
Paradyn Project
www.paradyn.org

Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685
paradyn@cs.wisc.edu

Computer Sciences Department
University of Maryland
College Park, MD 20742
bugs@dyninst.org

Paradyn Paral le l Performance Tools

DynStackwalker Programmer’s Guide 7/13/07

Release 0.6b
July 2007

DynStackwalker
Programmer’s Guide

Table Of Contents

DynStackwalker Developers Guide July 2007 Release 0.6b

1 Introduction..2
2 Abstractions ..3

2.1 Stackwalking Interface ...4
2.2 Callback Interface ...4

3 API Reference ...5
3.1 Definitions and Basic Types ...5

3.1.1 Definitions ..5
3.1.2 Basic Types ...7

3.2 Namespace DynStackwalker ...7
3.3 Stackwalking Interface ...7

3.3.1 Class Walker ...8
3.3.2 Class Frame ...10

3.4 Callback Interface ...13
3.4.1 Default Implementations ..13
3.4.2 Class FrameStepper ...14
3.4.3 Class StepperGroup ...16
3.4.4 Class ProcessState ..18
3.4.5 Class SymbolLookup ...19

4 Platform Specific Notes ...20

Page 2

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

1 INTRODUCTION

This document describes DynStackwalker, an API and library for walking a call stack. The
call stack (also known as the run-time stack) is a stack found in a process that contains the cur-
rently active stack frames. Each stack frame is a record of an executing function (or function-like
object such as a signal handler or system call). DynStackwalker provides an API that allows users
to collect a call stack (known aswalking the call stack) and access information about its stack
frames. The current implementation supports Linux/x86, Linux/IA-64, Linux/AMD-64,
Linux/Power, AIX/Power, Solaris/SPARC, and Windows/x86.

DynStackwalker is designed to be both easy-to-use and easy-to-extend. Users can easily use
DynStackwalker to walk a call stack without needing to understand how call stacks are laid out on
their platform. Users can easily extend DynStackwalker to work with new platforms and types of
stack frames by implementing a set of callbacks that can be plugged into DynStackwalker.

DynStackwalker’s ease-of-use comes from it providing a platform independent interface that
allows users to access detailed information about the call stack. For example, the following C++
code-snippet is all that is needed to walk and print the call stack of the currently running thread.

std::vector<Frame> stackwalk;
string s;

Walker *walker = Walker::newWalker();
walker->walkStack(stackwalk);
for (unsigned i=0; i<stackwalk.size(); i++) {

stackwalk[i].getName(s);
cout << “Found function “ << s << endl;

}

DynStackwalker can walk a call stack in the same address space as where the DynStackwalker
library lives (known as afirst party stackwalk), or it can walk a call stack in another process
(known as athird party stackwalk). To change the above example to perform a third party stack-
walk, we would only need to pass a process identifier tonewWalker , e.g:

Walker *walker = Walker::newWalker(pid);

Our other design goal with DynStackwalker is to make it easy-to-extend. The mechanics of
how to walk through a stack frame can vary between different platforms, and even between differ-
ent types of stack frames on the same platform. In addition, different platforms may have different
mechanisms for reading the data in a call stack or looking up symbolic names that go with a stack
frame. DynStackwalker provides a callback interface for plugging in mechanisms for handling
new systems and types of stack frames. The callback interface can be used to port DynStack-
walker to new platforms, extend DynStackwalker support on existing systems, or more easily
integrate DynStackwalker into existing tools. There are callbacks for the following DynStack-
walker operations:

• Walk through a stack frame- DynStackwalker will find different types of stack frames on dif-
ferent platforms and even within the same platform. For example, on Linux/x86 the stack
frame generated by a typical function looks different from the stack frame generated by a sig-
nal handler. The callback interface can be used to register a handler with DynStackwalker that
knows how to walk through a new type of stack frame. For example, the DyninstAPI tool reg-
isters an object with DynStackwalker that describes how to walk through the stack frames

Page 3

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

generated by its instrumentation.

• Access process data- To walk a call stack, DynStackwalker needs to be able to read a process’
memory and registers. When doing a first party stackwalk, this is done by directly reading
them from the current address space. When doing a third party stackwalk, this is done by read-
ing them using a debugger interface. The callback interface can be used to register new objects
for accessing process data. This can be used, for example, to port DynStackwalker to a new
operating system or make it work with a new debugger interface.

• Look up symbolic names- When DynStackwalker finds a stack frame, it gets an address that
points into the piece of code that created that stack frame. This address is not necessarily
meaningful to a user, so DynStackwalker attempts to associate the address with a symbolic
name. The callback interface can be used to register an object with DynStackwalker that per-
forms an address to name mapping, allowing DynStackwalker to associate names with stack
frames.

2 ABSTRACTIONS

DynStackwalker contains two interfaces: the Stackwalking Interface and the Callback Inter-
face. The stackwalking interface is used to walk the call stack, query information about stack
frames, and collect basic information about threads. The Callback Interface is used to provide
custom mechanisms for walking a call stack. Users who operate in one of DynStackwalker’s stan-
dard configurations do not need to use the Callback Interface.

Figure 1 shows the ownership hierarchy for DynStackwalker’s classes. Ownership is a “con-
tains” relationship; if one class owns another, then instances of the owner class maintain an exclu-
sive instance of the other. For example, in Figure 1 the eachWalker instance contains exactly one
instance of aProcessState object. No other instance ofWalker uses that instance ofPro-

cessState .
This remainder of this section briefly describes the six classes that make up DynStackwalker’s

two interfaces. For more details, see the class descriptions in Section 3.

Figure 1: Object Ownership

Walker

StepperGroupProcessState FrameSymbolLookup

FrameStepper

1:1 1:
1 1:1

1:N

1:N

A A is a class

1:1 Each instance of class A owns one instance
of class B

1:N Each instance of class A owns multiple
instances of class B

A B

A BLE
G

E
N

D

Page 4

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

2.1 Stackwalking Interface

• Walker - TheWalker class is the top-level class used for collecting stackwalks. It provides a
simple interface for requesting a stackwalk. EachWalker object is associated with one pro-
cess, but may walk the call stacks of multiple threads within that process.

• Frame - A call stack is returned as a vector ofFrame objects, where eachFrame object repre-
sents a stack frame. It can provide information about the stack frame and basic information
about the function, signal handler or other mechanism that created it. Users can request infor-
mation such as the symbolic name associated with theFrame object, and values of its saved
registers.

2.2 Callback Interface

DynStackwalker includes default implementations of the Callback Interface on each of its
supported platforms. These default implementations allow DynStackwalker to work “out of the
box” in a standard configuration on each platform. Users can port DynStackwalker to new plat-
forms or customize its call stack walking behavior by implementing their own versions of the
classes in the Callback Interface.

• FrameStepper - A FrameStepper object describes how to walk through a single type of stack
frame. Users can provide an implementation of this interface that allows DynStackwalker to
walk through new types of stack frames. For example, the DyninstAPI uses this interface to
extend DynStackwalker to allow it to walk through stack frames created by instrumentation
code.

• StepperGroup - A StepperGroup is a collection ofFrameStepper objects and criteria that
describes when to use each type ofFrameStepper . These criteria are based on simple address
ranges in the code space of the target process. In the above example with DyninstAPI, it
would be the job of theStepperGroup to identify a stack frame as belonging to instrumenta-
tion code and use the instrumentationFrameStepper to walk through it.

• ProcessState - A ProcessState interface describes how to access data in the target process.
To walk a call stack, DynStackwalker needs to access both registers and memory in the target
process;ProcessState provides an interface that DynStackwalker can use to access that
information. DynStackwalker includes two default implementation ofProcessState for each
platform: one to collect a first party stackwalk in the current process, and one that uses a
debugger interface to collect a third party stackwalk in another process.

• SymbolLookup - The SymbolLookup interface is used to associate a symbolic name with a
stack frame. A stackwalk returns a collection of addresses in the code space of a binary. This
class uses the binary’s symbol table to map those addresses into symbolic names. A default
implementation of this class, which uses the DynSymtab package, is provided with DynStack-
walker. A user could, for example, use this interface to allow DynStackwalker to use libelf to
look up symbol names instead.

Page 5

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

3 API REFERENCE

This section describes the DynStackwalker API. It is divided into three sub-sections: a
description of the definitions and basic types used by this API, a description of the interface for
collecting stackwalks, and a description of the callback interface.

3.1 Definitions and Basic Types

The following definitions and basic types are referenced throughout the rest of this manual.

3.1.1 Definitions

• Stack Frame- A stack frame is a record of a function (or function-like object) invocation.
When a function is executed, it may create a frame on the call stack. DynStackwalker finds
stack frames and returns a description of them when it walks a call stack.

The following three definitions deal with stack frames.

• Bottom of the Stack- The bottom of the stack is the earliest stack frame in a call stack, usually
a thread’s initial function. The stack grows from bottom to the top.

• Top of the Stack- The top of the stack is the most recent stack frame in a call stack. The stack
frame at the top of the stack is for the currently executing function.

• Frame Object- A Frame object is DynStackwalker’s representation of a stack frame. AFrame

object is a snapshot of a stack frame at a specific point in time. Even if a stack frame changes
as a process executes, aFrame object will remain the same. EachFrame object is represented
by an instance of theFrame class.

The following three definitions deal with fields in aFrame object.

• SP (Stack Pointer)- A Frame object’s SP member points to the top of its stack frame (a stack
frame grows from bottom to top, similar to a call stack). TheFrame object for the top of the
stack has a SP that is equal to the value in the stack pointer register at the time theFrame

object was created. TheFrame object for any other stack frame has a SP that is equal to the top
address in the stack frame.

• FP (Frame Pointer)- A Frame object’s FP member points to the beginning (or bottom) of its
stack frame. The Frame object for the top of the stack has a FP that is equal to the value in the
frame pointer register at the time theFrame object was created. TheFrame object for any other
stack frame has a FP that is equal to the beginning of the stack frame.

• RA (Return Address)- A Frame object’s RA member points to the location in the code space
where control will resume when the function that created the stack frame resumes. The Frame
object for the top of the stack has a RA that is equal to the value in the program counter regis-
ter at the time theFrame object was created. TheFrame object for any other stack frame has a
RA that is found when walking a call stack.

Figure 2 shows the relationship between application code, stack frames, andFrame objects. In the
figure, the source code on the left has run through themain and foo functions, and into thebar

function. It has created the call stack in the center, which is shown as a sequence of words grow-
ing down. The current values of the processor registers, while executing inbar , are shown below

Page 6

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

the call stack. When DynStackwalker walks the call stack, it creates theFrame objects shown on
the right. EachFrame object corresponds to one of the stack frames found in the call stack or
application registers.

The call stack in Figure 2 is similar to one that would be found on the x86 architecture. Details
about how the call stack is laid out may be different on other architectures, but the meanings of
the FP, SP, and RA fields in the Frame objects will remain the same.

The following four definitions deal with processes involved in DynStackwalker.

• Target Process - The process from which DynStackwalker is collecting stackwalks.

• Host Process - The process in which DynStackwalker code is currently running.

• First Party Stackwalk- DynStackwalker collects first party stackwalk when it walks a call
stack in the same address space it is running in, i.e. the target process is the same as the host
process.

• Third Party Stackwalk- DynStackwalker collects third party stackwalk when it walks the call
stack in a different address space from the one it is running in, i.e. the target process is differ-
ent from the host process. A third party stackwalk is usually done through a debugger inter-
face.

Figure 2: Stack Frame and Frame Object Layout

void main() {
 int a;
 foo(0);

...
}

void foo(int b) {
 int c;
 bar();
 ...

}

void bar() {
 int d;
 while(1);

}

a
b

c

d

Call Stack

Registers

main’s RA
main’s FP

foo’s RA
foo’s FP

Stack Pointer

Frame Pointer
Program Counter

main’s

foo’s

bar’s

FP
RA
SP

FP
RA
SP

FP
RA
SP

...

LE
G

E
N

D

A B A contains B’s address
A B A contains the contents of B

Frame Object

Frame Object

Frame Object

Page 7

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

3.1.2 Basic Types

typedef unsigned long Address

An integer value capable of holding an address in the target process. Address variables should
not, and in many cases cannot, be used directly as a pointer. It may refer to an address in a dif-
ferent process, and it may not directly match the target process’ pointer representation.
Address is guaranteed to be at least large enough to hold an address in a target process, but
may be larger.

typedef ... process_t

A handle for identifying a process. On UNIX systems this will be an integer representing a
PID. On Windows this will be aHANDLE object.

typedef ... thread_t

A handle for identifying a thread. On Linux based platforms this is an integer referring to a
TID (Thread Identifier). On Solaris and AIX the integer refers to a LWP (Light Weight Pro-
cess). On Windows it is aHANDLE object.

typedef ... register_t

A value that names a register. More details can be found in the architecture specific section of
this manual, Section 4.

typedef unsigned long regval_t

A value that holds the contents of a register. Aregister_t names a specific register, while a
regval_t represents the value that may be in that register.

3.2 Namespace DynStackwalker

The classes in Section 3.3 and Section 3.4 fall under the C++ namespaceDynStackwalker . To
access them, a user should refer to them using theDynStackwalker:: prefix, e.g.DynStack-

walker::Walker . Alternatively, a user can add the C++using keyword above any references to
DynStackwalker objects, e.g,using namespace DynStackwalker .

3.3 Stackwalking Interface

This section describes DynStackwalker’s interface for walking a call stack. This interface is
sufficient for walking call stacks on all the systems and variations covered by our default call-
backs.

To collect a stackwalk, first create new Walker object associated with the target process via

Walker::newWalker()

or

Walker::newWalker(process_t pid).

Page 8

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

Once aWalker object has been created, a call stack can be walked with the

Walker::walkStack

method. The new stack walk is returned as a vector ofFrame objects.

3.3.1 Class Walker

The Walker class allows users to walk call stacks and query basic information about threads
in a target process. The user should create aWalker object for each process from which they are
walking call stacks. EachWalker object is associated with one process, but may walk call stacks
on multiple threads within that process. TheWalker class allows users to query for the threads
available for walking, and it allows you to specify a particular thread whose call stack should be
walked. Stackwalks are returned as a vector ofFrame objects.

EachWalker object contains three objects:
• ProcessState

• StepperGroup

• SymbolLookup

These objects are part of the Callback Interface and can be used to customize DynStack-
walker. TheProcessState object tellsWalker how to access data in the target process, and it
determines whether thisWalker collects first party or third party stackwalks.Walker will pick an

appropriate defaultProcessState object based on which factory method1 the users calls. The
StepperGroup object is used to customize how theWalker steps through stack frames. TheSym-

bolLookup object is used to customize how DynStackwalker looks up symbolic names of the
function or object that created a stack frame.

static Walker *newWalker()

This factory method creates a newWalker object that performs first party stackwalks.

The newWalker object uses the defaultStepperGroup andSymbolLookup callbacks for the
current platform, and it uses theProcSelf callback for its ProcessState object. See
Section 3.4.1 for more information about defaults in the Callback Interface.

This method returnsNULL if it was unable to create a newWalker object. The newWalker

object was created with thenew operator, and should be deallocated with thedelete operator
when it is no longer needed.

static Walker *newWalker(process_t pid)

This factory method creates a newWalker object that performs third party stackwalks, on the
process identified bypid .

1. “Factory method” is a object-oriented design pattern term that describes a method that is responsible for
constructing new objects. DynStackwalker uses factory methods to allow it to return an error when con-
structing an object. TheWalker::newWalker methods are the factory methods for theWalker
class.

Page 9

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

The newWalker object uses the defaultStepperGroup andSymbolLookup callbacks for the
current platform, and it uses theProcSelf callback for its ProcessState object. See
Section 3.4.1 for more information about defaults in the Callback Interface.

This method returnsNULL if it was unable to create a newWalker object. The newWalker

object was created with thenew operator, and should be deallocated with thedelete operator
when it is no longer needed.

static Walker *newWalker(ProcessState *proc,
StepperGroup *steppergroup = NULL,
SymbolLookup *lookup = NULL)

This factory method creates a newWalker object that walks call stacks on the givenproc

object. CustomStepperGroup andSymbolLookup can be given with thesteppergroup and
lookup parameters. If thesteppergroup or lookup parameters areNULL, then DynStack-
walker will create aWalker object that uses a default callbacks for theNULL parameter, as
described in Section 3.4.1.

It is an error to passNULL in theproc parameter.proc is used to determine whether to collect
first party or third party stackwalks and, in the case of third party stackwalks, identify the tar-
get process.

This method returnsNULL if there was an error creating the newWalker object. The new
Walker object was created with thenew operator, and should be deallocated with thedelete

operator when it is no longer needed.

bool walkStack(std::vector<Frame> &stackwalk, thread_t thread = DEFAULT_THREAD)

This method walks a call stack in the process associated with thisWalker . The call stack is
returned as a vector ofFrame objects instackwalk . The top of the stack is returned in index0

of stackwalk , and the bottom of the stack is returned in indexstackwalk.size()-1 .

A stackwalk can be taken on a specific thread by passing a value in thethread parameter. If
thread has the valueDEFAULT_THREAD, then a default thread will be chosen. When doing a
third party stackwalk, the default thread will be the process’ initial thread. When doing a first
party stackwalk, the default thread will be the thread that calledwalkStack .

This method returnstrue on success andfalse on failure.

bool walkStackFromFrame(std::vector<Frame> &stackwalk, const Frame &frame)

This method walks a call stack starting from the given stack frame,frame . The call stack will
be output in thestackwalk vector, withframe stored in index0 of stackwalk and the bot-
tom of the stack stored in indexstackwalk.size()-1.

Page 10

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

This method returnstrue on success andfalse on failure.

bool getInitialFrame(Frame &frame, thread_t thread = DEFAULT_THREAD)

This method returns theFrame object on the top of the stack in parameterframe . Underwalk-

Stack, frame would be the one returned in index 0 of thestackwalk vector.

A stack frame can be found on a specific thread by passing a value in thethread parameter. If
thread has the valueDEFAULT_THREAD, then a default thread will be chosen. When doing a
third party stackwalk, the default thread will be the process’ initial thread. When doing a first
party stackwalk, the default thread will be the thread that calledgetInitialFrame .

This method returnstrue on success andfalse on failure.

bool getAvailableThreads(std::vector<thread_t> &threads)

This method returns a vector of threads in the target process upon which DynStackwalker can
walk call stacks. The threads are returned in output parameterthreads . Note that this method
may return a subset of the actual threads in the process. For example, when walking call stacks
on the current process, it is only legal to walk the call stack on the currently running thread. In
this case,getAvailableThreads returns a vector containing only the current thread.

This method returnstrue on success andfalse on failure.

ProcessState *getProcessState() const

This method returns theProcessState object associated with thisWalker .

StepperGroup *getStepperGroup() const

This method returns theStepperGroup object associated with thisWalker .

SymbolLookup *getSymbolLookup() const

This method returns theSymbolLookup object associated with thisWalker .

3.3.2 Class Frame

The Walker class returns a call stack as a vector ofFrame objects. As described in
Section 3.3.1, eachFrame object represents a stack frame, and contains a return address (RA),
stack pointer (SP) and frame pointer (FP). For each of these values, optionally, it stores the loca-
tion where the values were found. EachFrame object may also be augmented with symbol infor-
mation giving a function name (or a symbolic name, in the case of non-functions) for the object
that created the stack frame.

TheFrame class provides a set of functions (getRALocation , getSPLocation andgetFPLo-

cation) that return the location in the target process’ memory or registers where the RA, SP, or
FP were found. These functions may be used to modify the stack. For example, the DyninstAPI

Page 11

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

uses these functions to change return addresses on the stack when it relocates code. The RA, SP,
and FP may be found in a register or in a memory address on a call stack.

static Frame *newFrame(regvalue_t ra, regvalue_t sp, regvalue_t fp,
Walker *walker)

This method creates a newFrame object and sets the mandatory data members: RA, SP and
FP. The newFrame object is associated with thewalker .

The optional location fields can be set by the methods below.

The newFrame object is created with thenew operator, and the user should be deallocate it
with thedelete operator when it is no longer needed.

regvalue_t getRA() const

This method returns thisFrame object’s return address.

void setRA(regvalue_t val)

This method sets thisFrame object’s return address toval .

regvalue_t getSP() const

This method returns thisFrame object’s stack pointer.

void setSP(regvalue_t val)

This method sets thisFrame object’s stack pointer toval .

regvalue_t getFP() const

This method returns thisFrame object’s frame pointer.

void setFP(regvalue_t val)

This method sets thisFrame object’s frame pointer toval .

typedef enum { loc_address, loc_register, loc_unknown } storage_t;
typedef struct {

union {
address addr;
register_t reg;

} val;
storage_t location;

} location_t;

Page 12

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

The location_t structure is used by thegetRALocation , getSPLocation , andgetFPLoca-

tion methods to describe where in the process aFrame object’s RA, SP, or FP were found.
When walking a call stack these values may be found in registers or memory. If they were
found in memory, thelocation field of location_t will contain loc_address and theaddr

field will contain the address where it was found. If they were found in a register theloca-

tion field of location_t will contain loc_register and thereg field will refer to the regis-
ter where it was found. If thisFrame object was not created by a stackwalk (using the
newframe factory method, for example), and has not had a set location method called, then
location will containloc_unknown .

location_t getRALocation() const

This method returns alocation_t describing where the RA was found.

void setRALocation(location_t newval)

This method sets the location of where the RA was found tonewval .

location_t getSPLocation() const

This method returns alocation_t describing where the SP was found.

void setSPLocation(location_t newval)

This method sets the location of where the SP was found tonewval .

location_t getFPLocation() const

This method returns alocation_t describing where the FP was found.

void setFPLocation(location_t newval)

This method sets the location of where the FP was found tonewval .

bool getName(std::string &str)

This method returns a stack frame’s symbolic name. Most stack frames are created by func-
tions, or function-like objects such as signal handlers or system calls. This method returns the
name of the object that created this stack frame. For stack frames create by functions, this
symbolic name will be the function name. A symbolic name may not always be available for
all Frame objects, such as in cases of stripped binaries or special stack frames types.

The function name is obtained by using thisFrame object’s RA to call theSymbolLookup call-
back. By default DynStackwalker will attempt to use the DynSymtab package to look up sym-
bol names in binaries. If DynSymtab is not found, and no alternativeSymbolLookup object is
present, then this method will return an error.

Page 13

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

This method returnstrue on success andfalse on error.

bool getObject(void* &obj)

In addition to returning a symbolic name (seegetName) the SymbolLookup interface allows
for an opaque object, avoid* , to be associated with aFrame object. The contents of this
void* is determined by theSymbolLookup implementation. Under the default implementation
that uses DynSymtab, thevoid* points to aDyn_Symbol object orNULL if no symbol is found.

This method returnstrue on success andfalse on error.

bool getStepper(FrameStepper* &stepper) const

This method returns theFrameStepper object that was used to construct thisFrame object in
thestepper output parameter. This method returnstrue on success andfalse on error.

3.4 Callback Interface

This subsection describes the Callback Interface for DynStackwalker. The Callback Interface
is primarily used to port DynStackwalker to new platforms, extend support for new types of stack
frames, or integrate DynStackwalker into existing tools.

The classes in this subsection are interfaces, they cannot be instantiated. To create a new
implementation of one of these interfaces, create a new class that inherits from the callback class
and implement the necessary methods. To use a newProcessState , StepperGroup , or Symbol-

Lookup class with DynStackwalker, create a new instance of the class and register it with a new
Walker object using the

Walker::newWalker(ProcessState *, StepperGroup *, SymbolLookup *)

factory method (see Section 3.3.1). To use a newFrameStepper class with DynStackwalker, cre-
ate a new instance of the class and register it with a StepperGroup using the

StepperGroup::addStepper(FrameStepper *)

method (see Section 3.4.3).
Some of the classes in the Callback Interface have methods with default implementations. A

new class that inherits from a Callback Interface can optionally implement these methods, but it is
not required. If a method requires implementation, it is written as a C++ pure virtual method
(virtual funcName() = 0). A method with a default implementation is written as a C++ virtual
method (virtual funcName()).

3.4.1 Default Implementations

The classes described in the Callback Interface are C++ abstract classes, or interfaces. They
cannot be instantiated. For each of these classes DynStackwalker provides one or more default
implementations on each platform. These default implementations are classes that inherit from the
abstract classes described in the Callback Interface. If a user creates aWalker object without pro-

Page 14

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

viding their own FrameStepper , ProcessState , and SymbolLookup objects, then DynStack-
walker will use the default implementations listed in Table 1.

3.4.2 Class FrameStepper

TheFrameStepper class is an interface that tells DynStackwalker how to walk through a spe-
cific type of stack frame. There may be many different ways of walking through a stack frame on
a platform, e.g, on Linux/x86 there are different mechanisms for walking through system calls,
signal handlers, regular functions, and frameless functions. A singleFrameStepper describes
how to walk through one of these types of stack frames.

A user can create their ownFrameStepper classes that tell DynStackwalker how to walk
through new types of stack frames. A newFrameStepper object must be added to aStepper-

Group before it can be used.
In addition to walking through individual stack frames, aFrameStepper tells its Stepper-

Group when it can be used. TheFrameStepper registers address ranges that cover objects in the
target process’ code space (such as functions). These address ranges should contain the objects
that will create stack frames through which theFrameStepper can walk. If multipleFrameStep-

per objects have overlapping address ranges, then a priority value is used to determine which
FrameStepper should be attempted first.

StepperGroup ProcessState SymbolLookup FrameStepper

Linux/x86 1. 1. ProcSelf

2. ProcDebug

1. SwkDynSymtab 1. FramedFunc

Linux/ia64 1. 1. ProcSelf

2. ProcDebug

1. SwkDynSymtab 1.

Linux/AMD64 1. 1. ProcSelf

2. ProcDebug

1. SwkDynSymtab 1. FramedFunc

2.

Linux/PPC 1. 1. ProcSelf

2. ProcDebug

1. SwkDynSymtab 1. FramedFunc

2.

Windows/x86 1. 1. ProcSelf

2. ProcDebug

1. SwkDynSymtab 1.

Solaris/Sparc 1. 1. ProcSelf

2. ProcDebug

1. SwkDynSymtab 1.

AIX/Power 1. 1. ProcSelf

2. ProcDebug

1. SwkDynSymtab 1.

1. Callback Interface Defaultsa

a. This table will be completed during development

Page 15

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

FrameStepper is an interface class; it cannot be instantiated. Users who want to develop new
FrameStepper objects should inherit from this class and implement the below virtual functions.

typedef enum { gcf_success,
 gcf_stackbottom,
 gcf_not_me,
 gcf_error } gcframe_ret_t

virtual gcframe_ret_t getCallerFrame(const Frame &in, Frame &out) = 0

This method walks through a single stack frame and generates aFrame object that represents
the caller’s stack frame. Parameterin will be a Frame object that thisFrameStepper is capa-
ble of walking through. Parameterout is an output parameter that this method should set to
theFrame object that calledin .

There may be multiple ways of walking through a different types of stack frames. Each
FrameStepper class should be able to walk through a type of stack frame. For example, on
x86 oneFrameStepper could be used to walk through stack frames generated by ABI-com-
pliant functions;out ’s FP and RA are found by reading fromin ’s FP, andout ’s SP is set to
the word belowin ’s FP. A differentFrameStepper might be used to walk through stack
frames created by functions that have optimized away their FP. In this case,in may have a FP
that does not pointout ’s FP and RA. TheFrameStepper will need to use other mechanisms
to discover out’s FP or RA; perhaps theFrameStepper searches through the stack for the RA
or performs analysis on the function that created the stack frame.

If getCallerFrame successfully walks throughin , it is required to set the following parame-
ters inout . See Section 3.3.2 for more details on the values that can be set in aFrame object:

• Return Address (RA) - The RA should be set with theFrame::setRA method.

• Stack Pointer (SP) - The SP should be set with theFrame::setSP method.

• Frame Pointer (FP) - The FP should be set with theFrame::setFP method

Optionally,getCallerFrame can also set any of following parameters inout :

• Return Address Location (RALocation)- The RALocation should be set with the
Frame::setRALocation() method.

• Stack Pointer Location (SPLocation)- The SPLocation should be set with the
Frame::setRALocation() method.

• Frame Pointer Location (FPLocation)- The FPLocation should be set with theFrame::set-

FPLocation() method.

If a location field in out is not set, then the appropriateFrame::getRALocation ,
Frame::getSPLocation or Frame::getFPLocation method will returnloc_unknown .

getCallerFrame should returngcf_success if it successfully walks throughin and creates
an out Frame object. It should returngcf_stackbottom if in is the bottom of the stack and

Page 16

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

there are no stack frames below it. It should returngcf_not_me if in is not the correct type of
stack frame for thisFrameStepper to walk through. DynStackwalker will then attempt to
locate anotherFrameStepper to handlein or abort the stackwalk. It should returngcf_error

if there was an error and the stack walk should be aborted.

virtual void registerStepperGroup(StepperGroup &steppergroup)

This method is used to notify aFrameStepper when DynStackwalker adds it to aStepper-

Group . TheStepperGroup to which thisFrameStepper is being added is passed in parameter
steppergroup . This method can be used to initialize theFrameStepper (in addition to any
FrameStepper constructor).

virtual unsigned getPriority() = 0

This method is used by theStepperGroup to decide whichFrameStepper to use if multiple
FrameStepper objects are registered over the same address range (seeaddAddressRanges in
Section 3.4.3 for more information about address ranges). This method returns an integer rep-
resenting a priority level, the lower the number the higher the priority.

The defaultFrameStepper objects provided by DynStackwalker all return priorities between
0x1000 and 0x2000 . If two FrameStepper objects have an overlapping address range, and
they have the same priority, then the order in which they are used is undefined.

3.4.3 Class StepperGroup

The StepperGroup class contains a collection ofFrameStepper objects. TheStepper-

Group ’s primary job is to decide whichFrameStepper should be used to walk through a stack
frame given a return address. The defaultStepperGroup keeps a set of address ranges for each
FrameStepper . If multiple FrameStepper objects overlap an address, then the defaultStepper-

Group will use a priority system to decide.
StepperGroup provides both an interface and a default implementation of that interface.

Users who want to customize theStepperGroup should inherit from this class and re-implement
any of the below virtual functions.

virtual StepperGroup(Walker *walker)

This factory constructor creates a newStepperGroup object associated withwalker .

virtual bool addStepper(FrameStepper *stepper)

This method adds a newFrameStepper to this StepperGroup . The newly addedstepper

will be tracked by thisStepperGroup , and it will be considered for use when walking through
stack frames.

Page 17

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

This method returns true if it successfully added theFrameStepper , and false on error.

virtual bool addAddressRanges(
const std::vector<std::pair<Address, Address> >&ranges,
const FrameStepper *stepper) = 0

This method associates a set of address ranges,ranges , with a FrameStepper , stepper .
These address ranges contain objects in the process’ code space that create stack frames that
stepper can walk through.

The defaultStepperGroup will use stepper to walk through aFrame object (by returning it
from findStepperForAddr) if the Frame object’s RA falls within a range registered by this
method. A Frame object, frame , falls within a range, range[i] , if

. If multiple FrameStepper

objects have overlapping ranges, then the defaultStepperGroup will use the one with the
highest priority first (seeFrameStepper::getPriority in Section 3.4.2).

For example, suppose thisFrameStepper was designed to walk through a signal handler
frame on Linux/x86. During initialization theFrameStepper inspects the target process’ vsy-

scall page2 and finds that signal handlers will appear on the call stack with a RA between
0xffffe000 and0xffffe400 . It then registers this range with itsStepperGroup usingadd-

AddressRanges . If the StepperGroup encounters an RA in this range, it then uses the signal
handlerFrameStepper to walk through it.

Suppose anotherFrameStepper was designed to walk through regular stack frames created by
ABI-compliant functions. ThisFrameStepper will be used as a general catch-all if no other
FrameStepper can walk through aFrame object. TheFrameStepper can register itself with
an address range that spans the whole address space, and a lower priority than the signal han-
dler FrameStepper . The StepperGroup will then use the signal handlerFrameStepper to
step through signal handlers, and thisFrameStepper to step through any otherFrame object.

This method returnstrue on success andfalse if there is an error.

virtual bool removeAddressRanges(
const std::vector<std::pair<Address, Address > > &ranges,
const FrameStepper *stepper) = 0

This method removes aFrameStepper ’s address range from aStepperGroup . SeeaddAd-

dressRange for more details on howStepperGroup andFrameStepper objects use address
ranges. The address ranges specified byranges will be deleted fromstepper ’s address
ranges. For example, if the address range0x1000 to 0x2000 was registered to aFrameStep-

per namedfoo , and thenremoveAddressRanges was used to remove the address range

2. The vsyscall page is a small shared object that is loaded by the kernel into every process’ address space. It
is part of Linux’s mechanism for quickly transferring control between the kernel and user space. It also
provides information about how to stack walk through system calls and signal handlers.

range[i].first frame.getRA() range[i].second<≤

Page 18

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

0x1500 to 0x1600 out of foo , then foo would have two address ranges associated with it:
0x1000 to 0x1500 and0x1600 to 0x2000 .

This function returns true on success and false on error.

virtual bool findStepperForAddr(Address addr, FrameStepper* &out,
const FrameStepper *last_tried = NULL)

Given an address that points into a function (or function-like object),addr , this method
decides whichFrameStepper should be used to walk through the stack frame created by the
function at that address. A pointer to theFrameStepper will be returned in parameterout .

It may be possible that theFrameStepper this method decides on is unable to walk through
the stack frame (it returnsgcf_not_me from FrameStepper::getCallerFrame). In this case
DynStackwalker will callfindStepperForAddr again with thelast_tried parameter set to
the failedFrameStepper . findStepperForAddr should then find anotherFrameStepper to
use. Parameterlast_tried will be set toNULL the first timegetStepperToUse is called for a
stack frame.

The default version of this method uses address ranges to decide whichFrameStepper to use.
The address ranges are contained within the process’ code space, and map a piece of the code
space to a FrameStepper that can walk through stack frames created in that code range. If mul-
tiple FrameStepper objects share the same range, then the one with the highest priority will
be tried first.

This method returnstrue on success andfalse on failure.

Walker *getWalker() const

This method returns theWalker object that associated with thisStepperGroup .

3.4.4 Class ProcessState

TheProcessState class is a virtual class that defines an interface through which DynStack-
walker can access the target process. It allows access to registers and memory, and provides basic
information about the threads in the target process. DynStackwalker provides two default types of
ProcessState objects:ProcSelf does a first party stackwalk, andProcDebug does a third party
stackwalk.

A newProcessState class can be created by inheriting from this class and implementing the
following functions.

virtual bool getRegValue(register_t reg, thread_t thread, regval_t &val) = 0

This method takes a register name as input,reg , and returns the value in that register inval in
the threadthread .

Page 19

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

This method returnstrue on success andfalse on error.

virtual bool readMem(void *dest, Address source, size_t size) = 0

This method reads memory from the target process. Parameterdest should point to an allo-
cated buffer of memory at leastsize bytes in the host process. Parametersource should con-
tain an address in the target process to be read from. If this method succeeds,size bytes of
memory is copied fromsource, stored indest , andtrue is returned. This method returns
false otherwise.

virtual bool getThreadIds(std::vector<thread_t> &threads) = 0

This method returns a list of threads whose call stacks can be walked in the target process.
Thread are returned in thethreads vector. In some cases, such as with the defaultProcDebug ,
this method returns all of the threads in the target process. In other cases, such as withProc-

Self , this method returns only the calling thread.

The first thread in thethreads vector (index 0) will be used as the default thread if the user
requests a stackwalk without specifying an thread (seeWalker::WalkStack)

This method returnstrue on success andfalse if an error occurs.

virtual process_t getProcessID() = 0

This method returns a process ID for the target process. The defaultProcessState imple-
mentations (ProcDebug and ProcSelf) will return a PID on UNIX systems and aHANDLE

object on Windows.

3.4.5 Class SymbolLookup

TheSymbolLookup virtual class is an interface for associating a symbolic name with a stack
frame. EachFrame object contains an address (the RA) pointing into the function (or function-like
object) that created its stack frame. However, users do not always want to deal with addresses
when symbolic names are more convenient. This class is an interface for mapping aFrame

object’s RA into a name.
In addition to getting a name, this class can also associate an opaque object (via avoid*) with

a Frame object. It is up to theSymbolLookup implementation what to return in this opaque object.
The default implementation ofSymbolLookup provided by DynStackwalker uses the Dyn-

Symtab tool to lookup symbol names. It returns aDyn_Symbol object in the anonymousvoid* .
A user can create their own symbol lookup interface by creating a new class that inherits from

this one and implementing thelookupAtAddr function. ThelookupLibrary can be optionally re-
written, or the default version left as is.

virtual bool lookupAtAddr(Address addr, string &out_name, void* &out_value) = 0

This method takes an address,addr , as input and returns the function name,out_name , and an
opaque value,out_value , at that address. Output parameterout_name should be the name of

Page 20

DynStackwalker Programmer’s Guide July 13, 2007 Release 0.6b

the function that containsaddr . Output parameterout_value can be any opaque value deter-
mined by the SymbolLookup implementation. The values returned are used by the
Frame::getName() andFrame::getObject() functions.

This method returnstrue on success andfalse on error.

virtual bool lookupLibrary(Address addr, string &out_library)

This method is a helper function forlookupAtAddress . Given an address,addr , this method
returns a file path for the library or executable that is loaded ataddr in output parameter
out_library .

This method returnstrue on success andfalse if an error occurs.

4 PLATFORM SPECIFIC NOTES

This section will be completed during development.

