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Abstract Transparent parallelization can be achieved by analyzing

Master/Slave Speculative Parallelization (MSSP) is an_the program’s dependences, partltlpnlng the program into
independent subset®6ky, and inserting the necessary syn-

execution paradigm for improving the execution rate of hronization. F ) lete d
sequential programs by parallelizing them speculatively forcnronization. For non-numeric programs, a complete depen-
ence analysis is prohibitively difficult. As a result,

execution on a multiprocessor. In MSSP, one processor—th lelizati tth is facilitated b lati
master—executes an approximate version of the program ggaralietization otihese programs IS faciiitated by specuiating

compute selected values that the full program’s execution i the presence of ambiguous d_ependences and providing
expected to compute. The master’s results are checked r_dware support for the d_etect_|on of and recovery from
slave processors that execute the original program. Thi ct!ons that violate the ordering d|ctafced byaseqL_Je_ntlaI exe-
validation is parallelized by cutting the program’s execution cution. Many proposal_s for speculatively paralielizing pro-
into tasks. Each slave uses its predicted inputs (as computegjram5 have_ been published [1, 6, 8 12, 20.’ 23], .
by the master) to validate the input predictions of the next Speculation allows the exe_cut|on _to \ghore pote_ntlal
task, inductively validating the entire execution. depe_ndences that do not occur in practice, but it does little to
The performance of MSSP is largely determined by thé\llewate true d_ependences. Tr_ue mter-tqsk data dependences
execution rate of the approximate program. Sincetan sequentialize task execution, negating much of the per-

approximate code has no correctness requirements (hf]ormance trrl)ote_:nttlalt Ofk sdpecula(ljtlve parallellsnl}. I_n factt,h
essence it is a software value predictor), it can be optimize#’etc""usef : ? Inter-task depen en_ce;s_ generfa y Incur the
more effectively than traditionally generated code. It is free, 2 1CY OF INIEMProcessor communication, performance can

to sacrifice correctness in the uncommon case to maximiz%e evfe?hwors_e thr?n”that of a un_lp_roc_essor exle (E.Ut'on' Tlrlluls,
performance in the common case. one of the main challenges remaining in speculative parallel-

A simulation-based evaluation of an initial Mssp 'Zatlon s handling true dependences.

implementation achieves speedups of up to 1.7 (harmonic Ir_' this paper, we present an executlon paradigm for spec-
ulative parallelization that breaks inter-task true dependences

mean 1.25) on the SPEC2000 integer benchmarksb dicting th icated val Thi i
Performance is currently limited by the effectiveness with y predicting the communicated values. This approact, In

which our current automated infrastructure approximates!tself’ is not novel [1, 15, 16, 21]; what is novel is the manner

programs, which can likely be improved significantly. in which the prediction§ are made. Rather than use a his-

tory-based hardware widget, our approach uses a piece of
1 Introduction code that, when executed, predicts the values communicated
between tasks.

Most micropr r vendor r hippin r hav ) - .
0s croprocessor “ve d(.) S are Shipping or Nave —\ye call this code thelistilled programbecause it is cre-
announced products that exploit explicit thread-level paral-

lelism at the chip level either through chip multiprocessingatecl by "distilling" the original program down to a reduced

(CMP) or simultaneous multithreading (SMT). These archl_cqmputatlon that will likely Compu_te_the necessary values.
. - -.__Since results computed by the distilled program are only
tectures are compelling because they enable efficient utiliza- - .
sed as predictions, there are no correctness constraints on

_tlon of _Iarge _tran5|stor budgets —even in the PrESENCe e distilled program; all predictions will be validated before
increasing wire delay—for multi-threaded or multi-pro- } :

. they are allowed to alter architected state. This freedom from
grammed workloads. Although we expect the availability of

correctness constraints bestows unlimited flexibility to the
these processors to encourage some programmers to explic-

itly parallelize their programs, anecdotal evidence that man gonstruction of the distilled program, allowing us to guide

: - L ptimizationssolely basedon commoncaseprogrambeha-
software vendors ship un-optimized binaries suggests thal .
—_— . ior rather than what could be proven correct statically. As a
many programmers cannot justify (either to themselves or__

their employers) the additional effort of correctly paralleliz- result, the distilled program can significantly outperform,

ing their code. As a result there will remain an opportunity\k’)vlills Crlgjizlzspﬁgaglgrl:ggt:%;gncjg)rr;nit;iso”gmal program,
for “transparent” parallelization. P 9 '




In our execution paradigm there are two distinct procesf
sor* roles. One processor, tmeaster is assigned to execute
the distilled program. This execution orchestrates a paralle
execution of the original program on the remainisigve
processors. At defined places in the distilled program’s exe
cution, the master “spawns” a task onto an idle slave proces
sor, providing it with a starting program counter (PC) and
predictions for the live-in values. The slave processors exe
cute the un-modified original program, and only they updat;

fwrite

architected state. State updates are speculatively buffered

until the task has been verified. Values produced by the mas-— - i : o e T i

ter are discarded when no longer needed as live-in predic- ~94re 1. T fe conrt]rob owhgrapk b((_:FzG). or the ”ungtuon

tions. The relationship between master and slave is spec_getc  from the benchmark bzip2 : a) initially b) as

! p " transformed by approximation, c) as transformed by

reminiscent of that between a speculative core and a DIVA superblock formation.

checker [2], except with the purpose of detecting errors in o ) _ )

code transformation rather than processor design. Approximation is accomplished by removing behaviors
We call this execution paradigm Master/Slave Speculativérom the program that appear not to be frequently exercised.

Parallelization (MSSP). We first provide an overview of the This process is most easily illustrated through an example:

opportunity for distilling programs and the MSSP paradigmfigure 1a shows a control flow graph (CFG) of a small func-

in Section 2. In Section 3, we detail the automatic construcfion annotated with an edge profile. In approximating the

tion of distilled programs using profile information. In function, non-dominant control flow edges are removed. As

Section 4, we describe the mechanisms required by MSSiS function has a single dominant path, after approximation

and provide a detailed example of its execution. In Section 5{"€ function is a single block (Figure 1b). In general, this

we present results from an initial simulated implementationVill not be the case; unbiased branches along important

of MSSP. This paradigm has been heavily influenced b)paths will remain. Approximation transformations are not

prior work, which is discussed throughout the paper. limited to control-flow manipulations; others are described
in Section 3.3.
2 Overview Approximation transformations are like speculative com-

In this section, we introduce the concept of code approxip"er transformations_ but without the checks that ensure th_e
£xpected behavior is present. The dominant path in this
example can also be exploited by superblock formation [13]
resulting in the CFG shown in Figure 1c. While superblock
2.1 Code Approximation formation removes side entrances from the trace (by replicat-
The MSSP paradigm predicts all of a task’s live-in valuesing code), side exits must be left intact, as they are required
(i.e, those values that are used before they are definedjo detect and handle the correct execution of non-dominant
Unlike most value predictors, the one used in MSSP is gaths. In the approximate code, these checks (the branches)
piece of software, called the distilled program, that producesire removed, resulting in an incorrect computation when a
predictions when executed. Like any predictor, we desire thaton-dominant path execution is required.
it have a high prediction accuracy, but mistakes can be toler- These approximation transformations create new opportu-
ated. The distilled program is constructeddpproximating nities to apply traditional (safe) optimizations. By eliminat-
the program being executed, which we will refer to as theing dead code (mostly the branch predicate computations)
original program. and avoiding stack allocation, saves and restores (the approx-
Approximation exploits the fact that most programs areimate function has lower register pressure and is now a leaf
more general than is required by any particular execution. Asunction), the dominant path through the function in Figure 1
a result, much of a program’s functionality is not needed inis reduced from 51 to 12 instructions. This small static size
the common case. This observation has been exploited previacilitates inlining, which can create additional opportunities
ously in feedback-directed program transformations thafor optimization.
optimize the common case at the expense of the uncommon Approximation has many similarities to the instruction
case. Approximation is an extreme form of such transformaremoval performed in Slipstream [22]; unlike Slipstream, we
tions that further optimizes the common caseshgrificing  create a distinct executable to enable traditional optimiza-
correctness in the uncommon case. tions to be applied as well. A process akin to approximation
has been used to create predictors for branches and memory
addresses [7, 18, 25]. The particular form of approximate
code used in the MSSP paradigm—what we call a distilled

mation used to create distilled programs and provide
high-level overview and analysis of the MSSP paradigm.

1. For simplicity of exposition we use the word “processor”, but the ideas
are equally applicable to multithreaded processors.



program—also encodes the information necessary to manadgagged with the current task number. The writes for a given
the parallel execution of the slave processors. We discuss thiask form the change of state (the differenceliff) effected
construction of distilled programs in Section 3, after an overby the task. A predicted future checkpoint of state can be
view of the MSSP paradigm. constructed by overlaying the differences associated with
2 2 MSSP Overview |n—fI|ght tasks (|_n order from oldest to youngest) on top of the
. . . . architected register and memory state, as shown in Figure 2b.
We now describe the MSSP paradigm at a high level; : ) .
- . . ' Checkpoints can be constructed piece-wise and on demand,
description of the required mechanisms and a more detaile ST .
: : . .“So the amount of storage required is a function of task work-
example are presented in Section 4. Like other speculative

parallelization paradigms, MSSP executes coarse-grain uni{rs]g setsize and not the size of the program’s memory image.

of work, called tasks, generally consisting of hundreds of The remaining processorB1, P2, andP3) are slaves that

instructions. Task boundaries are selected during the conqre initially idle. As directed by the distilled program, the

struction of the distilled program and encoded within it, master periodically spawns tasks for the slave processors to

An MSSP execution consists of three separate Compo(gxecute. To spawn, the master increments its task number,

nents, each with a different purpose: 1) the master processgreleCtS an idle slave processor, and provides the slave three

executes the distilled program to compute prediatbeck- Mputs: 1) the master's current task number, 2.) astarting pro-
pointsof state at task boundaries, 2) using these checkpoint‘52”2,2;l %ﬂ;{(géci)ﬁ z?dufg ggcfr?: :r?atgti Pr?ggggoﬁhsechr?'sm
slave processors execute from one task boundary to the n IE ' 9 ' b P

in the original program constructingsammaryof the task, sk Aonto processolP3. In parallel with the spawning pro-

and 3) a reuse-like [19] mechanism verifies the correctnes%eSS‘Po continues execution of the distilled program, enter-

of the task summaries and commits their results in orderl.ng the distilled program segment that correspon A

These roles are demonstrated by the example four—process1vc\)lp ich we refer to ag\. P3 begins execution({) some time

. - ater as the spawn involves inter-processor communication.
MSSP execution shown in Figure 2a. P P

. . As the slave executeBask A it retrieves any necessary
One processoQ) is assigned to be the master processor. . , . .
and executes the distilled program. As the master executes IR/e—m values (e, registers and memory locations that are
: 'read before they are written by the task) from the checkpoint.

. . > ASince the values retrieved from the checkpoint are predic-
not committed to architected state. Instead, when a write i . . . )
i o . : lons, writes by the slave are not directly committed to archi-
retired” by the master, it is held in a special buffer and

vaste N W& | siaves b)  checkpoint for task N+l 0 W~ Wi—— W W
Spawn Task
a [FORK|—=—s="- " - == ------=---=---~-~-~- .
) differences for task N [ | [ | [ | [ |
0 differences for task N-1
o differences for task N-2 1 B  H N
FOR % architected state [ ]
2
()
FORK Bad Checkpoint Task B g C) Task: Task Summary
Task C ~ load r14, 0[r12] Live-ins_| [Live-outs
o as o add r14, 1,r14 r12=M |[r4=17
O Verification/ store r14, 0[r12] M =16 | (M =17
g Task \C:mm" Unit store zero, 8[r12] M+8 =0
= Completed o architected state
. 0 Verify L.|ve.-|ns 12 r14 M M+8
oy W commitveous I 2 R
-ins, live-. Scenario 1: ive-i
Squashed outs) Verify Live-ins e eommit ( live-ins match
. Commit Live-outs | | Ml |17| |l7| | 0 | |
commit live-outs
architected state . Verify Live-ins T " e
r I +i
- B Scenario 2:
v = 0 Task Cé a Misspeculation Detected task misspeculation |_|N|_]6] [16] [18] ]
live-in mismatch

Figure 2. MSSP execution example: a) The master, executing the distilled program on processor PO, forks tasks, providing
them live-in values in the form of checkpoints. The slave processors execute the original program to construct task
summaries, which are verified before they are committed. Misspeculations, resulting from incorrectly computed checkpoints,
cause the master to be restarted with the architected state. b) Writes by the master are buffered as checkpoint differences,
which together with architected state can be used to construct predicted checkpoints of future state. c) Task execution is
summarized by its set of live-in and live-out values; summaries are verified by comparing the live-ins to architected state. If

the live-ins match (Scenario 1), the architected state is updated by committing the live-outs. Otherwise (Scenario 2), a task
misspeculation is signalled.



tected state. Instead, the live-ins and live-outs (the last writd

O—

to each location written by the task) are collected (both namg Traditional Master/Slave
and value) and buffered as a task summary. a) b) K

When the slave completes its task)( the task summary X
is sent to the verification/commit unit. This unit tries to com-
mit the summaries in program order, as indicated by the
associated task number. The verification/commit process is 2N
much like the reuse test [19] or memoization. As a precondi
tion for committing the task, all of the live-in values used in

the task’s execution must match the value held in architected Y
state. If this condition holds, the live-out values can be com- Critical Path _/A
mitted to architected stat&lj. When a task is committed the ntical Pat [

corresponding checkpoint differences and task summary cg Critical Paths
be deallocated.
If one or more of the live-in values do not match with - — - - -
architected state (because a checkpoint was computed incor/9Ur€ 3. In a traditional speculative multithreading
. AN . execution model, the critical path of the execution typical
rectly (0)), a task misspeculation is signalled. On detection gses through values that are forwarded from one task to
of the misspeculation{), the master is squashed, as are all the next (a). MSSP has two parallel potential critical
other in-flight tasks. At this time, the master is restarted at paths, the execution of the distilled program and
Task C’(0) using the current architected state committed by Verification/commitment (b).
Task B In parallel, execution of the corresponding task in the
original program Task G begins (J). The recovery process
is expensive, but it is infrequent when using well-constructe

=]

path sequentializes inter-processor communication, provid-

ing MSSP with a degree of latency tolerance. Increasing

. ommunication latency only increases the occupancy of

distilled programs. . _ N slave processors and verification latency (not throughput),
The venﬂcauon/commlt process is shown in Figure _2_C'which is only exposed on task misspeculations.

Note that the checkpoints themselves are never verified To summarize, the first requirement of an effective MSSP

directly. Only_ the task live-insif., those valu_es_ that could execution is thathedistilled programaccuratelypredicttask
corrupt architected state) are checked. Distilled prograny, o i yajyes. If that is achieved, the master will determine

construction exploits this fact to avoid computing any valuethe execution rate of the whole execution, the distilled

that has a low likelihood of being a task live-in. programshould executemuch fasterthan the original pro-

2.3 Analysis of MSSP Execution gram. Finally, so as not to become the bottlenettie
Several characteristics distinguish MSSP from other spedhroughputof the verification/commitunit mustexceedthe

ulative parallelization paradigms. In programs with signifi- ratetasksare spavnedby the master. These first two issues

cant amounts of true inter-task dependenceg,(most are a function of the construction of distilled program (dis-

non-numeric programs), the critical path of a traditionalcussed in the next section). The verification/commit mecha-

speculative parallel execution follows sequentially-depenhism is described in Section 4.

dent communications to forward values (Figure 3a). Long ..

inter-processor communication latencies reduce the degre’é Distilled Programs

to which task executions are overlapped. While in the previous section we indicate that the distilled
In contrast, in an MSSP execution, values are not commuprogram should have a high prediction accuracy and be fast,

nicated between slave tasks. The production of values to sattiereareabsolutelyno requirement®n thedistilled program

isfy inter-task dependences is decoupled from the productionecessaryo ensurea correctexecution. It is only a predictor,

of values to update architected state. All inter-task trueand, if it is behaving improperly, the execution reverts to a

dependences are predicted from a central source, the masteaditional uniprocessor execution. Nevertheless, MSSP’s

As a result, inter-processor communication for differentperformance depends on the distilled program performing

tasks can be performed in parallel, and this communicatiothe following two tasks correctly most of the time: 1) speci-

appears on the critical path only on a value mispredictionfying a division of the program’s execution into tasks by

Trace processors [17] similarly proposed using value predicdenoting task boundaries, and 2) accurately computing the

tion to tolerate communication latency between processinget of live-in values at these task boundaries.

elements. In this section, we describe a technique to construct dis-
If mispredictions can be made rare, then the critical pathilled programs. The resulting distilled program will be

will be through the slower of two paths: the master’s execudocated in a separate region of memory than the original pro-

tion and the verification/commit unit (Figure 3b). Neither gram. Distillation consists of the seven steps listed in



Figure 4. The first two steps (collect profile information and
build IR) and the last step (layout and generate code) af
largely unchanged from traditional compiler techniques, s¢
our description will focus on the other steps. Since approxi
mation transformations are likely more sensitive to the accu
racy of profile information than traditional feedback-directed
program transformations, it might prove necessary to perf
form distillation at run-time (when the most representative
profile information is available), like a dynamic optimizer
(e.g, Dynamo [3]).

We illustrate the process of constructing a distilled pro-
gram with a hot loop nest fromcc , shown in Figure 5. The
variablesometimes_max is a loop-carried dependence, but,
as shown in the control flow graph in Figure 6a, the inner
loop is only executed on 0.1 percent of outer loop iterations,

3.1 Task Selection

cold region

Figure 6. Example task selection and application of

T ; ; o _approximation transformations. The control flow graph for
Our sensitivity analysis results (in [24]) indicate our cur this code example is shown for: (a) the original code, (b)

rent automatic distiller prototype is largely insensitive to the .o .ode after it has been transformed to include a task
exact task boundaries selected (performance varies less thamoundary, and (c) after the cold code region has been

5% for most benchmarks) provided the tasks are large removed.

enough (greater than 100 instructions on average) to amoy- . . I
tize the communications overheads. As a result, we Onbgaoundary So it can signal the beginning of a new task. The

highlight a few important issues here; a complete descriptior‘?rlglrlal program s annotatédvlth.these task boundaries for-
of our task selector can be found in [24]. use by slave processors to identify the end of a task. For sim-

Tasks are selected by identifying instructions in the origi—pIiCity of implementation, tasks unconditionally end imme-

nal program to be the beginning of new tasks. A fork instruc-diately before annotated instructions, except in one

. 2 . S circumstance.
tion is inserted into the distilled program at the task . " L
prog The problem with unconditional task boundaries is dem-

onstrated by our example. We would like to use the fre-

1. collect profile information . )

2. build internal representation (IR) quently executed outer loop for task selection, but with
3. select task boundaries unconditional task boundaries we are left with the sub-opti-
4. perform liveness analysis mal choice between: small, single iteration tasks (13 instruc-
5. apply approximation transformations tions on average) and very large tasks that encapsulate the
6. apply traditional optimizations whole loop (6,500 instructions on average). We resolve this
7. layout and generate code relatively frequent case by creating conditional task bound-

aries; a technique we cdlisk end suppressi@nables tasks

to contain multiple (but not all) iterations of a loop by identi-
fying a task boundary that should be ignored a specified
}A number of times. In our example, the task boundary is

Figure 4. Logical steps to build a distilled program.

for (i=0; i < regset_size; i++) {
register REGSET_ELT_TYPE diff = live[i] & ~maxlive]i];

Cf{r (regno = 0; diff && regno < REGSET_ELT_BITS; regno++) {

f (diff & (REGSET_ELT_TYPE) 1 << regno)) {
regs_sometimes_live[sometimes_max].offset = i;
regs_sometimes_live[sometimes_max].bit = regno;
diff &= ~ (REGSET_ELT_TYPE) 1 << regno);
sometimes_max++;

1F

Figure 5. Example code fragment from SPEC 2000

benchmark gcc.

propagate_block (lines 1660-1678 of flow.c ).

Loop nest extracted from function

if (diff) { inserted in the loop header of the outer loop, and tasks are
register int regno; }B specified to contain 16 iterations.
maxlive] |= diff, During task selection, the CFG is transformed to add log-

ical edges to and from the original program (shown in
Figure 6b). These edges maintain our ability to transition
between the distilled and original program at task bound-
aries. In order to commence execution of the distilled pro-
gram (either initially or after a task misspeculation),eatry
CFG edge is added. To support spawning the tasks in the
original program, averify CFG edge is added. Both edges
link to the corresponding location in the original program.

2. The ISA need not be modified to support these annotations by locating
them in a separate region of memory that is merged with instructions on
an I-cache miss [20].



3.2 Liveness Analysis tant-use store eliminatiofinds many opportunities; for the
After task selection and before optimization, livenessSPEC2000 integer benchmarks, about 35 percent of dynamic
analysis is performed to determine the set of live values astores have first-use distances exceeding 10,000 instructions.

task boundaries. These values should be computed by the s, £n5pled Traditional Optimizations

dlstllle_d program (to a_ct_as live-in value predictions) even |_f Although they may remove some instructions from
all their uses in the distilled program are removed. As this

i VSIS | I di tructing the distill (]L:nportant paths, the main contribution made by the approxi-
IVeness analysis 1S only used in constructing the distii€Gy, o441, transformations is to create new opportunities to
program, it need not be sound; for example, we can ignor

; . . pply traditional (safe) optimizations. By removing cold
mfreguent paths. The verify arc can be tre_ated as using al aths and other features that prevent optimization, even opti-
the live values at a task boundary, allowing traditional for-

: . mized binaries benefit from a re-application of techniques
mulations of data-flow algorithms to be used. like dead code elimination, partial redundancy elimination,
3.3 Approximation Transformations and register allocation.

Approximation transformations are the key to making the In our running example, after approximation, half of the
distilled program faster than the original program. Incode in the loop is dead and can be trivially removed
Section 2.1, we demonstrated transformations to remové-igure 7a). Not all optimizations are so straightforward.
biased branches. Our example code fragment benefits fromstruction F4 is loop invariant and can potentially be hoisted
the elimination of the cold region containing the inner loop.to a loop pre-header block (blodk in Figure 7b), but this
By eliminating these paths, we are left with a greatly simpli-code motion crosses the entry edge in the CFG. To compen-
fied CFG (shown in Figure 6c). sate for the code motion, a copy of the invariant load is intro-

In addition to control-flow transformations, value-basedduced as compensation code in a block on the entry edge.
(e.g, constant substitution for invariant values) and depenThis entry block translates the state of the original program
dence-basede(g, ignore may-alias for load-store pair that to the state expected by the distilled program. Some optimi-
rarely alias) approximations can be applied. For most anyations €.g, partial dead code elimination) introduce com-
speculative optimizatiore(g, [5, 10, 11]), an approximation pensation code onto the verify edge.
analog can be formulated. As a final optimization, the loop in our example is

Furthermore, the redundant nature of MSSP executioninrolled (by a factor of 16) in the distilled program. Since
enables the optimization of writes with “distant” first uses. If the induction variables are dead on exit from the loop this
the first read of a write’s value is sufficiently far (in dynamic unrolling can be accomplished by merely scaling the imme-
instructions) after the write, the write need not be performediiates of instructions F1, F2, and F3. The final code is shown
by the distilled program. By the time the read is executedjn Figure 7c. Distillation has reduced this task from execut-
the (original program) copy of the write executed by a slaveng over 200 dynamic instructions on average in the original
processor will have been committed and the value can bprogram to only six in the distilled program.
retrieved from architected state. Our implementationlief

a) live before A: t0 (&liveli]), t3 (&maxliveli]), t12 (i) c) ENTRY:
[o]] s3, -10104(gp) # was F4
A br AF
ol 6. 0(t3) #1 load r_nax-live[i] P: (added loop pre-header block)
dI t2, 0(t0) #2 load I|ve[|] idl $3, -10104(gp) # was F4
zapnot 12, 0x3, t11 #3 truncate i to 16b
bis zero, zero,ra  #4regno =0 FORK:
bis zero, zero, t9  #5regno =0 fork 1, VERIFY
bic 12,16, t2 #6 live[i] & ~maxliveli] romprogan AF:
E b) | 40K add| t12, 0x16, t12 # was F1
) . lda t0, 64(t0) # was F2
addl 112, Ox1, t12 #11i +J_r _ EI Ida 3, 64(t3) #was F3
Ida 10, 4(t0) #2 &Ilve[']. . cmplt  t12, s3, s3 # was F5
Ida t3, 4(t3) #3 &maxliveli] . bne s3, FORK #was F6
dl s3,-10104(gp)  #4 load regset_size
cmplt 12, s3,s3 #5 i < regset_size VERIFY:
bne s3, A #6 loop back-edge suppress 15, A
. program verify A (to orig program)

Figure 7. Distilled program fragment after application of approximation transformations (a). After the removal of the branch
at the end of block A, instructions A1-A6 are dead. Instruction F4 is loop invariant. To hoist F4, a loop pre-header block P is
created (b), and a copy of the instruction is added to the entry block. The final optimized code is shown in (c).



3.5 Forking, Verifying, Suppressing, and Mapping

We now briefly touch on our implementation of the
MSSP-specific operations in the distilled program, which
can be used to decipher Figure Fork instructions are a
branch-style instruction that specify the PC of a verify block
where a slave processor should begin execution and the
denominator of the fraction of times the fork should be per-
formed (.e, 1 - always, 16— every 16th iteration). Not Figure 8. State diagram of MSSP execution
spawning at every fork instruction is necessary in some

first task

- = = = begin

squash

spawn/ uniproc. mode

lasttask o engd

instances when task end suppression is used. puted, but the variableometimes_max may be incorrect
This verify block contains any compensation code neceswhen the original co_de_ executes the inner loop, which has be
sary and is terminated byverify  instruction. Theverify removed from the distilled program.

instruction encodes the original program PC where the task 1he execution begins with the machine quiesced: all pro-

should begin and communicates to the implementation thai€Ssors are idle and all buffers for non-architected data are
task summarizationi.¢., collection of live-in and live-out EMPLy. The restart process initiates two executions: a
values) should begin. If task end suppression is being used,¥n-speculative slave execution and a master execution.
suppress  instruction is included in the verify block that Both are assigned the timestamp 7. The first slave can exe-
encodes the task boundary to suppress and the number g4te non-speculatively bec_au_se aII_ of its r_equests for live-in

times it should be ignored. values_ can be correctly satl_sﬂed with grchltec_ted. _

Since the distilled program is distinct from the original  While the non-speculative slave is provided with the
program, a mechanism is required to map program COunte,zgrchnecte_d state, the PC for _the master is first mapped (us_lng
(PCs) between the two programs. This requirement is shardf#€ mapping hash table) to find the PC of the corresponding
by dynamic translators and optimizers.d, [3]), and our entry into the distilled Pprogram. '_I'he master executes the
solution is similar. We construct a hash table of PC-pairs tha@ntry code before entering the distilled program proper. Both
allows searching for “entries” and indirect branch targets infaSks execute simultaneously. The non-speculative slave task
the distilled program using an original program PC. Map_e_xec_utes like a nqrmal uniprocessor, immediately con_1m|t-
ping in the reverse direction is simpler, because the situationéd its state. In this example, we assume that the 16 itera-
that require translationvérify  instructions and the link ons executed by the non-speculative slave all avoid the
part of jump-and-link instructions) can be translated stati-Nner loop, so its only writes are 16 updates to the variable
cally (at distillation) and the translated PCs can be encodefif Which only the first and last are shown.

into the distilled program as immediates. Writes performed by the master, on the other hand, are
buffered as checkpoint data and associated with the master’s
4 Implementing the MSSP Paradigm current task. In task #7, the master performs a single write

In this section, we first present an example of MSSP exe(i:64) before encountering a fork instruction. At a fork
cution. Generalizing from this example, we describe thé'nstruction, the master increments its timestamp and notifies

mechanisms that are essential to the MSSP paradigm ihe system that the speculative slave task #8 is ready for exe-

Section 4.2. In Section 4.3, we explain that MSSP's funC_cution. This task is allocated to proces§& which was pre-

tionality is a superset of traditional sequential execution parYiously idle. WhenP2 requests the value, rather than

adigms, allowing it to revert to the underlying sequential return the current architected value, the memory system

execution paradigm to handle exceptional circumstance$S€nds the checkpoint value (64). Since no checkpoint value
While this section’s discussion is generally kept at a highIS ava|_lable forsometimes_max , the archltec_ted value_
level (due to space constraints), a few implementation detailSL1) Will be returned. The slave processor begins execution

merit discussion and are covered in Section 4.4. A completi! the verify block of the distilled program—usingrifyPG
implementation description can be found in [24]. provided by the master—which ends with a jump into the
original program. While executing the original program, the

4.1 MSSP Execution Example speculative slave records its live-in values; we will assume
We now walk through a detailed MSSP execution examthat inner loop iterations are executed in both tasks #8 and
ple using the code example from Section 3. The flow of the49, so the predictions for both variables and
example can be followed in the state diagram shown insometimes_max are recorded and sent to the live-in
Figure 8, The execution (shown in Figure 9) begins partwayyffer.
through the execution of outer loop with the variablequal During the slave execution of task #8, the master forks
to 48 andsometimes_max equal to 11. For simplicity, we task #9. Since no processor is available, slave task #9 cannot
will ignore the other variables. The distilled program is con-pe immediately assigned to a processor. When the non-spec-
structed such that the variabieis always correctly com- ylative task orP0 completes—after its final write to the vari-



PO

idle
Restart hon-spec slave #7
(i=48, SM=11) g

P1
idle

p2 architected state/verify/commit
idle arch. state: i=48, SM=11, buffers empty

sends PC, regs, task #7

(executes as normal proc.)

master (#7)

maps PC to entryPC
sends entryPC, regs, task #7

(i=48, SM=11) g

writes i=49

(immediately committed) (executes entry code)

Spawn

(cont. committing state)

writes i=64

P arch state: i=49, SM=11

g Chkpt: i=64 (task #7)

(stored as chkpt)
fork: task #8, verifyPC

spec. slave #8 assigns slave task #8 to P2

(i=64, SM=11) <e——— sends verifyPC, chkpt, task #8

writes i=80 - chkpt: i=80 (task #8)
Spawn fork: task #9, vPC p Waits until processor is available
(executes verify block,
(continues jumps to original program)
forking tasks) reads i=64, SM=11 ——» live-in: i=64, SM=11 (task #8)
writes i=64 p arch state: i=64, SM=11
(task completes) task #7 chkpt cleared
spec. slave #9 assigns slave task #9 to PO
(i=80, SM=11) g sends verifyPC, chkpt, task #9
... jumps to orig...
reads i=80, SM=11 » live-in: i=80, SM=11 (task #9)
writes i=80, SM=13———» live-out: i=80, SM=13 (task #8)
Verify (task completes) task #8 is verified, commits state
Commit arch. state: i=80, SM=13
(spawn a slave)
writes i=96, SM=12 p live-out: i=96, SM=12 (task #9)
Verify (task completes) task #9 fails to verify: (live-in) 11 != (arch) 13
squash procs, purge buffers
Recover idle / idle / idle / (next step: restart)

Figure 9. Detailed example MSSP execution:  The code example from Figure 5 is executed on 3 processors. The values of
only two variables are displayed: i (the induction variable of the outer loop, which is correctly updated by the master) and
sometimes_max (which is abbreviated SM and is incorrectly predicted by the master when the inner loop is executed by
the original program). In this example, both speculative slave tasks execute the inner loop, resulting in a task misspeculation
when the second task undergoes verification. In the real execution, this situation is uncommon: only one iteration out of
every thousand executes the inner loop.

ablei —task #9 is assigned 0. Speculative slave task #9 rect, the live-out values for task #9 are assumed to be
is provided with the most recent checkpoint value (80)ifor incorrect and discarded. To recover from the task misspecu-
and the architected value (11) fasometimes max , lation, all in-flight tasks are squashed and all non-architected
because no checkpoint value exists. Like slave task #1, bottate buffers are purged, returning the system back to the qui-
of these values are read and recorded as live-in values.  esced state.

At the end of slave task #8, the values for and 4.2 MSSP Mechanisms

sometimes_max are 80 and 13, respectively. These values We describe the MSSP mechanisms in the context of an

are recorded in the live-out buffer. Since task #7 has Comébstract implementation shown in Figure 10. This abstrac-

- . L
ified against architected state. In this case, the live-in valut(:tsIon consists of some number of processors and a monolithic

match the architected state, and the live-out values for task oY system that includes infinite t_)l_Jffe_nng for check.-
#1 can be committed. At this point, the checkpoint andpomt and summary data and a task verification/commit unit.

live-in values for task #8 can be discarded. Supporting MSSP requires:

When task #9 completes and requests verification, a tagk
misspeculation is discovered. When the recorded live-in | Master| | Slave Slave Slave | Processors
value for sometimes_max (11) is compared to the archi- | | | |
tected value (13), the values do not match. The live-in pre} | architected state checkpoints Memory
dictions the master processor provided to slave task #P summaries verify/commit unit | System
implicitly assumed that task #8 would not modify the vari-— _ . -
Figure 10. Abstract MSSP implementation with

able sometimes_max . Since its live-in values were incor- monolithic memory system.



Processor managementA mechanism is required to track detecting an exception, the execution can be rolled back to
idle processors and assign them to slave tasks as the tasks arehitected state. If the exception occurs again in a sequential
spawned by the master. To keep data associated with diffeexecution, it can be handled by one of the existing tech-
ent tasks separate, each task is assigned a sequence numbgues for handling precise exceptions. Very large tasks may
which we call thetimestampand all non-architected data in exceed the amount of buffering available for task summari-
the memory system is tagged with its timestamp. When theation; if this occurs, the task can be completed through
master executes a fork instruction, it increments its timesequential execution, which requires no such buffering.
stamp and the updated timestamp is assigned to the neMSSP can fail to make forward progress due problems intro-
slave processor. duced into the distilled program by inappropriate approxima-

Checkpoints.Writes performed by the master must be Cap_tions (.9, infinite loops, et_c.). We include awatgh dog timer
tured to construct the checkpoint differences described if® deétéct when deadlock/live-lock occurs and signal a recov-
Section 2.2. The collected values are sent to a special strufly- The execution can proceed sequentially until it is
ture that is part of the memory system. This structure, th&l€eémed safe to return to MSSP mode.

checkpoint buffer, is searched by slave reads. Many small & apply an optimization called early verification to
writes from potentially different tasks may need to be @void squashing the portion of the task that has been com-
merged to satisfy a single read. pleted when reverting to sequential execution. To perform

T ] early verification a slave processor selects an arbitrary
Task summarization. Slave processors summarize tasks byjnsiryction at which to end the task summary. The summary
collecting the processor's writes (like checkpoint construc-;an, then be verified: if committed, the architected state will

tion) and live-in reads. Tracking reads is much like trackingyefiect the state at that stopping point, and the task execution
writes, except that we track only reads to locations not yet.,n, continue non-speculatively.

written by the task. Thus, the stream of reads is first filtered ] )

by the set of preceding writes. Task summaries are stored if-4 Implementation Details

the memory system. In addition, slaves must know where Of MSSP’s mechanisms, two are most critical for perfor-
their task ends, as described in Section 3.1 mance: collection of checkpoint data and verification/com-

Verification and commitment. When a task has completed mit. AS. the execution of the d'St'”?d program W'l.l I|kel_y
determine performance, the collection of checkpoint writes

and_ _aII _previou_s_tas_ks have committed, a task can underg&)oth register and memory) should be done in a way that
\(erlf_|cat|on. Ver_lflcat|on is performed by comparing a task’s minimally impacts the master’s execution throughput.
live-ins to architected state. If they match, architected state To ensure verification/commit has sufficient throughput, it

can be updated with the task’s writes. To avoid memorywiII likely be necessary to bank the level of the memory sys-

ordering vu_)latlons In many con5|s_tency mogiels, verlflcatlonttem at which the verification/commit unit resides. Such an
and commit should appear atomic to outside observers. |

live-in values do not match architected state, a task misspec'?1 rangement requires a two-phase commit protocol to assure

LT . : . _all banks agree to verification before any data is committed.
ulation is signalled and speculative state is flushed, rolling . y
; A two-phase commit protocol need not introduce a sequen-
back to the most recent architected state.

tial communication latency, because each bank can specula-
Program counter mapping.Since the distilled program tively verify (i.e., perform verification assuming all previous
resides at a different location in memory than the originaltasks commit) its portion of the task summary by itself. This
program, entry and indirect branch target PC's need to bgjlows the two-phase commit protocol for separate tasks to
mapped using the tables generated by the distiller (sege pipelined.

Section 3.5). These lookups exhibit locality that can be Similarly, it will likely be necessary to cache checkpoint

exploited by a TLB-like mechanism. data at the processors to avoid accessing the shared-level of
. i . the memory hierarchy on every access. As the checkpoint
4.3 Reverting to Sequential Execution data is not architected state, it must be invalidated appropri-

To handle extraordinary circumstances, MSSP falls baclgtely. At the end of tasks, slave processors must invalidate
on sequential execution. At any point, all speculative statgache lines that contain checkpoint data or have been
can be purged, and a single processor can be assigned to ex@ated by task commitment. As a performance enhance-
cute the program sequentially, starting from the last commitment, the master should periodically update cache lines con-
ted architected state. Such a technique is used in manyining old non-architectural data, so that more recently
speculative parallel architectures. In addition, the rePLaygmmitted values are visible. This is done in our implemen-
framework P] similarly falls back on traditional execution tation via refreshing the master periodically requests an

when its speculatively optimized code is inappropriate. up-to-date copy of cache lines already present in its data
MSSP uses this technique for three purposes: exceptionggche.

very large tasks, and to ensure forward progress. Upon



5 Experimental Results 5.1 Experimental Methodology
In this section, we describe experiments performed to Our simulation-based evaluation involved three compo-

quantify the potential of the MSSP paradigm. As with anyN€Nts: 1) a prototype automatic program distiller, 2) an exe-
technique that involves transforming programs, performanc&Ution-based timing simulator, and 3) the SPEC2000 integer
potential is difficult to quantify indirectlyi(e., without build- ~ Pe€nchmarks. N i

ing the system that actually transforms the program). As a Although program distillation may be most fruitful if per-
result, we have implemented a first-cut automatic prograniofmed at run time, for simplicity our first implementation
distiller (described in Section 5.1) to allow us to quickly performs distillation statically and off line. The distiller is

explore some of the characteristics of MSSP execution. In ndk€ @ binary-to-binary translator: it augments an Alpha
way are these results a “limit study” of the performance ofarchitecture binary with a distilled program and the requisite
MSSP. mapping tables. Currently, the distiller performs approxima-

Due to space constraints we present the results of a seleionS With the parameters listed in Table 1. These transfor-
tion of experiments in Section 5.2. The complete evaluatiodnations are guided by profile information; to approximate
can be found in [24]. Our initial experiments have demon-the guality of profile information available to a run-time
strated that the MSSP paradigm has a number of desirablgPlementation, profile information was gathered from the
characteristics: same run of the program with which the evaluation was per-
1. Code approximation can be used to generate accura{@'med. After approximation, the following traditional opti-

value predictors for task live-in values. On average, taskhizations were applied: dead code elimination, limited

misspeculation occurs only once every 10,000 to 200,006_0”3ta_”t folding, register (re-)allocation, in-lining, and pro-
original program instructions. file-guided code layout.

. . . Our simulation model is derived from the SimpleScalar
2. MSSP performance is largely a function of the effective- . o .
S : : toolkit [4], but the timing model was re-written from scratch.
ness of distillation, which varies among programs.

Speedups (over a single processor) range from negligiblIn our mod_el, timing and fun_ct|onal S|mglat|0n are n(_)t
speedupdzip ) to 1.70 fec, vortex ), with a harmonic gecoupled; msteac_i, great care |s_taken to simulate operations
mean of 1.25. We believé there is' much headroom &> and when the S|mu|ate(_j machme_performs the_m teg-
improve distillation Isters are _renamed and_mlsspecu_latlon recovery is perfor_med
o . . by rewinding to a pre-misspeculation register map). Our sim-
3. Accurate predictions make MSSP largely insensitive tQ,5ted machine is an eight-processor CMP, where each pro-
Inter-processor communication: as INter-processor CoMgaggpy js configured to be similar to the Alpha 21264 [14].
munication latency is scaled from 5 to 20 cycles, relativepgcessor parameters are shown in Table 2. Uncontended
performance only degrades by 10 percent. latency on the interconnect is 10 cycles, so the minimum L2
4. Only a modest amount of speculative buffering ishit latency is 26 cycles (round-trip on the interconnect +
required: for these experiments, the primary storage otache access time).
checkpoint, live-in, and live-out data (at the L2) needed e used the SPEC2000 integer benchmarks, because they
only 24kB of storage total: about 1% of the storage of aexhibit the control flow and memory access behaviors repre-
2MB L2 cache. sentative of non-numeric programs. The benchmarks were

Table 1. Parameters supplied to the program distiller.

Parameter Value Explanation
Target Task Size 250 insts The task size the task selection algorithm considers optimal.
Branch Threshold 99% biasefd  Fraction of instances that must go to the dominant target for the branch to be removed.

Idempotency Threshold 99% corret  Fraction of times that an instructions output must match an input for it to be removef.
Distant Use Definition 1000 insts Store to load distance at which a dependence is considered as having a distant first|use.
Distant Use Threshold 99% distarpt Fraction of store instances that have to be distant for the static store to be consitder¢d dista

Table 2. Simulation parameters approximating a CMP of Alpha 21264 processors.
Front A 64KB 2-way set associative instruction cache, a 64Kb YAGS branch predictor, a 32Kb cascading indirect brafch pre-
End dictor, and a 64-entry return address stack. The front end fetches aligned blocks of 4 instructions. A line-predictor a la the
21264 is implemented.
Execution | 4-wide (fetch, decode, execute, retire) machine with a 128-entry instruction window and a 13 cycle pipeline, ingludes a
Core full complement of simple integer units, 2 load/store ports, and 1 complex integer unit, all fully pipelined. The L[L data

cache is a 2-way set-associative 64KB cache with 64B lines and a 3-cycle access latency, including address generation.

and a register bank. An interconnection network is modelled that can move one 64B message per cycle to or fjom each
processor and cache; one-way latency is 10 cycles. Minimum memory latency (after an L2 miss) is 100 cycles.

System The system on a chip includes 8 processor and 8 L2 cache banks (each 4-way set-associative with 64B lines, iMB total),




compiled for the 21264 implementation with the “peak” o
optimizations specified. As such, the binaries contain many a) g
nops for branch alignment, which benefit the 21264-style © 100000
line-predictor-based front end we model; these nops arge ;_ 10000
fetched but discarded after decode. We used modified refer- g
ence input sets allowing us to run the benchmarks to comple- @ 10009 .
tion (9 - 45 billion instructions). The input sets were choser| * o bzl cra eon gap gec gzi mef par per two vor vpr
to maintain the memory working sets of the reference inputs. b) ‘g 08
5.2 Results 2 081
For these experiments, we request our task selection algp- 7 02
rithm to create tasks that execute 250 dynamic instructions in S 00- bzi cra eon gap gec gzi mef par per two vor vpr
the original program. The resulting distribution of task sizeg
(weighted by execution frequency) is shown in Figure 11} ¢) & 16
Although the average task size is closer to 200 instructions, 2 i'g_
most tasks are between 100 and 300 instructions. Tasks pf % 1'0_
this size appear to be a good compromise between storage bei ora eon gep oG gzi Mok par per two vor vir
requirements (which increase with task size) and inter-pro- )
cessor bandwidth usage (per-instruction bandwidth usagded) 3 B uniprocessor B MSSP
decreases with larger tasks). g 2
Figure 12a shows the average distance (in original pro- 1
gram instructions) between task misspeculations. This dig- 0 bzi cra eon gap goc gzl mef par per two vor vpr
tance is generally above 10,000 instructions and as high as

200,000 instructions, demonstrating that distilled programs
can be used as highly accurate predictors. The effectivenes
of distillation that corresponds to this misspeculation rate ignstructions retired per cycle is shown in Figure 12d. In some
shown in Figure 12b. This plot shows thstillation ratio, ~ Phasesycc’s aggregate IPC exceeds the width of a single
the ratio of distilled to original program instructions exe- core.
cuted, not counting nops. Currently, our distiller is most The simulations modeled an eight processor CMP, but
effective (lower is better) on two benchmarksd¢ andvor- most of the benchmarks rarely use more than five processors
tex ), where the master executes two thirds fewer instruc{shown in Figure 13). The average number of in-flight tasks
tions than the original program. Although some programgs slight larger, as processors can be re-allocated to new tasks
may be intrinsically easier to distill than others, we believeupon completion of a task, not when the task is committed.
the variation in distillation effectiveness may be a conse- In what follows, we summarize results from [24]. The
quence of the selection of optimizations currently imple-storage requirements for checkpoint, live-in, and live-out
mented in our distiller prototype. values can be modest. Checkpoints are biased toward register
The distillation ratio correlates well with the speedup thatwrites: for average 200 instruction tasks, the master writes
MSSP achieves over a traditional uniprocessor execution oh5 registers and seven distinct 8-byte memory words. In con-
the same simulated hardware (shown in Figure 12c). Manyfast, live-in sets are dominated by loads, with 20 distinct
of the speedups are in the 1.2 range, gut and vortex 8-byte memory words read but only six registers. Live-out

SFigure 12. Performance of MSSP execution.

demonstrate the potential of the MSSP paradigm, achieving 100
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