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Abstract lates that a desired name will be present in faster storage

We revisit memory hierarchy design viewing memory as ggache), and attempts to access it from there, going to
inter-operation communication mechanism. We show hogfower storage only if speculation fails. To verify the
dynamically collected information about inter-operationspeculation, the desired memory name and the memory
memory communication can be used to improve memgfymes stored in the given storage structure are com-
latency. We propose two techniques: (1) Speculative Memi%red; speculation succeeds only if a match occurs.
Cloaking, and (2) Speculative Memory Bypassing. In the first In this paper we revisit memory communication by
technique, we use memory dependence prediction t . .. . 7

r(pi)servmg that the traditional, implicit form of memory

speculatively identify dependent loads and stores early in t J X
pipeline. These instructions may then communicate prior f®Mmunication where the store does not directly know

address calculaton and disambiguation via a fasthe identity of the consuming load(s) and vice versa, is
communication mechanism. In the second technique, we et the only possible form. Explicit forms in which the
memory dependence prediction to speculatively transfmm  stores and loads are linked to one another are not only
store-loaduse dependence chains within the instructionpossible but may lead to new forms of speculation, to
window intoDEF-USE ones. As a result, dependent stores anflew memory hierarchy components, and hopefully, to
loads are taken off the communication path resulting in furthefew ways of thinking about such hierarchies. In this
reduction in communication latency. work we focus on two such method@peculative Mem-
Experimental analysis shows that our methods, on thdary Cloaking(or simplycloaking andSpeculative Mem-

average, correctly handle 40% (integer) and 19% (floatin% . .
. ; ory Bypassing Both are memory latency reduction
point) of all memory loads. Moreover, our techniques result in

performance improvements of 4.28% (integer) and 3.20%30hn|ques. . L .
(floating point) over a highly aggressive, dynamically The effect of _our techniques '_S illustrated m
scheduled processor implementing naive memory dependefidgurel. In speculative memory cloaking we dynami-
speculation. We also study the value and address local@@lly convert implicitly specified memory communica-
characteristics of the values our methods correctly handle. Vi®n into an explicit, albeit speculative form. To do so we
demonstrate that our methods are orthogonal to both addregse history-basednemory dependence predictido

and value prediction. explicitly link loads and stores. These loads and stores
1 Introduction can then communicate via a dynamically created name

. . space without incurring the overhead of address calcula-
Programs execute operations which produce valuggy, ' gisambiguation and data cache access. Speculative

for other op_e_rations; these values must be stored ‘f"hpﬁemory bypassing further reduces latency when the
they are waiting to be consumed by the later operationg,nendent load and store co-exist in the instruction win-
This mter-operat_lo_n communlcatlon is commonly impleg o This technique convemgEFstore-loadJse depen-
mented by providing register and memory name Spacgsnce chains intoEF-USE ones. As a result, values can
coupled with an agreed upon communication CONVefen fiow directly from the actual produceref) to the
tion: the producer binds its value to a name within theg.; o consumeruge). Both techniques are speculative
name space, and the consumer(s) access the value,py any communication performed in this manner has to
using the same name. Faster processing requires faglgr eyentually verified. However, when speculation is
Inter-operation communication. successful performance may improve as memory

In this paper we are concerned with inter-operatiogy, o 5 sfaster to the consumers of a speculated load.
communication carried out through the memory name ' 1 rest of this paper is organized as follows: We

space, or simplynemory communicatiorCaches have g1t oyr discussion of the problem and approach by
been used egter_lswely to implement more efficient me%oking at inter-operation memory communication in

ory communication. Caches perfomemory name pres- e detail in Section 2. Here we describe the rationale
ence speculatiara given memory name could reside in g, oyr proposed approach. We continue with a brief

variety of storage structures that are typically either faabantitative assessment of inter-operation memory com-
but small or slow but large. A processor implicitly specu-



ple is shown in Figure 2 where communication is to take

Memory place between the STORE and LOAD instructions of the
code fragment of part (a). Part (b) shows a possible event
Bypdssing Cloaking sequence. Initially the store is fetched, |ts' address is cal-
culated, and at some later point the store’s data becomes
available. Later on, the load is encountered. At this point
both communicating instructions have been encountered
and the value is available. Yet, communication is delayed
—> register = address direct link until LOAD has calculated its address and has passed

) ) - _ through disambiguation. This is necessary to establish
Figure 1. Speculative Memory Cloaking and Bypassingine dependence with STORE. Depending on whether
munication in Section 3. We use the quantitative datﬁ']emory dependence speculation is used, accessing the
along with our rationale, to describe the requirements fQhlue may be delayed even further until it is established
cloaking in Section 4. In Section 5 we describe speculgrat no intervening store writes to the same address. For
tive memory bypassing. We provide a quantitativexample, LOAD may get delayed until STOR#Eso cal-

assessment of both techniques in Section 6. Finally, Wgates its address and goes through disambiguation.
comment on related work in Section 7 before we offer

concluding remarks in Section 8. For clarity we use the Execution Time-line

terms cloaking and bypassingto refer to speculative g || store STORE

memory cloaking and to speculative memory bypassing-g gggg ADDRESS

respectively. g STORE; I° LOAD

2 Memory as an Inter-operation 2 implici LOAD ADDRESS
Communication Agent T ' LOAD STORE; ADDRESS
Much of research in improving memory perfor-

mance has focused on exploiting properties of the @ (b)

address stream. This is natural as memory appears a . .
nglq(ure 2. An example of inter-operation memory

storage mechanism accessed via addresses. In this o :
g}mmunlcanon. (a) Program segment with a store and a

we take a different, yet orthogonal approach to improy- ) X . .
y 9 PP P d that will communicate. (b) Time-line of execution.

ing memory performance. We observe that the memo th imolicit ificati icai tak
interface is really a primitive which is often used to syn- ith an Impficit specilication, communication cam take

thesize inter-operation communication. Separating spe&l—ace after address-calculation and disambiguation.
fication from implementation, we observe that while welVith an explicit specification communication can take
have chosen to specify memory communication via 42C€ @ soon as the two instructions are encountered
address-based interface we do not have to perform itdhd the value is available.
the exact same way. In this section we discuss how the Even when the value becomes available after both
traditional specification impacts memory communicathe load and the store complete address-calculation and
tion and advocate that a dynamically created expligitisambiguation, we will still observe the latency associ-
specification of memory communication could be useated with accessing the value through the memory hier-
to further improve memory performance. archy, i.e., through the store buffer or the data caches.
Memory communication is currently expressed)nfortunately, current memory hierarchies cannot distin-
implicitly. The load, the store or the address used provigglish between memory communication and other mem-
no a priori indication of the communication that has te®@ry accesses. As such, they have to be large enough to
happen. As a result, detecting communication requiré€rvice as many accesses as possible.
significant effort. To detect the communication and The aforementioned overheads can be eliminated if
establish the communication link both the store and thee opt for an explicit representation of memory commu-
load have to calculate an address and go through disamigation. In an explicit representation the producing store
biguation. The latter action entails comparing thé@nd the consuming load both know that communication
addresses of stores and loads taking program order ittt take place and can locate each other directly. As a
account; a store and a load communicate if (1) thegsult, communication can take place as soon as the two
access the same address, and (2) no intervening stiwgfructions are encountered and the value becomes
accesses the same address. Both address calculationau@dliable. Since both instructions can locate each other,
disambiguation introduce overheads as the value may there is no need for address-calculation and disambigua-
available long before either action completes. An exartion. Moreover, as the results of Section 3 suggest, a rela-



tively small storage structures can be used to service a Part (a) of Figure 3 reports the cummulative distri-
large fraction of memory communication activity. bution of dynamic loads as a function of store distance.
Inter-operation communication gives rise to trué’ercentages are measured over all dynamic loads. The
(RAW) dependences. An explicit representation of menmeasured distance range is 32 (leftmost) to 2K (right-
ory communication requires a representation of the canost) in power of two steps. Benchmarks are identified
responding dependences. We could attempt to determimgng the first three numbers of their name (see Table 1
and specify these memory dependences statically as, iimrSection 6.1). Part (b) reports averaged results. From
example, was done in dataflow machines [7, 27]. Evahe average results it can be seen that 50% (integer) and
though this is an interesting option, we will not conside20% (floating-point) of dynamic loads get a value
it further for two reasons. First, a static representatidhrough a dependence at a store distance less than 128.
would involve changing the program representation. Th{8n a per program basis, we can observe that most integer
would create legacy for future processor implementgrogram exhibit high volumes of short store distance
tions and provide no benefit for legacy software. Seconehemory communication. This is not so for most floating
identifying inter-operation communication staticallyprograms. These programs are dominated by long run-
may not be possible either because the dependences camg loops with little intra- and inter-iteration memory
not be determined (i.e., they are ambiguous) or becausBmmunication (these loops write large arrays using
they are transient (i.e., do not occur every time). Father arrays as inputs).
these reasons, we opt for a dynamic approach in which These results suggest that detecting dependences
the conversion is done while the program is runningven over short distances (e.g., 128) has the potential to
using architecturally invisible structures. While ourservice a large fraction (50%) of all dynamic loads for
approach entails higher hardware costs than a pure softteger codes and to a lesser extent for floating-point
ware approach, it can be used at will and only when jusedes (20%). Motivated by the large fraction of loads
tified by technological trade-offs. This avoids softwarehat get their value through a dependence with a recent
incompatibilities and legacy issues. store, in Sections 4 and 5, we propose techniques that
In our approach we utilizmemory dependence pre-attempt to reduce the latency of this communication by
diction to explicitly express dependences dynamically axplicitly linking the dependent instructions.
follows: we use dynamically collected dependence hii—
tory information to predict future dependences. We then
use these speculative dependences to create a dynamic Cloaking aims at streamlining memory communica-
name space through which the dependent loads dien by dynamically converting the implicit specification

stores can communicate without incurring the overhe&d communication into an explicit form. In cloaking
of address-based communication. memory dependence prediction is used to identify

dependent loads and stores with high probability. Once a
dependence is deemed predictable, the dependent load
Before we delve into describing our methods it isnd store are explicitly linked via a new namesya-
best if we consider their potential coverage. To do so vemym which uniquely identifies the dependence. For
present an empirical study of memory communicatioexample, the synonym can be a (load PC, store PC) pair.
traffic using the SPEC95 benchmarks on a MIPS-I lik®ne may wonder how using a different name may help in
instruction set architecture (the benchmarks, architectusgeamlining the actual communication. After all, data
and methodology are detailed in Section 6). addresses and synonyms are just names that the depen-
To get an estimate (i) of the fraction of the memorgent instructions use to link to each other. The answer
operations we can serve with a dependence-based mdas (1) in the nature of the association between the name
anism, and (ii) of how much the storage might wand the instructions that use it, and (2) in the information
require for this speculative explicit communication irassociated with the existence of the name itself. In con-
this section measure the percentage of loads that reattast to an address, the synonym is intended to uniquely
value created by a preceding store (true dependencegdgntify the dependent instruction pair. This allows the
We measure this characteristic as a function of tHead and the store to derive the synonym based solely on
unique store address distanoe simply store distance. their identity (PC). This in turn allows them to locate the
This we define as the number of unique addresses stoeggpropriate value without having first to perform an
to between the dependent instructions in the dynamacldress calculation and go through disambiguation. Fur-
instruction stream. This metric provides an upper bourtdermore, the mere association of a synonym with a load
on the number of accesses that have to be recordedina store is intended to indicate that the instruction is
order to detect the particular dependence. involved in short distance inter-operation communica-

Speculative Memory Cloaking

3 Memory Traffic Analysis
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Figure 3. Distribution of dynamic store-to-load dependence distances. (a) Per program results. (c) Averaged results.
Range shown in 32 to 2K in power of 2 steps.

tion.

action 5). This synonym can now be used to locate the
The process of cloaking is illustrated in Figure 4. Asppropriate SF element (part (c), action 6). Instructions
shown in part (a), detecting a load-store dependencensuming the load’s value may at this point execute
results in an association among the load, the store andpeculatively using the value read from the synonym file
synonym. When a subsequent instance of the store(ation 7). When the load’s address becomes available,
encountered and a dependence is predicted (part (e memory system is accessed to read the actual value
action 1), this association results in the generation of(action 8). The memory value is compared with the value
new version of the synonym (action 2). Storage for thizbtained earlier via the cloaking mechanism. If the two
synonym is preferably provided in t&gnonym File (SF) values are the same, cloaking was successful and no fur-
which is a small, low-latency/high-bandwidth storage¢her action is required. Otherwise, data value mispecula-
structure. The storage element is initially marked afon occurs, and any instructions that used wrong data
empty as no value is yet available. Upon value receptitrave to be re-executed. It should be noted that the above
the synonym file entry is updated and marked as fulliscussion covers one possible sequence of events. Other
(action 3). Finally, when the store computes its addresssgquences are possible in practice. For example, the load
accesses memory as it normally would (action 4). Whenay be encountered before the store writes a value in the
the appropriate instance of the load is encountered me8F. In any case, cloaking still provides the benefit of
ory dependence prediction is used. Provided that predestablishing a communication link early without requir-
tion is correct, the same synonym is derived (part (dpg address-calculation and disambiguation.

Traditional Memory

Traditional Memory

association

Traditional Memory
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Hierarchy Hierarchy store] load Hierarchy store] load
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Figure 4. Streamlining memory communication via speculative memory cloaking: (a) Detecting a dependence results
in an association between the dependent load and store instructions and in the creation of a synonym for the
dependence, (b) A later instance of the store creates a new version of the synonym, (c) A later instance of the load
locates the synonym and uses the data speculatively.

To perform cloaking we need to be able to: (1) pre-

Before we proceed with our description we should

dict dependences, (2) create synonyms, associate theate that in the discussion that follows we make the
with the dependent instructions and assign storage fassumption that the value read by a load is always pro-
the communication, and (3) verify the speculativelgluced by a single store. However, since loads and stores
communicated values. In Sections 4.1 and 4.3 we discusay operate on different data types, this might not be
each of these requirements in detail. Finally, we preseaitvays the case. While support for memory communica-
an implementation of cloaking in Section 4.4.

tion among loads and stores that operate on different data



types might be possible [21] we do not consider sudynonym is used to identify all these dependences collec-
options here. tively. We can then determine which of all the possible
dependences is currently observed by a mere inspection
of the incoming instruction stream as done for register
For the purposes of this work we use a history—basg@pendences_

memory dependence predictor. This predictor works by e perform assignment of synonyms to depen-
detecting memory dependences through the memaf¥nces using an incremental method which we explain
address space and by using this information to pred'@ging the example code fragment of Figure 5, part (a).
future dependence behavior. Regarding memory depefhis code has two read-after-write dependences:
dence detection there are two considerations: (1) h ORE;, LOAD) and 6TORE, LOAD). We next explainn

dep_endences shoul_d be repo_rted,_ and (2) what is eventually both dependences are assigned the same
desired sco_pe of this mechanism (i.e., how many loa §nonym. During the first iteration, one of the depen-
and stores it should detect dependences for). dences, for example theTORE, LOAD), is detected. A

Since we want to initiate predictions early in the ew svnonvm is allocated and associated with both
pipeline we require that the dependence detection medlfV_Synony ) .
RE; andLOAD. At a later iteration thesfORE,, LOAD)

anism reports dependences as (store PC, load PC) paSJsQ i )
Regarding the scope of the detection mechanism andd@Pendence is detected. We now associate the same syn-

the analysis of Section 3 suggests to capture a large fr@BYM WIthSTORE; also (the synonym is readily available
tion of dependences we need to be able to detect dep@$t is associated wittDAD).

dences over several addresses (e.g., 128). This is possible When the aforementioned method is used it is possi-
if we maintain a record of recent stores (e.qg., their P®Je to detect a dependence between store and a load that
along with the memory address each touched in have different synonyms already assigned to them. Con-
Dependence Detection TaeDT). Dependence detec- sider for example the code fragment of Figure 5, part (b).
tion could be initiated when loads access memory. Usifependences can be encountered in the following order:
its address a load can locate the last store that updaliést (STORE, LOAD1), then 6TORE, LOAD,), and finally,

the particular memory location. At this point the identi{STORE, LOAD,). When the first two dependences are
ties of both the load and the store are known: the stafgtected, different synonyms are assigned to them as
PC is recorded in the DDT entry while the load’s PC ighey share no instructions. As a result, when the third
readily available. dependence is encounterstiprg andLOAD, have dif-

With a dependence detection mechanism in placgyent tags. At this point it is often desirable to merge all
the next step is devising a history-based dependence Ri€pendences together by assigning one common syn-
diction scheme. The most straightforward predictiognym 1o all four instructions. This is desirable in our
scheme is to record and predict dependences as (load B mple since which excatly store feeds a load depends
store PC) pairs. Unfortunately, we found [21] that SUCh @, the current control path. If a different synonym is
scheme often will have to: (1) predict among many pO§gsigned to each store, then a load will have to predict
sible dependences (e.g., a load has many possible piaiong multiple synonyms. There are cases where we
ducing stores that alternate in the execution stream), a&fthyid not assign a common synonym. However, we
(2) predict multiple dependences at the same time (€.9p&e found that if one policy is to be used for all depen-
store has many consuming loads). For these reasons, yufices always assigning a common synonym is better
treat dependence prediction as a two step process. In ltﬁgnneverdoing so. To assign a common synonym to all
first step, a prediction is made on whether the given 10adch gependences can be done by replacing all instances
or st_orehasg dependgnce (i.e., thependence stat_lﬂif_ of one synonym with the other. This is the method we
the instruction), and in the second step, a prediction &iginally used [21]. Doing so would probably require a
made to decide with which load or store the dependengg,ageast mechanism, an undesired feature. Alterna-
is with. tively, we could use the approach suggested by Chrysos

We have found that the dependence status of 10adsq Emer in the context of speculation/synchronization
and stores rarely changes making simple counter—bas[gﬂ In their approach, the smallest synonym is assigned

predictors highly accurate [19]. Instead of predicting thg, hoth instructions. As a result, eventually all relevant

exact dependence we found it sufficient to use a level pf;4s and stores are assigned the same synonym. We

indirection in representing all possible dependencesydye found that this method offers virtually the same
store or a load has. To do so we use a scheme Whéﬁfburacy as our original full-merge method.

assigns a common synonym to all dependences that have
common producers (stores) or consumers (loads). This

4.1 Detection and Prediction of Dependences



loop: loop: for (i =1;i<N;i++) for (i =1;i<N;i++)

if (cond) STORE; Mg if (cond) STORE; Mg (b ai] = afi - 114 (} a[i] = afi - 2] <«
else STORE,; My else STORE; My store load . load
LOAD Mg, if (condyy LOAD; M, (a) store (c) .
else LOAD, M, A |
o
€Y (b) 5 store a[10 Ig 2 5 | storea 10 “l
Figure 5. Code fragments that have multiple true 2 load a[10 ® § 2
dependences. % ® g
& £
4.2 Synonym Generation and Communication
load a[11 4

In cloaking, stores initiate the communication by (b) ) !
creating a new version for the synonym when a depen- : : :
dence is predicted. The exact encoding of the synonymfiidure 6. Examples illustrating dependences whose
not important. However, it is desirable to provide differlifétimes do not overlap (parts (a) and (b)) or do overlap
ent versions of the same synonym for unrelated commrts (¢) and (d)). Dependences are marked with thick
nication at any given point of time. This may requiré@™ws. Dependence lifetimes are marked with thin

generating different versions for different instances GHTOWS.
the same static dependence. This is the case when these . | -
%aklng is based on dependence prediction, any values

instances are simultaneously active (e.g., the values h§v > . o ;
y (€. 0 obtained are speculative and have to be verified. This

not been consumed yet). This problem is somewhat Sil%-n be done by leting the dependent instructions. al
ilar to register renaming. However, in contrast to regist§P € done by letling the dependent instructions a'so

dependences, the lifetimes of instances of a static me%)_mmunlcate via memory. This does not necessarily

. ly that we have to access the memory system [11,
ory dependence may overlap. For example, this would 85) yIn fact, another memory de endenZe f redict[ion
the case in a loop containing an “afi]=a[2} + doo” ' ' y dep P

statement. An example is shown in Figure 6. While Igasetd tlechnltque, the trahqj!entt;]/aluef cacr;ﬁ will tserfv;(r:]e
general solution might be possible, we restrict our attef10St relevant accesses hiding them from the rest of the

tion to the most frequent case where given a store-log&en_]r%ry hlerarcrthi/ [21']r. d for invalidating and N
dependence no other instance of the store appears. in € support required for invalidating and re-execut-

between the dependent instructions. That is, we do nl% instructions that used incorrect data is no different

handle dependences generated by statements of the f6 ik that required for memory dependence or value spec-

“a[i] = a[i - 2] + bee”, while we handle dependences genu_Iation [16]. Two options have been proposed to date: (i)

erated by statements of the form “a[i] = afi]-+ doo”. squash, and (ii) selective invalidation [16, 15, 26]. In

This simplification allows us to use methods similar tgq_uash nvalidation, which is also used on branch

those developed for register renaming. That is, we ¢ r']Spr?d'_(r:]t'o?j’ tag |rr1]s(,jtrruct|ons f\fgermthel mlt_spe_c;]ulalt_zd
use a synonym directly as an index in synonym file pré)- € are invalidated and re-executed. In seleclive invajioa-

vided that the corresponding store has committed. If tﬁiém only those instructions that used incorrect data are
corresponding store has not yet committed, we use’ -executed. While squash invalidation requires no more

small structure, theynonym rename tabléo associate hardware than what is typically found in modern proces-

its synonym with the reservation station where the store'S (it is also used to support control speculation) its

resides. Given that stores represent only a small fractigﬁrformance penalty is relatively high. Selective invali-

of all dynamic instructions, even a relatively small syn-a‘t'r?n onntr:te Ottrt]ﬁr side noffer? r(;ecliatclivEIyr dIOWr perfotr- nd
onym rename table (SRT) should be sufficient. It shoulgance penally at the expense ot added hardware cost a

be understood that this is a performance optimizatio(‘\r%)mprlex'.tzf I: f?I(I:t_,nsunpport 1;0;1 sre]:elctl\r/]e mvarlllgatlr?n”:sr
and not a correctness issue. We could simply igno ouropinion still in an €xperimental phase and whethe

overlapping instances of the same static dependencesg?h mechanisms are practically possible has yet to be

the expense of reduced coverage or accuracy. Moreo\%(?mostrated.

we should note that accessing the SRT can be donedad Implementation Aspects

soon as the PC or a load or a store is known possibly | this section we describe an implementation of the
before the actual instruction is fetched. speculative memory cloaking technique. We partition the
4.3 \ferification support structures in the following: (a)ependence
g,gtection_able (DDT), (b) dependence rpdiction and

Because the communication that takes place



naming ble (DPNT), (c)synonym_ife (SF) and (d) update
synonym _ename_dble (SRT). As we explained earlier, ¢

the DDT is used to detect dependences. An entry of this

table consists of the following fields: (1) Data Address | DPNT H» SF update | ppy
(ADDR), (2) Store PC (STPC) and (3) a valid bit. This 'y 'y
information identifies the store that last updated thePC predict

given word data address. The DPNT is used to identify, v E_

through prediction, those loads and stores that have SRT ¢ il
dependences. It also provides the tags that are used {o rDecode J

create synonyms for the dependences. An entry of thi$ rerch H9| & P Schedule P Execute K| commit
table comprises the following fields: (1) instruction Rename

address (PC), (2) dependence predictor (PRED), (3) — -
dependence tag (DTAG), and (4) a valid bit. The instruéJgure 7. An ou.t-of-order processor pipeline with a
tion address identifies the load or the store this entry cé#9aking mechanism

responds to. The purpose of the dependence predictor

field is to provide an indication on whether a dependen Q pass the values that some other instructions produce to

exists. Finally, the dependence tag field is used to idep> e other instructions that consume them. If we knew
t a store and a load are used for inter-operation com-

tify the dependences of this instruction. The SF is used A e
Wnication we could have eliminated them altogether.

provide storage for synonyms. SF entries have the fol-"" ™ .

lowing fields: (1) name, (2) value, (3) fulllempty bit, (4)] S IS exactly the goal ofpeculative memory bypass-
valid bit. Based on the exact configuration used, some 0e- This technlque_convertsufr—store—loadUSE chain
the fields may not be required (e.g., we may not use”gO a [_)E'__US'_E chain whenever the !oad-stqre depen-
name field in a direct mapped SF) and some structurgg_nce is predicted and teF andUSE instructions co-

can be combined (e.g., we can merge the DPNT and st in the instruction window. In this case, the value
SE, or the register fi.Ie.’and the SF). An SRT entry co an speculatively flow directly from the actual producer
tains 3 fields: (1) synonym, (2) reservation station ta ?EF) to the Ia;\_ctual %onsu_meuﬁE). This CO?Cec?t we
and (3) valid. If the valid flag is set, the entry maps th #S_tratﬁ n rigure L:Esmg :\ GDE;_SItorE._ oa USE”
given synonym to the reservation station where the pr8— ain shown in part (a). Even though cloaking may allow

ducing store resides. [21, 19] provide examples ilustrarOMMunication between the store and the load, the value

ing the operation of the support structures. We omit su%ﬂ” still have to travel through these two instructions

a description due to space limitations. efore it can reaclbisSe. However, as shown in part (b)

Figure 7 illustrates how the support structures can B4t bypAassmg, rt]he value _Cﬁn Ibe ks_ent dr:_rectly PER
integrated into the pipeline of a dynamically schedule USE AS Wa|5t_ € cazehwn c %a mg,_f_t ('js gomrrrunlcg_—
processor. Loads and stores access the DPNT u IS speculative and has to be verified via the tradi-

entering the pipeline to obtain a prediction and a Squpnal memory name space. Note that bypassing is

onym. If no dependence is predicted no further action ggfferent than cloaking only when the dependent load

taken. Stores create an SRT entry for the provided sﬁ@d store CO'_eX'St within the mstr_uctlon wmd_ow.
Speculative memory bypassing can be implemented

onym. When a store commits it updates the DDT,

releases the SRT entry and writes its value into the S:E?a straightforward extension to cloaking. We explain

Loads using the predicted synonym access the SRT exact process “?"‘9 the_ work_ing example of Figwe 8,
find where the value resides. If an entry is found it poinf%art (c). Atstep (1), instructiaper is decoded and regis-

to the reservation station for the producing store. Othetre-r renaming creates a new nami&Gl, for the target

wise, the synonym resides in the SF. On commit timé(’agisterRl At step (2), the store instruction is decoded

loads probe the DDT to detect dependences. This infoar[]d as part of_reglster renaming I IocaTéS;lthe_ cur-
mation along with information about the success of arynt name of_|ts source reglstlé_n_ In parallel, via the
speculation attempts on this load are used to upd e Of. cloaklng_, a synonym 1S _created. To pe”‘”f”
DPNT. Verification and speculation resolution are don ypassing, at this point we associate the synonym with

when loads access memory. A description of the specuﬁ ¢ ;totr)e S dsour%e reglst?l naTng'erGlr.] Tg';_l? SSOC'aA
tion resolution mechanism can be found in [19]. tion is be done by recording in the entry. At

_ ) step (3), the load instruction is decoded and register
5 Speculative Memory Bypassing renaming creates a new nafaG2 for the destination

In typical load/store architectures, stores and loadg9isterR2 In parallel, the load locates the synonym
do not compute values. Loads and stores are simply ugBfpugh cloaking. Using the synonym the load may now



[DefRL] .-, 6 Experimental Evaluation
(1). Bypass *---° In this section we demonstrate the effectiveness of
N

"

@) b) [Userz] cloaking and bypassing. Initially we investigate our tech-
nigues ignoring timing considerations. This approach
(z)fi/erify allows us to make observations on the nature of memory
communication and on its predictability. We then simu-
[ DefR1 | late an aggressive dynamically scheduled processor and
@ store R1 TR show that our techniques can improve its performance.
(©

The rest of this section is organized as follows. We
start by describing our methodology in Section 6.1. In
Section 6.2 we study the accuracy of a cloaking mecha-
[R2| TAGITAG2 nism. In this experiments we assume infinite prediction
- ; — structures and study the effects of: (1) DDT’s of various
Figure 8. Speculative Memory Bypassing: (a) . : ) .

. ractical sizes, and (2) of two confidence mechanisms.
Communication path through a load-store dependencFe. . . o
S . . N Section 6.3 we present various characteristics of the
(b) Communication path with speculative memory ; .
. oad values predicted by cloaking. We study the base-
bypassing. (c) How are the load and the store are . )
removed. register, address-space, address-locality and value-local-

ity characteristics of those loads. A detailed description

determine the nam@AG1, of the store’s source registerOf the characteristics we consider along with a justifica-
R1 In doing so, the load has determined the stora&@” is given in tha_t section. In Sectio_n 6.4, we measure
(e.g., physical register or reservation station) where tHe€ Performance impact of a combined cloaking and
actual produceper will place or has placed the value.Pypassing mechanism under two mispeculation models.
This name is speculatively associated with the target 6f1 Methodology

the loadR2 This way, when at step (4sEis decoded, it
can determine that its source regig&rhas two names:

[R1|TAG1
synonym | TAG1 ®

In our experiments we used the SPEC’95 programs

. . which we compiled for the MIPS-I architecture [12]
one actualAG2and one speculativeaG1 By using the using the 2.7.2 version of the GNU gcc compiler (flags: -

speculative nam@AGI, Der can link directly tauseand 02 -funroll-loops -finline-functions). We translated

execute as soon a&F produces its value. Later on, aﬂerFORTRAN codes to C using AT&T's f2c compiler. To
the load has accessed memory, the integrity of the Co‘pe_ep simulation times reasonable we: (1) modified the

munication can be verified. {gﬁandardtrain or test inputs, and (2) used sampling

N h ing naturally extends for chains th o .

. ote t qt bypassing naturally exte .ds orchains t 8,22,4]. Table 1 reports the dynamic instruction count,
include multiple memory dependences; whenever a stgre . . .

; . . fraction of loads and stores and the sampling ratios
detects that its source register has a speculative name, |

o r program. Whil relatively shorter in
can optimistically pass it via the synonym. However, wge progra lle we used relatively shorter inputs we

S . note that virtually no variation was observed in cloaking
do not study such an extension in our evaluation. More- .
over, speculative memory bypassing becomes moarl(cecuracy compared to the standard SPEC inputs. A
' ) description of the modified inputs can be found in [19].
attractive when a store has multiple dependences awt

. . e used sampling only for the timing experiments of
may help in further reducing latency compared to Cloaléection 6.4. The observation size used is 50,000 instruc-

ing when register write-back bandwidth is limited. ”}i ns. The sampling ratios are reported under the “SR”
this case, the speculative value will be propagated to aﬁ :

ﬁglumns as “timing:functional” ratios. These ratios
consumers of all the dependent loads as soon as

€ . : . . X ;
actual producers writes its target register. If no bypassi resulted in roughly 100M instructions being simulated in
is used, then each of the dependent loads will have

rtlﬁwing mode. We did not use sampling for 126.gcc,
. . : §o.|i and 147.vortex as cloaking was sensitive to its use.
propagate the speculative value to their consumers indj- . . . .
. : . - uring the functional portion of the simulation the fol-
vidually. Finally, bypassing can also be used to eliminage . . .
e ! wing structures were simulated: I-cache, D-cache, and
the need for an explicit synonym file at the expense § h dictionIn th £ th uati i
reduced coverage. In such a design, prediction will ha Lanch predictionin the rest o t € eva u_atlon we wi
r to the benchmarks by using the first numbers of

to be restricted to only those dependences that are visifﬁé?

from within the instruction window. In this case, no synth€ir name shown in Table 1. _ _ o
We employ both trace and execution-driven timing

onym file is required as bypassing associates synonyms

with pre-existing storage elements (i.e., physical regi§1mulation. Trace based simulation is used for Sections
ters or reservation stations). ’ 6.2 and 6.3. Timing simulation is used for Section 6.4.

Traces are generated via a functional simulator. All but



Program IC | Loads| Stores[ SR technique in our base configuration would inflate the
SPECINt95 performance benefit of our techniques (and of any value
speculative technique). Moreover, not using memory

099.go 133.8 | 20.9% 7.3%9 N/A ; . o
124 maskaim 1963 188% 9.6% 11 depende_r_1c_e sp_ecula_ltlon |mpacts the observed_ c_rmcal
126.goc 3169 243% 1754 NA path artificially inflating the importance of predl_ctlng
| most load values. We note that for our continuous
129.compresy 153.8 | 21.7%| 13.5% 13 instruction-window processor model naive memory
130.l 206.5| 29.6%| 17.6%4 NI/A dependence speculation is virtually identical to ideal
132.ijpeg 1296 | 17.7%| 8.7% NI/A memory dependence speculation [19].
134.perl 176.8| 25.6%| 16.6%4 11 The base memory system comprises: (1) a 128-
147 .vortex 376.9| 26.3%| 27.3% N/A entry write buffer, (2) a non-blocking 32Kbyte/16 byte
SPECfp'95 block/4-way interleaved/2-way set associative L1 data
101.tomcatv 329.1| 31.9% 8.8% 1:7 cache with 2 cycle hit latency, (3) a 64K/16 byte block/8-
102.swim 188.8| 27.0%| 6.6 12 way interleaved/2-way set-associative L1 instruction
103.su2cor 2799 | 33.8%| 101% 13 cache with 2 cycle hit latency, (4) a unified 4Mbyte/8-

way set-associative/128 byte block with 10 cycle hit

104.hydro2d | 1,128.9| 29.7% 82% 11 T . ;
latency, and (5) an infinite main memory with 50 cycles

107.mgrid 95.0| 46.6% 3.0%| N/A . . . .
miss latency. Miss latencies are for the first word
110.applu 1689 314% 7.9% 1 accessed. Aydditional words incur a latency of 1 cycle
125.turb3d | 1,666.6| 21.3% 146% 11¢ (L2) or 2 cycles (main memory). Memory system is
141.apsi 1259 | 31.4%)| 13.4% N/A event-driven. For branch prediction we use a 64-entry
145.fpppp 2142 | 488%) 1759 13 call stack and a 64k-entry combined predictor that uses a
146.wave5 290.8M | 30.2% 13.099 1:3 2-bit counter selector to choose among a 2-bit counter
Table 1. Benchmark Execution Characteristics. Instructiorf@s€d and a GSHARE predictor [17].
counts (“IC” columns) are in millions. 6.2 Cloaking Accuracy

system code references are included. System calls are The first step in cloaking is dependence detection.
handled by trapping to the OS of the simulation host. THhe results presented in Section 3 show the fraction of
investigate the potential impact of the proposed techpads that would have dependences detected for DDTs of
niques, we model a realistic, 8-way superscalar procé@rious sizes. We next measure the fraction of loads that
sor with out-of-order execution characteristics. Up t§€t a value from a cloaking mechanism. For this experi-
128 instructions can be in-flight at any given point off€nt we assume infinite DPNT and SF structures and
time. The processor is pipelined and it takes 5 cycles f¥ary the size of the DDT. Moreover, we use an non-adap-
an instruction to be fetched, decoded and placed into tH¢e Predictor: once a dependence is detected cloaking
128-entry re-order buffer for scheduling. It takes onWill be used for all subsequent instances of the corre-
cycle for an instruction to read its input operands fro@Ponding load. We consider two metrics: (1) coverage,
the register file once issued. Functional units are ful§nd (2) mispeculation rate. We defineverageas the
pipelined and have a latency of 1 cycle except for muldfaction of dynamic loads that getaarrect value via
plication and division which take 4 and 12 cycles respe€loaking. We definenispeculation rates the fraction of
tively. dynamic loads that get ancorrectvalue from cloaking.

A 128-entry load/store scheduler (load/store queud)1€se results are shown in Figure 9 part (). Four mea-
is also included. This scheduler is capable of schedulifgréements are taken per benchmark for the following
up to 4 loads and stores per cycle. It takes at least dAB'T Sizes: 32, 128, 512 and 2K shown from left to right.
cycle after a load has calculated its address to go throuffi¢ White bars report cloaking coverage while the dia-
the load/store scheduler. An important parameter is tRePNds report mispeculation rates. The thick lines report
use ofnaive memory dependence speculaf2sj. That the fraction of loads that have a dependence detected
is: (1) a load will access memory even if the addresses(&ken from Figure 3). We can observe that the vast
preceding stores are unknown, (2) a load will wait fgmajority of loads with detected dependences get a cor-
preceding stores to the same address, and (3) stores fRfst value from cloaking. Not all loads with depen-
their address to loads even their data is not yet availag#€énces, however, get a value from cloaking. We found
It has been shown that memory dependence speculatiBit there is high correlation between unit-distance

can have a significant impact on base performance wiigPendences (i.e., static dependences whose dynamic
minimal hardware support [20, 6]. Not including thighstance lifetimes do not overlap) and cloaking coverage.



A major source of non-unit distance dependences &t82.ijjpeg from 512 to 2K). Infrequent large store dis-
recursive functions. Another major source of non-uniance dependences are the cause. To understand why this
distance dependences are arrays which are written toibyso consider the following sequence: store aJi], store
one loop and read by a later loop (very common in fload{j] and load a[i]. A dependence exists between store a]i]
ing-point programs). In this cases, the static dependeraxed load ali] every time this sequence is encountered.
is insufficient in representing the dynamic communica-However, occasionally when i equals j a dependence
tion relationships. Interestingly, in some cases, cloakirexists between store a[j] and load afi]. Our greedy
coverage exceeds the fraction of loads with dependen@ggproach to assigning synonyms will incorrectly give the
detected. Dependences whose store distances fluctusdene synonym to all three instructions. Such infrequent
are the cause. Once a dependence is detected, it camégendences often appear at large store distances.
correctly predicted even if later the store and the load df@ally, it can be seen that the use of an non-adaptive
so far apart as to escape detection by the DDT. Whitgedictor results in very high mispeculation rates. For
increasing the size of the DDT generally increases cloatkis reason we next consider an adaptive predictor.

ing coverage in some cases a decrease is observed (e.g.,
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Figure 9. Accuracy of Cloaking: (a) A non-adaptive cloaking predictor. (b) - (e): An adaptive cloaking predictor.
Measurements are as a function of DDT size. DDT sizes included are: 32, 128, 512 and 2k.

Parts (b) and (c) of Figure 9 report coverage arabaptive predictor of part (a). Moreover, mispeculation
mispeculation rates respectively with an adaptive cloakates are drastically lower and often barely noticeable
ing predictor. The lines in part (b) report the coverage ¢for some programs the mispeculation rate is not visible
the non-adaptive predictor of part (a). Our adaptive preince it is below 0.01%). Parts (d) and (c) report average
dictor uses a 4 stage automaton per DPNT entry. Onceaverage and mispeculation rates over the integer, the
dependence is detected cloaking is used the next tif@ating-point and all benchmarks. It can be seen that
around. However, upon mispeculation it takes 2 correctoaking offers high coverage with relatively low mis-
predictions for cloaking to be used again. For virtuallpeculation rates. For example, with a DDT of 128 words
all programs coverage is very close to that of the no(G12 bytes) about 45% (integer) and 19% (floating-



point) of all loads get a correct value via cloaking. Fdr SP GP OTHER
the same DDT, only about 0.60% (integer) and 0.12% pf W R W R W R
all loads get an incorrect value. STACK DATA HEAP
While we omit these results we note that a cloaking W R W R W R
mechanism with a 4K DPNT and a 1K SF resulted in vif~og9 | 0.01 | 24.41| 0.01 497 0.3 4.4
tually identical coverage and mispeculation rates. For the 0071 25.43] 034 837 00 00
rest of this evaluation we use cloaking mechanisms tt A1 000! 19821 000 1253 09 14
use a 128 word DDT. 001| 19.98] 098 336] 00p 02
6.3 Characteristics of Predicted Loads 126 | 1.49| 1995 o000 153 01 8.8
In this section we present a characterization of the 155] 25.94] 0.02 328 0.0 1.0
loads that get a value from cloaking. In Section 6.3.1 wel29 | 0.00 | 6.75| 0.00] 46.61 0.2 1.2
present a breakdown of predicted loads in terms of the 0.00| 6.75| 0.21] 47.81 0.0 0.0
base-register and the address-space used. We do sp1go | 0.54| 27.29| 0.000 11.89 0.4 3.3
provide additional insight on the type of predicted loads. 0721 2781 000 1190 03 2g
In Section 6.3.2 we measure the address locality of 104d%35 [ 0 00 [ 10.01] 000 001 01 59
and how it is distributed among those predicted by cloak- 004! 13621 000 o018 00O 51
ing. I_n _Sec'uon 6.3_.3 we measure the value Iocall_ty ch;-tl-134 0111 3319 000 853 00 77
acteristics of predicted loads and compare cloaking with .
a last-value load value predictor [16]. The measurements 0.11) 3332) 001 867 00 4
of Sections 6.3.2 and 6.3.3 are included to provid gl47 | 001 4357 0.00 179 00 131
insight on the interaction of cloaking with address pre- 005) 5487 000 171 00f 1.7
diction and value prediction based schemes. 101 | 0.00| 061) 0.00] 041 0.0p 219

6.3.1 Base-Register and Address-Space Distribution

102 | 0.00 6.59| 0.00 0.0 0.0 0.7
Table 2 reports a breakdown of loads that were pre- 0.0

dicted by cloaking in terms of the base register and t 03 76
address space used. Percentages are over all dyngmic 1'1
loads. Two rows are shown per benchmark. The top rgw .
reports the base-register breakdown while the bottm-%4 16
row reports the address-space breakdown. Both corredtly | 001 | 4.18| 0.00) 2.84 00p 08
(“R” columns) and incorrectly predicted (“W” columns)| 107 | 0.00| 11.55| 0.00 0.03 0.0 0.1
loads are included. It can be seen that while the stack and 0.00| 11.59| 0.000 014 0.0 0.0
the stack pointer are major contributors to correctly pre-110 | 0.00 | 10.64| 0.00f 0.01 0.4 1.9
dicted loads other parts of the address space and other | 0.19| 12.26| 0.30, 0.35 0.0 0.0
base-registers are also correctly predicted. In fact, large2s | 0.00| 4.58| 0.00 ood o027 17.0
fractions of the loads that access the heap of the data §eg- [ g25| 19.84] 003 183 0.0 0.0
ment are correctly predicted. Note that the heap accessgs1 [ 900l 1991 0.00 023 0.2 6.6
in floating-point programs are an artifact of our compilg 0001 2456 024 211 00 o1l
tion process.

5.2
0.0

Memory latency could be reduced if we could prg-146 | 0.00| 7.48| 0.00f 0.19 0.0 12.6
dict the address a load will access. For this reason in this 0.00 7.92| 0.03| 12.40 0.0 0.00

section we consider the address locality characteristics.‘cgbIe 2. Base-Register and Address-Space distribution of

the values predicted by clqa_king. Figure 19 S_hows dbaked loads. Two rows are shown per benchmark. The top
breakdown of loads that exhibit address locality in termg

wj)orts the percentage of cloaked loads whose base register is
of whether they have a dependence detected or not. Ye stack pointer (SP), global pointer (GP) or none of these two

measureaddress localityby counting the fraction of (OTHER). For each base-register type two numbers are given:
dynamic loads that access the same address as the dastctly predicted loads (R) and incorrectly predicted loads
instance of the same static load. Address locality pré&). Percentages are over all dynamic loads. The second row
vides an upper bound on the accuracy of an infinite, lageports a breakdown of cloaked loads in those that access the
address based address predictor with no hysteresis. Bfrek, the data or the heap address spaces.

lower, dark bar reports the fraction of loads that have a

0.00 6.59| 0.00 0.74 0.0
0.00 4.27| 0.00 2.8 0.04
0.04 | 10.49( 0.00 3.09 0.0
0.00 3.94| 0.00 2.1 0.0

145 | 0.00 | 29.85| 0.00 0.0 0.0
6.3.2 Address Locality 0.00| 30.09] o001 508 0.0
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dependence detected and also exhibit address localityggos,
The upper part reports loads that have no dependenc&0% ¥
detected and exhibit address locality. The diamondsgogﬁ
report the fraction of loads that get a correct value from g9,
cloaking. It can be seen that often loads that get a value 0%
from cloaking do not exhibit address locality. Further-

more, many loads that do exhibit address locality do not 6%

get a value form cloaking. The results of this section sug- 4% - b

gest that cloaking and address prediction are orthogonal ,,,

and could be combined for improved coverage. However, . oo kT

such an investigation is beyond the scope of this work % SRR E FEEEEEEREEEEEEE

Oddd A AAd A A AAAAA A

100% I - _
80% Figure 11. Comparing a last-value load value predictor
60% and a cloaking predictor. (a) Correctly predicted loads.
40% (b) Incorrectly predicted loads. Gray bars: load value
20% prediction. Dark bars: cloaking.

0% loads that cloaking predicts. However, and besides that
better cloaking predictors may be possible, we note that,
if so desired, cloaking could be viewed as a value predic-

Figure 10. Address-locality and Cloaking. Dark bar: " k ) i ’ )
loads with dependence detected that exhibit addre@n €nhancing technique.However, it exploits regulari-

locality. Light bar: loads that exhibit address locality buti€S in the dependence stream and not the value stream.
have no dependence detected. Diamonds: loads that get

a correct value from cloaking. Bench. | VP | CLOAK | Bench. | VP | CLOAK
. 099 11.72 23.63 101 7.79 10.22
6.3.3 Value Localit
y o 124 19.01 13.68 102 24.84 6.43
Memory latency could be also reduced by predicting 55 24.08 16.63] 103 16.01 713

load values directly. For this reason in this section we
compare a load value predictor with a cloaking mechk
nism. For this experiment we simulate a last-value pr
dictor with 16K entries. The cloaking mechanism we uge

129 10.00 40.85| 104 80.54 3.01
130 15.20 29.43| 107 18.22 2.36
132 12.61 9.12| 110 37.43 2.69

has an 8K DPNT, a 128-entry DDT and a 2K synonyimn 134 19.42 21.92| 125 04.99 2.02
file. All structures are fully-associative. Figure 11 reports 147 | 26.67 29.34| 141 | 20.88 9.08
coverage (part (a)) and mispeculation rates (part (b)). 145 | 28.38 29.59
Value prediction results are shown by the light left bar, 146 | 21.29 10.12

while cloaking prediction results are shown by the righfaple 3. comparing Cloaking and Load Value Prediction.
dark bar. In terms of coverage the results are mixe@ojumn VP reports the fraction of loads that are correctly
None of the two techniques appears to have a clegilue predicted but not correctly cloaked. Column CLOAK
advantage. However, in terms of mispeculation rategports the fraction of loads that are correctly cloaked but not
cloaking is superior suggesting that dependence behaworrectly value predicted.
is more stable than value behavior.

Coverage and mispeculation rates are insufficie.4 Performance Impact

for comparing value prediction and cloaking. A better Having shown that program behavior is such that

comparison considers which loads cloaking predicts that,,ing could predict large fractions of all loads in this
value prediction doesn’t and vice versa. These results €.i, \ve measure its performance impact. We evaluate
shown in Table 3. Column VP reports the fraction o combined cloaking/bypassing mechanism  that
loads that are correctly predicted by value prediction ari‘rqcludes: (1) a 4K 2-way set associative DPNT, (2) a 1K

not by cloaking. Column CLOAK reports the fraction of, .y set associative SF, (3) a 128 word fully-associative
Ioad; gorrectly predicted by cloaking but not b_y valu%DT, and (4) a 128 SRT. Up to 4 loads or stores can
prediction. These results demonstrate that while Somg.oqs each prediction structure simultaneously. Predic-
overlap exists between load value prediction and cloags, \dates occur at commit time. Moreover, mispecula-
ing, the two techniques also cover rather large fractiong,q 46 signaled on the consumers of loads. As a result,

of different loads. One could argue that more compl&x, isheculation is signalled on incorrectly predicted
value predictors may be used to potentially cover all



load values that have not been used by any instruction. 159
Compared to Figure 9 and for most programs this™~ " (@)
delay rarely changed prediction coverage. However, mist0% =

peculation rates increased. Noticeable differences in cov—50/ N
erage were observed for 126.gcc and 134.perl. In°" I —’j(ﬁ E[IEE
9 9 P I m il =
© N~
a 3

126.gcc coverage was up by 7% and for 134.perl it wasoo,
down by 9%. For mispeculation handling we studied
three models: (1) squash invalidation, (2) selective inval-D Selective Speedp
idation, and (3) oracle. The first two were described ifj)no,
Section 4.3. The oracle model does not use incorrect prggoy,
dictions. We do not include performance results for thesgoy
oracle model here. However, we note that performanceo%
was virtually identical to that of selective. In fact, in 20%
some cases using an incorrectly predicted value proved%
beneficial. This is the case for some values that were par-
tially correct. It turns out that some computations depend
only on part of their input values (e.g., for AND X, Oxfrigure 12. (a) Relative performance of a cloaking
only the lower 4 bits of X are important). When mispeanechanism. Grey bars are with selective invalidation.
ulation is detected, only the immediate consumers of thgiese bars report SPEEDUP. White and dark bars are
mispeculated value are notified. They will notify theifith squash invalidation. White bars report
consumers only if after they are re-executed and t8 OWDOWNS, dark bars report SPEEDUP.
value produced is different than that they produced Wiflyegictions (e.g., 125.turb3d). Two primary forces are at
the mispeculated value. More information on the specljrork: the observed critical path and the distance in
lation resolution mechanism we used is given in [19].  jnstryctions between dependent loads and stores. Both
Figure 10 shows the relative performance of cloakyre program specific attributes. Bypassing can be applied
ing. The gray bars repospeedupsvith selective invali-  only when both the dependent store and load appear
dation. The white and dark bars repsltwdowrs and jthin the window. Even when they do, the store value
speedupsespectively with squash invalidation. It can benay he available long before the load is decoded.
seen that cloaking with squash invalidation is not robust “The results of this section suggest that even over a
and rarely beneficial. On average (harmonic mean) thigghly aggressive base configuration cloaking can offer
mechanism leads to slowdowns of 5.63% (integenespectable performance improvements. However, bene-
1.59% (floating-point) and 3.43% (all programs). Cloakfits are limited by the control prediction accuracy and by
ing with selective invalidation, however, is robust and ifhe optimistic assumptions about load/store queue and
most cases beneficial. It never reduced performance. @ga cache latencies (2 cycles and 3 cycles respectively).
average this mechanism offers speedups of 4.28% (infgs instruction windows and load/store queues grow, as
ger), 3.20% (floating-point) and 3.68% (all programs). control prediction accuracy improves and as wire lengths
As we have seen in Section 6.2, cloaking mispeculdtart dominating it should expected that the latency of
tion rates are often very small. Nevertheless, we see thgémory communication will increase. In such environ-
squash invalidation more than often leads to slowdowents it is likely that the performance impact of cloaking
This should not come as a surprise. Cloaking mispredigng pypassing will be higher.
tions often occur when most of the instruction window is
full and control prediction is correct. Under these condid Related Work
tions, flushing part of the window proves highly disrup- Memory dependence prediction was introduced in
tive and has a large impact on performance. A simil§0] where it was used to improve the accuracy of mem-
result has been reported for memory dependence mispgg; dependence speculation in the context of a split-win-
ulations where it was shown that even very small migtow processor.
peculation rates have great impact on performance [20]. Numerous techniques that attempt to predict the
Part (b) of Figure 12 shows a breakdown of preaddresses of loads and stores have been proposed both in
dicted loads in (1) those that get a value through cloakimgrdware and in software [e.g., 1,2,3,8,9,25,5]. Address
(gray bar), and (2) those that get a value through bypaggediction provides no explicit information about com-
ing (dark bar). There is no definite pattern here. In somgunication. A mechanism may be required to compare
cases cloaking covers most of the values (e.g., 099.g@y predicted addresses for reducing communication
and in some cases bypassing accounts for most of {agency. Moreover, address prediction relies in regulari-
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ties in the address stream. Cloaking is orthogonal to su8hContributions and Future Directions

techn_lques and may streamlme memory communication  yye revisit memory design observing that memory is
even if the access pattern defies prediction.

. ) . often used as a communication mechanism. From this
In this work we were motivated by the large fractio

. . L?Jerspective we identify a number of overheads intro-
of short-distance memory communication. Numero

f ina behavior studies for th gced by traditional address-based memory communica-
memory retérencing behavior studies 1or In€ purpose g, e propose technigues to alleviate these overheads.

opitlmmtntg ttue merrllf)% T\llr_erarchy deé'St'. dTWO alrg MOsHyr techniques are architecturally transparent as they
relevant to this work: VICIven and Davidson [18] anayiiize dynamically collected dependence information.
lyzed memory referencing behavior and suggested USiAd - contributions are:

compiler hints to identify values that are killed in order
to reduce traffic between adjacent levels of the memo

hlzrtirchy. _Huangtam: Shen tstudled the mlmmafl batr_1 (2) We show that the traditional implicit specifica-
Wf'. trqulremen S otcurren processor_ts, asda UNclion 45 of memory communication can be dynamically
ot instruction 1SSue rate, memory capacity and memory ., erted into a explicit, albeit speculative form.

bandwidth [10). (3) We propose speculative memory cloaking and its

f value specula‘uo_n may _ef;ecnve(ljy relducfe tr;]e Ir?tenﬁé(xtension speculative memory bypassing which utilize a
of memory communication independently of whether thg namically created explicit specification of memory
load has a true dependence or not [16]. The Successcéﬁnmunication to reduce memory latency

this approach relies on the ability to track and predict the We conclude by commenting on a research direction

actual values. In cloaking we do not directly predict th?egarding prediction-based techniques. Prediction-based

load value, rather we predict its producer. techniques already empower most modern high-perfor-

Clqaking and bypassing were originally reported iI]lnance processors. Examples include branch prediction,
[21]. Simultaneously, Tyson and Austin proposeem- caching and memory dependence speculation. We

ory renaminga technique similar to cloaking [26]. Theypejiee that such techniques will play an increasingly

combined memory dependence prediction with val ﬁwportant role in the future. In this context, cloaking and

prediction and studied their combined effect. They UtBypassing represent a step toward a class of new predic-

lized a last-producing-store prediction scheme for preg,, techniques that in addition to regularities in ol

dlct(lj(.)n.purpl)‘olsels. AF]_restncr:]te_d for:n %f cloalél_ngalsas _._comesof program execution (e.g., values, addresses and
prediction [14]. In this technique loads predict a ertebranch directions) also exploit regularities in #detions

buffer entry where their producing store resides. Thﬁrograms take to produce these outcomes. As outcome-
optimization alleviates the need for an SRT.

based prediction techniques are perfected reaching a

A mechanism similar to bypassing was proposed tB’oint of diminishing returns, action-based prediction
Jourdan, Ronen, Bekerman, Shomar and Yoaz [11]. {8

. X chniques represent a promising direction for continu-
their proposal, bypassed loads do not necessarily hav imqprovem?ant P g
access memory and as result memory bandwidth require- '
ments are also reduced. The Transient Value Cache hdseferences

similar effect [21]. They also combined address predi 1] T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi.
tion with cloaking/bypassing. A software guide Fast address calculation. Iroc. ISCA-22 June

approach to cloaking was investigated by Reinman, 1995. _ _ _
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compiler to communicate speculative memory depefs] j.-L. Baer and T.-F. Chen. An effective on-chip pre-

dences to the hardware. Reinman and Calder also per- loading scheme to reduce data access penalty. In

formed a comparative study of load value prediction, Proc. Supercomputing '91L991. _

memory dependence speculation/synchronization [20f gr cIJEéeBsrseoarCr;lr?eps}lggaa:gﬁoi\léﬂugtl?r?eggsa '\L/IJlrjuligg;gilt?/r
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