol L]] | |
1 16 2 4 1 1.7 4 16
Associativity Associativity

Figure 6.19. Mult2.2 Careful Mapping Improvement.

This figure shows the (mean) Mult2.2 simulation data from Appendix B. The misses per thousand instruc-
tions is plotted versus the cache associativity and size for random (dotted) page mappings and Hierarchical
(solid) page mappings. The left graph shows MPI versus associativity for the different cache sizes. The

right graph shows MPI versus cache size for different associativities (square = direct-mapped, triangle =
2-way, and circle = 4-way)

Interval MPI for Multl.2
o
N Hierarchical
<}

- - - -Random

Misses Per 1000 Instructions

Billions of Instructions Executed

Figure 6.20. Mult1.2 Results for Different Page Mappings.

This figure shows the MPI effect of three different virtual to real mappings generated randomly (dotted
lines) and by Hierarchical (solid lines) on the MPI of a real-indexed secondary cache. It shows the average
MPI for the previous 100 million instructions of the Mult1.2 trace for 1-megabyte direct-mapped cache.

The four-sample results for all the traces verify that careful mapping reduces the MPI variance for
a number of workloads?®. When Hierarchical eliminates the most misses, it also tends to eliminate the

28. Appendix B indirectly gives the MPI variance of the four simulations because the widths of the

145

most variance. This isn’t surprising since most of the MPI reduction comes from eliminating bursts of
misses; these bursts increase both the mean and variance of the MPI across different simulation runs.
Hierarchical has a lower MPI variance than random mapping in eighteen out of the twenty-four direct-
mapped cases, nineteen out of the twenty-four 2-way set-associative cases, and twenty out of the
twenty-four 4-way set-associative cases. Except for once with Tree, only Mult1.2, Tv, and Sor have
Hierarchical variances that are larger than the random MP/ variances. For Multl.2, one bad Hierarchi-
cal page placement in one simulation causes the occasionally higher four-sample Mult1.2 variance. For
Tv, the Hierarchical variance is occasionally higher for the same reason that the Tv Hierarchical reduc-
tion is not very good: Hierarchical couldn’t help Tv’s cache performance much because Tv’s active
address space is much larger than the cache. For Sor, the variance is slightly higher with some of the
smaller secondary caches because Hierarchical couldn’t fit some of the Sor arrays into the cache.
Hierarchical eliminates a lot of variance over all the traces and cache configurations. With fourteen out
of the twenty-four direct-mapped caches, the random mapping four-sample variance is more than five
times larger than Hierarchical. This suggests that Hierarchical will yield more predictable execution
times than random mapping.

6.4.2.2. Static Page Conflict Minimization

To understand more fully the causes of the MPI improvement from careful mapping, Figure 6.21
shows the differences in the number of page conflicts (within single address spaces) produced randomly
and by Hierarchical for Mult2.2. Each point shows the mapping conflicts (C —C in) from the address
space of one process in the Mult2.2 trace for a 1-megabyte direct-mapped cache. The Mult2.2 trace
contains the execution of hundreds of processes (since many of them completed), so many points were
available. The squares, the sampled values produced by a random mapping, follow closely the
predicted outline shown in Figure 6.5, validating the accuracy of the simple conflict model.

The sampled values clearly show that Hierarchical was successful in reducing the number of
conflicts in each mapping below that from random mappings. Not a single address space had an
unnecessary conflict from the Hierarchical mapping. This is largely because of the number of pages
available (in the free page frame pool) when the simulator maps each page, 4-megabytes worth. On the
average, there were four pages available for mapping in each bin of the 1-megabyte cache. These extra
pages allowed Hierarchical enough freedom to obtain perfect conflict reduction in this cache.

While Hierarchical eliminated all unnecessary conflicts in the 1-megabyte cache, some remained
in the 16-megabyte cache. The average 0.25 pages available in each 16-megabyte bin is not enough for
complete eradication of the unnecessary conflicts, though Hierarchical removes most of them,
significantly improving cache performance.

Figure 6.22 establishes the positive relationship between the conflicts eliminated by Hierarchical
and the corresponding miss reduction. It shows the Hierarchical reduction for only the Mult2.2 address
spaces that were of size 0.5-megabyte to 1.0-megabyte; this isolates the effects of conflicts on the 58
address spaces within a small size range. The MPI of an address space is the MPI of the instructions
that use the address space; this includes intra-address-space and inter-address-space conflict com-
ponents. Figure 6.22 isolates the relationship between the static conflicts that Hierarchical eliminates

confidence intervals are directly proportional to the standard deviation. The standard deviation is the square
root of the variance.

146

Conflicts in Random and Hierarchical Mappings

N/2 1
0 — Random
0 & — Careful
M
g 01 - Prediction
P
i
n
g
CN/41
o
n
f
1
i
c
t
s
0 o

3N

N 2N
Address Space Size (N is Cache Size)
Figure 6.21. Conflicts for Mult2.2.
This figure shows the number of page conflicts (16-kilobyte pages) in a 1-megabyte direct-mapped cache
(N = 64, 128-megabyte main memory) for various processes from the Mul2.2 trace for a random mapping
(squares) and a mapping using Hierarchical (triangles).

from an address space, and the amount that Hierarchical reduces the MP/ of the address space. It com-
pares the MPI of an address space with random page mapping to the MP/ of the exact same references
to the exact same address space, only with Hierarchical used rather than Random page mapping.
Although the figure shows Hierarchical reductions for many different address spaces with different
static conflicts in each, rather than a single address space with different static conflicts, the results for
the 58 similar address spaces should estimate the average relationship between static conflicts and
dynamic cache performance.

Each square in Figure 6.22 shows the average miss reduction for those address spaces with a a
fixed number of conflicts. Note that most of the miss reductions are larger than zero. This verifies that
careful page mapping reduces cache MPI because it eliminates conflicts and improves cache utilization.
The slope of the best-fit line is further evidence of the positive relationship between conflict elimination
and miss reduction. Though careful mapping always eliminates conflicts, several address spaces with
few conflicts had a slightly higher MPI with careful mapping. This is caused by random inter-address-
space conflicts; these conflicts are more severe with careful page mapping than without it because each
carefully-mapped address space more fully utilizes the cache. On the average, when careful mapping
eliminates more conflicts, it eliminates more cache misses. Together, Figure 6.21 and Figure 6.22 sup-
port a key hypothesis of this chapter: techniques that eliminate static page conflicts in a real-indexed
cache also improve dynamic cache performance.

147

ha

=] I]] I |

< o _
2 .-
o .-
8 —"']
Sl i
< a et
= (=] o .-
2 .-
—gc\l . -HE

o™ -u -]

o _.--Dh

o B
Q- ",' [w] =} [] _
EO .- o
3 .
>y
[

<@ o

7 | | | |
0 5 10 15 20 25 30
Static Conflicts Eliminated

Figure 6.22. Hierarchical Reduction vs. Conflicts Eliminated.

For the 58 Mult2.2 address spaces of size 0.5-megabyte to 1.0-megabyte, this figure shows the Hierarchical
reduction versus the number of static conflicts that Hierarchical eliminates (in a 1-megabyte direct-mapped
cache, 16-kilobyte pages). Each square is the average Hierarchical reduction of the address spaces at the
given number of unnecessary static conflicts. The dashed line is the least-squares best-fit for all 58 address
spaces.

6.4.2.3. Careful Mapping Alternatives

This section compares the algorithms from Section 6.3 using the Mult2.2 trace. The size of the
available page frame pool has an important affect on the comparison. The careful mapping implemen-
tations that can eliminate the most misses with the least available page frames are preferred because
they will be most adaptable and have the minimum (or no) page replacement effect. For the Hierarchi-
cal results given so far in this chapter, the pool is 4-megabytes. As an experiment to leam the pool size
effect, Table 6.2 compares the 4-megabyte direct-mapped Mult2.2 MPI of the different algorithms
(four-sample mean) with a 4-megabyte pool of available pages (large) and a 256-kilobyte pool (small).
(Except for Page Coloring and random mapping, most of the results in this table are accurate 10 within
0.02 or less with 90% confidence.) On the average there was one available page frame in each bin with
the large pool, and 0.0625 available page frames in each bin with the 256-kilobyte pool.

Equality Page Coloring performs poorly in the Mult2.2 comparison presented in Table 6.2. Its
particularly high mean MPI for the small pool comes from the exceptionally high MPI of two (out of
the four) simulations. The MPI variance of these four simulations is over an order of magnitude larger
than those for the other careful mapping algorithms. This is a symptom of the basic problem with
equality page coloring: the placement of commonly used virtual pages from different address spaces in
the same cache bins often leads to many unnecessary cache misses. Because of this problem, MIPS
probably does not use the strict equality match Page Coloring simulated here. The Page Coloring
implementation with PID-hashed matching performs much better for Mult2.2 since the same virtual

148

Secondary Cache MPIx1000 (Mult2.2)

Heuristic Large Pool | Small Pool
Random 071 (19%) | 0.71(8%)
Page Coloring (equal) | 0.69 (15%) | 0.85 (30%)
Page Coloring ¢hash) | 0.64 (8%) | 0.71(7%)

Bin Hopping 0.60 (0%) | 0.67(1%)
Best Bin 0.60 (0%) | 0.61 (-8%)
Hierarchical 0.60 (0%) | 0.66 (0%)

Table 6.2. Careful Mapping Comparison.

This table compares results of the different mapping algorithms outlined in Section 6.3 for different page
frame pool sizes for the Muli2.2 trace. It shows the four-sample mean MPI for 4-megabytes of available
page frames (Large Pool) and 256-kilobytes of available page frames (Small Pool). In parentheses, it also
gives the relative difference from the Hierarchical results for each pool size. The results shown are for a
4-megabyte direct-mapped cache.

addresses do not conflict, yet it still performs poorly compared to the other careful mapping schemes.
The limited flexibility of the Page Coloring implementation is the cause of this poor performance: if
Page Coloring does not find an available page frame in the matching bin, it abandons the search and
chooses any arbitrary page frame. With the small pool, an exact match is unlikely (probability 0.0625).
The other careful mapping schemes are more adaptable to situations with few available page frames.

As expected, Best Bin produces superior maps (ones that give a lower MPI) in these simulations,
whether there is a small or large pool of available page frames. A smaller pool doesn’t significantly
effect Best Bin, but it does cause the four simulations with the other algorithms to have more cache
misses. With the 4-megabyte pool of available page frames in Table 6.2, Bin Hopping, Best Bin, and
Hierarchical perform nearly equivalently. Each of them finds it easy to eliminate cache contention
when there is one available page frame in each bin on average. With 0.0625 available page frames per
bin, Best Bin eliminates the most misses. This shows that Best Bin is the most flexible across both
large and pool sizes, and that it improves Mult2.2 cache performance with the smallest page replace-
ment effect. About one available page frame per bin may be a good target pool size since it gives the
careful mapping algorithms sufficient flexibility, but is small enough to have little effect on the page
replacement policy.

Table 6.3 compares the Mult2.2 cache performance of the different careful mappings for a variety
of caches. The pool of available page frames is 4-megabytes. In Bold, Table 6.3 shows the caches for
which Page Coloring, Bin Hopping, and Best Bin specifically produced their mappings. Because they
are not size-independent, these algorithms only optimize their page mappings for the 4-megabyte
direct-mapped and 16-megabyte 4-way set-associative caches. The size independence of Hierarchical
implies that its mappings are optimized for the entire range of caches, so some entries in Table 6.3 are
an ‘‘unfair’’ comparison. Hierarchical performed better than the other careful mapping schemes for the
non-optimized caches. These results show the usefulness of size independent mappings.

6.4.2.4. Does PID-Hashed Virtual-Indexing Approximate Real-Indexing?

The simulation time needed to obtain virtual-indexed simulation MPI results is much less than the
time needed for real-indexed results. Real-indexed cache MPI estimates are more difficult to obtain,
both because virtual to real address translation increases simulation time, and because multiple

149

Secondary Cache MPIx1000 (Mult2.2)
Si(zlgnﬁg A P a(g;fl?:lli?gng P%%?DC gg;g;‘g Bin Hopping Best Bin Hierarchical
1 1.37 (15%) 1.32(11%) 1.33 (12%) 1.38 (16%) 1.19 (0%)
M 2 1.03 (5%) 1.02 (4%) 1.00 (2%) 1.03 (5%) 0.98 (0%)
4 0.94 (2%) 0.94 (2%) 0.94 (1%) 0.95 (2%) 0.93 (0%)
1 0.69 (15%) 0.64 (8%) 0.60 (0%) 0.60 (0%) 0.60 (0%)
4M 2 0.53 (3%) 0.53 (3%) 0.52 (1%) 0.52 (2%) 0.51 (0%)
4 0.50 (2%) 0.50 (2%) 0.50 (0%) 0.50 (1%) 0.49 (0%)
1 0.31 (12%) 0.31 (10%) 0.30 (6%) 0.29 (4%) 0.28 (0%)
I6eM 2 0.25 (9%) 0.25 (7%) 0.24 (4%) 0.24 (2%) 0.23 (0%)
4 0.24 (6%) 0.23 (4%) 0.23(2%) 0.22 (0%) 0.22 (0%)

Table 6.3. Performance of Mapping Schemes for Mult2.2.

This table compares the cache performance of mappings produced by the careful mapping algorithms for
the Mult2.2 trace. It gives the MPI resulting from each scheme in absolute value and relative to the
Hierarchical MPI results (in parentheses) for each cache. Page Coloring, Bin Hopping, and Best Bin op-
timized their page mappings for the 4-megabyte direct-mapped cache and the 16-megabyte 4-way associa-
tive cache. The table shows these caches in bold.

simulations are required to remove the randomness of different page mappings. If virtually-indexed
cache MPI resuits could be used as an approximation of real-indexed ones, the required simulation time
could be greatly reduced. Figure 6.23 compares the MPI of real-indexed and virtual-indexed caches.
The figure uses careful mapping for the real-indexed results and PID-hashing for the virtually-indexed
results. Of course, the results are heavily dependent on the form of PID-hashing used. The simulator
bitwise exclusive-ors the eight bit PID with the high-order eight bits from the index field of the virtual
address to choose the cache set (see Figure 6.1 for the definition of the set-index field). Figure 6.23
shows the ratio of virtually-indexed MPI to real-indexed MPI.

Figure 6.23 shows that PID-hashed virtual indexing gives a lower MPI estimate than physical
indexing (because all the ratios are less than 1.0). Since sequential virtual pages do not conflict in a
virtually-indexed cache, the MPI is smaller. Simulation results for PID-hashed virtually-indexed caches
consistently underestimate the carefully-mapped real-indexed MP/, but in over half of the cases the esti-
mation error is 10% or less. PID-hashed virtually-indexed cache results are a strongly-optimistic esti-
mate of real-indexed cache performance with random page mapping, however.

Another important factor in the approximation of real-indexed caches with virtual-indexed caches
is the accuracy in predicting relative MPI changes. One important relative variation is the fraction of
misses that an associativity increase eliminates. Figure 6.24 plots, for virtually-indexed and carefully
mapped real-indexed caches, the miss reduction of doubling associativity from direct-mapped to 2-way.
The comparison shows that virtually-indexed caches also consistently underestimate this relative reduc-
tion, though as with the absolute value, often by only a small amount. This occurs for the same reason
that virtual-indexing underestimated the absolute value: there is less direct-mapped contention with
virtual-indexing because sequential addresses do not conflict. Though careful mapping has some con-
tention reduction advantages of virtual-indexing, virtual-indexing still gives lower miss frequencies.

150

MPI With Virtual Indexing (PID Hashed)

|] |
Multl
B %
Muitl.2 d
M
Mul2 D
aM
Mult2.2
o] 16M
C‘S —
f
Tv
Sor
0.71
Tree
0 0.2 04 0.6 0.8 1

MPI Relative to Hierarchical Heuristic MPI

Figure 6.23. Virtual and Real Indexing Comparison.
This figure shows, for different direct-mapped secondary caches and traces, the miss frequencies produced
by virtual indexing (with PID-hashing) relative to that produced by real-indexed caches (from Hierarchical
mappings).

6.4.2.5. Page Size Performance Effects

The page size affects the comparison between random and careful mappings. Table 6.4 shows the
Mult2.2 cache MPI for different page sizes. It shows that the random mapping MPI decreases slightly
with increasing page size. A combination of factors could produce this effect. The first is that sequen-
tial addresses will not conflict with larger pages. Also, there are fewer page frames in each bin, so it is
less likely that many pages will be mapped to the same bin. With careful mapping, cache performance
is largely independent of the page size. Hierarchical reduced contention with all three page sizes.

A disadvantage of bigger page sizes is the larger amount of main memory used by an application
because of internal fragmentation. Some portions of large pages are not referenced though an entire
page must be mapped. Table 6.5 shows the page misses and amount of memory used by the Muli2.2
trace versus the page size. The memory usage is the number of unique referenced pages times the page
size. The referenced memory nearly doubles as the page size increases from 4-kilobytes to 64-
kilobytes.

151

Miss Reduction for Doubling Associativity (Direct-Mapped to 2-way)

]
Multl
Multl.2
Mult2
- 4M-Real -
Mult2.2 16M-Virtual
3 |
& 16M-Real 7
Tv

Sor

Tree

Lin

0.2 04
Fraction of Misses Eliminated

Figure 6.24. Virtual and Real Indexing Associativity Improvement.

This figure shows, for different direct-mapped cache sizes and traces, the reduction in misses by doubling
the associativity from direct-mapped to 2-way for virtual-indexed caches (with PID-hashing) and real-
indexed caches (with Hierarchical mappings).

6.4.2.6. The Effect of Main Memory Contention

As an experiment to understand the effect of main memory contention on cache performance and
careful mapping algorithms, the execution of the Mult2.2 trace was simulated on a system with a main
memory size of 32-megabytes. This experimental design created main memory contention since the
Muli2.2 workload had about 40-megabytes active at any given time, more than the 32-megabytes of
main memory. Random mappings could then be compared to careful mappings under these conditions.

152

Secondary Cache MPIx1000 (Mul{2.2)
Config Random Hierarchical

Size Assoc. | 4K 16K 64K 4K 16K 64K
1 149 1.50 1.36 | 1.18 1.19 1.19
M 2 1.05 1.05 1.02 | 097 0.98 0.99
4 0.96 0.96 094 | 0.92 0.93 0.93
1 0.70 0.71 0.66 | 0.59 0.60 0.60
4M 2 0.54 0.54 0.53 | 051 0.51 0.51
4 0.51 0.51 0.50 | 049 049 0.49
1 033 0.33 032 | 0.28 0.28 0.28
16M 2 0.25 0.25 025 | 0.23 0.23 0.23
4 0.24 0.24 024 | 022 0.22 0.22

Table 6.4. Cache Misses vs. Page Size.

This table shows, for various cache sizes and associativities, Random and Hierarchical mapped real-
indexed cache miss frequencies for page sizes of 4-kilobytes, 16-kilobytes, and 64-kilobytes.

Memory Referenced (Mult2.2)
Page Size Page Misses Memory (megabytes)
4K 22651 92.8
16K 7471 1224
64K 2428 159.1

Table 6.5. Memory Referenced vs. Page Size.
This table shows, for the Mult2.2 trace, the number of page misses and the memory referenced (calculated
by multiplying the number of page misses times the page size) for page sizes of 4-kilobytes, 16-kilobytes,
and 64-kilobytes with a 128-megabyte main memory.

Using static traces of multiprogrammed workloads, trace driven simulation results can be inaccu-
rate with memory contention. The statically ordered traces represent a process execution ordering that
is unaffected by system load control policies [DENN80]. Load control policies decide the processes that
execute at any given time. When main memory demand is high, overall system performance might be
improved by delaying execution of some processes so that main memory demand decreases. Proper
load control policies can eliminate the thrashing problem [DENNG68] of poor system performance caused
by the overcommitment of main memory.

Another potential inaccuracy of static traces is that the simulations do not model the effects of
write-backs and retrievals of pages between main memory and secondary storage. The simulator
ignores any secondary storage accesses required to support page placement or replacement. This is
equivalent to the assumption of an infinitely fast secondary storage. A slow secondary storage device
could greatly alter the process execution interleaving. The assumption should not bias the results too
much since cache performance, not main memory and secondary storage performance, is the major
interest in this study.

Table 6.7 shows the results of the memory contention experiment. Note that the page miss fre-
quencies are unrealistically high because of cold start. The results show that there are more page misses
with decreasing main memory size because of main memory contention. While the experiment reduced
memory size (to 32-megabytes), it did not reduce the size of the available page frame pool (4-
megabytes). The experiment used this large pool to gauge the effect of a large available pool on LRU

153

page replacement decisions. Table 6.7 shows that while Hierarchical reduces MP/ with or without con-
tention, there are slightly more page misses with contention. This suggests that the pool caused poorer
page replacement decisions because it was a relatively large portion of the main memory. The 4-
megabyte pool was probably too large given that the main memory was only 32-megabytes in this
experiment. The optimal pool size depends on the balance between improved cache efficiency and the
costs of any poorer page replacement decisions. With higher page fault costs, a smaller page frame
pool would be preferred. Likewise, a larger pool is more beneficial with lower costs.

Memory Size Effect
Memory Size Mapping | Secondary MPIx1000 | Page Faults Per 10° Inst.
128 M Random 1.50 2.00
Hierarchical 1.19 2.00
Random 142 2.69
2M Hierarchical 1.21 2.73

Table 6.7. Cache and Page Misses for Memory Contention.

This table compares Mult2.2 1-megabyte direct-mapped simulation results for large (128-megabyte) and
small (32-megabyte) main memories. This experiment shows results for Random Mappings and Hierarchi-
cal Mappings (4-megabyte available page pool). The table shows secondary cache misses per thousand in-
structions and page misses (faults) per million instructions.

With Random page mapping, the MPI decreases slightly with the smaller main memory. This is
similar to the MPI reduction with larger pages, and may occur because there are fewer page frames in
each bin, making it less likely that many pages from the same address space map to the same bin.

6.5. Discussion

It is important to compare the algorithms to see how well they meet their goals. Section 6.4
shows that implementations of careful mapping reduce the mean cache MPI and its variance. Those are
the most essential requirements of a careful mapping scheme. It also shows that, for Mult2.2, Best Bin
eliminates the most cache misses with the smallest pool of available page frames. This is a useful pro-
perty. It says that Best Bin is the most adaptable and has the smallest page replacement policy effect of
any careful mapping scheme. Another important goal is that careful mapping should be low overhead,
both in terms of required storage space and execution time. Page Coloring and Bin Hopping have the
lowest space overhead, and Page Coloring has the smallest execution time overhead. Best Bin and
Hierarchical have more space overhead. Best Bin’s execution time can be too large; if it requires only a
few instructions per bin (on average), and there are thousands of bins, Best Bin could take thousands of
instructions. Hierarchical’s execution time is low: a couple hundred instructions should traverse a tree
with thousands of bins. Also, Hierarchical is the only careful mapping algorithm from this dissertation
that is size independent. Size independence can be a dominant concern with a hierarchy of real-indexed
caches.

The careful mapping implementations should adapt to the features of virtual memory systems,
including sharing among different address spaces. Static page placement optimization becomes compli-
cated when different address spaces share the same page because shared pages can cause contention in
all address spaces accessing the page frame. A careful page mapping function should adapt to sharing
among different address spaces. It should preferably map the page to a page frame that minimizes the

154

contention in all address spaces sharing the page. As described in Section 6.3, none of the careful map-
ping implementations account for sharing.

Bin Hopping may not adapt well to sharing because it optimizes for one address space and may
cause conflicts in another. The problem is that Bin Hopping remembers only the last placement within
a single address space, and uses only this information to place the next page. Thus, Bin Hopping maps
a page to improve the bin utilization of a single address space, which may or may not improve the bin
utilization of the other address spaces accessing a shared page.

The strict equality match implementation of Page Coloring adapts well to sharing when the shared
pages are at the same virtual address in all address spaces because the preferred bin for a virtual page is
the same for each address space. More sophisticated versions of Page Coloring, such as the PID-
hashing implementation considered in this study, may not adapt for the same reason that Bin Hopping
will not: the mapped bin depends on the PID used to map the page. A Page Coloring implementation
that, instead, maintains an offset for each shareable unit (a collection of pages, such as a shared code
segment), could better adapt to sharing [TADF90]. Then, all address spaces map pages similarly since
each address space sharing a page uses the same bin offset.

With the Best Bin and Hierarchical careful mapping implementations, the used state information
should be maintained per shareable unit to better adapt to sharing. The used state of an address space is
then the sum of the used states of each shareable unit referenced within the address space29. Mapping
decisions for shared pages will still be optimized only with respect to the address space mapping the
page. However, Best Bin and Hierarchical would still adapt to sharing because all subsequent mapping
decisions (of all address spaces referencing the page) adjust to the positioning of the shared page
through the updated used state. Note that the summation of used state for multiple shareable units can
make the mapping process more time consuming. Consequently, the efficiency of Hierarchical will be
even more essential for good performance.

6.6. Conclusions

This chapter shows the usefulness of careful virtual to real page mapping policies, describes
several practical careful mapping implementations, and shows their performance improvement using
trace-driven simulation. When a real-indexed cache is large, the virtual to real page mapping function
and the cache mapping function interact to determine cache performance. This gives the page mapping
policy the opportunity to improve cache performance by carefully choosing the virtual to real page
mapping of an address space. It is worthwhile to expend a little effort to map a page carefully since it
can improve the performance of all following accesses to the page. This chapter shows that virtually-
indexed caches have advantages over real-indexed caches with poor virtual to real mappings, but that
careful mapping can eliminate many of the random real-indexed misses.

This chapter shows that static cache bin placement optimizations produce dynamic cache perfor-
mance improvements. A simple static analysis shows that as many as 30% of the pages from an address
space are unnecessarily in conflict; this is the static potential available to the careful page mapping

29. If the implementations instead only maintain one array (tree) of used state information per address
space, when the operating system adds or removes a shared page it must update the used state of all address
spaces using the page so that all used information is correct. This update may be both difficult and time con-
surning.

155

algorithms. This analysis also correctly predicts that conflicts are less of a problem in caches of higher
associativity.

This chapter describes Page Coloring and introduces several other practical careful page mapping
algorithms that improve the cache bin placement of pages based solely on static information. These
algorithms equalize cache bin utilization and eliminate cache conflicts. They range from the simple
Page Coloring and Bin Hopping to the more sophisticated Best Bin and Hierarchical. This chapter
quantitatively compares the MPI improvements of the algorithms with trace-driven simulations of a
multiprogrammed trace (Mult2.2). This comparison shows that Bin Hopping, Best Bin, and Hierarchi-
cal perform well. The comparison also shows that Equality match Page Coloring performs poorly. The
problem with equality match Page Coloring is that it maps frequently used areas of the virtual memory
space to the same cache bin. A version of Page Coloring that eliminates this problem still does not
compare favorably to the other careful mapping schemes. Under the conditions that this chapter stu-
dies, Best Bin produces the best page maps with the smallest pool of available page frames, so it
improves cache performance with the minimum (perhaps no) page replacement policy effect. Hierarch-
ical has good computational efficiency and cache size independent mappings; these properties are desir-
able, particularly for hierarchies of real-indexed caches.

This chapter correlates the static conflict optimizations of the mapping algorithms with the
dynamic cache miss reductions. It also shows that virtual-indexing (with PID-hashing) optimistically
estimates real-indexed cache performance, that careful mapping is effective over a range of page sizes,
and that careful mapping with a large pool of available page frames (relative to the main memory size)
can cause more page misses.

Careful virtual to real page mapping is a useful, low cost, technique to improve the performance
of large, real-indexed CPU caches. This chapter presents simulation results from several workloads to
measure the improved MPI mean and variance of careful page mapping (Hierarchical). The improve-
ment depends on the workload, but, 10%-20% of direct-mapped cache misses are eliminated (on aver-
age) from our traces. Thus, at no hardware cost, software careful page mapping eliminates about half of
the direct-mapped cache misses that either doubling the associativity or cache size can eliminate from
the traces used in this dissertation.

156

Chapter 7

Summary and Future Work

7.1. Summary

This dissertation provides the analysis required to understand multi-megabyte secondary CPU
caches. The contributions of this work include new cache performance analysis techniques, and design
suggestions for both hardware and software memory system designers. This section summarizes the
contributions of this dissertation.

Chapter 2 defines basic concepts, gives default parameters, and surveys state-of-the-art research in
the area of cache memory analysis. It then shows that the MPI and SCPI cache performance metrics
used in this dissertation take into account the frequency that a cache is accessed, in addition to the cache
miss ratio, to determine the performance effect of a cache. SCPI is a useful performance metric to
gauge the effect of cache misses on each instruction; it allows the effects of each cache in the hierarchy
to be determined separately, then combined into a system total. Then Chapter 2 shows the statistics
used in this dissertation, and also describes a simulation environment with enough processing power to
gather the results needed for this dissertation.

Chapter 3 describes a collection of new traces for the analysis of multi-megabyte caches that were
used throughout this dissertation. These traces overcome several deficient aspects of previous work-
loads since they are one hundred times longer than previous traces, and are from workloads that are ten
times larger than previously traced. These workloads are the type that can be expected when high-
performance processors with large main memories become available. This dissertation describes new
tracing techniques required to gather these long traces. Chapter 3 describes the code modification
mechanism used to gather them; Anita Borg and David Wall developed this mechanism at DEC
Western Research Laboratory. Chapter 3 also describes the sophisticated trace differencing and
compression needed to capture the traces; each memory reference required only about two bits of

157

storage.

Chapter 3 also shows two advantages of long traces. The first is that longer traces give a more
complete characterization of the variations of behavior across different execution phases of the work-
load. The second advantage is that long traces can overcome the long cache initialization, or cold-start,
transient of the multi-megabyte caches. These new traces are superior to previous traces for the analysis
of multi-megabyte caches, and were essential to obtain the results contained in this dissertation.

The problem with long traces is the enormous simulation and storage resources required to use
them. Chapter 4 compares two different trace-sampling techniques that use only a portion of the full
trace memory references to estimate cache performance for the full trace. Since simulation time and
storage space is proportional to the number of required memory references, this reference reduction
translates directly into reduced simulation and storage requirements. One sampling technique, set sam-
pling, extracts references to a portion of the address space, those addresses that index to a portion of the
sets in the cache. Chapter 4 introduces a constant-bits technique that produces set samples that are use-
ful for the widest range of cache configurations; a constant-bits sample is a set sample when the cache
index bits contain the constant-bits. Set sampling is effective: a trace data reduction factor of 16 still
gave less than 10% errors.

The other trace-sampling technique, time sampling, extracts many samples, where each is a time-
contiguous portion of the full trace references. Cold start is a serious problem limiting the usefulness of
time sampling. Chapter 4 compares five different cold-start reduction techniques. It shows that initiali-
zation reference miss ratio prediction [WOHK91] was most effective at mitigating the bias. Even with
this technique, multi-megabyte caches require time samples of millions of instructions to remove cold-
start effects. Additionally, time sampling requires many samples to characterize cache performance for
a long trace. Only many samples can capture adequate portions of different execution phases of the
traced workloads to estimate cache performance accurately. The combination of large time-samples
with many time-samples makes time sampling less desirable than set sampling. Provided some restric-
tions can be tolerated, set sampling is preferred.

Chapter 5 focuses on the design of multi-megabyte caches. In so doing, it gives a detailed motiva-
tion for two-level hierarchical cache configurations with secondary multi-megabyte caches. A feature
of multi-megabyte caches is the significant reduction in memory traffic required when the cache is
inserted between the processor and the main memory. Smaller and faster primary caches are an impor-
tant component of a hierarchical memory system containing multi-megabyte caches since large caches
are too slow to service processor references directly. A hierarchical configuration with both primary
and multi-megabyte secondary caches services most references at processor speeds, and retains the
capacity advantages of the large secondary cache.

The SCPI results from Chapter 5 show that multi-megabyte caches are extremely useful when the
processor-main-memory speed gap reaches a factor of 100 or more. They also show that the workload
has a large effect on SCPI, so the expected workload greatly affects the cache size choice. An examina-
tion of associativity design alternatives shows that 2-way set-associativity extracts most of the advan-
tage of higher associativities. While associativity is useful for smaller secondary caches, it is less
necessary with multi-megabyte caches because direct-mapped already performs well. LRU replacement
can improve replacement decisions, but it also can have an implementation cost for higher associativi-
ties, so random replacement may be preferred. Chapter 5 examines several inexpensive implementa-
tions of associativity. It shows that the partial comparison technique performs well for smaller

158

secondary caches. The MRU implementation also performs well for the largest secondary caches.

Chapter 5 also examines different secondary cache block sizes. Its findings are different than pre-
vious studies: larger block sizes are better for multi-megabyte caches. It prefers larger blocks because it
considers larger caches and different memory system parameters than the previous work. The block
size with equal latency and transfer components is a good design point, though block size choice varies
with cache size. The SCPI-minimal block size is often within a factor of two of this design point, and
the SCPI at this design point is often near the minimum SCP/ for all block sizes.

Chapter 5 finally looks at multi-level inclusion design options. It finds that replacement decisions
can affect the frequency of primary cache invalidations needed to maintain inclusion, and that software
cache consistency may be more appropriate than hardware cache consistency (with inclusion) in unipro-
cessors because of the increased complexity and performance degradation potential of inclusion.

To complete this dissertation, Chapter 6 examines the interaction of virtual memory and set-
associative CPU caches and develops software techniques to improve cache performance. Cache per-
formance can only be maximized with a combination of both software and hardware techniques. For
multi-megabyte real-indexed set-associative caches, the associativity disparity of virtual memory and
caches implies that the placement of pages in the main memory determines the indexing of pages in the
cache. A simple model shows that with a naive mapping of pages to page frames 30% of the pages
from an address space may be unnecessarily in conflict (on average). It also predicts that the most page
conflicts can be eliminated at the point where the address space size equals the cache size.

Chapter 6 explores the design issues of careful page mapping policies that will eliminate these
conflicts. It introduces and examines two simple policies and two more complex ones, and outlines the
key properties of each. Appendix A shows that one of them, Hierarchical, satisfies the size-independent
property. Chapter 6 examines careful page mapping using trace-driven simulation. The results show
that careful page mapping can reduce the frequency of direct-mapped cache misses by 10%-20% for
user references. Thus, at no hardware cost, careful page mapping makes a direct-mapped cache appear
50% larger. The results also show that careful page mapping reduces the variance in cache performance
for different executions of a workload, a desirable trait. A comparison of the different policies for one
trace shows that Best Bin chooses the best page maps, but it can be costly. Hierarchical is an efficient
variant that retains many of the desirable properties of Best Bin, and produces cache size independent
maps. Bin Hopping works well, but Page Coloring without any hashing does not. Chapter 6 also shows
that carefully-mapped cache performance is largely independent of page size, that virtual indexing with
PID-hashing gives optimistic results as compared real-indexing, and that the maintenance of a large
available page frame pool can cause more page faults.

7.2. Future Work

This section suggests areas for future work to complement this research. This dissertation contri-
butes to memory system performance analysis, but rapid technology change always ensures that new
research avenues open up, so there is always more work to be done.

One important area for further research would be more and better traces. Chapter 3 showed the
dramatic changes in cache performance for different workloads. It would be useful to have many more
workloads to more precisely characterize the differences for different workloads. Related to this would
be a study to answer the question: is it better to have fewer long traces or to use trace sampling to trace
more workloads with the same number of references? Chapter 4 shows that sampling can be effective.

159

However, the answer to this question also depends on the accuracy and usage flexibility of the samples,
and on what the intended use of the samples is. In particular, regarding set sampling, what constant bits
should be used? With time sampling, how long of a sample is long enough? While INITMR in Chapter
4 successfully eliminates the cold-start bias when there are more known misses than initialization refer-
ences, it would be useful to more precisely characterize the relationship between cold start and trace
length, and to find more sophisticated techniques to eliminate the cold-start bias in time samples. It also
would be useful to develop better techniques that use only the samples themselves t0 establish
confidence levels in the acquired results, and find a more accurate relationship between the number of
samples (or the trace data fraction) and the accuracy of the result.

An examination of the methodology used to gather the traces would be fruitful. The workloads
were chosen particularly because they were large, hopefully to reflect characteristics similar to the large
workloads that will likely be common as high-performance processors with large main memories
become available. It is unclear how well these workloads reflect the real workloads of multi-megabyte
caches. A comparison of different workload gathering methodologies would be very interesting.

Related to the gathering of traces, a serious deficiency of the traces is the lack of operating system
references. The MPI’s of most traces probably would increase with operating system references, so the
conclusions with operating system references could differ from the conclusions without them.

There are several ways that the results of Chapter 5 could be extended. It would be useful to
decide the design range that is appropriate for two-level cache configurations, and when more cache
levels are needed. Furthermore, what is the effect of primary caches on the design and performance of
multi-megabyte secondary caches? What is the design effect of the differences between real-indexed
and virtual-indexed cache performance? How accurately does SCPI predict the true performance of
hierarchical caches? What is the relationship of workload behavior to the cache size choice? For a
given workload, what cache size is large enough? There is also always the need for exploring a larger
design space with a wider variation in parameters because parameters can vary in different implementa-
tions.

There are many ways that the research in Chapter 6 could be extended. A precise characterization
of the relationship between static page conflicts and the resulting MPI of the address space would be
useful. There are many opportunities to develop more sophisticated careful page mapping functions. It
might be useful to discriminate between different types of pages, such as code and data pages. For
instance, one could minimize conflicts between pages of the same type in addition to minimizing the all
conflicts within an address space. More sophisticated bin choice heuristics could be used by Best Bin
and Hierarchical. Another area where research should be directed is the relationship between page pool
size and page miss frequency. This could help find the optimal page pool size by trading off the
reduced cache miss frequency with the increased page fault frequency of a larger pool.

Multi-megabyte caches promise to be a more and more important component of high-performance
memory system design. This thesis is about the performance analysis and design of multi-megabyte
secondary CPU cache memories. It is the first performance evaluation of multi-megabyte caches.
Though there are many more possibilities for further research, this dissertation is an important starting
point to understand multi-megabyte caches.

160

Appendix A

This appendix consists of a proof that Hierarchical produces cache size independent mappings (as
defined by Definition A.3).

First, this appendix formalizes some of the concepts that are developed in the text of the chapter.
A page mapping function places a virtual page in a real page frame. More formally:

Definition A.1. Page Mapping Function.

Given a current mapping of virtual pages to real page frames and the page frames avail-
able for mapping, a page mapping function MAP (vp, CC) = pf chooses an available
page frame, pf, to map the virtual page vp into the main memory and the real-indexed
(by bit-selection) set-associative CPU cache CC.

To understand much about the cache effects of accesses to memory locations within an address space, it
is necessary only to know the bins to which the pages map. The page mapping function can easily learn
the bin a page frame is in by examining the bottom bits of the page frame number, the bin bits:

Definition A.2. Page Frame and Cache Bin Correspondence.

Figure 6.1 shows that a page fram: belongs to a cache bin defined by the value of its
bin bits. That is, the bin that a page frame pf will map to in a cache CC is

bin (pf, CC) = pf mod 24¢PH(CC)

where depth (CC) is the number of bin bits for the given cache (given the page size).
Two page frames, pfi, pf2, are equivalent with respect to a cache CC when their bin
bits are equivalent,

bin (pf1, CC) = bin(pf,, CC).

A formal statement of the size independence property is:

161

Definition A.3. Cache Size Independent Mapping Function.

A page mapping function MAP (vp, CC) produces size independent mappings (i.e. is
size independent) when MAP (vp, CC ;) chooses a page frame that is equivalent with
respect to CC; to MAP (vp, CC) for depth (CC) < depth(CC3) (depth(CC) 1is the
number of bin bits in the cache CC). That is,

bin (pf,, CC 1) =bin(pf1,CCy)

(pf2 =MAP (vp, CCy) and pfi=MAP (vp, CC,)) for some arbitrary choices by each
mapping function.

Effectively, size independence requires that the decisions made by the mapping function optimized for a
larger cache must be equivalent to the decisions made by the function optimized for a smaller cache.

A formal definition of a Bit-Reversed Bin Tree is:

Definition A.4. Bit-Reversed Bin Tree.

A Bit-Reversed Bin Tree (BRBT) is a fully balanced binary bin tree of depth d with
nodes at each level of the tree labeled in a bit-reversed fashion as shown in Figure 6.14.
The value of a leaf node is the number of page frames, either mapped or available, in
the labeled bin. The value of an interior node is the sum of the values of its children. A
node in the tree can be uniquely identified by the pair <x, [>, where x is the label of the
node and [is the level of the node in the tree (0</<d, 0<x< 2h. Page frames,
identified by their page frame number pf, map to node <x, /> when the bin bits are
equivalent to the node label, that is, pf mod 2! = x. The root node is <0, 0> and all page
frames map to it.

This node labeling identifies the parent of node <x, /> by removing the top bit of the / bit quantity x:
<xmod 21, 1-1> (I >0) is the parent. It also finds the left and right children (I <d) by adding a most
significant bit: <x, /+1> and <x +2%, [+ 1> are the left and right child, respectively.

The node identification in a BRBT shows the refinement of the numbering with increasing tree
level. At each level, [, each label can be expressed as an / bit number. Furthermore, the page frames
that map to a node of a BRBT are partitioned into those that map to its left child and those that map to
its right child. Every page frame that maps to the parent node must also map to a child. Furthermore,
any page frame that maps to a child (a page frame can only map to one child, not both) also must map
to the parent node. Given that the children (direct descendants) partition the page frames mapping to a
node, all page frames mapping to a sub-tree node also must map to the sub-tree root node. This is the
key refinement property that allows a BRBT to maintain size independence.

Theorem A.1 says that the value of all nodes in a BRBT tree is the number of page frames in the
labeled bin, an extension of the statement in Definition A.4 that the leaf nodes have this property. Its
proof heavily depends on the partitioning properties of the labeling of a BRBT.

Theorem A.l.

The value of a node in a BRBT of depth d (as defined in Definition A.4) is the number
of pages that map to that node.

162

Proof -

Let val(x, 1) and card (x, [) be the value of <x, /> and number of page frames that map
to <x, [>, respectively. The proof consists of showing that val (x, [) = card(x, I) for all
<x, [> and is by induction.

Basis -

By Definition A.4 val (x, d) = card (x, d) for all leaf nodes <x, d >.

Induction -

Given that the condition holds for all nodes at level [+1, in particular
val (x, 1 +1) = card(x, 1 +1) and val(x +2', 1+ 1) = card (x +2!, | +1) (the left and right
children) it is necessary to show that val (x, [)=card(x,) (0l <d, 0<x <2Y. The
partitioning property of the two children of a node implies that

card(x, 1) = card(x, [+1)+card (x +2!, 1 +1).

Card (x, I) is simply the sum of these two values since the direct children are a disjoint
partition of all the page frames that map to the node itself. Substituting, this implies
that

card(x, 1) =val (x, [+ D+val (x+2', [+1),
which also means that
card(x, D) =val(x, I)

since the value of a node is the sum of the values of its children (Definition A.4). Since
x is arbitrary, the condition holds for all nodes at level I. The theorem is complete since
by the basis clause and a finite number of inductions val(x, [) = card(x,) can be
shown true for any node <x, [>. O]

Theorem A.l is particularly useful since it shows that the value of a node is dependent only on the
number of pages mapping to a node, which is independent of the tree depth. Thus, the value of a BRBT
node <x, I > is the same in two BRBT’s that are of different depths.

Theorem A.2 formally states the proof that Hierarchical produces size independent mappings. It
uses Theorem A.1 to show that Hierarchical (using a BRBT) will make the same upper level decisions
independent of the tree depth. A taller tree then only refines decisions made with a shorter tree. This
implies the larger tree decision is equivalent (with respect to the smaller cache) to the decision with the
smaller tree.

Theorem A.2.

Hierarchical (as defined by the code in Figure 6.9 and the example in Figure 6.13,
further defined in Figure 6.15) that uses a BRBT (Definition A.4) produces size
independent mappings (Definition A.3).

Proof -

The proof is in two parts. The first part is by induction and shows that both
MAP (vp, CC) (depth(CC)=d) and MAP (vp,CC;,) (depth(CC,)=D, d<D)
traverse their trees downward along the same path up to level d, provided they make the
same arbitrary choices.

Basis -

163

Both algorithms start traversal at node <0, 0>, the root of the corresponding used
and free trees. They assume that there is at least one available page.

Induction -

Given that the traversal path is the same up to node <x, /> at level / (! <d) in the
tree, it must be shown that the same traversal direction is taken into level [+1.
This hinges on the property that tree values must be the same, independent of the
depth of the tree. The same pages map to the used (free) trees for each Hierarchi-
cal Heuristic and thus the node values of the different-sized used (free) trees are
equivalent (Theorem A.1).

The code in Figure 6.9 makes the direction decision based on the <used, free>
node values of the children of <x, I>. Right_ free (left_free) and
right used (left used) are the values of the right (left) child of node
<x, I> in the free and used bin trees. Thus, each version of Hierarchical will call
the Choice () function with precisely the same parameters when at node
<, [>.

Since there is at least one available page in the sub-tree rooted at <x, >, either
right free or left_ free must be non-zero. The zero checking of the
left usedand right used variables in the first two 1if clauses in Figure
6.9 ensures that Choice () will always pick a sub-tree with an available page.

There are two further cases within the Choice () function that must be con-
sidered:

(1) Either right free# left freeor right_used# left_used.
Here, the Choice () function will deterministically decide based on the
parameters of the function (as captured in the six if clauses). The decision
will be the same in each case.

(2) Otherwise. Choice () will arbitrarily decide (as captured in the else
clause) for both heuristics. The arbitrary decisions can be assumed to be the
same, ensuring that Choice makes the same direction decision in each
case.

Thus, the Hierarchical functions will make the same decision at node <x, [>.

Through an application of the basis clause and d applications of the inductive clause,
the Hierarchical heuristics MAP (vp, CC ;) and MAP (vp, CC) can both traverse to the
same node <x, d> in the tree, provided they make the same arbitrary direction deci-
sions.

The proof now continues by showing that MAP (vp, CC3) will refine its decisions to
level D in the trees. During its downward traversal it will remain within the sub-tree
rooted at <x, d>. Thus, it will complete its traversal at a leaf node in this sub-tree
rooted at <x, d>. At that point it will choose an available page frame that maps to the
corresponding leaf node. Since all page frames mapping to a leaf node in a sub-tree
also must map to the root of the sub-tree, the chosen page frame also will map to
<x, d>. Thus both MAP (vp, CC) and MAP (vp, CC,) will choose a page frame that
maps to <x, d> and satisfy the condition that bin(p, CC)=p mod 2¢=x. The
required result that

bin (MAP (vp, CC), CC 1) = bin (MAP (vp, CC,), CC)

is reached and the theorem is complete. [

164

Appendix B

This appendix shows the statistical significance of the four-sample MPI results used in Chapter 6.
The simulator introduces randomness into a static virtual address trace by changing the virtual to real
page mapping. The goal is to determine the (true) mean MPI over all Hierarchical and Random page
maps. For each trace and cache configuration this true mean is estimated with the mean of a sample of
size four. The tables which follow show the estimates of the mean MPI with Random (M—I—ﬁm,,dam) and
Hierarchical (Wyimmmml). They also show the four-sample medians. They also show the Hierarchi-
cal reduction (100% X (MPI,anaom — MPIgierarchicat)! MPlyandom)-

A The sample means are most useful, however, if it is likely that they are close to the true mean
MPIL. 90% confidence intervals measure this likelihood. This appendix calculates 90% confidence
intervals using the techniques described in Section 2.5. The width of these student-t confidence inter-
vals is proportional to the four-sample standard deviation. For any particular sample, the 90%
confidence interval may or may not contain the true mean of the distribution. It is called a 90%
confidence interval because it contains the true mean for 90% of all possible samples. But are the MPI
simulation results normally-distributed? (One might think so because each is the sum of the per-set
MPI for thousands of sets over a very long trace.) This is an important question because the student-t
confidence intervals assume normally-distributed samples.

To test whether these four-sample confidence intervals are meaningful, with one trace Mult2.2)
and one cache configuration (4-megabyte direct-mapped), a sample of size of size thirty was gathered
for (a) random mapping and (b) Hierarchical mapping. For each of (2) and (b), the true mean was
estimated by the mean of all thirty simulations (this can be done with reasonable confidence because the
thirty-sample 90% confidence interval is (a) £0.34% and (b) £1.6% about the estimated mean). All pos-
sible unique selections of four samples from these thirty were examined. The four-sample 90%
confidence intervals successfully contained the thirty-sample mean (a) 92% and (b) 88% of the time.
While this test was only for one trace, it supports the accuracy of these four-sample confidence inter-
vals.

Thus, in addition to the means, the tables which follow give the 90% confidence intervals. The
results show that the confidence intervals are small. For example, 71% of the random mapping inter-
vals and 86% the Hierarchical intervals extend less than +5% from the estimated mean. The random
mapping intervals are not quite as tight as Hierarchical because poor random page placement can more
greatly vary the simulation MPI.

165

Secondary Cache MPIx1000 Confidence Intervals (Multl)

Configuration Random Hierarchical Hierarchical
Size Assoc. | 90% Confidence Median | 90% Confidence Median Reduction
1 1.8199 £ 0.1879 1.7851 1.5827 + 0.0258 1.5891 13.0%
M 2 1.2648 £ 0.0236 1.2561 1.2093 + 0.0089 1.2110 4.4%
4 1.1173 £ 0.0302 1.1061 1.0746 £ 0.0101 1.0772 3.8%
1 0.8083 +0.0401 0.7995 | 0.7299+0.0221 0.7367 9.7%
4M 2 0.5757+0.0087 0.5747 | 0.5526+0.0052 0.5534 4.0%
4 0.5289+0.0033 0.5282 | 0.5162+0.0007 0.5163 2.4%
1 0.3807+£0.0178 03782 | 0.3442+0.0063 0.3433 9.6%
16M 2 0.2893 +0.0024 0.2895 | 0.2730x0.0020 0.2725 5.6%
4 0.2716 £0.0021 0.2718 | 0.2619+0.0008 0.2620 3.5%
Secondary Cache MPIx1000 Confidence Intervals (Multl.2)
Configuration Random Hierarchical Hierarchical
Size Assoc. | 90% Confidence Median | 90% Confidence Median Reduction
1 1.7477 £ 0.1878 1.6843 1.6305+£0.3856 1.4797 6.7%
M 2 1.2540+£0.0106 1.2521 1.2035 £0.0108 1.2002 4.0%
4 1.1343 £ 0.0091 1.1362 1.1102 £ 0.0061 1.1103 2.1%
1 0.8880+0.1837 0.8471 | 0.8596+0.3898 0.6952 3.2%
4M 2 0.5873+0.0082 0.5863 | 0.5615+0.0023 0.5617 4.4%
4 0.5405£0.0026 0.5403 | 0.5302+0.0014 0.5303 1.9%
1 04753+0.1925 0.4043 | 0.3343+0.0173 0.3362 29.7%
16M 2 0.2966 £ 0.0033 0.2954 | 0.2788 £0.0051 0.2797 6.0%
4 0.2797 £0.0015 02792 | 0.2703+£0.0012 0.2705 34%
Secondary Cache MPIx1000 Confidence Intervals (Mult2)
Configuration Random Hierarchical Hierarchical
Size Assoc. | 90% Confidence Median | 90% Confidence Median Reduction
1 1.5687 £ 0.1535 1.5419 1.2742 £ 0.0224 1.2707 18.8%
M 2 1.0944 £ 0.0217 1.0969 1.0076 £ 0.0036 1.0077 7.9%
4 0.9749 £0.0047 0.9761 0.9417+0.0022 0.9412 34%
1 0.7360+0.1067 0.6967 | 0.6314+0.0230 0.6284 14.2%
4M 2 0.5462+0.0056 0.5476 | 0.5212+0.0022 0.5215 4.6%
4 0.5152+0.0021 0.5153 | 0.5018+0.0005 0.5018 2.6%
1 0.3352+0.0109 03329 | 0.2931£0.0047 0.2941 12.6%
16M 2 0.2599+0.0015 02597 | 0.2392+£0.0010 0.2390 8.0%
4 0.2427+0.0022 0.2423 | 0.2294+0.0003 0.2293 5.5%

166

Secondary Cache MPIx1000 Confidence Intervals (Mult2.2)

Configuration Random Hierarchical Hierarchical
Size Assoc. | 90% Confidence Median | 90% Confidence Median Reduction
1 1.4953 £ 0.1264 14873 1.1858 £ 0.0205 1.1884 20.7%
1M 2 1.0480+0.0186 1.0409 | 0.9805+0.0049 0.9824 6.4%
4 0.9593+0.0038 0.9589 | 0.9289+0.0014 0.9291 32%
1 07121 £ 0.0428 0.7104 | 0.5982£0.0062 0.5976 16.0%
4M 2 0.5375+0.0091 0.5355 | 0.5101+£0.0027 0.5106 5.1%
4 0.5079+0.0033 0.5088 | 0.4938+0.0009 0.4940 2.8%
1 03339+ 0.0235 0.3254 | 0.2820+£0.0069 0.2824 15.6%
16M 2 0.2539+0.0034 02542 | 0.2326+0.0021 0.2333 8.4%
4 02371 +£0.0041 02369 | 0.2226+0.0006 0.2225 6.1%
Secondary Cache MPIx1000 Confidence Intervals (Tv)
Configuration Random Hierarchical Hierarchical
Size Assoc. | 90% Confidence Median | 90% Confidence Median Reduction
1 33632 £0.1861 3.3093 | 3.2713+£0.1084 3.2610 2.7%
M 2 24658 +0.0214 24633 | 2491910.0536 2.4900 -1.1%
4 23055+0.0094 23017 | 2.2997+0.0052 2.3006 0.2%
1 7115100549 2.1263 | 2.0682+0.0268 2.0684 2.2%
4M 2 1.8294 £ 0.0079 1.8271 1.8108 £ 0.0067 1.8103 1.0%
4 1.7800 £ 0.0037 1.7802 | 1.7772 £ 0.0045 1.7764 0.2%
1 1.1899 £ 0.0062 1.1888 1.1589 + 0.0293 1.1513 2.6%
16M 2 1.0337 £ 0.0043 1.0337 | 1.0171£0.0051 1.0170 1.6%
4 09910+0.0027 09910 | 09779+0.0031 0.9768 1.3%
Secondary Cache MPIx1000 Confidence Intervals (Sor)
Configuration Random Hierarchical Hierarchical
Size Assoc. | 90% Confidence Median | 90% Confidence Median Reduction
1 149794 £ 0.0211 149757 | 14.8567 £0.0284 14.8627 0.8%
M 2 147033 £0.0299 14.6937 | 14.6402£0.0053 14.6401 04%
4 145816 +0.0152 14.5774 | 14.5507 £0.0040 14.5496 0.2%
1 9.4718 + 0.0983 9.4729 8.3389 + 0.1115 8.3545 12.0%
4M 2 8.6826 + 0.0581 8.6821 8.0557 £0.1145 8.0312 7.2%
4 8.3524 £ 0.0291 8.3509 8.0611£0.0323 8.0529 3.5%
1 4.2208 £ 0.3183 4,1976 2.7843 £0.1638 2.7574 34.0%
16M 2 2.8435 £0.1069 2.8471 2.1481 £ 0.0824 2.1383 24.5%
4 2.4179 £0.1447 2.3788 2.0743 £ 0.0197 2.0754 14.2%

167

Secondary Cache MPIx1000 Confidence Intervals (Tree)

Configuration Random Hierarchical Hierarchical
Size Assoc. | 90% Confidence Median | 90% Confidence = Median Reduction

1 3.9061 £2.0853 3.3053 | 2.4720+0.0573 2.4855 36.7%
M 2 2.0930+0.0580 2.1085 | 1.9738+0.0516 1.9561 5.7%

4 1.8580+0.0494 1.8476 | 1.8573£0.0584 1.8392 0.0%

1 12112+02466 1.1478 | 09124+ 0.0286 0.9174 24.7%
4M 2 0.7179 £0.0292 0.7124 | 0.5934£0.0284 0.5848 17.3%

4 0.5292+0.0218 0.5260 | 0.4932+0.0119 0.4897 6.8%

1 05416 +0.2284 04682 | 0.3771£0.0292 0.3805 304%
16M 2 02914 £0.0194 0.2859 | 0.2706 £0.0047 0.2707 7.1%

4 0.2579 +0.0008 0.2578 | 0.2545+£0.0002 0.2544 1.3%

Secondary Cache MPIx1000 Confidence Intervals (Lin)

Configuration Random Hierarchical Hierarchical
Size Assoc. | 90% Confidence Median | 90% Confidence = Median Reduction

1 1.1481 £0.0107 1.1511 1.1609 £ 0.0021 1.1616 -1.1%
M 2 1.0806 +0.0037 1.0800 | 1.0938+0.0010 1.0935 -1.2%

4 1.0611+0.0030 1.0613 | 1.0766+0.0005 1.0766 -1.5%

1 0.5277+0.0263 0.5264 | 0.3564 +£0.0283 0.3488 32.5%
4M 2 0.3103+0.0392 03054 | 0.1307+£0.0234 0.1230 57.9%

4 0.1557+0.0275 0.1567 | 0.0494+0.0108 0.0452 68.2%

1 0.1532£0.0230 0.1529 | 0.0689 £0.0063 0.0692 55.0%
i6M 2 0.0416+0.0101 0.0438 | 0.0217+0.0038 0.0204 47.8%

4 0.0179£0.0006 0.0178 | 0.0167+£0.0000 0.0167 6.7%

168

Bibliography

[AGSH&6]

[AGARS7]

[AGHHSS]

[AGHHS&9]

[AGAH90]

[AHHUSS]

[BABJ81]

[BAEW88]

[BART89]

[BOKL89]

A. AGARWAL, R. L. SITES and M. HOROWITZ, ‘‘ATUM: A New Technique for Capturing
Address Traces Using Microcode,’’ Proceedings of the 13th International Symposium on
Computer Architecture, 1986, pp. 119-127.

A. AGARWAL, ‘‘Analysis of Cache Performance for Operating Systems and
Multiprogramming,”” Ph.D. Thesis, Technical Report CSL-TR-87-332, Stanford
University, Stanford, CA, May 1987.

A. AGARWAL, J. HENNESSY and M. HOROWITZ, *‘Cache Performance of Operating System
and Multiprogramming Workloads,”” ACM Transactions on Computer Systems, vol. 6, no.
4, November 1988, pp. 393-431.

A. AGARWAL, M. HOROWITZ and J. HENNESSY, ‘‘An Analytical Cache Model,”” ACM
Transactions on Computer Systems, vol. 7, no. 2, May 1989, pp. 184-215.

A. AGARWAL and M. HUFFMAN, ‘‘Blocking: Exploiting Spatial Locality for Trace
Compaction,”’ Proceedings of the Conference on Measurement and Modeling of Computer
Systems, 1990, pp. 48-57.

A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, Data Structures and Algorithms, Addison-
Wesley, Reading, Massachuseits, 1985.

O. BABAOGLU and W. JoY, “‘Converting a Swap-Based System to do Paging in an
Architecture Lacking Page-Referenced Bits,”” Proceedings of the 8th Symposium on
Operating System Principles, 1981, pp. 78-86.

J. BAER and W. WANG, ‘‘On the Inclusion Properties for Multi-Level Cache Hierarchies,”’
Proceedings of the 15th Annual International Symposium on Computer Architecture, 1988,
pp. 73-80.

J. BARTLETT, ‘‘SCHEME->C A Portable Scheme-to-C Compiler,”” Research Report 89/1,
Western Research Laboratory, Digital Equipment Corporation, Palo Alto, CA, January
1989.

A. BORG, R. E. KESSLER, G. LAZANA and D. W. WALL, ‘‘Long Address Traces from RISC
Machines: Generation and Analysis,”” Research Report 89/14, Western Research
Laboratory, Digital Equipment Corporation, Palo Alto, CA, September 1989.

[BOKW90] A. BORG, R. E. KESSLER and D. W. WALL, ‘‘Generation and Analysis of Very Long

[BUKB90]

[CAKPI1]

Address Traces,”’ Proceedings of the 17th Annual International Symposium on Computer
Architecture, 1990, pp. 270-279.

H. O. BUGGE, E. H. KRISTIANSEN and B. O. BAKKA, ‘‘Trace-Driven Simulations for a
Two-Level Cache Design in Open Bus Systems,”’ Proceedings of the 17th Annual
International Symposium on Computer Architecture, 1990, pp. 114-121.

D. CALLAHAN, K. KENNEDY and A. PORTERFIELD, ‘‘Software Prefetching,”’ Proceedings

of the Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, April 1991, pp. 40-52.

[CHCS87]

[CLARS3]

[CLAESS]

[CLBKS88]

[DEGR75]
[DEMASS]

[DENNG68]
[DENNSO]
[DION88]
[EASF78]

[EGKK90]

[ELLG82]

[FARP89]

[FERR76]

[FOTH61]

[GOOC84]

[GOOD8T]

[HAIK84]

169

J. H. CHANG, H. CHAO and K. SO, ‘‘Cache Design of A Sub-Micron CMOS System/370,"’
Proceedings of the 14th Annual International Symposium on Computer Architecture, 1987,
pp. 208-213.

D. W. CLARK, ‘“‘Cache Performance in the VAX-11/780," ACM Transactions on
Computer Systems, vol. 1, no. 1, February 1983, pp. 24-37.

D. W. CLARK and J. S. EMER, ‘‘Performance of the VAX-11/780 Translation Buffer:
Simulation and Measurement,”” ACM Transactions on Computer Systems, vol. 3, no. 1,
February 1985, pp. 31-62.

D. W. CLARK, P. J. BANNON and J. B. KELLER, ‘‘Measuring VAX 8800 Performance with
a Histogram Hardware Monitor,’’ Proceedings of the 15th Annual International Symposium
on Computer Architecture, 1988, pp. 176-185.

M. H. DEGROOT, Probability and Statistics, Addison-Wesley, Reading, MA, 1975.

R. DE LEONE and O. L. MANGASARIAN, ‘‘Serial and Parallel Solution of Large Scale
Linear Programs by Augmented Lagrangian Successive Overrelaxation,”” in Optimization,
Parallel Processing and Applications, A. KURZHANSKI, K. NEUMANN and D.
PALLASCHKE (eds.), 1988, pp. 103-124.

P. J. DENNING, ‘“The Working Set Model for Program Behavior,”’ Communications of the
ACM, vol. 11, no. 5, May 1968, pp. 323-333.

P. J. DENNING, ‘“Working Sets Past and Present,”” IEEE Transactions on Software
Engineering, vol. 6, no. 1, January 1980, pp. 64-84.

J. DION, ‘‘Fast Printed Circuit Board Routing,”” Research Report 88/1, Western Research
Laboratory, Digital Equipment Corporation, Palo Alto, CA, 1988.

M. C. EASTON and R. FAGIN, ‘‘Cold-Start vs. Warm-Start Miss Ratios,”” Communications
of the ACM, vol. 21, no. 10, October 1978, pp. 866-872.

S. J. EGGERS, D. R. KEPPEL, E. J. KOLDINGER and H. M. LEVY, ‘‘Techniques for Efficient
Inline Tracing on a Shared-Memory Multiprocessor,”” Proceedings of the Conference on
Measurement and Modeling of Computer Systems, 1990, pp. 37-46.

R. ELLIS and D. GULICK, Calculus With Analytic Geometry, Harcourt Brace Jovanovich,
New York, NY, Second Edition 1982.

M. K. FARRENS and A. R. PLESZKUN, ‘‘Improving Performance of Small On-Chip
Instruction Caches,”’ Proceedings of the 16th Annual International Symposium on
Computer Architecture, 1989, pp. 234-241.

D. FERRARYI, ‘“The Improvement of Program Behavior,”” IEEE Computer, November 1976,
pp. 39-47.

J. FOTHERINGHAM, ‘‘Dynamic Storage Allocation in the Atlas Computer, Including an
Automatic Use of a Backing Store,”” Communications of the ACM, vol. 4, no. 10, October
1961, pp. 435-436.

J. R. GOODMAN and M. CHIANG, ‘‘The Use of Static Column RAM as a Memory
Hierarchy,” Proceedings of the 11th Annual International Symposium on Computer
Architecture, 1984, pp. 167-174.

J. R. GOODMAN, *‘Coherency For Multiprocessor Virtual Address Caches,’’ Proceedings of
the Second International Conference on Architectural Support for Programming
Languages and Operating Systems, October 1987, pp. 72-81.

I. J. HAIKALA, ‘‘Cache Hit Ratios With Geometric Task Switch Intervals,”” Proceedings of
the 11th Annual International Symposium on Computer Architecture, 1984, pp. 364-371.

[HEIS90]
[HENP90)]
[HIGB90]

[HILL87]

[HILL88]
[HILS89]

[HwWUC89]

[JoDB87]

{Joup87]

[Joupr§9]

[JoTDg9]

[Jour90]

[KAPWT73]
[KELL90]
[KEJL89]
[KILB62]

[KIEL82]

[KROF81]

[LAPI8S]

170

P. HEIDELBERGER and H. S. STONE, ‘‘Parallel Trace-Driven Cache Simulation by Time
Partitioning,”’ IBM Research Report RC 15500 (#68960), February 1990.

J. L. HENNESSY and D. A. PATTERSON, Computer Architecture: A Quantitative Approach,
Morgan Kaufmann Publishers Inc., San Mateo, CA, 1990.

L. HIGBIE, ‘‘Quick and Easy Cache Performance Analysis,”” Computer Architecture News,
vol. 18, no. 2, June 1990, pp. 33-44.

M. D. HILL, ‘‘Aspects of Cache Memory and Instruction Buffer Performance,’”” Ph.D.
Thesis, Computer Science Division Technical Report UCB/CSD 87/381, University of
California, Berkeley, CA, November 1987.

M. D. HILL, “A Case for Direct-Mapped Caches,”” IEEE Computer, vol. 21, no. 12,
December 1988, pp. 25-40.

M. D. HILL and A. J. SMITH, ‘‘Evaluating Associativity in CPU Caches,”” [EEE
Transactions on Computers, vol. 38, no. 12, December 1989, pp. 1612-1630.

W. W. HWU and P. P. CHANG, ‘‘Acheiving High Instruction Cache Performance with an
Optimizing Compiler,”’ Proceedings of the 16th International Symposium on Computer
Architecture, 1989, pp. 242-251.

N. P. JOUPPL, J. DION, D. BOGGS and M. J. K. NIELSEN, ‘‘MultiTitan: Four Architecture
Papers,’”” Research Report 87/8, Western Research Laboratory, Digital Equipment
Corporation, Palo Alto, CA, 1987.

N. P. JouPPI, ““Timing Analysis and Performance Improvement of MOS VLSI Designs,’’
IEEE Transactions on Computer-Aided Design, July 1987, pp. 650-665.

N. P. JOUPPI, ‘‘Architectural and Organizational Tradeoffs in the Design of the MultiTitan
CPU,”’ Proceedings of the 16th Annual International Symposium on Computer
Architecture, 1989, pp. 281-289.

N. P. Jouppl, J. Y. F. TANG and J. DION, ‘“A 20 MIPS Sustained 32 bit CMOS
Microprocessor with 64 bit Data Busses,”” Proceedings of the 36th International Solid
State Circuits Conference, February 1989.

N. P. JoupPl, ‘‘Improving Direct-Mapped Cache Peformance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers,”” Proceedings of the 17th Annual
International Symposium on Computer Architecture, 1990, pp. 364-373.

K. R. KAPLAN and R. O. WINDER, *‘Cache-Based Computer Systems,”” IEEE Computer,
vol. 6, no. 3, March 1973, pp. 30-36.

E. KELLY, Personal Communications, 1990.

R. E. KESSLER, R. JOOss, A. LEBECK and M. D. HILL, ‘‘Inexpensive Implementations of
Set-Associativity,”” Proceedings of the 16th Annual International Symposium on Computer
Architecture, 1989, pp. 131-139.

T. KILBURN, ‘‘One-Level Storage System,’’ I.R.E. Transactions on Electronic Computers,
vol. 11, no. 2, April 1962, pp. 223-235.

T. KILBURN, D. B. G. EDWARDS, M. J. LANIGAN and F. H. SUMMER, ‘‘One-Level Storage
System,”’ in Computer Structures: Principles and Examples, D. P. SEEWIOREK, C. G. BELL
and A. NEWELL (eds.), McGraw-Hill, 1982, pp. 135-148.

D. KROFT, ‘‘Lockup-Free Instruction Fetch/Prefetch Cache Organization,”” Proceedings of
the 8th Annual International Symposium on Computer Architecture, 1981, pp. 81-87.

S. LAHA, J. H. PATEL and R. K. IYER, *‘Accurate Low-Cost Methods for Performance

Evaluation of Cache Memory Systems,’’ IEEE Transactions on Computers, vol. 37, no. 11,
November 1988, pp. 1325-1336.

[L.AHASS]

[LARWO1]

[LARU90]

[LIPT68]

[LIL.M88]

[MATI8O]
[MAGS70]

[MCFAR89]

[MILF77]

[MOGB91]

[MUBB91]

[NIEL86]

[OLMB91]

171

S. LAHA, ‘‘Accurate Low-Cost Methods for Performance Evaluation of Cache Memory
Systems,”’ Ph. D. Thesis, University of Illinois, Urbana-Champaign, Illinois, 1988.

M. S. LaM, E. E. ROTHBERG and M. E. WOLF, ‘“‘The Cache Performance and
Optimizations of Blocked Algorithms,”’ Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems,
April 1991, pp. 63-74.

J. R. LARUS, ‘‘Abstract Execution: A Technique for Efficiently Tracing Programs,”

Computer Sciences Department Technical Report, University of Wisconsin, Madison, W1,
1990.

J. S. LipTAY, ‘‘Structural Aspects of the System/360 Model 85 II: The Cache,’’ IBM
Systems Journal, vol. 7, no. 1, 1968, pp. 15-21.

M. J. LITZKOW, M. LIVNY and M. W. MUTKA, ‘‘Condor - A Hunter of Idle Workstations,”’
Proceedings of the 8th International Conference on Distributed Computing Systems, 1988,
pp- 104-111.

R. E. MATICK, ‘‘Functional cache chip for improved system performance,’’ IBM Journal of
Research and Development, vol. 33, no. 1, January 1989, pp. 15-31.

R. L. MATTSON, J. GECSEI, D. R. SLUTZ and I. L. TRAIGER, ‘‘Evaluation Techniques for
Storage Hierarchies,”” IBM Systems Journal, vol. 9, no. 2, 1970, pp. 78-117.

S. MCFARLING, ‘‘Program Optimization for Instruction Caches,”’ Proceedings of the Third
International Conference on Architectural Support for Programming Languages and
Operating Systems, April 1989, pp. 183-191.

I. MILLER and J. E. FREUND, Probability and Statistics for Engineers, Prentice-Hall,
Englewood Cliffs, NJ, Second Edition 1977.

J. C. MoGUL and A. BORG, ‘‘The Effect of Context Switches on Cache Performance,’”
Proceedings of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, April 1991, pp. 75-84.

T. N. MUDGE, R. B. BROWN, W. P. BIRMINGHAM, J. A. DYKSTRA, A. L. KAYSSI, R. J.
LoMAX, O. A. OLUKOTUN, K. A. SAKALLAH and R. A. MILANO, ‘‘The Design of a
Microsupercomputer,’’ IEEE Computer, vol. 24, no. 1, January 1991, pp. 57-64.

M. J. K. NIELSEN, ‘‘Titan System Manual,”” Research Report 86/1, Western Research
Laboratory, Digital Equipment Corporation, Palo Alto, CA, September 1986.

O. A. OLUKOTUN, T. N. MUDGE and R. B. BROWN, ‘‘Implementing a Cache for a High-
Performance GaAs Microprocessor,’”” Proceedings of the 18th Annual International
Symposium on Computer Architecture, 1991, pp. 138-147.

[OUHMS5] J. K. OUSTERHOUT, G. T. HAMACHI, R. N. MAYO, W. S. SCOTT and G. S. TAYLOR, *“The

[PRZY88]

[PRHHS88]

[PRHHS9]

Magic VLSI Layout System,’’ IEEE Design and Test of Computers, February 1985, pp.
19-30.

S. A. PRZYBYLSKI, ‘‘Performance-Directed Memory Hierarchy Design,”” Ph.D. Thesis,
Technical Report CSL-TR-88-366, Stanford University, Stanford, CA, September 1988.

S. PRZYBYLSKI, M. HOROWITZ and J. HENNESSY, ‘‘Performance Tradeoffs in Cache

Design,” Proceedings of the 15th Annual International Symposium on Computer
Architecture, 1988, pp. 290-298.

S. PRZYBYLSKI, M. HOROWITZ and J. HENNESSY, ‘‘Characteristics of Performance-
Optimal Multi-Level Cache Hierarchies,”’ Proceedings of the 16th Annual International
Symposium on Computer Architecture, 1989, pp. 114-121.

[PRZY90]

[PUZA8S]

[SAMP89]

[SHOLS88]

[SIST88]

[SITA88]

(SMIT77]

[SMIT82]

[SMIT85]

[SMIG85]

[SMIT86]

[SMIT87]

[SORES88]

[SOHF91]

[STAMSE4]

[STAHS9]

[STONSO]

[STRES83]

[STUF89]

172

S. PRZYBYLSKI, ‘‘The Performance Impact of Block Sizes and Fetch Strategies,”
Proceedings of the 17th Annual International Symposium on Computer Architecture, 1990,
pp. 160-169.

T. R. PUZAK, ‘‘Analysis of Cache Replacement Algorithms,”” Ph.D. Thesis, University of
Massachusetts, Amherst, MA, February 1985.

A. D. SAMPLES, ‘‘Mache: No-Loss Trace Compaction,”’ Proceedings of the International
Conference on Measurement and Modeling of Computer Systems, 1989, pp. 89-97.

R. T. SHORT and H. M. LEVY, ‘A Simulation Study of Two-Level Caches,”” Proceedings
of the 15th Annual International Symposium on Computer Architecture, 1988, pp. 81-88.
J. P. SINGH, H. S. STONE and D. F. THIEBAUT, ‘‘An Analytical Model for Fully

Associative Cache Memories,”” IBM Research Report RC 14232 (#63678), November
1988.

R. L. SITES and A. AGARWAL, ‘‘Multiprocessor Cache Analysis Using ATUM,”
Proceedings of the 15th Annual International Symposium on Computer Architecture, 1988,
pp- 186-195.

A. J. SMITH, *‘Two Methods for the Efficient Analysis of Memory Address Trace Data,”
IEEE Transactions on Software Engineering, vol. 3, no. 1, January 1977, pp. 94-101.

A. J. SMITH, “‘Cache Memories,”” Computing Surveys, vol. 14, no. 3, September 1982, pp.
473-530.

A. J. SMITH, *‘Cache Evaluation and the Impact of Workload Choice,”” Proceedings of the
12th International Symposium on Computer Architecture, June 1985, pp. 64-73.

J. E. SMITH and J. R. GOODMAN, ‘‘Instruction Cache Replacement Policies and
Organizations,”’ IEEE Transactions on Computers, vol. 34, no. 3, March 1985, pp. 234-
241.

A.]. SMITH, *‘Bibliography and Readings on CPU Cache Memories and Related Topics,””
Computer Architecture News, January 1986, pp. 22-42.

A. J. SMITH, ‘‘Line (Block) Size Choices for CPU Cache Memories,’’ [EEE T ransactions
on Computers, vol. 36, no. 9, September 1987, pp. 1063-1075.

K. SO and R. N. RECHTSCHAFFEN, ‘‘Cache Operations by MRU Change,” [EEE
Transactions on Computers, vol. 37, no. 6, June 1988, pp. 700-709.

G. SoOHI and M. FRANKLIN, ‘‘High-Bandwidth Data Memory Systems for Superscalar
Processors,”” Proceedings of the Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, April 1991, pp. 53-62.

J. W. STAMOS, *‘Static Grouping of Small Objects to Enhance Performance of a Paged
Virtual Memory,”” ACM Transactions on Computer Systems, vol. 2, no. 2, May 1984, pp.
155-180.

D. STARK and M. HOROWITZ, Techniques for Calculating Currents and Voltages in VLSI
Power Supply Networks, Computer Systems Laboratory, Stanford University, Stanford,
CA, 1989. To be Published in IEEE Transactions on Computer-Aided Design.

H. S. STONE, High-Performance Computer Architecture, Addison-Wesley, Reading, MA,
Second Edition 1990.

W. D. STRECKER, “‘Transient Behavior of Cache Memories,”” ACM Transactions on
Computer Systems, vol. 1, no. 4, November 1983, pp. 281-293.

C. B. STUNKEL and W. K. FUCHS, ‘“TRAPEDS: Producing Traces for Multicomputers Via
Execution Driven Simulation,”” Proceedings of the International Conference on
Measurement and Modeling of Computer Systems, 1989, pp. 70-78.

[STIF91]

[TADF90]

[THIS87]

[THIEBS]

[THIES9]

[THOS89]

173

C. B. STUNKEL, B. JANSSENS and W. K. FUCHS, ‘‘Address Tracing for Parallel Machines,”’
IEEE Computer, vol. 24, no. 1, January 1991, pp. 31-38.

G. TAYLOR, P. DAVIES and M. FARMWALD, ‘‘The TLB Slice -- A Low-Cost High-Speed
Address Translation Mechanism,”” Proceedings of the 17th Annual International
Symposium on Computer Architecture, 1990, pp. 355-363.

D. THIEBAUT and H. S. STONE, ‘‘Footprints in the Cache,”” ACM Transactions on
Computer Systems, vol. 5, no. 4, November 1987, pp. 305-329.

D. THIEBAUT, ‘‘From the fractal dimension of the intermiss gaps to the cache miss ratio,”’
IBM Journal of Research and Development, vol. 32, no. 6, November 1988, pp. 796-803.

D. THIEBAUT, ‘‘On the Fractal Dimension of Computer Programs and its Application to the
Prediction of the Cache Miss Ratio,”’ IEEE Transactions on Computers, vol. 38, no. 7, July
1989, pp. 1012-1026.

J. G. THOMPSON and A. J. SMITH, ‘‘Efficient (Stack) Algorithms for Analysis of Write-
Back and Sector Memories,”” ACM Transactions on Computer Systems, vol. 7, no. 2,
February 1989, pp. 78-116.

[VOMHS83] J. VOLDMAN, B. MANDELBROT, L.. W. HOEVEL, J. KNIGHT and P. ROSENFELD, ‘‘Fractal

[WALP87]

[WABLS89]

[WANG8E9]

[WANB90]

[WELC84]

[WO0O0DS0]

Nature of Software-Cache Interaction,”” IBM Journal of Research and Development, vol.
27, no. 2, March 1983, pp. 164-170.

D. W. WALL and M. L. POWELL, ‘““The Mahler Experience: Using an Intermediate
Language as the Machine Description,”” Proceedings of the Second International

Conference on Architectural Support for Programming Languages and Operating System,
1987, pp. 100-104.

W. WANG, J. BAER and H. M. LEVY, ‘‘Organization and Performance of a Two-Level
Virtual-Real Cache Hierarchy,’” Proceedings of the 16th Annual International Symposium
on Computer Architecture, 1989, pp. 140-148.

W. WANG, *‘Multi-Level Cache Hierarchies,”” Ph.D. Thesis, University of Washington,
Seattle, WA, September 1989.

W. WANG and J. BAER, ‘‘Efficient Trace-Driven Simulation Methods for Cache
Performance Analysis,”” Proceedings of the Conference on Measurement and Modeling of
Computer Systems, 1990, pp. 27-36.

T. A. WELCH, *‘A Technique for High-Performance Data Compression,”’ IEEE Computer,
June 1984, pp. 8-19.

D. A. WoOD, ““The Design and Evaluation of In-Cache Address Translation,”” Ph.D.
Thesis, Computer Science Division Technical Report UCB/CSD 90/565, University of
California, Berkeley, CA, March 1990.

[WOHK91] D. A. WOOD, M. D. HILL and R. E. KESSLER, ‘‘A Model for Estimating Trace-Sample

[ZIVL76]

[Z1v1.78]

Miss Ratios,”” Proceedings of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, 1991, pp. 79-89.

J. ZIvV and A. LEMPEL, ‘A Universal Algorithm for Sequential Data Compression,’’ IEEE
Transactions on Information Theory, vol. 23, 1976, pp. 75-81.

J. Z1Iv and A. LEMPEL, ‘‘Compression of Individual Sequences via Variable-Rate Coding,’’
IEEE Transactions on Information Theory, vol. 24, 1978, pp. 530-536.

