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Abstract cution model, which decouples p-threads from the main

Pre-execution attacks cache misses for which addresgrogram and from one another, has many advantages. P-
prediction driven prefetching fails. In pre-execution, cop-thread cache miss initiations are accelerated because p-
ies of cache miss computations are isolated from the maithreads are isolated from stalls and squashes that occur in
program and launched as separate threads called pthe main thread. Overlapping is enhanced because while a
threads whenever the processor anticipates an upcomingache miss stalls the p-thread, the main program thread
miss. P-thread selection is the task of deciding what comeontinues fetching, executing and retiring instructions.
putations should execute as p-threads and when theWith multithreaded processors becoming prevalent, pre-
should be launched such that total execution time is miniexecution is gaining popularity [5, 10, 11, 15, 19].
mized. It is central to the success of pre-execution. The benefits and limitations of pre-execution have

We introduce a framework for automated static p-been well documented. Here, we attack the problem-of
thread selection, a static p-thread being one whosehread selectiofil?], the task of deciding which p-threads
dynamic instances are repeatedly launched during théo pre-execute and when to pre-execute them. P-thread
course of program execution. Our approach is to formalizeselection is a crucial component of pre-execution. It is also
the problem quantitatively and then apply standard tech-a complex task that must balance many inter-related, often
niques to solve it analytically. The framework has twoantagonistic concerns including miss latency tolerance, p-
novel components. The slice tree is a data structure thathread resource consumption (important when p-threads
compactly represents a set of static p-threads and the relashare resources with the main thread), and prefetch cover-
tionships among them. Aggregate advantage is a formulage and accuracy. Existing p-thread selection methods—
that uses raw program statistics and computation structureboth manual [19] and automatic [4, 5, 8, 9, 11]—are suc-
to assign each candidate static p-thread a numeric scoreessful, but largely heuristic. We present a framework for
based on estimated latency tolerance and overhead aggrettacking the problem in a formal, quantitative, and holis-
gated over its expected dynamic executions. tic way. The framework producestatic p-threadscopies

We use the framework to select p-threads that cover L@f which are launched repeatedly during program execu-
misses and study its effectiveness under different condtion. The intervals for which p-threads are chosen can be
tions via detailed simulation. We measure the effect of conshort, modeling on-the-fly generation, or a full program
straining p-thread length, locally optimizing p-threads, run, modeling off-line selection.
using different program samples as a statistical basis for Our framework selects p-threads by effectively con-
selection, and varying several machine parameters. Ouducting an analytical pre-execution limit study. This
framework responds to these changes in an intuitive wayapproach is possible because we consider only p-threads
We also validate that aggregate advantage correctly modwhich can be directly derived from the original program or

els actual pre-execution. optimized versions thereof. This restriction (which is not
severe) allows us to use an execution traceriamerate
1 Introduction all possible p-threads of this form and select the best

Second-level cache misses constrain processor perfoRMong themrather than generate p-threads from scratch.
mance, a problem that will worsen as memory latencied heslice treeis a data structure that compactly_ represents
relatively increase. Driven by address prediction, non-2 Set of static p-threads and the relationships between
binding prefetching hides memory latency by specula-them-. It allows us to accurately assess miss coverage,
tively hoisting the cache miss portion of a load, overlap-€NsSuring that pre-execution work is not replicated and aids
ping it with prior instructions. Prefetching eliminates in decomposing the problem into orthogonal sub-prob-

many misses, but certain statioblem loadslefy address  1€ms. We apply a simple model calleggregate advan-

Pre-executioris a way to deal with problem loads. Pre- Static p-thread aggregated over its dynamic executions.
execution sidesteps address prediction and generatéggregate advantage uses a few key abstractions to model
prefetch addresses by executingapy of the load compu- the interactions of a p-thread with the main thread. Finally,
tation in parallel with the main program as a separateWe “solve” the selection problem by choosing the set of p-
thread called @-thread (these have also been called p- threads that maximizes total performance benefit. The
slices or data-driven threads) in a multithreaded processoffamework also includes facilities for optimizing and
Hoisting is accomplished as the p-thread fetches and exdl'€rging p-threads. Constructed from first principles, the
cutes fewer instructions than the main program thread anfi@mework is simple and, via a few intuitive parameters,

thus initiates the cache miss first. The multithreaded exe@PPlicable to a range of pre-execution implementations
and processor configurations. For instance, in this work we



assume a simultaneous multithreading (SMT) substratang step. Our example will focus on the first linear p-
but the framework can model processors that execute phread. This p-thread and the main thread computation it
threads on dedicated resources. corresponds to are shaded.

Because it considers all possible static p-threads and A p-thread’s target cache miss, trigger, and body are
uses standard optimization techniques to maximizeelated by the dynamic execution of the original program.
expected performance, our framework has value beyoné given p-thread’s body is the computation of the target
its p-thread selection capabilities. As a formal model ofmiss starting from the trigger. This relationship forms the
pre-execution, it can be used $tudy pre-execution per- basis of theabstract pre-execution modéebtarting at the
formance potentialunder different configurations. The trigger, the p-thread and main thread execute in parallel,
results of these studies would be rough—the frameworkwvith the p-thread arriving at the cache miss first by virtue
makes several assumptions to achieve computationaif fetching and executing only the load computation as
leverage and its performance modejgregate advantage opposed to the full program. Our framework uses this
is simplistic—but may provide useful insight and intu- abstract model in its calculations. For a given trigger/miss
ition. The framework also forms an analytical foundation pair, it estimates how much faster the body executes
for future p-thread selection algorithms. stand-alone (i.e., as a p-thread) than when embedded in the

We evaluate our framework by using it to select p-full program.
threads targeting L2 misses for the SPEC2000 bench- The miss/trigger/body relationship also lets us turn the
marks. We validate the framework’s performance modelproblem from p-thread construction inpthread selec-
by comparing predicted performance results and diagnogion. The body and trigger form a dynamic backwards
tics to those observed during pre-execution simulation. Welata-dependence slice that starts at the miss. Weican
measure pre-execution sensitivity to variations in p-threadnerate all possible linear p-threadbat are derived from
construction and machine parameters.

The next section describes the selection problem. Sec-
tion 3 details the framework. The final three sections cons
tain an evaluation, related work, and our conclusions.

FIGURE 1. Pre-execution running example

for (i=0; i < N_XACT; i++) {

if (xact[i].cover==FULL)
continue;

else if (xact[i].cover==PART)
rxid = xact[i].rxid;

else
rxid = xact[i].gen_rxid;

receipts += rx[rxid].price ;

/I 100 iterations

2 Background /1 20 times

We review pre-execution and introduce the p-thread
selection problem using an example. The loop at the top of
Figure 1 iterates over a list of pharmacy transactions and
sums the appropriate drug prices. Load #G@x{d].price),
is a problem load. We attack its misses—whose addresse}s
do not form an arithmetic series—via pre-execution. The
bottom of the figure shows a p-thread-assisted execution—=

// 60 times (#04)

/l 20 times (#06)
// 80 times/40 misses (#09)

main thread on the left with loop iterations separated by MAIN PROGRAM P-THREADS
horizontal lines and p-thread to the right. In Section 3, we #11: addi R5, R5, #16 —» #11.:
show how our framework constructs this p-thread. #12: addi R4, R4, #1 #11: addi R5, R5, #16
, #13: ] #00 #04: lw R7, 4(R5)
Abstract pre-execution model A p-thread has two com-  %gg: bge R4, RL#14 #07: sl R7, R7, #2
ponents: thévodyis a list of instructions that constitutes a  4g1- | R6, O(R5) #08: addi R7, R7, #rx
cache miss computation, tiiégger is a PC of an instruc- 4. beq R6, R2, #11 #09: w R8, O(R7)
tion in the main thread. Atatic p-threads a trigger/body  403: pne R6, R3, #06 #06: lw R7, 8(R5)
pair. A dynamic p-threads an instance of a p-thread body 406 | R7, 8(R5) #07: sl R7, R7, #2
launched when the main thread executes an instance of theg7. g r7. R7, #2 #08: addi R7, R7, #rx
corresponding trigger. In the figure, the p-thread body is 40g. 4qqi R7, R7, #1x #09: w R8, O(R7)
shown in a box with the trigger as an annotation on top. A 49 | R8, O(R7)
dynamic p-thread instance is launched by every maingig. 544 R9, R9. R8

thread instance of #11. #11

: addi R5, R5, #16 —p

#11:

A linear p-threadcorresponds to one dynamic COMpU- 412- addi R4, R4, #1 #11 addi RS R5. #16
tation. Our example p-thread merges two linear p-threads:y 3. j #00 #04: \w R7 4’(R5)’
[#11,#04,#07 #08,#09], a slice that includes instructionsgn: bge R4, R1#14 407" sl R7. R7. #2
#04 (xid=xactfilxid), and [#11,#06#07,#08,#09], which 401.  Re, O(RS) 408" addi R7. R7. #rx
includes instruction #06rid=xact[i].gen_rxid). As it is not 02: beq R6, R2, #11 #09: Iw RS, O(R7)
known at launch time which computation a given iteration 443 pne R6, R3, #06 406: w R7. 8(R5)
will execute, our framework hedges and executes both.,o. 1y R7, 4(R5) 407: sl R7. R7. #2
This is simpler and often faster than having the p-thread 4q5. ; 497 408" addi R7. R7. #rx
figure out which to execute. Our framework deals prima- 4q7: g R7, R7, #2 #09: Iw RS, 0’(R7)’

rily with linear p-threads which it extracts from dynamic 4gg
instruction traces. Merging is performed as a post-processg

:addi R7, R7, #rx
:lw R8, 0(R7)




the program by constructing successively longer back3.1 Structure, Basic Assumptions, and Raw Data

ward slices. The trace in Figure 1 yields five candidates Finding good p-threads is computationally intensive.

(written as trigger:[body]): #08:[#09], #07:[#08,#09], The control-less nature of the p-threads allows us to
#04:[#07,#08,#09], #11:[#04,#07,#08,#09], and #1l:explicitly analyze a single dynamic p-thread execution

[#11,#04,#07,#08,#09]. and estimate the aggregate effects of all executions of the
static p-thread using multiples of expected launch and

unchained—thev are fixed instruction SeqUENCeS eXe_miss coverage counts. Our framework analyzes statistical
y d ’ data of this nature. In this work, we collect data from pro-

cuted in their entirety, and launched only by the main . aces but static estimation may also be used
thread. These restrictions allow us to analyze a static p*® ' '

thread as the aggregate of its dynamic instances—wS§lice tree.The data we collect is compactly represented
know exactly what each instance looks like and howin a data structure calledsdice treg a tree of static back-
many of them there are. Control-less-ness also simplifiegvard slices with the static problem load at the root. Each
dynamic backward slicing. Disallowing control and tree node represents an instruction and a static p-thread
chaining does not constrain the power of pre-executionwhose trigger is that instruction. The p-thread is con-
These features are primarily used to implement p-threadtructed by walking from the node to the root. The tree
loops for increased latency tolerance. We simulate looparrangement is used to represaatic p-thread over-
by including multiple induction copies in a p-thread, an lap—p-threads overlap if their dynamic executions target
idiom calledinduction unrolling[4, 15]. Our example p- overlapping sets of dynamic misses. We will deal with
thread uses one level of unrolling, it uses a copy ofthe ramifications of p-thread overlap in section 3.3.
instruction #11 to skip one loop iteration ahead. Figure 2 shows the slice tree representing both linear
slices from our example. Instruction #09 (node A) is the
slice, the only thing we can vary in a p-thread is its root. Th<_a p-thread_from our e_xample 1S represented by
Iengfh Choosing a proper p-thread length can be subtl node F: it's trigger is #11 and its body is constructed by
Obvioﬁsly a longer p-thread is launched earlier withﬁ"v"’llkm-g up from F to the root [#ll’#04’#07-’#08’#09]'
& X ; . The slice formed by the nodes A—C and H—K is the alter-
respect to its target miss and will typically tolerate more oo "co 0 tation of #09, the one that contains #06. For
latency. It also executes more instructions and CONSUME&s, 4, o ica| reasons, we include an extra level of induc-
more resources. However, that is not all. A given static Ption unrolling in each ’Iinear slice (nodes G and K)
thread will launch a certain number abeless dynamic '
instancesAn instance is useless because the load it preRaw statistics.Each tree node (p-thread) is associated
executes either: 1) hits in the cache anyway, or 2) nevewith three statisticsDCyig counts the dynamic instances
arrives, i.e., the main thread executes along a differendf the trigger in the trace; it is an estimate of the number
path than the one the p-thread implicitly assumes. Oubf times the p-thread would be launch@Ly; ., counts
example p-thread is launched once per loop iteration byhe number of times this list of instructions appears in the
instruction #11 while not every loop iteration contains antrace as thdackwards slice of a mis®Cy;_.,, estimates
instance of load #09. Increasing p-thread length ofterthe number of misses a p-thread would cover. Note,
increases the incidence of useless p-threads of the secom:t;trig is a trigger property while D o is a p-thread
kind. Another phenomenon is that longer p-threadsproperty. For instance, nodes E and | have the same
while tolerating more latency per missover fewer DCy, values (#11 triggers both) but different m
missesIn our example, a given instance of load #09 mayvalues (they correspond to different p-threads).
be computed using either instruction #04 or #06. A p-  To gain computational leverage, the slice tree explic-
thread that contains one of these two instructions will
cover only the corresponding subset of misses. Covering FIGURE 2. Slice tree
all #09 misses requires two linear p-threads. Our framea

P-thread sequencingOur p-threads areontrol-lessand

Aspects of p-thread selectionSince it is a backward

work simultaneously examines all of these considerations K | Z11 |addi R5, Rb, #16 30 10 100

and makes trade-offs between them quantitatively. J [ #11 |addi R5, R5, #16 24 10 100
. | | #11 [addi R5, R5, #16 12 10 100

3 P-Thread Selection Framework I H [#06 [WR7, 4R5) 3 10 50

We construct the framework from first principles.

First, we introduce thelice tree a data structure _for rep- G 17111200 RS RS, 716 0 %0 00

resenting static p-thrgads and the relationships among F 1 #11(add RS, RS, #16 57 0 100

them. Next, we describaggregate advantage formula :

Py - - E | #11|addiR5, R5, #16 12 30 100
that quantifies the performance impact of static p-thread 5150 W R 4RE E 30 z5
candidates and show how it is used to select the best p WR7, 4(R5)
thread from within a single computation. We then show —_—
how the slice tree enables the selection of multiple linear »|_C J#07[slIR7, R7, #2 2 40 80
p-threads from multiple, partially overlapping computa- B ] #08 [addi R7,R7 #rx 1 40 80
tions. Finally, we discuss merging and optimization. A | #09 |lw R8, O(R7) 0 40 80

# | PC [instruction DPLy| DCphicm Dcmg_




itly stores only p-thread instructions. The parallel work in ances four consideration$atency tolerance overhead

the main thread is represented by a single count, JPL miss coveragand useless p-thread frequendyonger p-
which is the average number of dynamic main threadhreads tolerate more latency per miss, but incur more
instructions that exist between the instruction in questioroverhead, generally cover fewer misses, and generally
and the target load. Our calculations actually count mairresult in more useless p-thread instancéggregate
thread work from the trigger (DTRIg): an instruction’s  advantage (ADY;y) combines these into a single numeri-
DTRIG,; with respect to any trigger is obtained by sub- cal score, allowing them to be simultaneously optimized.
tracting its DPl,,; from the trigger’s. For example, assum- The aggregate advantage of a static p-thread is the esti-
ing F is the trigger, B’'s DTRIGy is 23 (24-1). The main mated number of cycles by which its dynamic instances
thread sequences 23 instructions before it can execute Bollectively accelerate program execution. Shown in equa-
B's DTRIG is 4, the p-thread sequences only 4 instruc-tion 1 of Table 1, aggregate advantage is the difference of
tions before it can execute B. two terms.Aggregate latency tolerance is the num-

Our approach has two limitations. First, by represent-ber of cycles by which a p-thread’s dynamic instances
ing only slice instructions we do not consider the instruc-accelerate cache missesggregate overhead (Qffy is
tions outside the slice as triggers. Non-slice triggeesy  the number of cycles by which a p-thread’s instances slow
have lower DG;q values, and require fewer uselessdown the main thread by stealing resources from it. Note
launches to cover the same number of misses. More serthe multipliers for LTg4 and OH,gq Every launched p-
ously, by not retaining temporal information we implicitly thread instance (D¢,) exacts overhead, but only
assume that a single dynamic p-thread instance is active atstances that pre-execute actual missesy([R() achieve
a time. This assumption is not egregious for L2 cacheany latency tolerance. Useless instances tolerate no latency
misses. We willingly trade these inaccuracies for the combecause their corresponding main thread loads have none.

tational | ided b inf tion. .
putational leverage provided by simmary information Overhead per dynamic p-thread (OH).On an SMT pro-

Divide and conquer.We create a separate slice tree forcessor, the number of sequencing cycles stolen from the
the computations of each static problem load. Since pmain thread is the most direct measure of p-thread over-
threads for different static loads do not overlap—they ddchead. Other forms of contention are either subsumed by
not target the same misses—we treat each tree as a subprahis measure (e.g., execution slots), not easily estimated
lem and solve it separately. A post-pass merges the linede.g., bus bandwidth), or both (e.g., buffer occupancy).
p-threads that result from the solutions of all trees. The number of cycles it takes to sequence a p-thread
instance is its length (SIZE) divided by the sequencing
3.2 Estimating the Benefit of a P-Thread Candidate width of the processor (BWSEg,). Since overhead is
Backward data-dependence slicing is straightforwardppportunity cost, we discount it by the expected main
even in hardware [4, 11]. AN-instruction slice presents a thread sequencing utilization (BWSE@BWSEQ,,,J-
choice ofN linear p-threads. P-thread selection amounts td-or instance, if the main thread utilizes only half of the
choosing the backwards sub-slice that makes the best @wvailable sequencing bandwidth, then a p-thread is only
thread. P-thread goodness is measured by a functiomenalized for half of its bandwidth consumption. Half the
aggregate advantage (ARy), whose definition is sum- cycles would not have been used by the main thread.

marized in Table 1. Latency tolerance per useful dynamic p-thread (LT).

Aggregate Advantage (AD\yg). P-thread selection bal- P-thread latency tolerance is estimated as a difference in

TABLE 1. Static p-thread selection framework summary

Equation or Definition Description
EQL. ADV54p) = LTagdP) — OHygdP) Aggregate advantage
EQ2. OHygdp) = DGyig(p) * OH(p) Aggregate overheadoverhead is incurred for every dynamiq p-
thread instance (D)
EQ3. LTagdP) = DGor.cndP) * LT(p) Aggregate latency tolerancelatency is tolerated only for

instances that pre-execute actual misses,(Rg

EQ4. OH(p) = (SIZE(p)/BWSEQ o9 * (BWSEQ/BWSEQ,oJ | Per dynamic instance overheadoverhead is discounted by
main thread sequencing utilization (BWSHBWSEQ,oJ

EQ5. LT(p) = MIN(SCDHy(p) — SCDH(p), Lem) Per useful dynamic instance latency tolerancdatency toler-
ance is bounded by cache miss latengy,(L

EQ6. SCDH(pi) = MAX(SCy(pi), SCDH(DFP(pi))) + Lo(pi) Completion time for ith p-thread instruction: DFP(pi) are pi'y
dataflow predecessorsyJ(pi) is its operation latency

EQ7. SG(pi) = DTRIG(pi) / BWSEQ Sequencing constraint ont p-thread instruction: instruc-
tion’s distance from trigger divided by sequencing bandwidth
EQ8. BWSEQy, BWSEQy, BWSEQy 00 Lem Constant parameters

EQ9. ADVyqq.redP) = ADVagdP) — LT(P) * DGyrcr{ CHILD(p)) | Reduced aggregate advantage




miss computation execution times. Starting from the trig-putes SCDH,; and SCDH;. The left term under max() is
ger (when the main thread and p-thread begin executing ithe sequencing constraint. Notice, DTR|Gvalues are
parallel), we calculate the number of cycles it would takesparse, while DTRIG values are sequential. Each instruc-
the p-thread to execute the cache miss (SGPhlind the tion has a single dataflow-predecessor; the right value
number of cycles it takes amassisted main threaid do  under max is SCDH of the previous instruction. The bot-
the same (SCD}). The difference between these esti- tom row calculates ADY,, plugging 8 for L, 2 for
mates is the number of cycles by which the p-thread hoistBWSEQ,,;, and 4 for ng%goc
the miss with respect to the main thread and thus the Candidate C (B is similar so we do not show it) pro-
amount of latency it tolerates. Since there is no benefit tovides no sequencing advantage over the main thread. Start-
tolerating more latency than the latency of the miss, weng at the trigger, both main thread and p-thread execute

bound LT by the original miss latendy ;).
Our execution time estimation functionsequencing-
constrained dataflow-height (SCDHIt is the standard

exactly the same instructions. However, it does incur over-
head. Pre-executing this candidate wikkreaseexecution

time by 20 cycles. Notice, Dy is 80 while DGy ¢y is

recursive dataflow-height equation with an additional40; only 40 of the 80 executions will cover misses.

sequencing constraint (SGyhich models the cycle at

which the instruction is sequenced (fetched). SCDH can FIGURE 3. ADV,qq calculation working example

be used to model both standalone p-thread execution

(SCDH,) and embedded main thread execution (SGRH candidate C SCOH SCOHy
using proper definitions of the sequencing constraint. Tq*07|SIR7.R7.#2  Jmax(0/2, 0)+1=1 max(0/1, 0)+1 =1
calculate SC for a given instruction, we divi@e RIG— #08| addi R7, R7, #rx I max(1/2,1)+1 =2 max(1/1, 1)+1 =2
its distance in dynamic instructions from the trigger—by |#09| w R8, 0(R7) max(2/2,2)+8=10 _ Jmax(2/1, 2)+8=10
the sequencing bandwidth. SCQ}His smaller than [40 * min(10-10, 8) |- [80 * (2/4) * (2/4)] = 0-20 = -20
SCDH,,; because of SC: the p-thread sequences fewer

instructions, so each instruction’s DTRJQS smaller than candidate D SCDH SCDHQ
its DTRIGn. TOAIWRT, 4R5) | max(01Z, 0)+1 =1 Max(0L, 0)+1 = 1
Constant parameters.Our calculations parameterize the |*07|SIR7.R7.#2  Jmax(32, 1)+1=3 max(1/1, 1)+1=2
underlying machine using four constants. BWSERis #08| addi R7, R7, #rx | max(4/2, 3)+1 =4 max(2/1, 2)+1=3
the sequencing bandwidth of the processor and is straighf#09] w R8, 0(R7) max(5/2, 4)+1 = 12 max(3/1, 3)+8 = 11
forward to define. BWSERis the rate at which a p-thread [30 * min(12-11, 8) |- [60 * (3/4) * (2/4)] = 30-23 =7

is allowedto sequence. We set BWSEQo 1 because p-

threads are single computations that execute serially and  candidate E SCDH s(:D|-|Et
there is no sense allocating a p-thread more sequencirfGTITaddi R5, Rb, #16 | max(0/2, 0)+1 = 1 max(0/1, 0)+1 = 1
bandWI.dth than it will use. BWSE'Q |S.the rate at Wthh #04]w R7, 4(R5) max(7/2, 1)+1=5 max(L/1, 1)+1 =2
the main threaaqtuallyjsgquences. This constant is tricky | ,o-| 4 R7,R7. #2 max(10/2, 5)+1 = 6 max(2/1, 2)+1 = 3
to set. Not only is it difficult to measure—we are really 408 addi R7, R7, #c | max(11/2, 6)+1=7 max(3/L, 3)+1 = 4
interested in the main thread’s sequencing rgieto the N T o
miss, not including the miss—it also varies (often wildly) FO9] WRS, 0(R7_) max(12/2, 7)t8 715 ___J max(4/L, 4)+8 = 12
over the course of the program such that a constant ratk [30 % min(15-12,8) |- [100 * (4/4) * (2/4)] = 90-50 = 40
may not accurately represent any single program region.

Lem is the miss latency. Like BWSEQ, our framework candidate F _SCDHy _SCDHy
treats L, as a constant, even though a conventional proq{#11|addiR5, R5, #16 | max(0/2, 0)+1=1 max(0/1, 0)+1 =1
cessor naturally overlaps misses—with program instrucq#11| addiR5, R5, #16 | max(12/2, 1)+1=7 max(1/1, 1)+1=2
tions or even other misses—to varying degrees. #04| lw R7, 4(R5) max(19/2, 7)+1 =11 max(2/1, 2)+1=3
Working Example. To illustrate the use of ADY,, we  |*O7|SIRT.R7.#2  fmax(22/2, 11):1 =12 Jmax(3/1, 3)+1 =4
select a p-thread from the linear computation of Toad #0d]#08| addi R7, R7, #inc | max(23/2,12)+1=13  fmax(di1, 4j+1=5
that contains instruction #04 (nodes A-G in Figure 2). As|#09|WR8 0R7) _ Jmax(24/2, 13)+8=21 Jmax(5/1, 5)+8 =13
shown in Figure 1, the loop executes 100 iterations, 8( [30*min(21-13 8) |- [L00*(5/4)*(2/4)] = 240-63 = 177
iterations execute instances of #09, of which 40 are

misses. Of the 80 #09 computations, 60 contain instruction  candidate G SCDH SCDHyy

#04 and 20 use #06. All operations have unit latency, anq#11

addi R5, Rb, #16

max 0/-2, 0)+1=1

; . , _ ( (

miss latency is 8 cycles. Note, the highest possiblq#11faddiR5, R5, #16 [max(6/2, 1)+1=4 max(/L, 1)+1 = 2
ADVa%gscore in th|§ case is 320: 8 cycles of Iatgncy toler_— #11| addi RS, RS, #16 | max(18/2, 4)+1=10 | max(2/L, 2)+1 =3
ance for all 40 misses, with 0 overhead. This score i 4!, r7. 4(RS5) max(25/2, 10)+1= 14 | max(3/1, 3)+1=4

impossible to achieve if p-threads have non-zero cost. Thg _ _
. . ; . #07|SIR7,R7,#2 | max(28/2, 14)+1=15 |max(4/1, 4)+1=5
processor is 4 wide, BWSEQis 2, and BWSEQ is 1. 408| addi R7 R7 # 202, 15141 = 16 A

Figure 3 shows the ADy,q calculations for five of the addi R7, R7, #ix_ | max(29/12, 15) - max(5/1, 5) -
six candidates (B=G). The winning p-thread, F, is shaded|?09[WR8 0R7) __ | max(30/2, 16)8 =24 ) max(6/1, 6)+8=14

Each calculation is shown as a table. The top portion com}

[30"min(24-14, 8) I-|100* (6/4) (2/8)]= 24075 = 165




Candidate D provides minimal sequencing advan-add. If they are a parent-child pair, then the number of
tage—the p-thread skips instructions #05 and #06—and inisses covered by both p-threads isfag{(child) and the
cycle of latency tolerance. Notice, #04 is executed only 6(amount of latency that is “doubly-tolerated” for each of
times (#06 is executed the other 20 times) and the compuhese is LT(parent). The latency tolerance correction—
tation triggered by #04 covers only 30 misses. The pLT(parent) * qut_cm(child)—is associated with the parent
thread incurs overhead for each of 60 p-threads launcheg-thread.

for a positive AD\,,0f 7 cycles. . . .
Since instances of #11 occur once per iteration, candilterative algorithm. The set of p-threads covering the

date E's DGy is 100. DGy cis still 30—the computa- misses of a single load is the one whose Afj/-where

tion includes instruction #04 and correctly pre-executeddtency tolerance reductions due to overlap have been
only 30 misses. Note, D¢, Monotonically decreases as accounted for—sum to a maximum. Because p-threads
p-thread length increases. A longer slice corresponds t§/ithin a slice tree obey certain relationships to one
fewer dynamic computations. In contrast, Chas no another,_ we can find this set |terat|vgly rath_er f[han via
relationship to p-thread length. Trends aside, candidate £xhaustive search. For each separate linear slice in the tree,
is better than candidate D. Although the number of useles¥® Sélect a p-thread as in the previous section. If any of

-threads (DG, .—DC... rows from 30 to 70 and per p- ne independently selected p-threads overlap, we reduce
Fhread ov(errgl;el%d %p(t:rcgg\sges, the additional 2 CI)D/C|GF; dfe advantages of the parents and reselect. The process ter-
latency tolerance per miss produces a net gain. minates once reductions performed in one iteration do not

The final two candidates are similar: F uses a singléhange the p-threads selected in the next.

level of induction unrolling, G unrolls twice. The first \working example. Obtaining a complete solution for our
unrolling provides candidate F with an additional sequenceyample slice tree is trivial. Selecting p-threads for the two
ing advantage of 12 instructions over the main threadjinear slices separately, we choose F and J. As these two p-

ance as we need. The score for this candidate is 177: full  oyerlap explains why multiple p-threads from the
latency tolerance for 30 misses, at the cost of 63 overheaghme |inear slice are typically not chosen. In Figure 3, can-
cycles. With full latency tolerance already achieved, thegigates D, E, F and G all have positive ARY, Yet the
added unrolling of candidate G only increases overhead. framework—which maximizes ADY,q Sum—selects only
) ) ] F. Why? Assume both E and F are initially selected. F's

3.3 Selecting Multiple P-Threads Simultaneously LTagq is 240 cycles (8 cycles for 30 misses); E’s is 90

P-thread F, which we found in the previous SeCtion,cycPes (3 cycles for 30 misses). Since F is E’s child, its
covers only 30 of the 40 #09 misses. We now show how tqyresence reduces E’s A, by the shared latency toler-
select aset of p-threaddy optimizing multiple, partially ance, LT(E) * DGy.cn{F). Since E and F cover the same
overlapping linear slices simultaneously. set of misses, F makes E completely superfluous!

P-thread overlap.As hinted in Section 3.1, the possibility

of overlap makes a naive approach inappropriate f013'4 Ext;ansmns: E'.thr?%d Merging and O%t'm'ﬁatlon
selecting multiple p-threads that cover the misses of a sin- ©OUr framework includes two automated enhancements

gle static load. If two static p-threadwerlap—if at least to basic p-thread selection:_ m_erging of partially redundant
one dynamic miss is pre-executed by both of them—the-threads and p-thread optimization.

their aggregate latency tolerances do not add. Once one Rperging. The two linear p-threads chosen in the previous
thread tolerates the latency of a miss, a second p-threagbction target disjoint sets of misses. However, instances
cannot tolerate it again. _ _of instruction #11 dynamically executed by these p-

_P-threads in a slice tree obey parent-child relationhreads are redundant. To eliminate this redundancy, our
ships. Shorter, less specialized p-threads which cover moigs mework merges the two p-threads. A merged p-thread
misses are parents. Longer, more specialized p-threadgnieves the same latency tolerance as separate instances
which cover fewer misses but more latency per miss argyf each of the original linear p-threads and incurs less
children. In our Figure 2 example, C is the child of B, D of gyerhead. Our framework merges p-threads with matching
C, Eand H of D, and so on. The parent-child relationshipyiggers. Merging proceeds in dataflow order, with register
is transitive, but not total: e.g., E and | are not parent andeassignment and code duplication performed as needed to
child. The pgrent-chlld relationship quantlﬂ_es p'threadpreserve the semantics of the original p-threads. In our
overlap. A child covers some subset of the misses coveregyample, instructions #07, #08 and #09 are replicated in
by its parent. The size of this subset is given by its,DC  the final p-thread—one copy completes the computation
cm- I fact, one slice tree invariant is that a parent'sf2C  that contains instruction #04, the other completes the com-
cm IS the sum of the D, of its children. putation that contains instruction #06.

Addition of aggregate advantagesEquation 9 in Table 1 optimization. Optimized p-threadsire not exact copies
defines the addition of latency tolerances (and hencgs gynamic computations from the program, but rather
advantages). If two p-threads are not a parent and childpecialized versions of them. We fit p-thread optimization
(either directly or indirectly) then their advantages simply jnto our framework by allowing the SCDjgand SIZE cal-



culations to usanyinstruction sequence that is function- the p-thread to read pre-launch main thread register values.
ally equivalent to the program derived sub-slice. P-threadrhe context is freed when all p-thread instructions have
optimization is both easier and more productive than itdoeenrenamed P-threads are injected into the execution
full program counterpart. Since our p-threads are controleore at register renaming in bursts, 6 instructions once
less, traditional control-flow and iterative data-flow analy-every 6 cycles per active p-thread. P-thread instructions
ses are replaced by linear scans. Also, only optimizationgre allocated physical registers and reservation stations
that are enabled by the specialized nature of the p-threagind contend with main thread instructions for these
are considered. Register allocation was already performerksources and for scheduling slots. They are not allocated
by the compiler that generated the initial program andROB entries, are not retired, and do not modify architected
scheduling is unnecessary since a p-thread is a single corstate. Since we focus on the performance of the p-threads
putation. We have found thatore-load pair elimination not of the selection algorithm, we do not model the p-
and constant foldingcapture most p-thread optimization thread selection/pre-execution interface; p-threads are
opportunities. Figure 2 contains one optimization opportu-accessible in one cycle from an ideal cache. We assume
nity: in candidate G, the two instances of instruction #16that this interface has only secondary performance effects.
(addi R5, R5, #16) may be folded into a single instruction We use the SPEC2000 integer benchmarks compiled at
(addi R5, R5, #32), reducing both p-thread latency (the data- peak optimization levels using the Digital Unix cc com-

flow height is cut by one instruction) and overhead. piler. We use 9 of the 12 benchmarlkin gzip, andper-
Ibmk have negligible L2 miss rates. Performance numbers
4 Experimental Evaluation are reported using the training inputs cyclically sampled at

We evaluate our framework by using it to select p-100M of every 1B instructions with 10M instruction
threads that target L2 misses. In section 4.4, we validate jt¥arm-up phases. P-threads are selected using the same
performance model by comparing predicted statisticrogram sample on which they are sub§equently mea-
against statistics measured from pre-execution simulaSured, allowing us to check the framework’s performance

variations in several p-thread and machine parameters. Penchmarks. We show both baseline IPC and IPC with a

perfect L2. IRPC measures instructions renamed per cycle.
4.1 Methodology Since we sequence p-threads at register renaming, we use

We experiment with a suite of tools built using the this value as our estimate of BWSFQ
SimpleScalar Alpha ISA and syscall modules. A cache .
simulator collects backward slices of L2 misses into slice?-2 P-thread Selection Performance _
trees which are written to files. A p-thread selection tool ~ Although selection algorithm performance rist the
takes a slice tree file and parameters describing the procefcus of this paper, a few words about the cost of our
sor (e.g., sequencing width) and p-thread constraints (e_g|_g1plementat|on are in order. Profiling takes time propor-
p-thread length) and produces a list of p-threads. Defaultional to the length of the trace plus the number of L2
selection settings are maximum slicing scope and p-threafisses scaled by the size of the slicing window. With a
length of 1024 and 32 instructions, respectively, and fullmaximum of 32 instructions per p-thread, a typical bench-
merging/optimization. mark’s slice trees have about_ 200,000 n_odes (p-thr_ead can-
Performance results are obtained via detailed timingflidates). Advantage calculations take time proportional to
simulation. Our base configuration is a 6-wide dynami-P-thread length, due to the SCDH definition. Once initial
cally scheduled processor, with a 6K-entry hybrid brancr@dvantages are computed, selection time is proportional to
predictor, 14 stage pipeline, 80 reservation stations, and g€ number of candidates; the median number of iterations
maximum of 128 instructions or 64 memory operations in-Per slice tree is 1. Merging and optimization take time pro-
flight. We model 16KB, 32B line, 2-way set-associative portional to the static size of the linear p-threads.
primary caches, a 256KB, 64B line, 4-way set-associative,
6-cycle access L2, and an infinite, 100-cycle access maift-3_Absolute Performance Results
memory. A 32B wide memory bus is clocked at one fourth ~ ThePre-exec Actua(shaded) portion of Table 2 shows
processor frequency. 32 simultaneously outstandinghe performance of the p-threads selected by our frame-
misses are allowed. Because we target L2 misses, we digork. In addition to IPC, we list the number of p-threads
able the data cache fill path for p-thread loads—theséaunched, the average number of instructions per p-thread
prefetch only into the L2. Data cache prefetchingand L2 misses covered both partially and in f@erhead
improves performance but diminishes our ability to vali- IPC and Latency tolerance IPGre produced by simula-
date the framework. tions which isolate p-thread cost and benefit, respectively;
Our pre-execution run-time implementation resembleghese are used to validate the model. Our framework
data-driven multithreading (DDMT) without register inte- Selects p-threads that generally improve performance. The
gration [12, 15]. P-thread contexts are lightweight, con-P-threads cover between 19%icf) and 84% {pr) of the
sisting only of a map table. When a trigger is renamed, &2 misses—full coverage is achieved for about half of the
p-thread is allocated to one of three additional contexts, ofovered misses—and result in performance improvements
dropped if no context is available. The context is initial- Of up to 25% ¢pr). One benchmarlcrafty, experiences a
ized with a copy of the main thread’s map table allowing 1% performance degradation.



4.4 Model Validation tion. As we show in Section 4.5, this is not the case. Over-
In the scope of this work, absolute results are lesiead is low precisely because our framework explicitly
important than demonstrations of the framework’s compu-minimizes it.

tational power and modeling fidelity. Our framework USES| _ioncy Tolerance To measuraniss coveragewe time-
standard techniques to find optimal solutions for a given y : “

function. What we need is confidence that its assumptionS:2MP_cache blocks with p-thread request, main thread
and the function it optimizes, ADY,, accurately model 'cduest, and ready times. At retirement, p-thread covered
reality such that good solutions in the model space are alsjould-have-been misses are identified, and classified as
good in reality. Put differently, we want to know that only 'l OF partial, by time-stamp relationships. Miss coverage
19% of mcfs misses are CO\}ered because the p-thread difficult to predict, as it is affected by several factors that
don't exist, not because the framework can't find them. va?gg do<\a/s rnott?r::]cct)iunttfor. fF\‘/)vr rr:ﬁ‘rt'al or %e“ﬁfa' r?llss
Our framework's calculations are explicit predictions SOVErade .over-estimation(too few misses actually cov-
of p-thread behavior. As one form of validation, we Checkered) indicates p-thread issue delays caused by contention

these against simulated measurements. We check overhe i the main thread and other p-threatimder-estima-
and latency tolerance separately to help pinpoint mode}o” ({00 many misses actually covered—a good problem
inaccuracies. Predicted diagnostics are shown in the bofv-sitm]vg) t::?ggg: gg%gﬁ;ﬁg??ogg %]g;/t?]rgtlorgzlritpgeiﬁigzs
tom of portion of Table 2Rre-exec Predigt for its own sake, but may be embedded in a p-thread tar-
Overhead.P-thread lengthpredictions are self-fulfiling. geted for another). For full miss coverage in particular,
P-thread launch countsre occasionally over-estimated over-estimation implies post-issue p-thread delays due to
(e.g.,bzip? due to the finite number of p-thread contexts. memory bus contention. Under-estimation indicates main
Most often, they are under-estimated because the framéhread delays, primarily due to branch mispredictions.
work does not model wrong-path triggering. Each effect is present to some degree in every benchmark.
Overhead performance degradation is measured in two We isolateperformance improvement due to latency-
ways. In execute p-thread instructions execute, but L2 tolerancevia a simulation in which p-thread instructions
misses are not satisfied (these p-threads do not have tlae not charged for bandwidth they consume. Performance
pre-execution effect). Irsequencep-thread instructions improvement is the most difficult metric to predict. It is
consume sequencing cycles but are immediately disalmost universally over-estimated because of our frame-
carded. The first simulation measures true overhead, th&ork’s assumption that miss latency translates cycle-for-
second measures overhead as modeled by our frameycle into execution latency and, therefore, that miss
work—the only cost of a p-thread instruction is the band-latency tolerance translates directly into speedup. As we
width consumed to sequence it. The result proximity ofmentioned earlier, this is certainly not the case. A dynami-
these two simulations to baseline IPC may suggest that psally scheduled processor often partially overlaps L2
thread overhead is an insignificant factor in p-thread selecmisses with program instructions and even with L1 and

TABLE 2. Basic results and performance model validation

bzip2 | crafty | gap gcc mcf J parser | twolf | vortex vpr
[Base | Sampled instructions (M)[ _ 6000[00 2600.00  900.00  500.00 900.00 1B00.00 1300.00 |1700.00 | 1100.00
Loads (M) 1509.20 73149 21849 116{15 246.03 295.70 29156 458.21 B27.17
L2 misses (M) 20.15 0.91 1.91 0.72 63.52 4.59 9.07] 1.17 6.84
IRPC (BWSEQ) 2.75 4.00 2.11] 2.92 0.38 1.82] 1.60 2.94 1.57
IPC 2.43 2.73 1.56 1.72 0.22 1.21 0.93 2.74 1.08
Perfect L2 IPC 4.16 3.06) 2.52 2.32 1.71 2.33 2.14 3.54 2.07
[Pre-exe( P-threads launched (M) 171.89 851 1695  9.60 8899 b53.74 6199 1658 69.9
Actual | p-thread length 15.47  15.02 6.73 5.51 8.43 5.59 8.31 12.00 9.5
Overhead IPC (execute) 2.20 2.71 1.55 1.71 0.22 1.20 0.93 2.72 1.07
Overhead IPC (sequence) 2.23 2.72 1.56 1.72 0.22 1.20 0.93 2.73 1.09
Misses covered (M) 14.11 0.58 1.36 0.39 12.53 1.95 6.68 0.87 5.75
Misses fully covered (M) 3.61 0.24 0.65 0.24 3.83 1.0 4.12 0.26 3.08
Latency tolerance IPC 2.70 2.72 1.70 1.82 0.23 1.30 1.17 2.94 1.37
IPC 2.47 2.70 1.68 1.81 0.23 1.29 1.14 2.91 1.3§
[Pre-exe¢P-threads launched (M) 338177 3105 9.23 B.26  38.85 P2.39 [25.10 7.81 | 31.62
Predict |p-thread length 18.51  14.p8 7|40 .64 3.91 5.74 950 [11.75 9.92
Overhead IPC 2.03 2.y2 1/55 171 .22 1.21 0.93 2.71 1.07
Misses covered (M) 15.60 0.60 1|15 Q.29 18.14 1.87 7.18 0.74 6.37
Misses fully covered (M) 8.19 0.01 0/57 Q.12 16.17 1.37 4.68 0.22 481
Latency tolerance IPC 5.85 2184 1.79 1.84 0.36 1.42 1.51 2.96 2.36
IPC 3.99 2.82 1.7 1.83 0.86 1j41 1.49 .92 .30




other L2 misses. Simply, the framework often believes thatatency exceeds 100 cycles.
there is more latency to tolerate than actually exists. In experimenttoh we consider p-thread overhead but
. . . not p-thread overlap. We simulate this strategy by running
Summary. Experiments for other configurations (€.9., qyr framework for a single iteration over each slice tree,
narrower processor, slower memory) show similar reSUItSef‘fectively ignoring overlap corrections. From our results
Our framework’s predictions are not perfect, but are clos§y, sections 4.3 and 4.4, it may appear that pre-execution
in many cases. This suggests that Afgyfs a reasonable o erheaq is insignificant. However, this is misleading:
model for L2 miss pre-execution under many conditions. o erhead is low only because our framework explicitly
_— minimizes it. Accounting for overheaa priori produces
4.5 Contribution of Framework Components higher performance p-threads in all but one benchmark
Another way to demonstrate the merit of our frame- (zip2). This effect is especially prominent in benchmarks
work is to isolate the effects of its components. Our frameyhich are swamped by the overhead of greedy p-threads
work explicitly accounts for three factors unaccounted for(crafty, vortey).
by previous schemes: 1) required latency tolerance, 28 Experiment +ovlp adds p-thread overlap consider-
overhead, and 3) p-thread overlap. Figure 4 shows fougtions and corresponds to our complete framework.
experiments, starting with greedy p-thread selection angegundancy due to overlap is a form of overhead and has
successively incorporating these considerations. We shoWmilar impact. In all benchmarks bujap overhead
five diagnostics for each experiment. Full and partial misgjecreases while performance increases.
coverages, as percentages of baseline L2 misses, are
stacked bars. P-thread overhead, computed as p-threads sensitivity to P-Thread Selection Parameters
instructions sequenced over the main thread instructions  \ve measure our framework’s sensitivity—i.e., changes
retired, is an uptick. Average dynamic p-thread length is §, the p-threads it selects—to variations in p-thread selec-
cross. Finally, percent speedup is shown as rotated text. tion narameters. Figure 5 shows three sensitivity experi-
In greedyselecﬂqn (first bar from the left), p-threads_ ments for each of three benchmarks, chosen because they
are chosen for maximum miss coverage and prefetch _d'sr'epresent a wide range of baseline IP@sc (1.72), twolf
tance without regard for actual latency tolerance requirer 93), andortex(2.74).
ments. Here the framework selects many long p-threads. ’
In most programs, this is a losing strategy. A greedySlicing scope and p-thread lengthSlicing scope (the
approach does yield high numbers of fully covered missedength of the dynamic trace examined to construct linear p-
but the long p-threads produce many useless instances, atiteads) and p-thread length are physical constraints on p
much of the bandwidth consumed by others would be betthread construction and the implementation of the p-thread
ter spent on short p-threads that increase total miss covememory hierarchy. In the left graph of Figure 5, we begin
age. The high overhead sometimes produces shanpith a scope length combination of 256 and 8, respec-
slowdowns ¢rafty, vortey. Surprisingly, the greedy tively, and successively relax each constraint up to our
approach occasionally outperforms the framewdnki2 default settings of 1024 and 32.
mcf). This occurs when, due to bus contention, effective  As p-thread selection constraints are relaxed, actual p-
memory latency is higher than the constant 100 cycleshread length, miss coverage, full miss coverage, and per-
(L.m) we target. The high overhead of the greedy approactiormance all increase. However, they do not increase
is mitigated by the finite number of thread contexts. indefinitely; at some point, they saturate and do not benefit
In the second experiment]t, we account for latency from further relaxation. Quantitatively, the saturation point
tolerance requirements—we select p-threads that are sufféf most programs lies at slicing scopes of 512 instructions
ciently long to cover the targeted latency and no longer—and p-thread lengths of 16 instructio®@:cs performance
but ignore overhead. In line with our reasoning from thedips slightly as constraints are relaxed. This anomaly is
previous paragraph, this strategy outperforms the greedgue to the finite number of p-thread contexts, which our
approach, increasing coverage while reducing overheadramework does not model.
except for those benchmarks in which effective memory Parameter sensitivity varies from one program to the

FIGURE 4. Contribution of framework components via comparison with simple approaches
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FIGURE 5. Sensitivity to p-thread selection parameters

next. Most programs are more sensitive to p-thread lengttion of p-thread selection, we select p-threaffSne using
constraints, unable to achieve any gain with short profile data from different (smaller) inputs. P-threads
threads, even at large scopes. Miss computations in theselected offline often approach the performance of p-
programs are dense in the locus leading up to the miss—threads selected with perfect information, supporting our
small computations are unable to obtain any sequencingntuition that p-threads and pre-execution performance
advantageTwolf is especially sensitive to scope restric- potential are a function of program structure. Offline
tions. It has the complementary program structure: sparsgelection does have a new failure mode, howelenlfs
computations which can achieve latency tolerance withtest input data set fits in the L2 cache and offline selection
small computations, but need large slicing scopes to “seefjenerates no p-threads.
these computations. To model a dynamically optimizing virtual machine
Lo . 1], we select p-thread®nline using a short profiling/
P-Thread optimization and merging.The second graph Ec,e]Iection phasepbefore each pre-exgecution sangple. Pgr]edict-
in Figure 5 isolates the two effects of p-thread optimiza-gp|, online selection generally outperforms offline selec-
tion and the effect of merging. . _____tion and approaches the performance of “perfect’ p-
The first configuration employs neither optimization ,a4sGecs shortfall is due to rapidly changing phases.
nor merging. It produces long, high-overhead p-threads, " the onjine result actually incorporates two effects: p-
lower miss coverage—due to optimization's second effeCiy g4 selection using a different sample from within the
described below—and 2-3% lower performance gaing,me program anger-sample p-thread specializatiofio
than the full-powered framework. _ isolate the latter, we use perfect information to create spe-
_ Experiment+p-opt (post-optimization) examines the i5ji7eq p-threads for each 100M instruction sample. Intu-
first effect of optimization. Here we optimize a set of p- jion says that this approach will produce higher
threads initially chosen without optimization in mind. performance. After all, at the limit of this process we find

Optimization reduces p—thregd length and ovgrheada custom p-thread for every dynamic L2 miss! Experiment
Twolf's performance suffers slightly under post-optimiza- p100Mconfirms this intuition.

tion due to an interaction with the finite number of thread
contexts; this is rare behavior. Experimewgtopt (choose- 4 7 Sensitivity to Machine Parameters
optimization) isolates optimization’s second effect. Here

we account for optimized length when choosing p—thread% An important aspect of the framework is its ability to

arameterize major processor features. Weangss-vali-
ationto measure this fidelity. Intuition says that feature X
is modeled correctly if for configurations X1 and X2, p-

effect is often stronger than the primary effect of overhea hreads chosen for configuration X1 perform best on con-
9 P y iguration X1 and those chosen for X2 perform best on

reduction for existing p-threads. Experience also ShOW3(2. If p-threads chosen for X1 perform best on both con-

that optimization is increasingly effective as length con-¢, ations ‘then the framework has a bias towards X1.

Straégse?{;gggtggfdéa dds meraind to the selection pro- Figure 6 shows cross-validation studies for three
P 9 9ing P parameters. A single study includes four experiments,

C:jscsng g?r:;e;é)gn?zo? gg{.:]léllefraé"ti‘gonrk'maﬂeerg;ng X1cX1—p-threads chosen for configuration X1 executed
reduces ov u S Increas u rotvigy configuration X1—pX2cX1, pX1lcX2, and pX2cX2.

ble candidates—its performance effects are less pro
nounced than those of optimization.

to begin with, enabling us to choose p-threads that wer
either unprofitable or illegal (i.e., too long) in their unopti-
mized forms. As shown imortexandgccthis “secondary”

Experiments are grouped by simulated configuration (cX);
the left bar in a group is the “cross” experiment. While

Input data set. We have shown that good p-thread selec-"Cross” experiments validate the model, comparing “self’
tion is possible givemperfectinformation: a trace of pro- €xperiments—pX1cX1 with pX2cX2—provides insights
gram execution on the same input data. We now test théto the impact of parameter variations on pre-execution.
viability of p-thread selection in real world scenarios.

To model a profile-driven static compiler implementa- Memory Latency. Memory  latency impacts  p-thread
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FIGURE 6. Sensitivity to machine parameters

structure directly by changing latency tolerance require-by the main thread are wrong path instructions.

ments (ley). In Figure 6, we measure the effect of latency . . .
variations using latencies of 100 and 200 cycles. L2 cache sizelL2 cache size affects p-thread selection by

Comparing p100-c100 with p200-c200 shows that changing the number of misses. The number of misses can
memory latency changes produce intuitive p-threadch@nge the effective computation latency when misses are
changes. Increased latency demands longer p_threaégrlallzed (i.e., pointer-chasing). We select and cross-
which exact more overhead. Predictably, miss coverag&€'€ct p-threads foraS12KBL2. .
remains the same but fewer misses are fully covered. Ag Larger caches produce fewer misses and require p-
memory latency accounts for a larger fraction of total exe-réads that produce fewer useless instances; such p-
cution fime, relative performance improvement due to pre{hreads tend to be shorter. They also typically require
execution increases. fewer static p-threads as some portions of the working set

Cross-validation shows that our framework does nofit In the L2. By exposing less total memory latency, they
model memory latency very accurately; one may obtaid €duce the relative impact of pre-execution. .
better performance by specifying both higher-than-actual, Modeling fidelity results for L2 cache size are mixed:
(gcd and lower-than-actuaholf, vortex) latency values. e model appears to be correctgeg biased towards
We have seen this problem before. Our framework uses [r9€r caches imwolf, and biased towards smaller caches
constant value for memory latency k), which is set to N Vortex Because number of cache misses does not
the uncontested L2-memory round trip time. Tefeective  direéctly enter into the framework as a parameter, the effect
memory latency is often higher or lower than this value,Of cache size manifests only via interactions. We have
due to bus contention or natural overlapping, respectively2!ré2dy seen thawolf is more overhead tolerant than its
and typically varies from the misses of one static load toBVWSEQnt value indicates. It would better tolerate the
the next and across the dynamic misses of a single statfigher number of p-threads and the longer p-threads it

load. By specifying higher or lower latencies, we ma: perequires due to heavy use of poin_ter datga structures. In
helpingythg frafr)rllev%orl?simulate true conditions. y contrast,Vortexs branches are predicted with 99% accu-

racy; it is less overhead tolerant than BWSE@dicates.
Processor width.Processor width (BWSEg,) effects
p-thread selection by controlling the sequencing rate of th& Related Work

main thread (BWSEQy) and the overhead discount  techniques for hoisting cache misses have been stud-
(BWSEQ,/BWSEQ,o). We validate our modeling of jeq for as long as caches have existed. Several have used
this parameter using a 3-wide processor in addition to OUfata-driven instruction execution as a means for generat-
default 6-wide machine. ing prefetch addresses [13]. An early proposal to acceler-

Comparingp3-c3with p6-c§ we see that our frame- 41 3 single sequential program via decoupled thread-
work responds to processor width changes predictably. Ayased prefetching was Assisted Execution [17]. Imple-
wider processor demands longer p-threads; it allows thenentations of pre-execution in its current form include
main thread to sequence faster—a p-thread must skip MO§peculative Data-Driven Multithreading (DDMT) [15],
mstructions_ to obtain the same absolute sequencing adVa@‘peculative Pre-Computation [4, 5], Speculative Slices
tage—and is more overhead tolerant. [19], Software Controlled Pre-Execution [10], Slice Pro-

From this small sample, the framework appears toessors [11], and “push” prefetching by pre-execution in
model processor width correctly. Lying to it about Proces-in-memory processors [16, 18].

sor width generally produces poorer results. One excep- oyr framework complements this work. By parameter-
tion is twolf, where our framework seems to be blasedizing pre-execution’s run-time model, we can apply our
towards width over-specificatiowolf has poor branch regylts to all of these implementations, whether p-threads
prediction accuracy. BWSEQR overestimates the cost of ayecute on dedicated resources [5, 4, 11, 16, 18] or in a
overhead because nearly half of the instructions sequencefared resource environment [10, 15, 19] and whether



their execution is architecturally visible [10, 16, 18, 19] or mates of effective memory latency. One possibility is to
not [4, 5, 11, 15]. Our results directly apply to implemen- augment the framework with a critical path [7] pre-proces-
tations that use static p-threads [10, 15, 16, 18, 19]. Applisor that can assign a “true cost” to each miss or an average
cability to dynamic p-thread selection systems is morecost to each static problem load. Alternatively, we could
tenuous [4, 5, 11]. Such systems do not explicitly targetenrich the framework with temporal information to allow

aggregate effects but rather continuously modify p-thread# to reason about miss overlapping internally.

via feedback (e.g., Speculative Precomputation [4] adds

levels of induction unrolling if more latency tolerance is Acknowledgments
needed). Our framework assumes control-less p-threads This work was supported by NSF grants CCR-

and no chaining, a model used by several systems [4, 1900584 and EIA-0071924 and an Intel Graduate Fellow-

15]. Chaining [5] and control flow [10, 16, 18, 19] compli-
cate selection, but framework extensions to handle the
may be possible.

Compiler and linker based p-thread generators [8, 9
10] form an implementation path for pre-execution. How-
ever, they must reconstruct the dynamic effects p-threadd]
from static program constructs, a non-trivial exercise for
anything except for simple loops. By dealing with traces,[2]
our framework sees the dynamic instruction stream as
straightline code (in which loops are unrolled) and side-
steps this problem. We hope to combine the analysis of ouf?!
framework with the practical aspects of these systems.

Pre-execution has also been used to target difficulpr]
branches [2, 3, 6, 14, 15, 19]. We have applied the meth-
ods we present here to branch pre-execution [12] by sets)
ting desired latency tolerance to the pipeline-induce
branch resolution latency. The framework is oblivious to
the implementation and performance of the branch out{6]
come communication mechanism.

6 Conclusions [7]
Memory latency is a significant component of total 8
execution time for integer programs. With multithreading
becoming prevalent, pre-execution—a recently proposegh)
technique for effectively moving cache miss latency to
other threads—is becoming popular. We present a quanti-

ship. We thank Yale Patt and the referees for their valuable
"Bomments.
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