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Master/Slave Speculative Parallelization
Abstract
Master/Slave Speculative Parallelization (MSSP) is an

execution paradigm for improving the execution rate of
sequential programs by parallelizing them speculatively for
execution on a multiprocessor. In MSSP, one processor—the
master—executes an approximate version of the program to
compute selected values that the full program’s execution is
expected to compute. The master’s results are checked by
slave processors that execute the original program. This
validation is parallelized by cutting the program’s execution
into tasks. Each slave uses its predicted inputs (as computed
by the master) to validate the input predictions of the next
task, inductively validating the entire execution.

The performance of MSSP is largely determined by the
execution rate of the approximate program. Since
approximate code has no correctness requirements (in
essence it is a software value predictor), it can be optimized
more effectively than traditionally generated code. It is free
to sacrifice correctness in the uncommon case to maximize
performance in the common case.

A simulation-based evaluation of an initial MSSP
implementation achieves speedups of up to 1.7 (harmonic
mean 1.25) on the SPEC2000 integer benchmarks.
Performance is currently limited by the effectiveness with
which our current automated infrastructure approximates
programs, which can likely be improved significantly.

1   Introduction
Most microprocessor vendors are shipping or have

announced products that exploit explicit thread-level paral-
lelism at the chip level either through chip multiprocessing
(CMP) or simultaneous multithreading (SMT). These archi-
tectures are compelling because they enable efficient utiliza-
tion of large transistor budgets—even in the presence of
increasing wire delay—for multi-threaded or multi-pro-
grammed workloads. Although we expect the availability of
these processors to encourage some programmers to explic-
itly parallelize their programs, anecdotal evidence that many
software vendors ship un-optimized binaries suggests that
many programmers cannot justify (either to themselves or
their employers) the additional effort of correctly paralleliz-
ing their code. As a result there will remain an opportunity
for “transparent” parallelization.

Transparent parallelization can be achieved by analyz
the program’s dependences, partitioning the program in
independent subsets (tasks), and inserting the necessary syn
chronization. For non-numeric programs, a complete dep
dence analysis is prohibitively difficult. As a result
parallelization of these programs is facilitated by speculati
in the presence of ambiguous dependences and provid
hardware support for the detection of and recovery fro
actions that violate the ordering dictated by a sequential e
cution. Many proposals for speculatively parallelizing pro
grams have been published [1, 6, 8, 12, 20, 23].

Speculation allows the execution to ignore potenti
dependences that do not occur in practice, but it does little
alleviate true dependences. True inter-task data depende
can sequentialize task execution, negating much of the p
formance potential of speculative parallelism. In fac
because the inter-task dependences generally incur
latency of inter-processor communication, performance c
be even worse than that of a uniprocessor execution. Th
one of the main challenges remaining in speculative parall
ization is handling true dependences.

In this paper, we present an execution paradigm for sp
ulative parallelization that breaks inter-task true dependen
by predicting the communicated values. This approach,
itself, is not novel [1, 15, 16, 21]; what is novel is the mann
in which the predictions are made. Rather than use a h
tory-based hardware widget, our approach uses a piece
code that, when executed, predicts the values communica
between tasks.

We call this code thedistilled programbecause it is cre-
ated by “distilling” the original program down to a reduce
computation that will likely compute the necessary value
Since results computed by the distilled program are on
used as predictions, there are no correctness constraint
the distilled program; all predictions will be validated befor
they are allowed to alter architected state. This freedom fro
correctness constraints bestows unlimited flexibility to th
construction of the distilled program, allowing us to guid
optimizationssolelybasedon commoncaseprogrambehav-
ior rather than what could be proven correct statically. As
result, the distilled program can significantly outperform
while closely paralleling in function, the original program
but it provides no correctness guarantees.
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In our execution paradigm there are two distinct proces-
sor1 roles. One processor, themaster, is assigned to execute
the distilled program. This execution orchestrates a parallel
execution of the original program on the remainingslave
processors. At defined places in the distilled program’s exe-
cution, the master “spawns” a task onto an idle slave proces-
sor, providing it with a starting program counter (PC) and
predictions for the live-in values. The slave processors exe-
cute the un-modified original program, and only they update
architected state. State updates are speculatively buffered
until the task has been verified. Values produced by the mas-
ter are discarded when no longer needed as live-in predic-
tions. The relationship between master and slave is
reminiscent of that between a speculative core and a DIVA
checker [2], except with the purpose of detecting errors in
code transformation rather than processor design.

We call this execution paradigm Master/Slave Speculative
Parallelization (MSSP). We first provide an overview of the
opportunity for distilling programs and the MSSP paradigm
in Section 2. In Section 3, we detail the automatic construc-
tion of distilled programs using profile information. In
Section 4, we describe the mechanisms required by MSSP
and provide a detailed example of its execution. In Section 5,
we present results from an initial simulated implementation
of MSSP. This paradigm has been heavily influenced by
prior work, which is discussed throughout the paper.

2  Overview
In this section, we introduce the concept of code approxi-

mation used to create distilled programs and provide a
high-level overview and analysis of the MSSP paradigm.

2.1  Code Approximation
The MSSP paradigm predicts all of a task’s live-in values

(i.e., those values that are used before they are defined).
Unlike most value predictors, the one used in MSSP is a
piece of software, called the distilled program, that produces
predictions when executed. Like any predictor, we desire that
it have a high prediction accuracy, but mistakes can be toler-
ated. The distilled program is constructed byapproximating
the program being executed, which we will refer to as the
original program.

Approximation exploits the fact that most programs are
more general than is required by any particular execution. As
a result, much of a program’s functionality is not needed in
the common case. This observation has been exploited previ-
ously in feedback-directed program transformations that
optimize the common case at the expense of the uncommon
case. Approximation is an extreme form of such transforma-
tions that further optimizes the common case bysacrificing
correctness in the uncommon case.

Approximation is accomplished by removing behavio
from the program that appear not to be frequently exercis
This process is most easily illustrated through an examp
Figure 1a shows a control flow graph (CFG) of a small fun
tion annotated with an edge profile. In approximating th
function, non-dominant control flow edges are removed. A
this function has a single dominant path, after approximati
the function is a single block (Figure 1b). In general, th
will not be the case; unbiased branches along importa
paths will remain. Approximation transformations are no
limited to control-flow manipulations; others are describe
in Section 3.3.

Approximation transformations are like speculative com
piler transformations but without the checks that ensure t
expected behavior is present. The dominant path in t
example can also be exploited by superblock formation [1
resulting in the CFG shown in Figure 1c. While superbloc
formation removes side entrances from the trace (by replic
ing code), side exits must be left intact, as they are requir
to detect and handle the correct execution of non-domin
paths. In the approximate code, these checks (the branc
are removed, resulting in an incorrect computation when
non-dominant path execution is required.

These approximation transformations create new oppor
nities to apply traditional (safe) optimizations. By eliminat
ing dead code (mostly the branch predicate computatio
and avoiding stack allocation, saves and restores (the app
imate function has lower register pressure and is now a l
function), the dominant path through the function in Figure
is reduced from 51 to 12 instructions. This small static si
facilitates inlining, which can create additional opportunitie
for optimization.

Approximation has many similarities to the instructio
removal performed in Slipstream [22]; unlike Slipstream, w
create a distinct executable to enable traditional optimiz
tions to be applied as well. A process akin to approximatio
has been used to create predictors for branches and mem
addresses [7, 18, 25]. The particular form of approxima
code used in the MSSP paradigm—what we call a distill

1. For simplicity of exposition we use the word “processor”, but the ideas
are equally applicable to multithreaded processors.

 3M

Figure 1. The control flow graph (CFG) for the function
spec_getc from the benchmark bzip2 : a) initially, b) as
transformed by approximation, c) as transformed by
superblock formation.
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program—also encodes the information necessary to manage
the parallel execution of the slave processors. We discuss the
construction of distilled programs in Section 3, after an over-
view of the MSSP paradigm.

2.2  MSSP Overview
We now describe the MSSP paradigm at a high level; a

description of the required mechanisms and a more detailed
example are presented in Section 4. Like other speculative
parallelization paradigms, MSSP executes coarse-grain units
of work, called tasks, generally consisting of hundreds of
instructions. Task boundaries are selected during the con-
struction of the distilled program and encoded within it.

An MSSP execution consists of three separate compo-
nents, each with a different purpose: 1) the master processor
executes the distilled program to compute predictedcheck-
pointsof state at task boundaries, 2) using these checkpoints,
slave processors execute from one task boundary to the next
in the original program constructing asummaryof the task,
and 3) a reuse-like [19] mechanism verifies the correctness
of the task summaries and commits their results in order.
These roles are demonstrated by the example four-processor
MSSP execution shown in Figure 2a.

One processor (P0) is assigned to be the master processor
and executes the distilled program. As the master executes, it
performs register and memory writes, but these writes are
not committed to architected state. Instead, when a write is
“retired” by the master, it is held in a special buffer and

tagged with the current task number. The writes for a giv
task form the change of state (the difference ordiff) effected
by the task. A predicted future checkpoint of state can
constructed by overlaying the differences associated w
in-flight tasks (in order from oldest to youngest) on top of th
architected register and memory state, as shown in Figure
Checkpoints can be constructed piece-wise and on dema
so the amount of storage required is a function of task wo
ing set size and not the size of the program’s memory ima

The remaining processors (P1, P2, andP3) are slaves that
are initially idle. As directed by the distilled program, th
master periodically spawns tasks for the slave processor
execute. To spawn, the master increments its task num
selects an idle slave processor, and provides the slave th
inputs: 1) the master’s current task number, 2) a starting p
gram counter (PC), and 3) access to the predicted checkp
state. At marker➊ in Figure 2a, the master processor spaw
Task Aonto processorP3. In parallel with the spawning pro-
cess,P0 continues execution of the distilled program, ente
ing the distilled program segment that corresponds toTask A,
which we refer to asA .́ P3 begins execution (➋) some time
later as the spawn involves inter-processor communicatio

As the slave executesTask A, it retrieves any necessary
live-in values (i.e., registers and memory locations that ar
read before they are written by the task) from the checkpoi
Since the values retrieved from the checkpoint are pred
tions, writes by the slave are not directly committed to arch

Task:
load  r14,  0[r12]
add   r14,  1, r14
store r14,  0[r12]
store zero, 8[r12]

Live-outs
r14 = 17

CHKPT

FORK

FORK

FORK

A’

B’

C’

Task A

Task B

Task C

Task

Verify Live-ins

Commit Live-outs

Restart Task C
C’

Bad Checkpoint

...

Spawn Task

Exe
c

u
te

 Ta
sk

Squashed

T
im

e

Commit Live-outs

Verification/
Commit Unit

(live-ins, live-outs)

Verify Live-ins

Misspeculation Detected

Verify Live-ins

Figure 2. MSSP execution example: a) The master, executing the distilled program on processor P0, forks tasks, providing
them live-in values in the form of checkpoints. The slave processors execute the original program to construct task
summaries, which are verified before they are committed. Misspeculations, resulting from incorrectly computed checkpoints,
cause the master to be restarted with the architected state. b) Writes by the master are buffered as checkpoint differences,
which together with architected state can be used to construct predicted checkpoints of future state. c) Task execution is
summarized by its set of live-in and live-out values; summaries are verified by comparing the live-ins to architected state. If
the live-ins match (Scenario 1), the architected state is updated by committing the live-outs. Otherwise (Scenario 2), a task
misspeculation is signalled.

checkpoint

P1 P2 P3P0

architected state

Master Slaves

a)

Completed

architected state
differences for task N-2
differences for task N-1
differences for task N

checkpoint for task N+1b)

c) Task Summary
Live-ins
r12 = M
M  = 16 M  = 17

M 17 12 017

M 6 12 1816

r12 r14 M M+8

N 6 12 1816

r12 r14 M M+8

live-ins match

commit live-outs

architected state

Scenario 1:

Scenario 2:

live-in mismatch

  task misspeculation

  task commit

Task Summary

M+8 = 0

➊

➋

➌

➍
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➏
➐ ➑
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tected state. Instead, the live-ins and live-outs (the last write
to each location written by the task) are collected (both name
and value) and buffered as a task summary.

When the slave completes its task (➌), the task summary
is sent to the verification/commit unit. This unit tries to com-
mit the summaries in program order, as indicated by the
associated task number. The verification/commit process is
much like the reuse test [19] or memoization. As a precondi-
tion for committing the task, all of the live-in values used in
the task’s execution must match the value held in architected
state. If this condition holds, the live-out values can be com-
mitted to architected state (➍). When a task is committed the
corresponding checkpoint differences and task summary can
be deallocated.

If one or more of the live-in values do not match with
architected state (because a checkpoint was computed incor-
rectly (➎)), a task misspeculation is signalled. On detection
of the misspeculation (➏), the master is squashed, as are all
other in-flight tasks. At this time, the master is restarted at
Task C (́➐) using the current architected state committed by
Task B. In parallel, execution of the corresponding task in the
original program (Task C) begins (➑). The recovery process
is expensive, but it is infrequent when using well-constructed
distilled programs.

The verification/commit process is shown in Figure 2c.
Note that the checkpoints themselves are never verified
directly. Only the task live-ins (i.e., those values that could
corrupt architected state) are checked. Distilled program
construction exploits this fact to avoid computing any value
that has a low likelihood of being a task live-in.

2.3  Analysis of MSSP Execution
Several characteristics distinguish MSSP from other spec-

ulative parallelization paradigms. In programs with signifi-
cant amounts of true inter-task dependences (e.g., most
non-numeric programs), the critical path of a traditional
speculative parallel execution follows sequentially-depen-
dent communications to forward values (Figure 3a). Long
inter-processor communication latencies reduce the degree
to which task executions are overlapped.

In contrast, in an MSSP execution, values are not commu-
nicated between slave tasks. The production of values to sat-
isfy inter-task dependences is decoupled from the production
of values to update architected state. All inter-task true
dependences are predicted from a central source, the master.
As a result, inter-processor communication for different
tasks can be performed in parallel, and this communication
appears on the critical path only on a value misprediction.
Trace processors [17] similarly proposed using value predic-
tion to tolerate communication latency between processing
elements.

If mispredictions can be made rare, then the critical path
will be through the slower of two paths: the master’s execu-
tion and the verification/commit unit (Figure 3b). Neither

path sequentializes inter-processor communication, prov
ing MSSP with a degree of latency tolerance. Increasi
communication latency only increases the occupancy
slave processors and verification latency (not throughpu
which is only exposed on task misspeculations.

To summarize, the first requirement of an effective MSS
execution is thatthedistilledprogramaccuratelypredicttask
live-in values. If that is achieved, the master will determin
the execution rate of the whole execution, sothe distilled
programshouldexecutemuch fasterthan the original pro-
gram. Finally, so as not to become the bottleneck,the
throughputof the verification/commitunit mustexceedthe
ratetasksarespawnedby the master. These first two issues
are a function of the construction of distilled program (dis
cussed in the next section). The verification/commit mech
nism is described in Section 4.

3  Distilled Programs
While in the previous section we indicate that the distille

program should have a high prediction accuracy and be fa
thereareabsolutelyno requirementson thedistilledprogram
necessaryto ensureacorrectexecution. It is only a predictor,
and, if it is behaving improperly, the execution reverts to
traditional uniprocessor execution. Nevertheless, MSS
performance depends on the distilled program performi
the following two tasks correctly most of the time: 1) spec
fying a division of the program’s execution into tasks b
denoting task boundaries, and 2) accurately computing
set of live-in values at these task boundaries.

In this section, we describe a technique to construct d
tilled programs. The resulting distilled program will be
located in a separate region of memory than the original p
gram. Distillation consists of the seven steps listed

FORK

FORK

Figure 3. In a traditional speculative multithreading
execution model, the critical path of the execution typical
goes through values that are forwarded from one task to
the next (a). MSSP has two parallel potential critical
paths, the execution of the distilled program and
verification/commitment (b).

P1 P2 P3P0

FORK

P1 P2 P3

Traditional Master/Slave

a) b)

Critical Path

Critical Paths
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Figure 4. The first two steps (collect profile information and
build IR) and the last step (layout and generate code) are
largely unchanged from traditional compiler techniques, so
our description will focus on the other steps. Since approxi-
mation transformations are likely more sensitive to the accu-
racy of profile information than traditional feedback-directed
program transformations, it might prove necessary to per-
form distillation at run-time (when the most representative
profile information is available), like a dynamic optimizer
(e.g., Dynamo [3]).

We illustrate the process of constructing a distilled pro-
gram with a hot loop nest fromgcc , shown in Figure 5. The
variablesometimes_max is a loop-carried dependence, but,
as shown in the control flow graph in Figure 6a, the inner
loop is only executed on 0.1 percent of outer loop iterations.

3.1  Task Selection
Our sensitivity analysis results (in [24]) indicate our cur-

rent automatic distiller prototype is largely insensitive to the
exact task boundaries selected (performance varies less than
5% for most benchmarks) provided the tasks are large
enough (greater than 100 instructions on average) to amor-
tize the communications overheads. As a result, we only
highlight a few important issues here; a complete description
of our task selector can be found in [24].

Tasks are selected by identifying instructions in the origi-
nal program to be the beginning of new tasks. A fork instruc-
tion is inserted into the distilled program at the task

boundary so it can signal the beginning of a new task. T
original program is annotated2 with these task boundaries for
use by slave processors to identify the end of a task. For s
plicity of implementation, tasks unconditionally end imme
diately before annotated instructions, except in on
circumstance.

The problem with unconditional task boundaries is dem
onstrated by our example. We would like to use the fr
quently executed outer loop for task selection, but wi
unconditional task boundaries we are left with the sub-op
mal choice between: small, single iteration tasks (13 instru
tions on average) and very large tasks that encapsulate
whole loop (6,500 instructions on average). We resolve th
relatively frequent case by creating conditional task boun
aries; a technique we calltask end suppressionenables tasks
to contain multiple (but not all) iterations of a loop by identi
fying a task boundary that should be ignored a specifi
number of times. In our example, the task boundary
inserted in the loop header of the outer loop, and tasks
specified to contain 16 iterations.

During task selection, the CFG is transformed to add lo
ical edges to and from the original program (shown
Figure 6b). These edges maintain our ability to transitio
between the distilled and original program at task boun
aries. In order to commence execution of the distilled pr
gram (either initially or after a task misspeculation), anentry
CFG edge is added. To support spawning the tasks in
original program, averify CFG edge is added. Both edge
link to the corresponding location in the original program.

1. collect profile information
2. build internal representation (IR)
3. select task boundaries
4. perform liveness analysis
5. apply approximation transformations
6. apply traditional optimizations
7. layout and generate code

Figure 4. Logical steps to build a distilled program.

for (i = 0; i < regset_size; i++) {
  register REGSET_ELT_TYPE diff = live[i] & ~maxlive[i];
  if (diff) {
    register int regno;
    maxlive[i] |= diff;
    for (regno = 0; diff && regno < REGSET_ELT_BITS; regno++) {
      if (diff & ((REGSET_ELT_TYPE) 1 << regno)) {

regs_sometimes_live[sometimes_max].offset = i;
regs_sometimes_live[sometimes_max].bit = regno;
diff &= ~ ((REGSET_ELT_TYPE) 1 << regno);
sometimes_max++;

      }
    }
  }
}

Figure 5. Example code fragment from SPEC 2000
benchmark gcc. Loop nest extracted from function
propagate_block  (lines 1660-1678 of flow.c ).

A

B

D

E

F

}

{

{
C

}

2. The ISA need not be modified to support these annotations by locat
them in a separate region of memory that is merged with instructions
an I-cache miss [20].
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Figure 6. Example task selection and application of
approximation transformations. The control flow graph for
this code example is shown for: (a) the original code, (b)
the code after it has been transformed to include a task
boundary, and (c) after the cold code region has been
removed.
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3.2  Liveness Analysis
After task selection and before optimization, liveness

analysis is performed to determine the set of live values at
task boundaries. These values should be computed by the
distilled program (to act as live-in value predictions) even if
all their uses in the distilled program are removed. As this
liveness analysis is only used in constructing the distilled
program, it need not be sound; for example, we can ignore
infrequent paths. The verify arc can be treated as using all of
the live values at a task boundary, allowing traditional for-
mulations of data-flow algorithms to be used.

3.3  Approximation Transformations
Approximation transformations are the key to making the

distilled program faster than the original program. In
Section 2.1, we demonstrated transformations to remove
biased branches. Our example code fragment benefits from
the elimination of the cold region containing the inner loop.
By eliminating these paths, we are left with a greatly simpli-
fied CFG (shown in Figure 6c).

In addition to control-flow transformations, value-based
(e.g., constant substitution for invariant values) and depen-
dence-based (e.g., ignore may-alias for load-store pair that
rarely alias) approximations can be applied. For most any
speculative optimization (e.g., [5, 10, 11]), an approximation
analog can be formulated.

Furthermore, the redundant nature of MSSP execution
enables the optimization of writes with “distant” first uses. If
the first read of a write’s value is sufficiently far (in dynamic
instructions) after the write, the write need not be performed
by the distilled program. By the time the read is executed,
the (original program) copy of the write executed by a slave
processor will have been committed and the value can be
retrieved from architected state. Our implementation ofdis-

tant-use store eliminationfinds many opportunities; for the
SPEC2000 integer benchmarks, about 35 percent of dyna
stores have first-use distances exceeding 10,000 instructi

3.4  Enabled Traditional Optimizations
Although they may remove some instructions from

important paths, the main contribution made by the appro
mation transformations is to create new opportunities
apply traditional (safe) optimizations. By removing col
paths and other features that prevent optimization, even o
mized binaries benefit from a re-application of techniqu
like dead code elimination, partial redundancy eliminatio
and register allocation.

In our running example, after approximation, half of th
code in the loop is dead and can be trivially remove
(Figure 7a). Not all optimizations are so straightforwar
Instruction F4 is loop invariant and can potentially be hoiste
to a loop pre-header block (blockP in Figure 7b), but this
code motion crosses the entry edge in the CFG. To comp
sate for the code motion, a copy of the invariant load is intr
duced as compensation code in a block on the entry ed
This entry block translates the state of the original progra
to the state expected by the distilled program. Some optim
zations (e.g., partial dead code elimination) introduce com
pensation code onto the verify edge.

As a final optimization, the loop in our example is
unrolled (by a factor of 16) in the distilled program. Sinc
the induction variables are dead on exit from the loop th
unrolling can be accomplished by merely scaling the imm
diates of instructions F1, F2, and F3. The final code is sho
in Figure 7c. Distillation has reduced this task from execu
ing over 200 dynamic instructions on average in the origin
program to only six in the distilled program.

live before A: t0 (&live[i]), t3 (&maxlive[i]), t12 (i)

A:
ldl t6, 0(t3) #1 load maxlive[i]
ldl t2, 0(t0) #2 load live[i]
zapnot t12, 0x3, t11 #3 truncate i to 16b
bis zero, zero, ra #4 regno = 0
bis zero, zero, t9 #5 regno = 0
bic t2, t6, t2 #6 live[i] & ~maxlive[i]

F:
  addl t12, 0x1, t12 #1 i ++
  lda t0, 4(t0) #2 &live[i]
  lda t3, 4(t3) #3 &maxlive[i]

ldl s3, -10104(gp) #4 load regset_size
  cmplt t12, s3, s3 #5 i < regset_size
  bne s3, A #6 loop back-edge

Dead

LoopI

Dead

Dead
Dead
Dead
Dead

Figure 7. Distilled program fragment after application of approximation transformations (a). After the removal of the branch
at the end of block A, instructions A1-A6 are dead. Instruction F4 is loop invariant. To hoist F4, a loop pre-header block P is
created (b), and a copy of the instruction is added to the entry block. The final optimized code is shown in (c).

ENTRY:
ldl s3, -10104(gp) # was F4
br AF

P: (added loop pre-header block)
ldl s3, -10104(gp) # was F4

FORK:
fork 1, VERIFY

AF:
  addl t12, 0x16, t12 # was F1
  lda t0, 64(t0) # was F2
  lda t3, 64(t3) # was F3
  cmplt t12, s3, s3 # was F5
  bne s3, FORK # was F6

VERIFY:
  suppress 15, A

verify A (to orig program)

from program

40K

to program

40K

Fork 1

AF

20M
20M

Verify

40K

Entry

P

a)

b)

c)
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3.5  Forking, Verifying, Suppressing, and Mapping
We now briefly touch on our implementation of the

MSSP-specific operations in the distilled program, which
can be used to decipher Figure 7c.Fork instructions are a
branch-style instruction that specify the PC of a verify block
where a slave processor should begin execution and the
denominator of the fraction of times the fork should be per-
formed (i.e., 1 → always, 16→ every 16th iteration). Not
spawning at every fork instruction is necessary in some
instances when task end suppression is used.

This verify block contains any compensation code neces-
sary and is terminated by averify instruction. Theverify

instruction encodes the original program PC where the task
should begin and communicates to the implementation that
task summarization (i.e., collection of live-in and live-out
values) should begin. If task end suppression is being used, a
suppress instruction is included in the verify block that
encodes the task boundary to suppress and the number of
times it should be ignored.

Since the distilled program is distinct from the original
program, a mechanism is required to map program counters
(PCs) between the two programs. This requirement is shared
by dynamic translators and optimizers (e.g., [3]), and our
solution is similar. We construct a hash table of PC-pairs that
allows searching for “entries” and indirect branch targets in
the distilled program using an original program PC. Map-
ping in the reverse direction is simpler, because the situations
that require translation (verify instructions and the link
part of jump-and-link instructions) can be translated stati-
cally (at distillation) and the translated PCs can be encoded
into the distilled program as immediates.

4  Implementing the MSSP Paradigm
In this section, we first present an example of MSSP exe-

cution. Generalizing from this example, we describe the
mechanisms that are essential to the MSSP paradigm in
Section 4.2. In Section 4.3, we explain that MSSP’s func-
tionality is a superset of traditional sequential execution par-
adigms, allowing it to revert to the underlying sequential
execution paradigm to handle exceptional circumstances.
While this section’s discussion is generally kept at a high
level (due to space constraints), a few implementation details
merit discussion and are covered in Section 4.4. A complete
implementation description can be found in [24].

4.1  MSSP Execution Example
We now walk through a detailed MSSP execution exam-

ple using the code example from Section 3. The flow of the
example can be followed in the state diagram shown in
Figure 8, The execution (shown in Figure 9) begins partway
through the execution of outer loop with the variablei equal
to 48 andsometimes_max equal to 11. For simplicity, we
will ignore the other variables. The distilled program is con-
structed such that the variablei is always correctly com-

puted, but the variablesometimes_max may be incorrect
when the original code executes the inner loop, which has
removed from the distilled program.

The execution begins with the machine quiesced: all pr
cessors are idle and all buffers for non-architected data
empty. The restart process initiates two executions:
non-speculative slave execution and a master executi
Both are assigned the timestamp 7. The first slave can e
cute non-speculatively because all of its requests for live
values can be correctly satisfied with architected.

While the non-speculative slave is provided with th
architected state, the PC for the master is first mapped (us
the mapping hash table) to find the PC of the correspond
entry into the distilled program. The master executes t
entry code before entering the distilled program proper. Bo
tasks execute simultaneously. The non-speculative slave t
executes like a normal uniprocessor, immediately comm
ting its state. In this example, we assume that the 16 ite
tions executed by the non-speculative slave all avoid t
inner loop, so its only writes are 16 updates to the variablei ,
of which only the first and last are shown.

Writes performed by the master, on the other hand, a
buffered as checkpoint data and associated with the mast
current task. In task #7, the master performs a single wr
(i=64) before encountering a fork instruction. At a fork
instruction, the master increments its timestamp and notifi
the system that the speculative slave task #8 is ready for e
cution. This task is allocated to processorP2, which was pre-
viously idle. WhenP2 requests the valuei , rather than
return the current architected value, the memory syste
sends the checkpoint value (64). Since no checkpoint va
is available forsometimes_max , the architected value
(11) will be returned. The slave processor begins execut
in the verify block of the distilled program—usingverifyPC,
provided by the master—which ends with a jump into th
original program. While executing the original program, th
speculative slave records its live-in values; we will assum
that inner loop iterations are executed in both tasks #8 a
#9, so the predictions for both variablesi and
sometimes_max are recorded and sent to the live-in
buffer.

During the slave execution of task #8, the master for
task #9. Since no processor is available, slave task #9 can
be immediately assigned to a processor. When the non-sp
ulative task onP0completes—after its final write to the vari-

beginrestart

non-spec. taskmaster task

commit end

spec. task

verify correctrecovery incorrect

squash
first task

last task

uniproc. modespawn/

Figure 8. State diagram of MSSP execution

summary

chkpt

early verify
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able i —task #9 is assigned toP0. Speculative slave task #9
is provided with the most recent checkpoint value (80) fori
and the architected value (11) forsometimes_max ,
because no checkpoint value exists. Like slave task #1, both
of these values are read and recorded as live-in values.

At the end of slave task #8, the values fori and
sometimes_max are 80 and 13, respectively. These values
are recorded in the live-out buffer. Since task #7 has com-
pleted, task #8 is the oldest task in the system and can be ver-
ified against architected state. In this case, the live-in values
match the architected state, and the live-out values for task
#1 can be committed. At this point, the checkpoint and
live-in values for task #8 can be discarded.

When task #9 completes and requests verification, a task
misspeculation is discovered. When the recorded live-in
value for sometimes_max (11) is compared to the archi-
tected value (13), the values do not match. The live-in pre-
dictions the master processor provided to slave task #9
implicitly assumed that task #8 would not modify the vari-
able sometimes_max . Since its live-in values were incor-

rect, the live-out values for task #9 are assumed to
incorrect and discarded. To recover from the task misspe
lation, all in-flight tasks are squashed and all non-architect
state buffers are purged, returning the system back to the q
esced state.

4.2  MSSP Mechanisms
We describe the MSSP mechanisms in the context of

abstract implementation shown in Figure 10. This abstra
tion consists of some number of processors and a monolit
memory system that includes infinite buffering for check
point and summary data and a task verification/commit un
Supporting MSSP requires:

P0
idle

non-spec slave #7
(i=48, SM=11)

(executes as normal proc.)
writes i=49

(immediately committed)
...

(cont. committing state)

writes i=64
(task completes)

spec. slave #9
(i=80, SM=11)

... jumps to orig...
reads i=80, SM=11

writes i=96, SM=12
(task completes)

idle

P1
idle

master (#7)
(i=48, SM=11)

(executes entry code)
writes i=64

(stored as chkpt)
fork: task #8, verifyPC

writes i=80
fork: task #9, vPC

...
(continues

forking tasks)

idle

P2
idle

spec. slave #8
(i=64, SM=11)

(executes verify block,
jumps to original program)

reads i=64, SM=11

writes i=80, SM=13
(task completes)

(spawn a slave)

idle

architected state/verify/commit
arch. state: i=48, SM=11, buffers empty

sends PC, regs, task #7
maps PC to entryPC

sends entryPC, regs, task #7
arch state: i=49, SM=11

chkpt: i=64 (task #7)

assigns slave task #8 to P2
sends verifyPC, chkpt, task #8

chkpt: i=80 (task #8)
waits until processor is available

live-in: i=64, SM=11 (task #8)
arch state: i=64, SM=11
task #7 chkpt cleared

assigns slave task #9 to P0
sends verifyPC, chkpt, task #9

live-in: i=80, SM=11 (task #9)
live-out: i=80, SM=13 (task #8)

task #8 is verified, commits state
arch. state: i=80, SM=13

live-out: i=96, SM=12 (task #9)
task #9 fails to verify: (live-in) 11 != (arch) 13

squash procs, purge buffers
(next step: restart)

Restart

Spawn

Spawn

Recover

Verify

Figure 9. Detailed example MSSP execution: The code example from Figure 5 is executed on 3 processors. The values of
only two variables are displayed: i (the induction variable of the outer loop, which is correctly updated by the master) and
sometimes_max (which is abbreviated SM and is incorrectly predicted by the master when the inner loop is executed by
the original program). In this example, both speculative slave tasks execute the inner loop, resulting in a task misspeculation
when the second task undergoes verification. In the real execution, this situation is uncommon: only one iteration out of
every thousand executes the inner loop.

Commit

Verify

Master Slave Processors

Memory
System

architected state checkpoints
summaries verify/commit unit

Figure 10. Abstract MSSP implementation with
monolithic memory system.

Slave Slave
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Processor management.A mechanism is required to track
idle processors and assign them to slave tasks as the tasks are
spawned by the master. To keep data associated with differ-
ent tasks separate, each task is assigned a sequence number,
which we call thetimestamp, and all non-architected data in
the memory system is tagged with its timestamp. When the
master executes a fork instruction, it increments its time-
stamp and the updated timestamp is assigned to the new
slave processor.

Checkpoints.Writes performed by the master must be cap-
tured to construct the checkpoint differences described in
Section 2.2. The collected values are sent to a special struc-
ture that is part of the memory system. This structure, the
checkpoint buffer, is searched by slave reads. Many small
writes from potentially different tasks may need to be
merged to satisfy a single read.

Task summarization.Slave processors summarize tasks by
collecting the processor’s writes (like checkpoint construc-
tion) and live-in reads. Tracking reads is much like tracking
writes, except that we track only reads to locations not yet
written by the task. Thus, the stream of reads is first filtered
by the set of preceding writes. Task summaries are stored in
the memory system. In addition, slaves must know where
their task ends, as described in Section 3.1

Verification and commitment. When a task has completed
and all previous tasks have committed, a task can undergo
verification. Verification is performed by comparing a task’s
live-ins to architected state. If they match, architected state
can be updated with the task’s writes. To avoid memory
ordering violations in many consistency models, verification
and commit should appear atomic to outside observers. If
live-in values do not match architected state, a task misspec-
ulation is signalled and speculative state is flushed, rolling
back to the most recent architected state.

Program counter mapping.Since the distilled program
resides at a different location in memory than the original
program, entry and indirect branch target PC’s need to be
mapped using the tables generated by the distiller (see
Section 3.5). These lookups exhibit locality that can be
exploited by a TLB-like mechanism.

4.3  Reverting to Sequential Execution
To handle extraordinary circumstances, MSSP falls back

on sequential execution. At any point, all speculative state
can be purged, and a single processor can be assigned to exe-
cute the program sequentially, starting from the last commit-
ted architected state. Such a technique is used in many
speculative parallel architectures. In addition, the rePLay
framework [9] similarly falls back on traditional execution
when its speculatively optimized code is inappropriate.

MSSP uses this technique for three purposes: exceptions,
very large tasks, and to ensure forward progress. Upon

detecting an exception, the execution can be rolled back
architected state. If the exception occurs again in a sequen
execution, it can be handled by one of the existing tec
niques for handling precise exceptions. Very large tasks m
exceed the amount of buffering available for task summa
zation; if this occurs, the task can be completed throu
sequential execution, which requires no such bufferin
MSSP can fail to make forward progress due problems int
duced into the distilled program by inappropriate approxim
tions (e.g., infinite loops, etc.). We include a watch dog time
to detect when deadlock/live-lock occurs and signal a reco
ery. The execution can proceed sequentially until it
deemed safe to return to MSSP mode.

We apply an optimization called early verification to
avoid squashing the portion of the task that has been co
pleted when reverting to sequential execution. To perfor
early verification, a slave processor selects an arbitra
instruction at which to end the task summary. The summa
can then be verified; if committed, the architected state w
reflect the state at that stopping point, and the task execut
can continue non-speculatively.

4.4  Implementation Details
Of MSSP’s mechanisms, two are most critical for perfo

mance: collection of checkpoint data and verification/com
mit. As the execution of the distilled program will likely
determine performance, the collection of checkpoint writ
(both register and memory) should be done in a way th
minimally impacts the master’s execution throughput.

To ensure verification/commit has sufficient throughput,
will likely be necessary to bank the level of the memory sy
tem at which the verification/commit unit resides. Such a
arrangement requires a two-phase commit protocol to ass
all banks agree to verification before any data is committe
A two-phase commit protocol need not introduce a seque
tial communication latency, because each bank can spec
tively verify (i.e., perform verification assuming all previous
tasks commit) its portion of the task summary by itself. Th
allows the two-phase commit protocol for separate tasks
be pipelined.

Similarly, it will likely be necessary to cache checkpoin
data at the processors to avoid accessing the shared-leve
the memory hierarchy on every access. As the checkpo
data is not architected state, it must be invalidated approp
ately. At the end of tasks, slave processors must invalid
cache lines that contain checkpoint data or have be
updated by task commitment. As a performance enhan
ment, the master should periodically update cache lines c
taining old non-architectural data, so that more recen
committed values are visible. This is done in our impleme
tation via refreshing: the master periodically requests a
up-to-date copy of cache lines already present in its d
cache.
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5  Experimental Results
In this section, we describe experiments performed to

quantify the potential of the MSSP paradigm. As with any
technique that involves transforming programs, performance
potential is difficult to quantify indirectly (i.e., without build-
ing the system that actually transforms the program). As a
result, we have implemented a first-cut automatic program
distiller (described in Section 5.1) to allow us to quickly
explore some of the characteristics of MSSP execution. In no
way are these results a “limit study” of the performance of
MSSP.

Due to space constraints we present the results of a selec-
tion of experiments in Section 5.2. The complete evaluation
can be found in [24]. Our initial experiments have demon-
strated that the MSSP paradigm has a number of desirable
characteristics:
1. Code approximation can be used to generate accurate

value predictors for task live-in values. On average, task
misspeculation occurs only once every 10,000 to 200,000
original program instructions.

2. MSSP performance is largely a function of the effective-
ness of distillation, which varies among programs.
Speedups (over a single processor) range from negligible
speedup (gzip ) to 1.70 (gcc , vortex ), with a harmonic
mean of 1.25. We believe there is much headroom to
improve distillation.

3. Accurate predictions make MSSP largely insensitive to
inter-processor communication: as inter-processor com-
munication latency is scaled from 5 to 20 cycles, relative
performance only degrades by 10 percent.

4. Only a modest amount of speculative buffering is
required: for these experiments, the primary storage of
checkpoint, live-in, and live-out data (at the L2) needed
only 24kB of storage total: about 1% of the storage of a
2MB L2 cache.

5.1  Experimental Methodology
Our simulation-based evaluation involved three comp

nents: 1) a prototype automatic program distiller, 2) an ex
cution-based timing simulator, and 3) the SPEC2000 integ
benchmarks.

Although program distillation may be most fruitful if per-
formed at run time, for simplicity our first implementation
performs distillation statically and off line. The distiller is
like a binary-to-binary translator: it augments an Alph
architecture binary with a distilled program and the requis
mapping tables. Currently, the distiller performs approxim
tions with the parameters listed in Table 1. These transf
mations are guided by profile information; to approxima
the quality of profile information available to a run-time
implementation, profile information was gathered from th
same run of the program with which the evaluation was pe
formed. After approximation, the following traditional opti-
mizations were applied: dead code elimination, limite
constant folding, register (re-)allocation, in-lining, and pro
file-guided code layout.

Our simulation model is derived from the SimpleScala
toolkit [4], but the timing model was re-written from scratch
In our model, timing and functional simulation are no
decoupled; instead, great care is taken to simulate operati
as and when the simulated machine performs them (e.g., reg-
isters are renamed and misspeculation recovery is perform
by rewinding to a pre-misspeculation register map). Our sim
ulated machine is an eight-processor CMP, where each p
cessor is configured to be similar to the Alpha 21264 [14
Processor parameters are shown in Table 2. Unconten
latency on the interconnect is 10 cycles, so the minimum
hit latency is 26 cycles (round-trip on the interconnect
cache access time).

We used the SPEC2000 integer benchmarks, because
exhibit the control flow and memory access behaviors rep
sentative of non-numeric programs. The benchmarks w

Table 1. Parameters supplied to the program distiller.

Parameter Value Explanation

Target Task Size 250 insts The task size the task selection algorithm considers optimal.

Branch Threshold 99% biased Fraction of instances that must go to the dominant target for the branch to be removed

Idempotency Threshold 99% correct Fraction of times that an instructions output must match an input for it to be removed.

Distant Use Definition 1000 insts Store to load distance at which a dependence is considered as having a distant first us

Distant Use Threshold 99% distant Fraction of store instances that have to be distant for the static store to be considered nt.

Table 2. Simulation parameters approximating a CMP of Alpha 21264 processors.
Front
End

A 64KB 2-way set associative instruction cache, a 64Kb YAGS branch predictor, a 32Kb cascading indirect branch
dictor, and a 64-entry return address stack. The front end fetches aligned blocks of 4 instructions. A line-predictor à
21264 is implemented.

Execution
Core

4-wide (fetch, decode, execute, retire) machine with a 128-entry instruction window and a 13 cycle pipeline, includ
full complement of simple integer units, 2 load/store ports, and 1 complex integer unit, all fully pipelined. The L1 d
cache is a 2-way set-associative 64KB cache with 64B lines and a 3-cycle access latency, including address gener

System The system on a chip includes 8 processor and 8 L2 cache banks (each 4-way set-associative with 64B lines, 2MB
and a register bank. An interconnection network is modelled that can move one 64B message per cycle to or from
processor and cache; one-way latency is 10 cycles. Minimum memory latency (after an L2 miss) is 100 cycles.
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compiled for the 21264 implementation with the “peak”
optimizations specified. As such, the binaries contain many
nops for branch alignment, which benefit the 21264-style
line-predictor-based front end we model; these nops are
fetched but discarded after decode. We used modified refer-
ence input sets allowing us to run the benchmarks to comple-
tion (9 - 45 billion instructions). The input sets were chosen
to maintain the memory working sets of the reference inputs.

5.2  Results
For these experiments, we request our task selection algo-

rithm to create tasks that execute 250 dynamic instructions in
the original program. The resulting distribution of task sizes
(weighted by execution frequency) is shown in Figure 11.
Although the average task size is closer to 200 instructions,
most tasks are between 100 and 300 instructions. Tasks of
this size appear to be a good compromise between storage
requirements (which increase with task size) and inter-pro-
cessor bandwidth usage (per-instruction bandwidth usage
decreases with larger tasks).

Figure 12a shows the average distance (in original pro-
gram instructions) between task misspeculations. This dis-
tance is generally above 10,000 instructions and as high as
200,000 instructions, demonstrating that distilled programs
can be used as highly accurate predictors. The effectiveness
of distillation that corresponds to this misspeculation rate is
shown in Figure 12b. This plot shows thedistillation ratio,
the ratio of distilled to original program instructions exe-
cuted, not counting nops. Currently, our distiller is most
effective (lower is better) on two benchmarks (gcc andvor-

tex ), where the master executes two thirds fewer instruc-
tions than the original program. Although some programs
may be intrinsically easier to distill than others, we believe
the variation in distillation effectiveness may be a conse-
quence of the selection of optimizations currently imple-
mented in our distiller prototype.

The distillation ratio correlates well with the speedup that
MSSP achieves over a traditional uniprocessor execution on
the same simulated hardware (shown in Figure 12c). Many
of the speedups are in the 1.2 range, butgcc and vortex

demonstrate the potential of the MSSP paradigm, achieving
speedups of 1.7. The average number of original program

instructions retired per cycle is shown in Figure 12d. In som
phasesgcc ’s aggregate IPC exceeds the width of a sing
core.

The simulations modeled an eight processor CMP, b
most of the benchmarks rarely use more than five process
(shown in Figure 13). The average number of in-flight tas
is slight larger, as processors can be re-allocated to new ta
upon completion of a task, not when the task is committed

In what follows, we summarize results from [24]. The
storage requirements for checkpoint, live-in, and live-o
values can be modest. Checkpoints are biased toward reg
writes: for average 200 instruction tasks, the master writ
15 registers and seven distinct 8-byte memory words. In co
trast, live-in sets are dominated by loads, with 20 distin
8-byte memory words read but only six registers. Live-o

0 100 200 300 400 500

number of instructions per task

0

20

40

60

80

100

cu
m

ul
at

iv
e 

fr
ac

tio
n 

of
 ta

sk
s 

(%
) bzip2

crafty
eon
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr

Figure 11. Distribution of task sizes.
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nt
,

n
es

ti-

rt
ry

e

i-

e

de

n

e

-

s-

am
ce.

e:
k-

t-

g

sets are strictly larger than checkpoints, consisting of 20 reg-
ister writes and 12 distinct 8-byte memory words written.
For these benchmarks and this implementation, the total stor-
age required at the L2 for special buffers is around 24kB, a
small amount of storage in a next generation processor.

Sensitivity analysis leads to the following observations: 1)
exploiting the enabled safe optimizations is essential, as they
are responsible for two thirds of the benefit of distillation and
generally affect the misspeculation rate negligibly, 2) MSSP
execution is largely tolerant of interconnect latency: when
scaled from 5 to 20 cycles, speedup relative to a uniprocessor
execution only decreases 10 percent, 3) benchmarks that can
keep many tasks in flight simultaneously (e.g., gcc ) perform
significantly worse with fewer processors; others achieve
similar performance of four processors as they do on eight,4)
our current distillation infrastructure is insensitive to the task
boundaries selected and correctness thresholds used in the
approximation transformations, as long as tasks are not too
small (at least 100 instructions on average) and important
optimizations (e.g., unrolling of important loops) are not pre-
vented.

6   Conclusion
In this paper, we presented a novel execution paradigm,

Master/Slave Speculative Parallelization (MSSP), that dedi-
cates one processor, the master, to predicting the live-in val-
ues required by the remaining processors. A key component
of MSSP is the distilled program, a speculative approxima-
tion of the original program. Since the distilled program has
no correctness constraints, it circumvents the need for opti-
mizations to be correct, a requirement that hampers tradi-
tional optimizing compilers.

We believe that MSSP conforms to the necessary
real-world constraints to become widely adopted; in particu-
lar, it can be transparent, require modest verification effort
beyond a traditional CMP, and conform to silicon technology
trends. Since the original program is used un-modified, there
are no required compiler changes and legacy binaries can be
supported. The distilled code, which can be derived from the
original program, has no correctness requirements. As a
result, the program distiller need not be verified. The archi-
tecture itself is tolerant of wire latency, because inter-proces-
sor communication is only on the critical path when the
master misspeculates, an occurrence that our results show is
infrequent.
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