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Abstract
Binary instrumentation provides the ability to instrument and mod-
ify a program after the compilation process has completed. Oper-
ating on the binary level allows instrumentation of the program
as it was produced by the compiler. In addition, it can operate on
programs or libraries for which you may not have the source code.
Binary instrumentation is the foundation for a wide variety of tools,
including those for performance profiling, debugging, tracing, ar-
chitectural simulation, and digital forensics. Dyninst is a free and
open-source suite of toolkits for building binary analysis and in-
strumentation tools for architectures that include the x86, ARM,
and Power. It is used in tools produced by industry, academia and
research labs. This paper describes our efforts to port Dyninst to
the RISC-V architecture. We discuss the challenges presented by the
RISC-V, our approaches to solving them, and the status of Dyninst
on the RISC-V.

CCS Concepts
• Computer systems organization → Reduced instruction set
computing; • Software and its engineering→ Software reverse
engineering; Software testing and debugging.
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1 Introduction to Binary Instrumentation
Binary instrumentation is a powerful technique that allows you
to directly manipulate binary code by inserting, deleting or mod-
ifying instructions in the binary code. The advantage of binary
instrumentation is that it operates directly on the binary. Operating
directly on the binary does not require access to or even have access
to the source and works on the executable as was generated by
the compiler. Binary instrumentation has a long proven history
in areas such as performance profiling [1], taint analysis [28], de-
bugging [5], architectural simulation [9] and malware detection
[15][19][24]. The usefulness of this approach has continued with
the development of binary instrumentation and profiling tools for
GPUs [32][34].

For example, if you wanted to trace every function entry and exit,
or every memory access, or even every stack memory reference,
you can easily create a modified version of your executable file that
contains such instrumentation.

There are two types of binary instrumentation based onwhen the
instrumentation happens: (1) static instrumentation, called binary
rewriting, meaning that the binary code is modified and a new
executable or library file is created, and (2) dynamic instrumentation,
where the modification of the binary happens while the program
is running. Static and dynamic instrumentation are illustrated in
Figure 1 Binary instrumentation was launched in the early 1990’s,
with ATOM [14] as the earliest tool to implement binary rewriting
and Dyninst [8][17][22] as the earliest tool to support dynamic
instrumentation.

Over the years, there have been many tools that have been devel-
oped to do binary instrumentation, including DynamoRIO [7], EEL
[20], Pin [21], Valgrind [23], angr.io [31], GTPin [32], and NVBit
[34].

Binary instrumentation tools work in a variety of ways:
Coding patching: Tools that use code patching directly instru-

ment the existing binary. They do this by creating a new version of
the block or whole function that contains the instrumentation and
relocating this code, i.e., placing this instrumented code in a patch
area called a trampoline. The original code is then overwritten to
contain a branch to the instrumented version of the code, and the
instrumented code is terminated by a branch back to the original
code. The advantage of such tools is that they keep much of the
original code intact and only change what will be instrumented.
The disadvantage is that these tools incur some extra control flow
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Figure 1: The variants of binary instrumentation. Static binary instrumentation reads a binary, performs analysis and instru-
mentation and then creates a new binary. Dynamic binary instrumentation has two forms that differ in when it occurs. In
the first form the binary is analyzed and instrumented and the resulting process is spawned. In the second form an already
running process is attached to. In both cases further process control, analysis and code modification may occur.

transfers to and from the trampolines. These tools also need (and of-
ten benefit from) strong semantic analysis of the code to understand
its structure. Dyninst is an example of such a tool.

Code caching: Tools that use code caching relocate every basic
block before it is executed. If the block will have instrumentation,
then the relocated version is modified before it is copied to the
code cache. All code is copied and executed from the cache. The
advantage of such tools is that they are structurally simpler to build.
However, they have the overhead of relocating each block of code
and do not benefit from code analysis.

Hoisting: Tools that use hoisting convert the binary to a common
intermediate representation (IR) such as LLVM IR, modify the IR,
and then regenerate the code to form a new binary. The advantage
of such tools is that they do not require code generation or patching
functionality. All of that is done by the tools that supports the IR.
However, such tools must completely understand every instruction
in the binary so that it can be hoisted to the IR (which can often be
complex or even impossible to do). Tools that use hoisting include
llvm-mctoll [35] and BinRec [3].

2 Dyninst
Dyninst is a binary analysis and instrumentation toolkit that pro-
vides a machine independent interface to machine level binary

(executable or library) analysis, instrumentation (code modifica-
tion), and platform independent process control. The abstract in-
terface allows Dyninst-based tools to operate without any specific
knowledge of the structure of the ISA of the processor.

The analysis and instrumentation capabilities of Dyninst are
used by tools such as Rice University’s HPCToolkit [1], University
of Oregon and ParaTools TAU [30], Barcelona Supercomputing
Center’s Paraver [25], Lawrence Livermore National Labs Stack
Trace Analysis Debugging Tool (STAT) [5], AMD OmniTrace [2],
and Red Hat SystemTap [18]. Note that Dyninst is free and open
source, based on an LGPL license and hosted on GitHub [13].

Dyninst is unique among tools in that it does both analysis
and instrumentation. Dyninst uses a deep semantic analysis of
the code to allow a more complex understanding of the code to
be instrumented and to enable more efficient instrumentation. It
first performs control- and data-flow analysis on the binary (the
mutatee) to create a control flow graph (CFG) and dataflow graph
(DFG) of the mutatee; information in these graphs is used during
the instrumentation process. Dyninst’s code modification is based
on safe transformations of the program’s CFG so that instrumented
binary will have valid control flow transitions [6]. The dataflow in-
formation also plays important role in the instrumentation process,
including liveness analysis that finds free registers, called dead reg-
isters, that can be used to create efficient instrumentation that can
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avoid the need to save current program values. Dyninst’s dataflow
analysis is also used to analyze pointer-based control flow (such as
is used in jump tables, virtual function tables, and function pointers)
to generate a more complete (and thus, more accurate) CFG. This
unique combination of binary analysis and instrumentation allows
more robust and sophisticated instrumentation to be crafted.

Currently Dyninst supports analysis and instrumentation of the
x86, ARM64, Power, and (in progress) AMD GPU architectures. In
the past Dyninst has supported many other architectures such as
Sun SPARC, DEC Alpha, HP PA-RISC, MIPS, and Intel Itanium.

Dyninst is broken down into toolkits to allow the functionality
to be used separately or collectively. Some components are specific
to a particular ISA (such as the InstructionAPI) or operating system
(such as the ProcControlAPI), while others operate on platform
independent abstractions, such as the ParseAPI and DataflowAPI.

Dyninst analyzes the binary opportunistically in that it can op-
erate on a binary without symbols or debugging information (a
stripped binary) but will use information that is optionally available
in a binary, such as debugging symbols, to increase the effectiveness
and accuracy of its code analysis.

Instrumentation is performed based on code snippets and in-
strumentation points. A snippet is an abstract representation of
the code to be inserted into the binary. This code is specified by
a machine independent abstract syntax tree (AST) [8]. The AST
types include operations for reading or writing memory, registers
or variables; performing basic logical and arithmetic operations;
calling functions; and branching, including conditional branching.

A point is a location in the program where instrumentation will
be inserted. Points include

• Low level abstractions such as individual instructions.
• Function level abstractions such as call site, function entry,
and function exit.

• Control flow graph abstractions such as branch-taken and
branch-not-taken edges, loop back edges.

Code snippet insertion is a basic Dyninst operation that takes a
tuple (P, AST ), where P is a vector of instrumentation points where
the instrumentation will be inserted and AST is the root of the tree
that represents the code to be inserted. Dyninst will convert the
AST to native code, optimize the code when possible, generate new
versions of the blocks or functions that have been modified, and
patch a branch into the original code to jump to the modified code.

Dyninst is organized as a library of toolkits. The toolkits and
their relationships are shown in Figure 2. The rest of this section
will briefly describe the key functionality of each component.

2.1 Code Analysis Toolkits
The first four components perform analysis of the binary.

SymtabAPI provides an abstract representation of how a binary
program is structured and stored in a file. So Dyninst can provide a
platform independent interface to formats such as ELF, DWARF, PE,
and PDB. It provides access to symbol table information, sections
that contain the binary code and data, relocation information, and
debugging data.

InstructionAPI provides an abstract representation of machine
code instructions. It parses the instruction into an ISA indepen-
dent representation that includes the opcode; operands including

Figure 2: The components of Dyninst and the use relation-
ships between the components. The direction of the arrows
indicates the flow of information.

whether it is read or written and an AST that represents the ad-
dressing calculation; abstract instruction types such as call, branch,
return, arithmetic; set of registers read and written by the instruc-
tion.

ParseAPI creates and provides access to the CFG. It initiates
parsing of the machine code in the binary using a fast parallel
algorithm to create the annotated CFG that include functions, loops,
jump tables, and basic block structure of the binary. The parallel
algorithm has allowed Dyninst to efficiently parse binaries that
have more than a gigabyte of machine code. It uses a traversal
algorithm [29][33] to construct basic blocks and determine function
and loop boundaries. Parsing starts from known entry points – such
as the program entry point and function entry points from symbol
tables – and follows the control flow transfers to build the CFG and
identify more entry points. Not all code will necessarily be found
by traversal parsing due to unresolvable pointers used in control
flow instructions. Thus, parsing may leave gaps [16] in the binary
where code may be present but has not yet been identified. Dyninst
attempts to resolve these gaps using advanced dataflow analysis
techniques such as slicing and jump table analysis, and speculative
parsing based on machine learning [27].

DataflowAPI annotates the CFG with dataflow information, ef-
fectively creating a DFG. The dataflow information has two general
uses. First, Dyninst uses this information to increase the accuracy
of the control flow analysis. Second, these operations are avail-
able to users of the DataflowAPI to build more advanced tools and
custom analyses. The supported analyses include register liveness,
stack height analysis, forward slicing (instructions affected by data),
backward slicing (instructions that affected data), and loop analysis.
Dataflow analysis requires semantic information about what each
instruction calculates, currently sourced from ROSE [26], SAIL [4],
and hand-crafted semantic descriptions.

2.2 Instrumentation Toolkits
The next two components perform instrumentation. Since snippets
and points are architecture independent abstractions, most tools
that use these interfaces are architecture independent.
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While it is also possible to specify instrumentation as raw ma-
chine code in an array of bytes, this mechanism is rarely needed in
Dyninst so its use is discouraged.

CodeGenAPI transforms the machine independent AST repre-
sentation to architecture-specific instruction sequences.

PatchAPI does snippet insertion. It is responsible for modifying
the code so that space is allocated for the instrumented code and
that control is transferred to the instrumented code and back.

The final two components are used only for dynamic instrumen-
tation, performing operations on processes (i.e., running programs).

ProcControlAPI is an operating system independent interface
to process control, providing debugger-like functionality that is
able to attach to a running process or start a process; read and
write the memory of the process; suspend or resume a process and
its threads; insert breakpoints; catch user events like signals; and
detect process and thread creation.

StackwalkerAPI allows users to collect a call stack (known as
walking the call stack) and access information about each invoked
function’s stack frames including return addresses. Each stack frame
is a record of an executing function (or function-like object such
as a signal handler or system call). Stack walking can be quite
tricky on code generated by modern compilers, as stack frames can
appear in a variety of forms or even missing altogether due to code
optimizations.

3 Porting Dyninst to RISC-V
RISC-V is an open standard ISA known for its simplicity and ex-
tensibility. While RISC-V is widely used in embedded systems and
microcontrollers, it has also gained popularity in high performance
computing. Making Dyninst available on the RISC-V provides a
wide variety of functionality, including a pathway to port many
types of tools, as mentioned in Section 2. We have ported Dyninst
to RISC-V, allowing for binary analysis and instrumentation on this
architecture.

In this section, we start by discussing some characteristics of
RISC-V that affect the porting of Dyninst. We then describe the
RISC-V implementation of each Dyninst component, discussing
implementation details, issues we encountered, and solutions we
developed. Last, we outline the current status of the RISC-V port as
well as several directions for future work.

3.1 Characteristics of RISC-V that affect porting
The main difficulty in porting Dyninst to RISC-V lies in the very
reason that makes RISC-V appealing for hardware design: extensi-
bility and simplicity. While RISC-V’s extensibility allows flexible
hardware implementation, it provides challenges for tools that have
to generate and process the machine code. While hardware design-
ers can choose to implement only extensions that are relevant to
their hardware, Dyninst must support a broad range of extensions
to handle the wide variety of real-world binaries.

In addition, RISC-V is a RISC architecture. While RISC architec-
tures simplify the implementation of hardware, they can increase
the complexity of analyzing the code as some high-level function-
ality requires more instructions than would be needed on a CISC
architecture. The simple instructions on a RISC architecture are also
likely to cause some instructions to be used for multiple purposes.

While this challenge also exists in other RISC architectures such
as ARM or Power (which are also supported by Dyninst), RISC-
V’s base instruction set is significantly smaller than that of ARM
or PowerPC, causing these instruction sequences to appear more
frequently.

3.1.1 Extension-based ISA. One of the most distinctive features of
RISC-V is its modular design. Unlike traditional ISAs that define a
fixed, monolithic instruction set, RISC-V defines minimal base ISAs
and several optional extensions. A base ISA defines the minimum
set of integer instructions required to implement a fully functional
RISC-V processor, so any RISC-V implementation must implement
a base ISA. Besides the base ISA, RISC-V offers a wide range of
extensions that allow hardware designers to implement only the
extensions necessary for their hardware.

The extensibility of RISC-V, however, means that Dyninst needs
to be aware of the extensions supported by the mutatee. If the
mutatee does not support a specific extension, Dyninst should not
generate instrumentation code using any instructions from that
specific extension.

Additionally, new extensions are introduced and ratified every
year [12]. To keep up with the fast-paced change, Dyninst’s RISC-V
port needs to be written with extensibility in mind. Components
that are ISA-dependent, including instruction parsing and code
generation, need to be modular so that adding a RISC-V extension
into Dyninst does not require manually changing multiple parts of
the source code.

3.1.2 The C Extension (Compressed Instructions). The C Extension
is a widely used extension that offers 2-byte versions of several com-
monly used 4-byte standard instructions. The goal of compressed
instructions is to reduce code size and improve memory usage and
efficiency.

Despite the benefit of reduced code size, compressed instructions
sometimes create space issues for binary instrumentation. For ex-
ample, Dyninst needs to insert jump instructions to redirect control
flow to instrumented code. However, Dyninst sometimes cannot
use the compressed jump instruction c.j for this purpose because
its target offset range is limited to [−212, 212) bytes. If the target
offset exceeds this limit, Dyninst needs to fall back to a standard
4-byte jump instruction. In exceptional cases, such as functions
that are shorter than four bytes, these longer jumps cannot be used.
Dyninst will try to choose the most efficient jump sequence in each
case, ultimately resorting to the inefficient 2-byte trap instructions
in the worst case (which, fortunately, does not occur often).

3.1.3 Multi-use Control Flow Instructions. Another challenge we
have faced is the multiple uses of control flow instructions in RISC-
V. RISC-V defines only two instructions for unconditional branches,
jal and jalr, different from instruction sets like x86 that have
different instructions for unconditional jumps, function calls, and
function returns. As a result, a single RISC-V branch instruction
serves multiple purposes. For example, the jalr (jump and link
register) instruction is used for unconditional jumps, function calls,
function returns, and jump tables. Therefore, Dyninst needs to
detect the context in which the jump instruction is being used to
correctly determine its higher level purpose.
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3.2 Toolkit-by-toolkit discussion
In this section, we provide a detailed walkthrough of the RISC-V im-
plementation component by component, focusing on how Dyninst
addresses RISC-V’s wide variety of extensions and instructions.

3.2.1 SymtabAPI. SymtabAPI is responsible for parsing symbol
tables and object file headers of ELF (Executable and Linkable For-
mat) binaries. The RISC-V ABI specifies some definitions that are
unique to RISC-V ELF that require special handling.

The first important field is e_flags, which is used to describe
processor-specific properties of an ELF binary. This includes

• EF_RISCV_RVC: Defines whether compressed instructions
are present

• EF_RISCV_FLOAT_ABI_SINGLE: Defines whether single-
precision floating points are present

• EF_RISCV_FLOAT_ABI_DOUBLE: Defines whether double-
precision floating points are present

The original usage of e_flags is to allow the linker to prevent
linking ELF files with incompatible ABIs. From Dyninst’s point of
view, e_flags provide information about whether the binary is
compiled for a processor that supports the compressed instruction,
single-precision floating point, and double-precision floating point
extensions. Thus, this field is extracted by SymtabAPI to determine
whether these extensions are supported.

In addition, the ABI defines a custom section named called
.riscv.attributes. This section contains compatibility information
that a linker or runtime loader needs to correctly execute RISC-V
binaries, such as the target architecture string, which contains in-
formation about what extensions the binary supports. SymtabAPI
will parse the .riscv.attributes section and obtain the value of the
target architecture string to determine all the extensions that the
binary uses.

While .riscv.attributes can be found in most binaries compiled
by GCC or LLVM, it is not a mandatory section. If an ELF binary
lacks this section, SymtabAPI obtains extension information from
e_flags, as e_flags is present in all ELF files.

3.2.2 InstructionAPI. We base our RISC-V instruction parsing on
the Capstone library [10]. Capstone is widely used and supports
architectures such as x86, ARM, PowerPC, and RISC-V. There are
several reasons why Capstone is ideal for instruction parsing. First,
Capstone is fast and efficient: it can parse a large amount of as-
sembly code efficiently due to its optimized disassembly engine.
Second, Capstone provides detailed information about instruction
operands, including whether an operand is a register, immediate
value, or memory, whether an operand is read or written, whether
the operand is implicit, and the memory access size for memory
operands. Third, Capstone is actively maintained and updated, so
when new instructions are introduced, Capstone will be promptly
updated.

The version of Capstone required by InstructionAPI is v6.0.0-
Alpha or above. Prior to this version, Capstone lacked support for
operand read and write information. We extended Capstone’s RISC-
V capabilities to address this problem, and our pull request was
accepted and merged into Capstone as part of the v6.0.0-Alpha
release.

The set of extensions supported by a processor is called a profile.
Currently, Capstone supports the RV64GC profile, one of the most
commonly used profiles for general-purpose computing. RV64GC
stands for 64-bit RISC-V architecturewith support for the G (Generic)
and C (compressed instruction) extensions, where the G extension
is a set of base and standard extensions necessary for general-
purpose computing, including the I (integer), M (integer multiplica-
tion and division), A (atomic), F (single-precision floating point), D
(double-precision floating point), Zicsr (control and status register
instructions), and Zifencei (instruction-fetch fence) extensions.

Capstone is planning to support new extensions such as vector
instructions, which will be required by the RVA23 profile, the future
ISA that most processors will support.

3.2.3 ParseAPI. ParseAPI is responsible for constructing CFGs
with basic blocks, loops, and functions.Whilemost parts of ParseAPI
are platform agnostic, it still needs to recognize specific instruction
sequences from different architectures to construct correct CFGs.
For example, ParseAPI needs to identify function prologues and epi-
logues to correctly define function boundaries. Similarly, ParseAPI
needs to correctly identify branch instructions to recognize basic
blocks and control flow.

For RISC-V, the most challenging part is recognizing what high-
level operation is represented by the jal and jalr instructions.
RISC-V uses these two instructions for the following purposes:

• Function returns: Function return in RISC-V is equivalent
to an unconditional jump to the return address stored in a
link register, the register that contains the return address.
The link register is x1 by convention, though other registers
may be (and are) used.

• Function calls: Like unconditional jumps, if the relative offset
fits within the range supported by jal, compilers generate
jal for function calls. Otherwise, compilers load the jump
target to a register and generate a jalr.

• Unconditional jumps: If the relative offset fits within the
range supported by jal, compilers generate jal for uncon-
ditional jumps with the link register of x0, a special register
whose value is always zero. Otherwise, compilers load the
jump target to a register and generate a jalr, again with the
link register of x0.

• Tail calls [11]: A tail call is a function call-return optimiza-
tion that uses a jump instruction instead of a call instruction
to avoid stack frame setup and tear-down when a call in-
struction is the last operation in a function. In this case, a
simple jump actually represents a function call.

• Jump tables: Compilers typically implement jump tables us-
ing jalr, where the target address is computed at runtime
based on an index and loaded into a register.

Thus, given a jal or jalr instruction without any context,
ParseAPI cannot determine what types high-level operation it rep-
resents only by the instruction opcode.

In addition, the valid target offset range of jal is limited. When
the target offset exceeds jal’s limit, compilers will generate multi-
instruction code sequences instead. For instance, compilers might
generate an instruction sequence using the auipc (add upper im-
mediate to PC) instruction that first loads the upper 20 bits of the
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jump target from the current PC to the register, followed by a jalr
instruction that handles the lower 12 bits of the jump target:

# Assign t0 to PC + the upper 20 bits of offset
auipc t0, offset1
# Jump to t0 + the lower 12 bits of offset
jalr x0, offset2(t0)

If we only focus on the jalr instruction without considering
the previous auipc, this instruction appears to be an indirect jump
to t0 + offset2. However, t0 can in fact be determined because
it is loaded by the preceding auipc instruction. ParseAPI needs to
examine the whole instruction sequence to correctly identify it
as an unconditional jump. Note that the above sequence is only
one of the possible sequences that the compiler might generate for
multi-instruction jumps or calls. Different compilers may generate
these sequences in different ways, which makes recognizing these
instruction sequences challenging.

Due to the above reasons, ParseAPI analyzes the link register
and the target address to correctly identify what kind of branch
the current jal or jalr represents. Obtaining the link register of
jal and jalr, and the target address of jal can simply be done by
examining its instruction operands. However, obtaining the target
address of jalr is more challenging: ParseAPI tries to determine
the exact value of the target register by performing a backward
slice on it. If the result of the slicing yields a constant, ParseAPI
will first check whether the constant (i.e., the target address) lies in
a valid code region. If so, ParseAPI checks:

• If the target address lies within the same function, and the
link register of the current instruction is x0, ParseAPI iden-
tifies it as an unconditional jump.

• If the target address points to other functions, and the link
register of the current instruction is x0, ParseAPI identifies
it as a tail call.

• If the target address points to the entry point of a function,
and the link register of the current instruction is not x0,
ParseAPI identifies it as a function call.

• If the target address is in a valid code region, and the previous
instruction is a function call, and the link register of the
function call is the same as the target register, ParseAPI
identifies it as a function return.

• If none of the above cases are valid, ParseAPI performs jump
table analysis [22] on the current jalr instruction. If it suc-
ceeds, ParseAPI identifies it as a jump table.

• If the jump table analysis fails, ParseAPI treats the jalr as
unresolvable, meaning that the jump or call target cannot
be determined symbolically.

3.2.4 DataflowAPI. The DataflowAPI provides common types of
dataflow analysis such as register liveness, slicing, and loop analysis.
While most parts of the DataflowAPI are platform agnostic, slic-
ing requires instruction semantics that are architecture dependent.
For x86, ARM, and PowerPC, instruction semantics are obtained
from C++ classes derived from the ROSE project. While ROSE pro-
vides instruction semantic support for several architectures, it lacks
support for RISC-V.

To support RISC-V, we derived the instruction semantics from
the official formal specification of the RISC-V architecture, which

is written in SAIL. SAIL is a language that provides a high-level ex-
ecutable model of instruction set architectures. Its design involves
rigorous formal analysis, so it is suitable for generating emulators
and theorem-prover definitions. From the perspective of binary
analysis tools, this kind of formal semantic information is precisely
what is needed for dataflow analysis that relies on rigorous in-
struction semantics to track how values propagate through the
code.

However, SAIL presented some practical challenges for Dyninst.
First, the SAIL language is designed to be easily parsed and exe-
cuted within the OCaml ecosystem, but it limits interoperability
with tools developed in other languages. In addition, the SAIL lan-
guage is designed for formal verification, so the formal RISC-V SAIL
definition contains many details related to error handling, such as
memory alignment checks and jump target validation logic. These
checks are important for formal verification or emulators, but not
for dataflow analysis.

To address these issues, we developed a pipeline that acts as a
source-to-source compiler from SAIL to the C++ instruction seman-
tic classes used in DataflowAPI. The first stage of this pipeline is
an OCaml script that parses the SAIL semantics and generates a
simplified JSON representation of the instruction semantics. This
JSON format serves as an intermediate representation that contains
essential semantics of each instruction without extraneous error-
handling code. The second stage of the pipeline is a script that reads
the simplified JSON representation and generates C++ instruction
semantic classes.

The main advantage of this pipeline design is that if new RISC-V
extensions are proposed and later added to RISC-V SAIL, we only
need to rerun the whole pipeline again to generate the updated C++
instruction semantic classes.

3.2.5 CodeGenAPI. CodeGenAPI is responsible for generating in-
strumentation code, making use of the extension information ob-
tained from the SymtabAPI to make sure that only compatible
instructions are generated.

RISC-V lacks basic instructions for some common operations,
such as loading an immediate value into a register. For example, to
load a 64-bit immediate value into a register, we need to generate
the lui instruction first to load a value into the upper 20 bits of the
register. Then, a sequence of addi (add immediate) and slli (shift
logic left immediate) is generated to construct the immediate value.

In addition, RISC-V instructions often handle immediate values
in ways that are not straightforward, such as being shifted or en-
coded. As a result, these nuances make generating immediate value
handling one of the more error-prone aspects of code generation.

3.2.6 ProcControlAPI. The purpose of ProcControlAPI is to pro-
vide an OS independent interface to common process control oper-
ations, typically based on the debugging system call interface. On
Linux, ProcControlAPI is implemented using the ptrace system
call and /proc file system.

We have begun working on ProcControlAPI and encountered
the issue that the ptrace system call implementation is relatively
primitive in RISC-V compared to other architectures. For example,
the single-stepping functionality is not implemented for RISC-V,
meaning that ProcControlAPI needs to emulate single-stepping
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on the software level: single-stepping must be emulated by a se-
ries of breakpoints created by ProcControlAPI, which decreases
performance.

3.2.7 StackwalkerAPI. While we have not started porting Stack-
walkerAPI to RISC-V, we anticipate several challenges due to how
RISC-V handles the stack frame register. Although the RISC-V ABI
designates register x8 as the frame pointer register, many compil-
ers choose to use x8 as a general purpose register. That is, most
compilers handle stack frames using only the stack pointer regis-
ter. The StackwalkerAPI has a plugin-based architecture so that it
can support multiple types of frame structures. The instruction set
and compilers for RISC-V will require new “frame steppers” to be
designed for the RISC-V platform.

3.3 Current Status
Dyninst fully supports binary analysis for the RV64GC profile.
While static instrumentation is a work in progress, it is largely
functional.

For RISC-V binary analysis, Dyninst can parse the .riscv.attributes
section, parse and analyze instructions, analyze control flow and
construct CFGs, and perform jump table analysis, forward slicing,
backward slicing, and loop analysis.

For RISC-V instrumentation, many features of the CodeGenAPI
are fully functional. For example, Dyninst can create variables,
arithmetic operation snippets, memory operation snippets, function
snippets, and insert instrumentation code at the entry or exit points
of functions, branches, and loops.

3.4 Future Work
Our immediate future work will focus on completing the CodeGe-
nAPI and do more testing to make it robust. Our first release is
planned for 4Q2025 with the static (binary rewriting) instrumenta-
tion features. In 1Q2026, we will complete porting ProcControlAPI
and StackwalkerAPI to complete support for dynamic binary in-
strumentation.

In the future, we will extend Dyninst to support the RVA23
profile, which is a new profile on which new RISC-V systems are
standardizing as a minimal set of features. This profile includes
many new extensions, such as the vector extension and integer con-
ditional extension. Supporting new extensions should be straight-
forward once Capstone adds support for it. We can generate the
C++ semantic classes that we need to interpret new instruction
semantics using the SAIL data the same way we did for other ex-
tensions.

4 A Few Early Benchmarks
To provide an idea of the overhead of Dyninst’s instrumentation on
the RISC-V, we performed some basic benchmarks. These bench-
marks are for the first version of Dyninst on the RISC-V, so in-
strumentation code will continue to improve as we include more
optimizations. For each benchmark that we conducted, we include
values from the RISC-V and, as comparison, from the x86 64-bit
architecture. We include the x86 numbers as the x86 is a long-
supported Dyninst platform.

4.1 Experimental Set-Up
The same application program and the same Dyninst instrumenta-
tion program are used for both the RISC-V and x86 measurement
tests.

The application program that we used in our tests was a sim-
ple program that contains a function that performs a 100 x 100
matrix multiplication of double precision floating point numbers.
This function is called repeatedly in a loop from the main func-
tion. Before the start of the loop and after the end of the loop, the
application code samples the real time using the clock_gettime
call and then records the difference, the elapsed time for the loop
to execute. The application is compiled with gcc on each platform
with the default optimization level.

We instrumented the application program with Dyninst and ran
the instrumented version to measure the overhead. The Dyninst
instrumentation program inserted simple instrumentation into the
application program. This instrumentation simply increments a
counter in memory. We chose simple instrumentation as it gives the
best indication of the overhead. We ran two different experiments:

(1) Instrument the entry point of the multiply function. One in-
strumentation point is executed for each call to the function.

(2) Instrument the start of each basic block in the function. As
there are 11 basic blocks in the multiple function (the same
for both the RISC-V and x86 binaries), there are 11 instrumen-
tation points. During one execution of the multiply function,
about 2 million basic blocks are executed (again, the same
for both binaries).

4.2 The Experiments
On each platform, we ran the application program with no instru-
mentation to provide the base case for comparison and then ran
the two instrumented versions of the application to measure the
overhead.

The RISC-V experiments were run on a 1.4 GHz SiFive 4-core
P550 processor (with the RV64GC extensions) running Ubuntu
24.04.2 LTS. The x86 experiments were run on a 800 MHz 20-core
Intel Core i5-14600T processor running Ubuntu 24.02.3 LTS.

4.3 Results and Analysis
The below table summarized the results of our experiments. Note
that all times are in seconds.

x86 RISC-V
Base 0.1606 1.2923
Function count 0.1629 1.4% 1.3020 0.8%
BB count 0.2681 66.9% 1.4904 15.3%

Overall, the performance of the RISC-V instrumentation is within
the bounds that we expected for Dyninst. Note that the overhead
numbers are better than the current x86 implementation as we
added an allocation optimization for registers that will be soon
added to the x86 version as well. When instrumentation needs
registers, we attempt to use dead registers (ones that do not contain
values used later in the execution). If such registers are available,
spilling the contents can be avoided.
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5 Conclusion
In this paper, we presented our work on porting Dyninst to RISC-V.
We addressed the challenges posed by RISC-V’s simple and ex-
tensible design, including its modular ISA design, compressed in-
structions, and multi-use control flow instructions. We described
changes made to each Dyninst component to support parsing, anal-
ysis, and code generation for RISC-V binaries. Our RISC-V port
adopts a modular design, making it easier to add support for new
RISC-V extensions.

For the RV64GC profile, the binary analysis features of Dyninst
are complete. The static binary instrumentation is feature complete,
and it is undergoing testing. The dynamic binary instrumentation
is a work in progress as we need to complete the process toolkits,
including ProcControlAPI and StackwalkerAPI. Once they are com-
plete, Dyninst will provide full binary analysis and both static and
dynamic instrumentation for the growing RISC-V ecosystem.
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