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Abstract
Pre-execution attacks cache misses for which address-

prediction driven prefetching fails. In pre-execution, cop-
ies of cache miss computations are isolated from the main
program and launched as separate threads called p-
threads whenever the processor anticipates an upcoming
miss. P-thread selection is the task of deciding what com-
putations should execute as p-threads and when they
should be launched such that total execution time is mini-
mized. It is central to the success of pre-execution.

We introduce a framework for automated static p-
thread selection, a static p-thread being one whose
dynamic instances are repeatedly launched during the
course of program execution. Our approach is to formalize
the problem quantitatively and then apply standard tech-
niques to solve it analytically. The framework has two
novel components. The slice tree is a data structure that
compactly represents a set of static p-threads and the rela-
tionships among them. Aggregate advantage is a formula
that uses raw program statistics and computation structure
to assign each candidate static p-thread a numeric score
based on estimated latency tolerance and overhead aggre-
gated over its expected dynamic executions.

We use the framework to select p-threads that cover L2
misses and study its effectiveness under different condi-
tions via detailed simulation. We measure the effect of con-
straining p-thread length, locally optimizing p-threads,
using different program samples as a statistical basis for
selection, and varying several machine parameters. Our
framework responds to these changes in an intuitive way.
We also validate that aggregate advantage correctly mod-
els actual pre-execution.

1 Introduction
Second-level cache misses constrain processor perfor-

mance, a problem that will worsen as memory latencies
relatively increase. Driven by address prediction, non-
binding prefetching hides memory latency by specula-
tively hoisting the cache miss portion of a load, overlap-
ping it with prior instructions. Prefetching eliminates
many misses, but certain staticproblem loadsdefy address
prediction and their misses elude prefetching.

Pre-executionis a way to deal with problem loads. Pre-
execution sidesteps address prediction and generates
prefetch addresses by executing acopy of the load compu-
tation in parallel with the main program as a separate
thread called ap-thread (these have also been called p-
slices or data-driven threads) in a multithreaded processor.
Hoisting is accomplished as the p-thread fetches and exe-
cutes fewer instructions than the main program thread and
thus initiates the cache miss first. The multithreaded exe-

cution model, which decouples p-threads from the ma
program and from one another, has many advantages
thread cache miss initiations are accelerated because
threads are isolated from stalls and squashes that occu
the main thread. Overlapping is enhanced because whi
cache miss stalls the p-thread, the main program thre
continues fetching, executing and retiring instruction
With multithreaded processors becoming prevalent, p
execution is gaining popularity [5, 10, 11, 15, 19].

The benefits and limitations of pre-execution hav
been well documented. Here, we attack the problem ofp-
thread selection[12], the task of deciding which p-threads
to pre-execute and when to pre-execute them. P-thre
selection is a crucial component of pre-execution. It is al
a complex task that must balance many inter-related, of
antagonistic concerns including miss latency tolerance,
thread resource consumption (important when p-threa
share resources with the main thread), and prefetch cov
age and accuracy. Existing p-thread selection methods
both manual [19] and automatic [4, 5, 8, 9, 11]—are su
cessful, but largely heuristic. We present a framework f
attacking the problem in a formal, quantitative, and holi
tic way. The framework producesstatic p-threads, copies
of which are launched repeatedly during program exec
tion. The intervals for which p-threads are chosen can
short, modeling on-the-fly generation, or a full program
run, modeling off-line selection.

Our framework selects p-threads by effectively con
ducting an analytical pre-execution limit study. Thi
approach is possible because we consider only p-thre
which can be directly derived from the original program o
optimized versions thereof. This restriction (which is no
severe) allows us to use an execution trace toenumerate
all possible p-threads of this form and select the be
among them, rather than generate p-threads from scratc
Theslice treeis a data structure that compactly represen
a set of static p-threads and the relationships betwe
them. It allows us to accurately assess miss covera
ensuring that pre-execution work is not replicated and a
in decomposing the problem into orthogonal sub-pro
lems. We apply a simple model calledaggregate advan-
tageto calculate the performance benefit of each candid
static p-thread aggregated over its dynamic executio
Aggregate advantage uses a few key abstractions to mo
the interactions of a p-thread with the main thread. Final
we “solve” the selection problem by choosing the set of
threads that maximizes total performance benefit. T
framework also includes facilities for optimizing and
merging p-threads. Constructed from first principles, th
framework is simple and, via a few intuitive parameter
applicable to a range of pre-execution implementatio
and processor configurations. For instance, in this work
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FIGURE 1. Pre-execution running example

for (i = 0; i < N_XACT; i++) { // 100 iterations
   if (xact[i].cover==FULL)
     continue; // 20 times
   else if (xact[i].cover==PART)
      rxid = xact[i].rxid; // 60 times (#04)
   else
      rxid = xact[i].gen_rxid; // 20 times (#06)
   receipts += rx[rxid].price ; // 80 times/40 misses (#09)
}

#11:
#11: addi R5, R5, #16
#04: lw R7, 4(R5)
#07: sll R7, R7, #2
#08: addi R7, R7, #rx
#09: lw R8, 0(R7)
#06: lw R7, 8(R5)
#07: sll R7, R7, #2
#08: addi R7, R7, #rx
#09: lw R8, 0(R7)

#11: addi R5, R5, #16
#12: addi R4, R4, #1
#13: j #00
#00: bge R4, R1,#14
#01: lw R6, 0(R5)
#02: beq R6, R2, #11
#03: bne R6, R3, #06
#06: lw R7, 8(R5)
#07: sll R7, R7, #2
#08: addi R7, R7, #rx
#09: lw R8, 0(R7)
#10: add R9, R9, R8
#11: addi R5, R5, #16
#12: addi R4, R4, #1
#13: j #00
#00: bge R4, R1,#14
#01: lw R6, 0(R5)
#02: beq R6, R2, #11
#03: bne R6, R3, #06
#04: lw R7, 4(R5)
#05: j #07
#07: sll R7, R7, #2
#08: addi R7, R7, #rx
#09: lw R8, 0(R7)

MAIN PROGRAM P-THREADS

#11:
#11: addi R5, R5, #16
#04: lw R7, 4(R5)
#07: sll R7, R7, #2
#08: addi R7, R7, #rx
#09: lw R8, 0(R7)
#06: lw R7, 8(R5)
#07: sll R7, R7, #2
#08: addi R7, R7, #rx
#09: lw R8, 0(R7)
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assume a simultaneous multithreading (SMT) substra
but the framework can model processors that execute
threads on dedicated resources.

Because it considers all possible static p-threads a
uses standard optimization techniques to maximi
expected performance, our framework has value beyo
its p-thread selection capabilities. As a formal model
pre-execution, it can be used tostudy pre-execution per-
formance potentialunder different configurations. The
results of these studies would be rough—the framewo
makes several assumptions to achieve computatio
leverage and its performance model,aggregate advantage,
is simplistic—but may provide useful insight and intu
ition. The framework also forms an analytical foundatio
for future p-thread selection algorithms.

We evaluate our framework by using it to select p
threads targeting L2 misses for the SPEC2000 ben
marks. We validate the framework’s performance mod
by comparing predicted performance results and diagn
tics to those observed during pre-execution simulation. W
measure pre-execution sensitivity to variations in p-thre
construction and machine parameters.

The next section describes the selection problem. S
tion 3 details the framework. The final three sections co
tain an evaluation, related work, and our conclusions.

2  Background
We review pre-execution and introduce the p-threa

selection problem using an example. The loop at the top
Figure 1 iterates over a list of pharmacy transactions a
sums the appropriate drug prices. Load #09 (rx[rxid].price),
is a problem load. We attack its misses—whose addres
do not form an arithmetic series—via pre-execution. Th
bottom of the figure shows a p-thread-assisted execution
main thread on the left with loop iterations separated
horizontal lines and p-thread to the right. In Section 3, w
show how our framework constructs this p-thread.

Abstract pre-execution model.A p-thread has two com-
ponents: thebodyis a list of instructions that constitutes a
cache miss computation, thetrigger is a PC of an instruc-
tion in the main thread. Astatic p-threadis a trigger/body
pair. A dynamic p-threadis an instance of a p-thread body
launched when the main thread executes an instance of
corresponding trigger. In the figure, the p-thread body
shown in a box with the trigger as an annotation on top.
dynamic p-thread instance is launched by every ma
thread instance of #11.

A linear p-threadcorresponds to one dynamic compu
tation. Our example p-thread merges two linear p-threa
[#11,#04,#07,#08,#09], a slice that includes instructio
#04 (rxid=xact[i].rxid), and [#11,#06,#07,#08,#09], which
includes instruction #06 (rxid=xact[i].gen_rxid). As it is not
known at launch time which computation a given iteratio
will execute, our framework hedges and executes bo
This is simpler and often faster than having the p-thre
figure out which to execute. Our framework deals prim
rily with linear p-threads which it extracts from dynamic
instruction traces. Merging is performed as a post-proce
te,
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ing step. Our example will focus on the first linear p
thread. This p-thread and the main thread computation
corresponds to are shaded.

A p-thread’s target cache miss, trigger, and body a
related by the dynamic execution of the original program
A given p-thread’s body is the computation of the targ
miss starting from the trigger. This relationship forms th
basis of theabstract pre-execution model. Starting at the
trigger, the p-thread and main thread execute in paral
with the p-thread arriving at the cache miss first by virtu
of fetching and executing only the load computation a
opposed to the full program. Our framework uses th
abstract model in its calculations. For a given trigger/mi
pair, it estimates how much faster the body execut
stand-alone (i.e., as a p-thread) than when embedded in
full program.

The miss/trigger/body relationship also lets us turn th
problem from p-thread construction intop-thread selec-
tion. The body and trigger form a dynamic backward
data-dependence slice that starts at the miss. We canenu-
merate all possible linear p-threadsthat are derived from
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the program by constructing successively longer bac
ward slices. The trace in Figure 1 yields five candidat
(written as trigger:[body]): #08:[#09], #07:[#08,#09]
#04:[#07,#08,#09], #11:[#04,#07,#08,#09], and #1
[#11,#04,#07,#08,#09].

P-thread sequencing.Our p-threads arecontrol-lessand
unchained—they are fixed instruction sequences, ex
cuted in their entirety, and launched only by the ma
thread. These restrictions allow us to analyze a static
thread as the aggregate of its dynamic instances—
know exactly what each instance looks like and ho
many of them there are. Control-less-ness also simplifi
dynamic backward slicing. Disallowing control and
chaining does not constrain the power of pre-executio
These features are primarily used to implement p-thre
loops for increased latency tolerance. We simulate loo
by including multiple induction copies in a p-thread, a
idiom calledinduction unrolling[4, 15]. Our example p-
thread uses one level of unrolling, it uses a copy
instruction #11 to skip one loop iteration ahead.

Aspects of p-thread selection.Since it is a backward
slice, the only thing we can vary in a p-thread is it
length. Choosing a proper p-thread length can be sub
Obviously, a longer p-thread is launched earlier wit
respect to its target miss and will typically tolerate mor
latency. It also executes more instructions and consum
more resources. However, that is not all. A given static
thread will launch a certain number ofuseless dynamic
instances. An instance is useless because the load it p
executes either: 1) hits in the cache anyway, or 2) nev
arrives, i.e., the main thread executes along a differe
path than the one the p-thread implicitly assumes. O
example p-thread is launched once per loop iteration
instruction #11 while not every loop iteration contains a
instance of load #09. Increasing p-thread length oft
increases the incidence of useless p-threads of the sec
kind. Another phenomenon is that longer p-thread
while tolerating more latency per miss,cover fewer
misses. In our example, a given instance of load #09 ma
be computed using either instruction #04 or #06. A p
thread that contains one of these two instructions w
cover only the corresponding subset of misses. Cover
all #09 misses requires two linear p-threads. Our fram
work simultaneously examines all of these consideratio
and makes trade-offs between them quantitatively.

3  P-Thread Selection Framework
We construct the framework from first principles

First, we introduce theslice tree, a data structure for rep-
resenting static p-threads and the relationships amo
them. Next, we describeaggregate advantage, a formula
that quantifies the performance impact of static p-thre
candidates and show how it is used to select the best
thread from within a single computation. We then sho
how the slice tree enables the selection of multiple line
p-threads from multiple, partially overlapping computa
tions. Finally, we discuss merging and optimization.
3.1  Structure, Basic Assumptions, and Raw Data
Finding good p-threads is computationally intensive

The control-less nature of the p-threads allows us
explicitly analyze a single dynamic p-thread executio
and estimate the aggregate effects of all executions of
static p-thread using multiples of expected launch a
miss coverage counts. Our framework analyzes statisti
data of this nature. In this work, we collect data from pro
gram traces, but static estimation may also be used.

Slice tree.The data we collect is compactly represente
in a data structure called aslice tree, a tree of static back-
ward slices with the static problem load at the root. Eac
tree node represents an instruction and a static p-thre
whose trigger is that instruction. The p-thread is con
structed by walking from the node to the root. The tre
arrangement is used to representstatic p-thread over-
lap—p-threads overlap if their dynamic executions targ
overlapping sets of dynamic misses. We will deal wit
the ramifications of p-thread overlap in section 3.3.

Figure 2 shows the slice tree representing both line
slices from our example. Instruction #09 (node A) is th
root. The p-thread from our example is represented
node F: it’s trigger is #11 and its body is constructed b
walking up from F to the root [#11,#04,#07,#08,#09
The slice formed by the nodes A–C and H–K is the alte
nate computation of #09, the one that contains #06. F
pedagogical reasons, we include an extra level of indu
tion unrolling in each linear slice (nodes G and K).

Raw statistics.Each tree node (p-thread) is associate
with three statistics.DCtrig counts the dynamic instances
of the trigger in the trace; it is an estimate of the numb
of times the p-thread would be launched.DCpt-cmcounts
the number of times this list of instructions appears in th
trace as thebackwards slice of a miss. DCpt-cm estimates
the number of misses a p-thread would cover. Not
DCtrig is a trigger property while DCpt-cm is a p-thread
property. For instance, nodes E and I have the sa
DCtrig values (#11 triggers both) but different DCpt-cm
values (they correspond to different p-threads).

To gain computational leverage, the slice tree expli
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FIGURE 2. Slice tree

K #11 addi R5, R5, #16 30 10 100
J #11 addi R5, R5, #16 24 10 100
I #11 addi R5, R5, #16 12 10 100
H #06 lw R7, 4(R5) 3 10 20

G #11 addi R5, R5, #16 30 30 100
F #11 addi R5, R5, #16 24 30 100
E #11 addi R5, R5, #16 12 30 100
D #04 lw R7, 4(R5) 5 30 60

C #07 sll R7, R7, #2 2 40 80
B #08 addi R7,R7,#rx 1 40 80
A #09 lw R8, 0(R7) 0 40 80
# PC instruction DPLmt DCpt-cm DCtrig
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itly stores only p-thread instructions. The parallel work in
the main thread is represented by a single count, DPLmt,
which is the average number of dynamic main thread
instructions that exist between the instruction in question
and the target load. Our calculations actually count main
thread work from the trigger (DTRIGmt): an instruction’s
DTRIGmt with respect to any trigger is obtained by sub-
tracting its DPLmt from the trigger’s. For example, assum-
ing F is the trigger, B’s DTRIGmt is 23 (24–1). The main
thread sequences 23 instructions before it can execute B.
B’s DTRIGpt is 4, the p-thread sequences only 4 instruc-
tions before it can execute B.

Our approach has two limitations. First, by represent-
ing only slice instructions we do not consider the instruc-
tions outside the slice as triggers. Non-slice triggersmay
have lower DCtrig values, and require fewer useless
launches to cover the same number of misses. More seri-
ously, by not retaining temporal information we implicitly
assume that a single dynamic p-thread instance is active at
a time. This assumption is not egregious for L2 cache
misses. We willingly trade these inaccuracies for the com-
putational leverage provided by summary information.

Divide and conquer.We create a separate slice tree for
the computations of each static problem load. Since p-
threads for different static loads do not overlap–they do
not target the same misses–we treat each tree as a subprob-
lem and solve it separately. A post-pass merges the linear
p-threads that result from the solutions of all trees.

3.2  Estimating the Benefit of a P-Thread Candidate
Backward data-dependence slicing is straightforward,

even in hardware [4, 11]. AnN-instruction slice presents a
choice ofN linear p-threads. P-thread selection amounts to
choosing the backwards sub-slice that makes the best p-
thread. P-thread goodness is measured by a function,
aggregate advantage (ADVagg), whose definition is sum-
marized in Table 1.

Aggregate Advantage (ADVagg). P-thread selection bal-

ances four considerations:latency tolerance, overhead,
miss coverageanduseless p-thread frequency. Longer p-
threads tolerate more latency per miss, but incur mo
overhead, generally cover fewer misses, and genera
result in more useless p-thread instances.Aggregate
advantage (ADVagg) combines these into a single numeri
cal score, allowing them to be simultaneously optimize
The aggregate advantage of a static p-thread is the e
mated number of cycles by which its dynamic instanc
collectively accelerate program execution. Shown in equ
tion 1 of Table 1, aggregate advantage is the difference
two terms.Aggregate latency tolerance (LTagg) is the num-
ber of cycles by which a p-thread’s dynamic instanc
accelerate cache misses.Aggregate overhead (OHagg) is
the number of cycles by which a p-thread’s instances slo
down the main thread by stealing resources from it. No
the multipliers for LTagg and OHagg. Every launched p-
thread instance (DCtrig) exacts overhead, but only
instances that pre-execute actual misses (DCpt-cm) achieve
any latency tolerance. Useless instances tolerate no late
because their corresponding main thread loads have no

Overhead per dynamic p-thread (OH).On an SMT pro-
cessor, the number of sequencing cycles stolen from
main thread is the most direct measure of p-thread ov
head. Other forms of contention are either subsumed
this measure (e.g., execution slots), not easily estima
(e.g., bus bandwidth), or both (e.g., buffer occupancy
The number of cycles it takes to sequence a p-thre
instance is its length (SIZE) divided by the sequencin
width of the processor (BWSEQproc). Since overhead is
opportunity cost, we discount it by the expected ma
thread sequencing utilization (BWSEQmt/BWSEQproc).
For instance, if the main thread utilizes only half of th
available sequencing bandwidth, then a p-thread is on
penalized for half of its bandwidth consumption. Half th
cycles would not have been used by the main thread.

Latency tolerance per useful dynamic p-thread (LT).
P-thread latency tolerance is estimated as a difference
TABLE 1. Static p-thread selection framework summary

Equation or Definition Description

EQ1. ADVagg(p) = LTagg(p) – OHagg(p) Aggregate advantage

EQ2. OHagg(p) = DCtrig(p) * OH(p) Aggregate overhead: overhead is incurred for every dynamic p-
thread instance (DCtrig)

EQ3.  LTagg(p) = DCpt-cm(p) * LT(p) Aggregate latency tolerance: latency is tolerated only for
instances that pre-execute actual misses (DCpt-cm)

EQ4. OH(p) = (SIZE(p)/BWSEQproc) * (BWSEQmt/BWSEQproc) Per dynamic instance overhead:overhead is discounted by
main thread sequencing utilization (BWSEQmt/BWSEQproc)

EQ5. LT(p) = MIN(SCDHmt(p) – SCDHpt(p), Lcm) Per useful dynamic instance latency tolerance:latency toler-
ance is bounded by cache miss latency (Lcm)

EQ6. SCDHt(pi) = MAX(SCt(pi), SCDHt(DFP(pi))) + Lop(pi) Completion time for ith p-thread instruction: DFP(pi) are pi’s
dataflow predecessors, Lop(pi) is its operation latency

EQ7. SCt(pi) = DTRIGt(pi) / BWSEQt Sequencing constraint on ith p-thread instruction: instruc-
tion’s distance from trigger divided by sequencing bandwidth

EQ8. BWSEQmt, BWSEQpt, BWSEQproc, Lcm Constant parameters

EQ9. ADVagg-red(p) = ADVagg(p) – LT(p) * DCpt-cm(CHILD(p)) Reduced aggregate advantage
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FIGURE 3. ADVagg calculation working example

candidate C SCDH mt SCDHpt
#07 sll R7, R7, #2 max(0/2, 0)+1 = 1 max(0/1, 0)+1 = 1
#08 addi R7, R7, #rx max(1/2,1)+1 = 2 max(1/1, 1)+1 = 2
#09 lw R8, 0(R7) max(2/2, 2)+8 = 10 max(2/1, 2)+8 = 10

[40 * min(10–10, 8) ]– [80 * (2/4) * (2/4)] = 0–20 = –20

candidate D SCDH mt SCDHpt
#04 lw R7, 4(R5) max(0/2, 0)+1 = 1 max(0/1, 0)+1 = 1
#07 sll R7, R7, #2 max(3/2, 1)+1 = 3 max(1/1, 1)+1 = 2
#08 addi R7, R7, #rx max(4/2, 3)+1 = 4 max(2/1, 2)+1 = 3
#09 lw R8, 0(R7) max(5/2, 4)+1 = 12 max(3/1, 3)+8 = 11

[30 * min(12–11, 8) ]– [60 * (3/4) * (2/4)] = 30–23 = 7

candidate E SCDH mt SCDHpt
#11 addi R5, R5, #16 max(0/2, 0)+1 = 1 max(0/1, 0)+1 = 1
#04 lw R7, 4(R5) max(7/2, 1)+1 = 5 max(1/1, 1)+1 = 2
#07 sll R7, R7, #2 max(10/2, 5)+1 = 6 max(2/1, 2)+1 = 3
#08 addi R7, R7, #rx max(11/2, 6)+1 = 7 max(3/1, 3)+1 = 4
#09 lw R8, 0(R7) max(12/2, 7)+8 =15 max(4/1, 4)+8 = 12

[30 * min(15–12,8) ]– [100 * (4/4) * (2/4)] = 90–50 = 40

candidate F SCDHmt SCDHpt
#11 addi R5, R5, #16 max(0/2, 0)+1 = 1 max(0/1, 0)+1 = 1
#11 addi R5, R5, #16 max(12/2, 1)+1 = 7 max(1/1, 1)+1 = 2
#04 lw R7, 4(R5) max(19/2, 7)+1 = 11 max(2/1, 2)+1 = 3
#07 sll R7, R7, #2 max(22/2, 11)+1 = 12 max(3/1, 3)+1 = 4
#08 addi R7, R7, #rx max(23/2, 12)+1 = 13 max(4/1, 4)+1 = 5
#09 lw R8, 0(R7) max(24/2, 13)+8 = 21 max(5/1, 5)+8 = 13

[30*min(21–13,8) ]– [100*(5/4)*(2/4)] = 240–63 = 177

candidate G SCDH mt SCDHpt
#11 addi R5, R5, #16 max(0/2, 0)+1 = 1 max(0/1, 0)+1 = 1
#11 addi R5, R5, #16 max(6/2, 1)+1 = 4 max(1/1, 1)+1 = 2
#11 addi R5, R5, #16 max(18/2, 4)+1 = 10 max(2/1, 2)+1 = 3
#04 lw R7, 4(R5) max(25/2, 10)+1 = 14 max(3/1, 3)+1 = 4
#07 sll R7, R7, #2 max(28/2, 14)+1 = 15 max(4/1, 4)+1 = 5
#08 addi R7, R7, #rx max(29/2, 15)+1 = 16 max(5/1, 5)+1 = 6
#09 lw R8, 0(R7) max(30/2, 16)+8 = 24 max(6/1, 6)+8 = 14

[30*min(24–14, 8) ]–[100*(6/4)*(2/4)]= 240–75 = 165
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miss computation execution times. Starting from the tri
ger (when the main thread and p-thread begin executing
parallel), we calculate the number of cycles it would tak
the p-thread to execute the cache miss (SCDHpt) and the
number of cycles it takes anunassisted main threadto do
the same (SCDHmt). The difference between these est
mates is the number of cycles by which the p-thread hoi
the miss with respect to the main thread and thus t
amount of latency it tolerates. Since there is no benefit
tolerating more latency than the latency of the miss, w
bound LT by the original miss latency (Lcm).

Our execution time estimation function issequencing-
constrained dataflow-height (SCDH). It is the standard
recursive dataflow-height equation with an addition
sequencing constraint (SC)which models the cycle at
which the instruction is sequenced (fetched). SCDH c
be used to model both standalone p-thread execut
(SCDHpt) and embedded main thread execution (SCDHmt)
using proper definitions of the sequencing constraint.
calculate SC for a given instruction, we divideDTRIG—
its distance in dynamic instructions from the trigger—b
the sequencing bandwidth. SCDHpt is smaller than
SCDHmt because of SC: the p-thread sequences few
instructions, so each instruction’s DTRIGpt is smaller than
its DTRIGmt.

Constant parameters.Our calculations parameterize the
underlying machine using four constants. BWSEQproc is
the sequencing bandwidth of the processor and is straig
forward to define. BWSEQpt is the rate at which a p-thread
is allowedto sequence. We set BWSEQpt to 1 because p-
threads are single computations that execute serially a
there is no sense allocating a p-thread more sequenc
bandwidth than it will use. BWSEQmt is the rate at which
the main threadactuallysequences. This constant is trick
to set. Not only is it difficult to measure—we are reall
interested in the main thread’s sequencing rateup to the
miss, not including the miss—it also varies (often wildly
over the course of the program such that a constant r
may not accurately represent any single program regio
Lcm is the miss latency. Like BWSEQmt, our framework
treats Lcm as a constant, even though a conventional pr
cessor naturally overlaps misses—with program instru
tions or even other misses—to varying degrees.

Working Example. To illustrate the use of ADVagg, we
select a p-thread from the linear computation of load #
that contains instruction #04 (nodes A–G in Figure 2). A
shown in Figure 1, the loop executes 100 iterations,
iterations execute instances of #09, of which 40 a
misses. Of the 80 #09 computations, 60 contain instructi
#04 and 20 use #06. All operations have unit latency, a
miss latency is 8 cycles. Note, the highest possib
ADVaggscore in this case is 320: 8 cycles of latency tole
ance for all 40 misses, with 0 overhead. This score
impossible to achieve if p-threads have non-zero cost. T
processor is 4 wide, BWSEQmt is 2, and BWSEQpt is 1.

Figure 3 shows the ADVaggcalculations for five of the
six candidates (B–G). The winning p-thread, F, is shade
Each calculation is shown as a table. The top portion co
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putes SCDHmt and SCDHpt. The left term under max() is
the sequencing constraint. Notice, DTRIGmt values are
sparse, while DTRIGpt values are sequential. Each instruc
tion has a single dataflow-predecessor; the right val
under max is SCDH of the previous instruction. The bo
tom row calculates ADVagg, plugging 8 for Lcm, 2 for
BWSEQmt, and 4 for BWSEQproc.

Candidate C (B is similar so we do not show it) pro
vides no sequencing advantage over the main thread. St
ing at the trigger, both main thread and p-thread execu
exactly the same instructions. However, it does incur ove
head. Pre-executing this candidate willincreaseexecution
time by 20 cycles. Notice, DCtrig is 80 while DCpt-cm is
40; only 40 of the 80 executions will cover misses.
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Candidate D provides minimal sequencing advan-
tage—the p-thread skips instructions #05 and #06—and 1
cycle of latency tolerance. Notice, #04 is executed only 60
times (#06 is executed the other 20 times) and the compu-
tation triggered by #04 covers only 30 misses. The p-
thread incurs overhead for each of 60 p-threads launched
for a positive ADVagg of 7 cycles.

Since instances of #11 occur once per iteration, candi-
date E’s DCtrig is 100. DCpt-cm is still 30—the computa-
tion includes instruction #04 and correctly pre-executes
only 30 misses. Note, DCpt-cm monotonically decreases as
p-thread length increases. A longer slice corresponds to
fewer dynamic computations. In contrast, DCtrig has no
relationship to p-thread length. Trends aside, candidate E
is better than candidate D. Although the number of useless
p-threads (DCtrig–DCpt-cm) grows from 30 to 70 and per p-
thread overhead increases, the additional 2 cycles of
latency tolerance per miss produces a net gain.

The final two candidates are similar: F uses a single
level of induction unrolling, G unrolls twice. The first
unrolling provides candidate F with an additional sequenc-
ing advantage of 12 instructions over the main thread,
which translates into 5 additional cycles of execution time
advantage for a total of 8. This is as much latency toler-
ance as we need. The score for this candidate is 177: full
latency tolerance for 30 misses, at the cost of 63 overhead
cycles. With full latency tolerance already achieved, the
added unrolling of candidate G only increases overhead.

3.3  Selecting Multiple P-Threads Simultaneously
P-thread F, which we found in the previous section,

covers only 30 of the 40 #09 misses. We now show how to
select aset of p-threadsby optimizing multiple, partially
overlapping linear slices simultaneously.

P-thread overlap.As hinted in Section 3.1, the possibility
of overlap makes a naive approach inappropriate for
selecting multiple p-threads that cover the misses of a sin-
gle static load. If two static p-threadsoverlap—if at least
one dynamic miss is pre-executed by both of them—then
their aggregate latency tolerances do not add. Once one p-
thread tolerates the latency of a miss, a second p-thread
cannot tolerate it again.

P-threads in a slice tree obey parent-child relation-
ships. Shorter, less specialized p-threads which cover more
misses are parents. Longer, more specialized p-threads
which cover fewer misses but more latency per miss are
children. In our Figure 2 example, C is the child of B, D of
C, E and H of D, and so on. The parent-child relationship
is transitive, but not total: e.g., E and I are not parent and
child. The parent-child relationship quantifies p-thread
overlap. A child covers some subset of the misses covered
by its parent. The size of this subset is given by its DCpt-
cm. In fact, one slice tree invariant is that a parent’s DCpt-
cm is the sum of the DCpt-cm of its children.

Addition of aggregate advantages.Equation 9 in Table 1
defines the addition of latency tolerances (and hence
advantages). If two p-threads are not a parent and child
(either directly or indirectly) then their advantages simply

add. If they are a parent-child pair, then the number
misses covered by both p-threads is DCpt-cm(child) and the
amount of latency that is “doubly-tolerated” for each o
these is LT(parent). The latency tolerance correction
LT(parent) * DCpt-cm(child)—is associated with the paren
p-thread.

Iterative algorithm. The set of p-threads covering the
misses of a single load is the one whose ADVagg—where
latency tolerance reductions due to overlap have be
accounted for—sum to a maximum. Because p-threa
within a slice tree obey certain relationships to on
another, we can find this set iteratively rather than v
exhaustive search. For each separate linear slice in the t
we select a p-thread as in the previous section. If any
the independently selected p-threads overlap, we red
the advantages of the parents and reselect. The process
minates once reductions performed in one iteration do n
change the p-threads selected in the next.

Working example.Obtaining a complete solution for our
example slice tree is trivial. Selecting p-threads for the tw
linear slices separately, we choose F and J. As these two
threads do not overlap, no corrections must be made, a
no further iterations are necessary.

Overlap explains why multiple p-threads from th
same linear slice are typically not chosen. In Figure 3, ca
didates D, E, F and G all have positive ADVagg. Yet the
framework—which maximizes ADVaggsum—selects only
F. Why? Assume both E and F are initially selected. F
LTagg is 240 cycles (8 cycles for 30 misses); E’s is 9
cycles (3 cycles for 30 misses). Since F is E’s child, i
presence reduces E’s LTagg by the shared latency toler-
ance, LT(E) * DCpt-cm(F). Since E and F cover the sam
set of misses, F makes E completely superfluous!

3.4  Extensions: P-thread Merging and Optimization
Our framework includes two automated enhanceme

to basic p-thread selection: merging of partially redunda
p-threads and p-thread optimization.

Merging. The two linear p-threads chosen in the previou
section target disjoint sets of misses. However, instanc
of instruction #11 dynamically executed by these p
threads are redundant. To eliminate this redundancy,
framework merges the two p-threads. A merged p-thre
achieves the same latency tolerance as separate insta
of each of the original linear p-threads and incurs le
overhead. Our framework merges p-threads with matchi
triggers. Merging proceeds in dataflow order, with regist
reassignment and code duplication performed as neede
preserve the semantics of the original p-threads. In o
example, instructions #07, #08 and #09 are replicated
the final p-thread—one copy completes the computati
that contains instruction #04, the other completes the co
putation that contains instruction #06.

Optimization. Optimized p-threadsare not exact copies
of dynamic computations from the program, but rath
specialized versions of them. We fit p-thread optimizatio
into our framework by allowing the SCDHpt and SIZE cal-
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culations to useany instruction sequence that is function
ally equivalent to the program derived sub-slice. P-thre
optimization is both easier and more productive than
full program counterpart. Since our p-threads are contr
less, traditional control-flow and iterative data-flow analy
ses are replaced by linear scans. Also, only optimizatio
that are enabled by the specialized nature of the p-thre
are considered. Register allocation was already perform
by the compiler that generated the initial program an
scheduling is unnecessary since a p-thread is a single c
putation. We have found thatstore-load pair elimination
and constant foldingcapture most p-thread optimization
opportunities. Figure 2 contains one optimization opport
nity: in candidate G, the two instances of instruction #1
(addi R5, R5, #16) may be folded into a single instruction
(addi R5, R5, #32), reducing both p-thread latency (the data
flow height is cut by one instruction) and overhead.

4  Experimental Evaluation
We evaluate our framework by using it to select p

threads that target L2 misses. In section 4.4, we validate
performance model by comparing predicted statisti
against statistics measured from pre-execution simu
tions. In sections 4.5 and 4.6, we measure its response
variations in several p-thread and machine parameters.

4.1  Methodology
We experiment with a suite of tools built using the

SimpleScalar Alpha ISA and syscall modules. A cach
simulator collects backward slices of L2 misses into slic
trees which are written to files. A p-thread selection to
takes a slice tree file and parameters describing the proc
sor (e.g., sequencing width) and p-thread constraints (e
p-thread length) and produces a list of p-threads. Defa
selection settings are maximum slicing scope and p-thre
length of 1024 and 32 instructions, respectively, and fu
merging/optimization.

Performance results are obtained via detailed timi
simulation. Our base configuration is a 6-wide dynam
cally scheduled processor, with a 6K-entry hybrid branc
predictor, 14 stage pipeline, 80 reservation stations, an
maximum of 128 instructions or 64 memory operations in
flight. We model 16KB, 32B line, 2-way set-associativ
primary caches, a 256KB, 64B line, 4-way set-associativ
6-cycle access L2, and an infinite, 100-cycle access m
memory. A 32B wide memory bus is clocked at one four
processor frequency. 32 simultaneously outstandi
misses are allowed. Because we target L2 misses, we
able the data cache fill path for p-thread loads—the
prefetch only into the L2. Data cache prefetchin
improves performance but diminishes our ability to val
date the framework.

Our pre-execution run-time implementation resembl
data-driven multithreading (DDMT) without register inte
gration [12, 15]. P-thread contexts are lightweight, co
sisting only of a map table. When a trigger is renamed
p-thread is allocated to one of three additional contexts,
dropped if no context is available. The context is initia
ized with a copy of the main thread’s map table allowin
the p-thread to read pre-launch main thread register valu
The context is freed when all p-thread instructions ha
beenrenamed. P-threads are injected into the executio
core at register renaming in bursts, 6 instructions on
every 6 cycles per active p-thread. P-thread instructio
are allocated physical registers and reservation statio
and contend with main thread instructions for thes
resources and for scheduling slots. They are not alloca
ROB entries, are not retired, and do not modify architect
state. Since we focus on the performance of the p-threa
not of the selection algorithm, we do not model the p
thread selection/pre-execution interface; p-threads
accessible in one cycle from an ideal cache. We assu
that this interface has only secondary performance effec

We use the SPEC2000 integer benchmarks compiled
peak optimization levels using the Digital Unix cc com
piler. We use 9 of the 12 benchmarks;eon, gzip, andper-
lbmkhave negligible L2 miss rates. Performance numbe
are reported using the training inputs cyclically sampled
100M of every 1B instructions with 10M instruction
warm-up phases. P-threads are selected using the s
program sample on which they are subsequently me
sured, allowing us to check the framework’s performan
predictions. The top section of Table 2 characterizes t
benchmarks. We show both baseline IPC and IPC with
perfect L2. IRPC measures instructions renamed per cyc
Since we sequence p-threads at register renaming, we
this value as our estimate of BWSEQmt.

4.2  P-thread Selection Performance
Although selection algorithm performance isnot the

focus of this paper, a few words about the cost of o
implementation are in order. Profiling takes time propo
tional to the length of the trace plus the number of L
misses scaled by the size of the slicing window. With
maximum of 32 instructions per p-thread, a typical benc
mark’s slice trees have about 200,000 nodes (p-thread c
didates). Advantage calculations take time proportional
p-thread length, due to the SCDH definition. Once initi
advantages are computed, selection time is proportiona
the number of candidates; the median number of iteratio
per slice tree is 1. Merging and optimization take time pr
portional to the static size of the linear p-threads.

4.3  Absolute Performance Results
ThePre-exec Actual(shaded) portion of Table 2 shows

the performance of the p-threads selected by our fram
work. In addition to IPC, we list the number of p-thread
launched, the average number of instructions per p-thre
and L2 misses covered both partially and in full.Overhead
IPC andLatency tolerance IPCare produced by simula-
tions which isolate p-thread cost and benefit, respective
these are used to validate the model. Our framewo
selects p-threads that generally improve performance. T
p-threads cover between 19% (mcf) and 84% (vpr) of the
L2 misses—full coverage is achieved for about half of th
covered misses—and result in performance improveme
of up to 25% (vpr). One benchmark,crafty, experiences a
1% performance degradation.
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4.4  Model Validation
In the scope of this work, absolute results are less

important than demonstrations of the framework’s compu-
tational power and modeling fidelity. Our framework uses
standard techniques to find optimal solutions for a given
function. What we need is confidence that its assumptions
and the function it optimizes, ADVagg, accurately model
reality such that good solutions in the model space are also
good in reality. Put differently, we want to know that only
19% of mcf’s misses are covered because the p-threads
don’t exist, not because the framework can’t find them.

Our framework’s calculations are explicit predictions
of p-thread behavior. As one form of validation, we check
these against simulated measurements. We check overhead
and latency tolerance separately to help pinpoint model
inaccuracies. Predicted diagnostics are shown in the bot-
tom of portion of Table 2 (Pre-exec Predict).

Overhead.P-thread lengthpredictions are self-fulfilling.
P-thread launch countsare occasionally over-estimated
(e.g.,bzip2) due to the finite number of p-thread contexts.
Most often, they are under-estimated because the frame-
work does not model wrong-path triggering.

Overhead performance degradation is measured in two
ways. In execute, p-thread instructions execute, but L2
misses are not satisfied (these p-threads do not have the
pre-execution effect). Insequence, p-thread instructions
consume sequencing cycles but are immediately dis-
carded. The first simulation measures true overhead, the
second measures overhead as modeled by our frame-
work—the only cost of a p-thread instruction is the band-
width consumed to sequence it. The result proximity of
these two simulations to baseline IPC may suggest that p-
thread overhead is an insignificant factor in p-thread selec-

tion. As we show in Section 4.5, this is not the case. Ove
head is low precisely because our framework explicit
minimizes it.

Latency Tolerance.To measuremiss coverage, we time-
stamp cache blocks with p-thread request, main thre
request, and ready times. At retirement, p-thread cove
would-have-been misses are identified, and classified
full or partial, by time-stamp relationships. Miss coverag
is difficult to predict, as it is affected by several factors th
ADVagg does not account for. For partial or general mis
coverage,over-estimation(too few misses actually cov-
ered) indicates p-thread issue delays caused by conten
with the main thread and other p-threads.Under-estima-
tion (too many misses actually covered—a good proble
to have) implies the presence of unintentional prefetch
within p-threads (a particular load may not merit p-threa
for its own sake, but may be embedded in a p-thread t
geted for another). For full miss coverage in particula
over-estimation implies post-issue p-thread delays due
memory bus contention. Under-estimation indicates ma
thread delays, primarily due to branch misprediction
Each effect is present to some degree in every benchma

We isolateperformance improvement due to latency
tolerancevia a simulation in which p-thread instructions
are not charged for bandwidth they consume. Performan
improvement is the most difficult metric to predict. It is
almost universally over-estimated because of our fram
work’s assumption that miss latency translates cycle-fo
cycle into execution latency and, therefore, that mi
latency tolerance translates directly into speedup. As
mentioned earlier, this is certainly not the case. A dynam
cally scheduled processor often partially overlaps L
misses with program instructions and even with L1 an
100.00
.17

1.62
.92
.07
.37
.81
.36
0

TABLE 2. Basic results and performance model validation
bzip2 crafty gap gcc mcf parser twolf vortex vpr

Base Sampled instructions (M) 6000.00 2600.00 900.00 500.00 900.00 1300.00 1300.00 1700.00 1
Loads (M) 1509.20 731.49 218.49 116.15 246.03 295.70 291.56 458.21 327
L2 misses (M)  20.15   0.91   1.91   0.72  63.52   4.59 9.07   1.17   6.88
IRPC (BWSEQmt) 2.75 4.00 2.11 2.92 0.38 1.82 1.60 2.94 1.57
IPC   2.43   2.73   1.56  1.72 0.22   1.21   0.93   2.74  1.08
Perfect L2 IPC 4.16 3.06 2.52 2.32 1.71 2.33 2.14 3.54 2.07

Pre-exec
Actual

P-threads launched (M) 171.88   8.51  16.95   9.60  88.96  53.72  61.98  16.58  69.94
P-thread length  15.47  15.02   6.73   5.51   8.43   5.59   8.31  12.00   9.56
Overhead IPC (execute)   2.20   2.71   1.55   1.71   0.22   1.20   0.93   2.72   1.07
Overhead IPC (sequence)   2.23   2.72   1.56   1.72   0.22   1.20   0.93   2.73   1.08
Misses covered (M)  14.11   0.58   1.36   0.39  12.53   1.95 6.68   0.87   5.75
Misses fully covered (M)   3.61   0.24   0.65   0.24   3.83   1.01   4.12   0.26   3.08
Latency tolerance IPC   2.70   2.72   1.70   1.82   0.23   1.30 1.17 2.94 1.37
IPC   2.47   2.70   1.68   1.81   0.23   1.29   1.14   2.91   1.35

Pre-exec
Predict

P-threads launched (M) 338.77   3.05   9.23   3.26  38.85  22.39  25.10   7.81  3
P-thread length  18.51  14.28   7.40   5.64   8.91   5.74   9.50  11.75   9
Overhead IPC   2.03   2.72   1.55   1.71   0.22   1.21   0.93   2.71   1
Misses covered (M)  15.60   0.50   1.15   0.29  18.14   1.87   7.18   0.74   6
Misses fully covered (M)   8.19   0.01   0.57   0.12  16.17   1.37   4.68   0.22   4
Latency tolerance IPC   5.85   2.84   1.79   1.84   0.36   1.42   1.51   2.96   2
IPC   3.99   2.82   1.78   1.83   0.36   1.41   1.49   2.92   2.3
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other L2 misses. Simply, the framework often believes that
there is more latency to tolerate than actually exists.

Summary. Experiments for other configurations (e.g.,
narrower processor, slower memory) show similar results.
Our framework’s predictions are not perfect, but are close
in many cases. This suggests that ADVagg is a reasonable
model for L2 miss pre-execution under many conditions.

4.5  Contribution of Framework Components
Another way to demonstrate the merit of our frame-

work is to isolate the effects of its components. Our frame-
work explicitly accounts for three factors unaccounted for
by previous schemes: 1) required latency tolerance, 2)
overhead, and 3) p-thread overlap. Figure 4 shows four
experiments, starting with greedy p-thread selection and
successively incorporating these considerations. We show
five diagnostics for each experiment. Full and partial miss
coverages, as percentages of baseline L2 misses, are
stacked bars. P-thread overhead, computed as p-thread
instructions sequenced over the main thread instructions
retired, is an uptick. Average dynamic p-thread length is a
cross. Finally, percent speedup is shown as rotated text.

In greedyselection (first bar from the left), p-threads
are chosen for maximum miss coverage and prefetch dis-
tance without regard for actual latency tolerance require-
ments. Here the framework selects many long p-threads.
In most programs, this is a losing strategy. A greedy
approach does yield high numbers of fully covered misses,
but the long p-threads produce many useless instances, and
much of the bandwidth consumed by others would be bet-
ter spent on short p-threads that increase total miss cover-
age. The high overhead sometimes produces sharp
slowdowns (crafty, vortex). Surprisingly, the greedy
approach occasionally outperforms the framework (bzip2,
mcf). This occurs when, due to bus contention, effective
memory latency is higher than the constant 100 cycles
(Lcm) we target. The high overhead of the greedy approach
is mitigated by the finite number of thread contexts.

In the second experiment,+lt , we account for latency
tolerance requirements—we select p-threads that are suffi-
ciently long to cover the targeted latency and no longer—
but ignore overhead. In line with our reasoning from the
previous paragraph, this strategy outperforms the greedy
approach, increasing coverage while reducing overhead,
except for those benchmarks in which effective memory

latency exceeds 100 cycles.
In experiment+oh we consider p-thread overhead bu

not p-thread overlap. We simulate this strategy by runni
our framework for a single iteration over each slice tre
effectively ignoring overlap corrections. From our resul
in Sections 4.3 and 4.4, it may appear that pre-execut
overhead is insignificant. However, this is misleadin
overhead is low only because our framework explicit
minimizes it. Accounting for overheada priori produces
higher performance p-threads in all but one benchma
(bzip2). This effect is especially prominent in benchmark
which are swamped by the overhead of greedy p-threa
(crafty, vortex).

Experiment +ovlp adds p-thread overlap consider
ations and corresponds to our complete framewo
Redundancy due to overlap is a form of overhead and h
similar impact. In all benchmarks butgap, overhead
decreases while performance increases.

4.6  Sensitivity to P-Thread Selection Parameters
We measure our framework’s sensitivity—i.e., chang

in the p-threads it selects—to variations in p-thread sele
tion parameters. Figure 5 shows three sensitivity expe
ments for each of three benchmarks, chosen because
represent a wide range of baseline IPC’s:gcc (1.72),twolf
(0.93), andvortex (2.74).

Slicing scope and p-thread length.Slicing scope (the
length of the dynamic trace examined to construct linear
threads) and p-thread length are physical constraints on
thread construction and the implementation of the p-thre
memory hierarchy. In the left graph of Figure 5, we beg
with a scope length combination of 256 and 8, respe
tively, and successively relax each constraint up to o
default settings of 1024 and 32.

As p-thread selection constraints are relaxed, actual
thread length, miss coverage, full miss coverage, and p
formance all increase. However, they do not increa
indefinitely; at some point, they saturate and do not bene
from further relaxation. Quantitatively, the saturation poin
of most programs lies at slicing scopes of 512 instructio
and p-thread lengths of 16 instructions.Gcc’s performance
dips slightly as constraints are relaxed. This anomaly
due to the finite number of p-thread contexts, which o
framework does not model.

Parameter sensitivity varies from one program to th
FIGURE 4. Contribution of framework components via comparison with simple approaches

0

20

40

60

80

100

120

Miss coverage (% of baseline misses)
Miss full coverage (% of baseline misses)Overhead (% of baseline retired)

P-thread length (dynamic average)

9.
72

-1
6.

11 5.
27

3.
47

4.
16

2.
81

15
.1

8 -1
4.

41 15
.7

2

7.
61 -7

.8
5

1.
66

4.
43

2.
10

4.
79

18
.5

4 -1
3.

01

21
.2

9

1.
64

-1
.1

7

8.
28

5.
03

2.
79

5.
90

19
.7

1

5.
38

21
.9

4

1.
82

-1
.1

5

7.
62

5.
18

3.
11

6.
51

21
.7

1

5.
99 24

.5
9

gr
ee

dy
 

gr
ee

dy
 

gr
ee

dy
 

gr
ee

dy
 

gr
ee

dy
 

gr
ee

dy
 

gr
ee

dy
 

gr
ee

dy
 

gr
ee

dy
 

+
lt 

+
lt 

+
lt 

+
lt 

+
lt 

+
lt 

+
lt 

+
lt 

+
lt 

+
oh

 

+
oh

 

+
oh

 

+
oh

 

+
oh

 

+
oh

 

+
oh

 

+
oh

 

+
oh

 

+
ov

lp
 

+
ov

lp
 

+
ov

lp
 

+
ov

lp
 

+
ov

lp
 

+
ov

lp
 

+
ov

lp
 

+
ov

lp
 

+
ov

lp
 

bzip2 crafty gap gcc mcf parser twolf vortex vpr
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next. Most programs are more sensitive to p-thread length
constraints, unable to achieve any gain with short p-
threads, even at large scopes. Miss computations in these
programs are dense in the locus leading up to the miss—
small computations are unable to obtain any sequencing
advantage.Twolf is especially sensitive to scope restric-
tions. It has the complementary program structure: sparse
computations which can achieve latency tolerance with
small computations, but need large slicing scopes to “see”
these computations.

P-Thread optimization and merging.The second graph
in Figure 5 isolates the two effects of p-thread optimiza-
tion and the effect of merging.

The first configuration employs neither optimization
nor merging. It produces long, high-overhead p-threads,
lower miss coverage—due to optimization’s second effect
described below—and 2–3% lower performance gains
than the full-powered framework.

Experiment+p-opt (post-optimization) examines the
first effect of optimization. Here we optimize a set of p-
threads initially chosen without optimization in mind.
Optimization reduces p-thread length and overhead.
Twolf’s performance suffers slightly under post-optimiza-
tion due to an interaction with the finite number of thread
contexts; this is rare behavior. Experiment+c-opt (choose-
optimization) isolates optimization’s second effect. Here
we account for optimized length when choosing p-threads
to begin with, enabling us to choose p-threads that were
either unprofitable or illegal (i.e., too long) in their unopti-
mized forms. As shown invortexandgccthis “secondary”
effect is often stronger than the primary effect of overhead
reduction for existing p-threads. Experience also shows
that optimization is increasingly effective as length con-
straints are tightened.

Experiment+mergeadds merging to the selection pro-
cess and corresponds to our full framework. Merging
reduces overhead but does not increase the number of via-
ble candidates—its performance effects are less pro-
nounced than those of optimization.

Input data set.We have shown that good p-thread selec-
tion is possible givenperfectinformation: a trace of pro-
gram execution on the same input data. We now test the
viability of p-thread selection in real world scenarios.

To model a profile-driven static compiler implementa-

tion of p-thread selection, we select p-threadsofflineusing
profile data from different (smaller) inputs. P-thread
selected offline often approach the performance of
threads selected with perfect information, supporting o
intuition that p-threads and pre-execution performan
potential are a function of program structure. Offlin
selection does have a new failure mode, however.Twolf’s
test input data set fits in the L2 cache and offline selecti
generates no p-threads.

To model a dynamically optimizing virtual machine
[1], we select p-threadsonline using a short profiling/
selection phase before each pre-execution sample. Pred
ably, online selection generally outperforms offline sele
tion and approaches the performance of “perfect”
threads.Gcc’s shortfall is due to rapidly changing phases

The online result actually incorporates two effects: p
thread selection using a different sample from within th
same program andper-sample p-thread specialization. To
isolate the latter, we use perfect information to create sp
cialized p-threads for each 100M instruction sample. Int
ition says that this approach will produce highe
performance. After all, at the limit of this process we fin
a custom p-thread for every dynamic L2 miss! Experime
p100M confirms this intuition.

4.7  Sensitivity to Machine Parameters
An important aspect of the framework is its ability to

parameterize major processor features. We usecross-vali-
dationto measure this fidelity. Intuition says that feature
is modeled correctly if for configurations X1 and X2, p
threads chosen for configuration X1 perform best on co
figuration X1 and those chosen for X2 perform best on
X2. If p-threads chosen for X1 perform best on both co
figurations, then the framework has a bias towards X1.

Figure 6 shows cross-validation studies for thre
parameters. A single study includes four experimen
pX1cX1—p-threads chosen for configuration X1 execute
on configuration X1—pX2cX1, pX1cX2, and pX2cX2.
Experiments are grouped by simulated configuration (cX
the left bar in a group is the “cross” experiment. Whil
“cross” experiments validate the model, comparing “sel
experiments—pX1cX1 with pX2cX2—provides insight
into the impact of parameter variations on pre-execution

Memory Latency. Memory latency impacts p-thread
FIGURE 5. Sensitivity to p-thread selection parameters
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structure directly by changing latency tolerance require-
ments (Lcm). In Figure 6, we measure the effect of latency
variations using latencies of 100 and 200 cycles.

Comparing p100-c100 with p200-c200 shows that
memory latency changes produce intuitive p-thread
changes. Increased latency demands longer p-threads
which exact more overhead. Predictably, miss coverage
remains the same but fewer misses are fully covered. As
memory latency accounts for a larger fraction of total exe-
cution time, relative performance improvement due to pre-
execution increases.

Cross-validation shows that our framework does not
model memory latency very accurately; one may obtain
better performance by specifying both higher-than-actual
(gcc) and lower-than-actual (twolf, vortex) latency values.
We have seen this problem before. Our framework uses a
constant value for memory latency (Lcm), which is set to
the uncontested L2-memory round trip time. Theeffective
memory latency is often higher or lower than this value,
due to bus contention or natural overlapping, respectively,
and typically varies from the misses of one static load to
the next and across the dynamic misses of a single static
load. By specifying higher or lower latencies, we may be
helping the framework simulate true conditions.

Processor width.Processor width (BWSEQproc) effects
p-thread selection by controlling the sequencing rate of the
main thread (BWSEQmt) and the overhead discount
(BWSEQmt/BWSEQproc). We validate our modeling of
this parameter using a 3-wide processor in addition to our
default 6-wide machine.

Comparingp3-c3 with p6-c6, we see that our frame-
work responds to processor width changes predictably. A
wider processor demands longer p-threads; it allows the
main thread to sequence faster—a p-thread must skip more
instructions to obtain the same absolute sequencing advan-
tage—and is more overhead tolerant.

From this small sample, the framework appears to
model processor width correctly. Lying to it about proces-
sor width generally produces poorer results. One excep-
tion is twolf, where our framework seems to be biased
towards width over-specification.Twolf has poor branch
prediction accuracy. BWSEQmt overestimates the cost of
overhead because nearly half of the instructions sequenced

by the main thread are wrong path instructions.

L2 cache size.L2 cache size affects p-thread selection b
changing the number of misses. The number of misses
change the effective computation latency when misses
serialized (i.e., pointer-chasing). We select and cros
select p-threads for a 512KB L2.

Larger caches produce fewer misses and require
threads that produce fewer useless instances; such
threads tend to be shorter. They also typically requi
fewer static p-threads as some portions of the working
fit in the L2. By exposing less total memory latency, the
reduce the relative impact of pre-execution.

Modeling fidelity results for L2 cache size are mixed
the model appears to be correct ingcc, biased towards
larger caches intwolf, and biased towards smaller cache
in vortex. Because number of cache misses does n
directly enter into the framework as a parameter, the effe
of cache size manifests only via interactions. We ha
already seen thattwolf is more overhead tolerant than its
BWSEQmt value indicates. It would better tolerate th
higher number of p-threads and the longer p-threads
requires due to heavy use of pointer data structures.
contrast,Vortex’s branches are predicted with 99% accu
racy; it is less overhead tolerant than BWSEQmt indicates.

5  Related Work
Techniques for hoisting cache misses have been st

ied for as long as caches have existed. Several have u
data-driven instruction execution as a means for gener
ing prefetch addresses [13]. An early proposal to accel
ate a single sequential program via decoupled threa
based prefetching was Assisted Execution [17]. Impl
mentations of pre-execution in its current form includ
Speculative Data-Driven Multithreading (DDMT) [15],
Speculative Pre-Computation [4, 5], Speculative Slic
[19], Software Controlled Pre-Execution [10], Slice Pro
cessors [11], and “push” prefetching by pre-execution
in-memory processors [16, 18].

Our framework complements this work. By paramete
izing pre-execution’s run-time model, we can apply ou
results to all of these implementations, whether p-threa
execute on dedicated resources [5, 4, 11, 16, 18] or in
shared resource environment [10, 15, 19] and wheth
FIGURE 6. Sensitivity to machine parameters
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their execution is architecturally visible [10, 16, 18, 19] or
not [4, 5, 11, 15]. Our results directly apply to implemen-
tations that use static p-threads [10, 15, 16, 18, 19]. Appli-
cability to dynamic p-thread selection systems is more
tenuous [4, 5, 11]. Such systems do not explicitly target
aggregate effects but rather continuously modify p-threads
via feedback (e.g., Speculative Precomputation [4] adds
levels of induction unrolling if more latency tolerance is
needed). Our framework assumes control-less p-threads
and no chaining, a model used by several systems [4, 11,
15]. Chaining [5] and control flow [10, 16, 18, 19] compli-
cate selection, but framework extensions to handle them
may be possible.

Compiler and linker based p-thread generators [8, 9,
10] form an implementation path for pre-execution. How-
ever, they must reconstruct the dynamic effects p-threads
from static program constructs, a non-trivial exercise for
anything except for simple loops. By dealing with traces,
our framework sees the dynamic instruction stream as
straightline code (in which loops are unrolled) and side-
steps this problem. We hope to combine the analysis of our
framework with the practical aspects of these systems.

Pre-execution has also been used to target difficult
branches [2, 3, 6, 14, 15, 19]. We have applied the meth-
ods we present here to branch pre-execution [12] by set-
ting desired latency tolerance to the pipeline-induced
branch resolution latency. The framework is oblivious to
the implementation and performance of the branch out-
come communication mechanism.

6  Conclusions
Memory latency is a significant component of total

execution time for integer programs. With multithreading
becoming prevalent, pre-execution—a recently proposed
technique for effectively moving cache miss latency to
other threads—is becoming popular. We present a quanti-
tative framework for selecting static p-threads and reason-
ing about the performance potential of pre-execution. Our
framework contains two novel components.Aggregate
advantagecombines the important p-thread selection cri-
teria—latency tolerance per miss, overhead, and ratio of p-
threads launched to misses covered—into a single numeri-
cal value, allowing these often antagonistic considerations
to be simultaneously optimized. Theslice tree is a data
structure that naturally represents the set of all possible
candidate p-threads and the overlap relationships between
them, allowing non-redundant solutions comprising multi-
ple p-threads to be found. The framework is built from first
principles. A few parameters allow it to model most pro-
cessor configurations.

We use our framework to find static p-threads covering
L2 misses in the SPEC2000 benchmarks. We measure pre-
execution performance under different p-thread selection
and processor conditions and evaluate the framework itself
by checking its predictions against simulated measure-
ments and by observing that it qualitatively responds to
parameter variations as an optimization framework would.

An important direction for future work is the tuning of
the framework’s performance model, especially its esti-

mates of effective memory latency. One possibility is t
augment the framework with a critical path [7] pre-proce
sor that can assign a “true cost” to each miss or an aver
cost to each static problem load. Alternatively, we cou
enrich the framework with temporal information to allow
it to reason about miss overlapping internally.
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