Holistic Run-time Parallelism Management for Time and
Energy Efficiency

Srinath Sridharan

Gagan Gupta

Gurindar S. Sohi

Computer Sciences Department
University of Wisconsin-Madison
{sridhara, gagang, sohi}@cs.wisc.edu

ABSTRACT

The ubiquity of parallel machines will necessitate time- and
energy-efficient parallel execution of a program in a wide
range of hardware and software environments. Prevalent
parallel execution models can fail to be efficient. Unable to
account for dynamic changes in the execution environment,
they may create non-optimum parallelism, leading to under-
utilization of, or contention for, resources. We propose Par-
allelismDial (PD), a model to dynamically, continuously and
judiciously adapt a program’s degree of parallelism to the
prevailing dynamic execution conditions. PD uses a holistic
metric to measure system efficiency. The metric is used to
systematically optimize the program’s execution.

We incorporated PD in two different parallel programming
models: Intel TBB, an industry standard, and Prometheus,
a recent research proposal. Two prototypes were imple-
mented and evaluated on stock multicore machines. Dedi-
cated and multiprogrammed environments were considered.
Experimental results show that the prototypes outperform
the state-of-the-art approaches, on an average, by 15% on
time and 31% on energy efficiency, in the dedicated environ-
ment. In the multiprogrammed environment, the savings
are to the tune of 19% and 21% in time and energy, respec-
tively.

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Program-
ming - Parallel programming; D.3.4 [Programming Lan-
guages]: Processors - Run-time environments

General Terms

Design, Experimentation, Measurement, Performance

Keywords

Autotuning, parallel programming, performance portability,
performance tuning, run-time optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICS’13, June 10-14, 2013, Eugene, Oregon, USA.

Copyright 2013 ACM 978-1-4503-2130-3/13/06 ...$15.00.

1. INTRODUCTION

Trends in computing systems have put a spotlight on effi-
cient execution of parallel programs [14]. Multicores are now
standard in computing devices, ranging from mobile hand-
sets to HPC servers. While time efficiency was traditionally
the primary goal, energy efficiency is now equally signifi-
cant. System designers have turned to parallel programs to
achieve both objectives.

Multiple factors influence a parallel program’s efficiency.
In addition to the customary system artifacts (e.g., cache
sizes), they include: (i) the parallelism exposed by the de-
veloper, and (ii) the interactions of the program’s concur-
rent computations with each other and the host system.
Too little parallelism can underutilize the system. Excess
parallelism, on the other hand, can create contention for
resources, such as processors, caches, main memory, bus,
disk, other I/O, etc. Severe contention can lead to ineffi-
cient program execution, even worse than sequential execu-
tion. Hence performance optimization requires matching a
program’s parallelism to the execution environment.

Challenges to efficient execution in future systems will be
further compounded by the dynamically changing operat-
ing conditions. Multiprogrammed platforms, executing a
statically unknown mix of programs, will make continuously
varying resources available to programs. Increasingly unre-
liable hardware will further exacerbate the variability [7].

In the past, efficiency was a concern for a select few
parallel-program developers, but in the future it will be for
many more. Until recently a small set of experts developed
parallel programs for a very small set of machines. They
tuned programs using intimate knowledge of the host, e.g.,
its microarchitecture. Often, they could assume the host
was entirely available to them, and expect little or no inter-
ference from other programs. Going forward, we expect a
multitude of developers to program commodity parallel sys-
tems, e.g., the vast array of cell phones, laptops, desktops,
etc. We expect programs to be written without the detailed
knowledge of the hardware, software, and operating condi-
tions, e.g., resource demands of programs co-scheduled on an
unknown system in a data center. Further, given the possi-
bly large number of diverse target hosts, portability will be
highly desired.

To achieve efficient program execution, it will be daunting
for common programmers to account for the often complex
and non-intuitive factors related to program behavior, oper-
ating conditions and system characteristics.

Therefore, we believe, optimizing performance of a par-
allel program on future systems will require automatic, dy-

5000 -6 Multi_energy
4500 -0-Multi_time

Dedicated_energy | 55
-4-Dedicated_time 50

4000
a5
3500
3000 40
4
S 2500 35
3
2000 30
1500
25
1000
500 20
0 15
Threads
(a) RE

Seconds
Joules

3700 -6 Multi_energy
-® Multi_time

Dedicated_energy 60
-k-Dedicated_time

3500
*-- -
- _I--e<T___ 55
3300 A ---== %-=----"
<3
3100 50 o
c
8
2900 i &
2700
40
2500
2300 35
2 3 4 5 6 7 8
Threads
(b) Stream

Figure 1: Execution time and energy trends of two programs, RE and Stream, in dedicated and multipro-

grammed environments on a Core i7-2600 workstation.

namic and continuous harmonization of its parallelism with
the execution environment, while being agnostic to the un-
derlying platform. Both, under- and over-subscription to
various resources will need to be avoided.

Prevalent approaches take a limited view of the efficiency
issues programmers face. The traditional multithreaded
models put the onus of efficient execution largely on pro-
grammers. Task-based programming models, e.g., Intel
Thread Building Blocks (TBB) [42], ease some of the bur-
den. They automate load-balancing of tasks to prevent
resource underutilization. However, they do not address
overutilization, nor account for co-scheduled programs. Al-
though recent proposals take a broader view, some address
contention in only a subset of resources [45], while others
rely on offline profiling [9, 10, 26], and yet others may not
optimize utilization of resources [39,40] (85).

‘We propose a model that takes a comprehensive and auto-
mated approach to efficient parallel program execution (§2).
The model dynamically and continuously adapts a task-
based program’s demands to the currently available capacity
of resources. It exploits inter-task dependence information
to arbitrarily control the execution. The model defines a
simple metric to measure the system’s efficiency periodically.
The metric effectively captures the changes in resource uti-
lization, the operating environment, and the program’s de-
mands. Changes cause the model to search for the optimum
operation point under the new conditions. We develop a hill
climbing heuristic, based on the Tabu search [17], to locate
the optimum point in the search space.

We applied the model to two different approaches to
parallel programming: TBB, a well-established task exe-
cution model, and Prometheus, a sequentially-determinate
model [3]. Two prototypes were developed (§3) and evalu-
ated on two stock multicore machines (§4). Standard bench-
marks were developed using both models and tested in a
dedicated as well as a multiprogrammed environment. Ex-
perimental results show that the prototypes outperform a
state-of-the-art proposal on an average by 15% on time and
31% on energy efficiency, in the dedicated environment. In
the multiprogrammed environment, the savings are to the
tune of 19% and 21% in time and energy, respectively.

2. THE ParallelismDial MODEL
2.1 Motivation

The key to efficient program execution lies in accounting
for the execution environment’s characteristics at run-time.
A program’s execution environment is defined by the pro-
gram’s behavior, resources provided by the system to the
program, and the utilization of resources by all co-located
programs in the system. Prevalent parallel programming
models primarily focus on expressing parallelism and expos-
ing it to the system. Although necessary, only exposing
parallelism is inadequate for efficient execution. The dy-
namic execution environment also influences the program’s
efficiency.

Figure 1 shows how different aspects of an execution en-
vironment impact a program’s efficiency. It plots the energy
consumed by and the execution time of two benchmarks,
Stream and RE, written using TBB, in a dedicated and an
example multiprogrammed scenario, on an Intel Core i7 2600
workstation®.

RE is a networking redundancy elimination applica-
tion [4]. In the dedicated environment, at two threads the
resources are underutilized (Figure 1(a)). Increasing the
threads to up to six improves performance without consum-
ing additional energy. Clearly, insufficient parallelism can
lead to inefficiency.

Beyond six threads, RE’s performance and energy de-
grade, slightly, in the dedicated environment, indicating re-
source contention. In the multiprogrammed environment,
as more programs occupy the machine, the performance
degrades beyond four threads. When the total number of
threads exceeds the total number of hardware contexts, and
the OS deschedules RE threads, including at times when
they hold what is otherwise a very low-contention lock, the
efficiency drops.

In contrast to RE, Stream exhibits an opposite trend (Fig-
ure 1(b)). Stream, designed to stress the memory band-
width, has ample parallelism and is indicative of numerical
vector kernels whose datasets are larger than the cache ca-
pacity [30]. Even a modest attempt at parallel execution
in a dedicated environment results in excessive parallelism,

Details of the applications, machine, and operating envi-
ronments are presented in §4.

creating memory contention, and thus degrades execution
time and energy. However, in the multiprogrammed environ-
ment, when it is contending with other programs for other
resources (e.g., cache capacity or issue slots in the SMT pro-
cessor), it naturally slows down, thereby slowing down the
creation of parallelism and hence the memory contention.
Thus, higher occupancy of the machine proves to be benefi-
cial rather than detrimental in the case of Stream.

Other applications in different dynamic operation scenar-
ios may oversubscribe other system resources. Examples
include processing cores, caches, memory, I/O device (e.g.,
disk) operating system data structures (e.g. page tables),
synchronization primitives, among others.

Contention arises because the existing programming mod-
els assume that resources (hardware and software) are iso-
lated, static and unlimited (primarily due to the illusion pro-
vided by the OS). However, resources are shared, dynamic
and limited. As seen above, oversubscribed resources may
lead to artificial serialization, either causing, or easing con-
tention. Thus, as programs and tasks execute, they can
interact with each other and the system unpredictably. Fur-
thermore, a program’s own demands may vary, e.g., due to
phase changes, and a system’s resources may vary, e.g., due
to hardware failures.

Therefore, to achieve efficient parallel execution, the
challenge is to take a holistic, system-wide view, and to
dynamically and continuously control the parallelism to
match the instantaneous capacity of resources, without user-
intervention.

2.2 The Model Architecture

We present ParallelismDial (PD), a model that optimizes
a program’s execution efficiency by dynamically and contin-
uously adapting the program’s parallelism to the execution
environment.

To dynamically adapt a program’s parallelism, PD: (i) as-
sesses the efficiency of the system, (ii) detects contention,
changes in the program, and changes in the available re-
sources, (iii) responds to the changes by finding the opti-
mum degree of parallelism (DoP) under the new conditions,
and (iv) controls the execution to move to the desired DoP.

To adapt continuously, PD periodically repeats the above
steps during a program’s execution. Changes in successive
measures of efficiency indicate changes in the execution en-
vironment. As we see below, responding to the changes re-
quires arbitrary control of the execution.

To arbitrarily control a program’s execution, we propose
to use a task-based execution model that is also dependence-
aware. We view a program to comprise appropriately-sized
concurrent tasks. Tasks may be viewed as computations that
compose a thread in a conventional multithreaded program.
They are decoupled from the execution contexts (threads)
and thus provide the flexibility needed to manage the pro-
gram’s execution, typically at task boundaries. The finer
granularity of tasks permits distribution of tasks to con-
texts as soon as contexts become available, helping prevent
resource underutilization. These aspects are also exploited
by modern task-based models [13]. Further, as shown below,
awareness of dependences between tasks permits the adapt-
ability needed to prevent resource overutilization, while en-
suring a program’s forward progress.

PD consists of four main components: the Spooler, the
Regulator, the Scheduler and the Monitor. It assumes an un-

Program tasks

ParallelismDial

Regulator
“)

3)

Scheduler

R 8%
Worker Pool

Execution Environment

Figure 2: ParallelismDial model architecture.

derlying system that provides a pool of worker threads, com-
mon in a modern OS, and a low-overhead means to measure
an execution environment’s characteristics, e.g., via perfor-
mance counters provided by modern processors.

Figure 2 summarizes the model’s operations. The Spooler
gathers the tasks exposed by the programmer and creates
a task pool (1). The Scheduler assigns tasks from the task
pool to threads, if available, from the worker pool (2). Once
assigned, the threads execute the tasks. The Monitor pe-
riodically probes the system and measures the necessary
parameters to compute the instantaneous efficiency of the
program (3). The Regulator assesses the changes in the op-
erating efficiency. It responds by continuously seeking the
optimum point of operation by controlling the number of
workers allotted to the program (4). The number of work-
ers executing tasks directly corresponds to the maximum
exposed parallelism of the program.

Each aspect of PD is further described below.

2.2.1 Controlling the Execution of Programs

Regulating parallelism requires the ability to arbitrarily
block work from being performed when resources are over-
subscribed, and introduce work into the execution environ-
ment when resources are undersubscribed. For example, in
Figure 1(a), in the multiprogrammed environment, increas-
ing the parallelism from four to six degrades RE’s execution
efficiency. In this case, it is ideal to execute no more than
four threads. Doing so requires preventing additional work
from being assigned to more threads. However, this can lead
to unintended consequences in canonical parallel programs,
especially in those with arbitrary dependence patterns.

Challenges in Independence-based Programs
Canonical parallel programs are independence-based; the
programmer ensures independence amongst concurrently ex-
ecuting computations. Using appropriate synchronization
primitives the programmer enforces an arbitrary order be-
tween the computations when they access shared data. How-
ever, in certain instances the enforced order is specific, e.g.,
to execute the consumer before a producer in a produce-
consumer style program. Conventional parallel program-
ming assumes that once introduced in the execution environ-
ment, work is guaranteed to receive resources. Not granting
resources can violate this guarantee. Controlling the execu-

tion, without being aware of the programmer’s intentions,
e.g., blocking the producer, can hinder forward progress, or
worse, deadlock the execution.

Consider the popular Pthreads implementation of
Pbzip2 [16]. It reads data blocks serially from an input
file, one at a time, compresses the blocks in parallel, and
writes the results to an output file. The computations are
organized into threads, as shown in Figure 3(a). Block-read
operations are grouped into one thread, e.g., RO to R3 in
thread THO. Compress operations are grouped across mul-
tiple compress threads (to achieve concurrency), e.g., CO to
C3 in threads TH1 and TH2. Block-write operations are
grouped into one thread, e.g., W0 and W1 in thread TH3.
The threads are expected to be co-scheduled.

When the program executes, say three processors, U0 to
U2, are allotted to it. Threads THO, TH1 and TH2 execute
in epoch t0, (Figure 3(b))®. RO and R1 in THO read blocks
which are compressed by CO and C1, respectively. Now, say,
at the start of epoch t1, UO is taken away from the program
to regulte parallelism, and THO is blocked. TH1 and TH2
complete CO and C1, and advance to execute C2 and C3.
C2 and C3, in turn, wait for R2 and R3 in THO to read
the blocks from the input file. However, if no more proces-
sors are available, THO, which can make progress, remains
blocked, stalling the program’s progress, or even deadlock-
ing it, while available resources are occupied by tasks that
cannot make progress, defeating the very purpose of control-
ling the execution. Although the example is from a Pthreads
program, a task-based implementation with a similar struc-
ture would be equally vulnerable.

Therefore, PD requires that either a program’s concur-
rent tasks not enforce a specific order among themselves,
or they are independent, or the dependence information is
supplied to PD. Note that this condition does not preclude
use of PD in independence-based programs. It is possible
to write such programs without creating a specific order be-
tween tasks. For example, we rewrote Pbzip2, using TBB,
without resorting to producer-consumer style parallelism.
The program is divided into three non-overlapping phases:
read, compress and write. Read and write phases are se-
quential. All tasks in the compress phase are independent.
We show successful application of PD to both independence-
based and dependence-aware program execution (§3). How
PD uses dependence information to ensure forward progress
is discussed next.

Dependence-aware Regulated Execution

The Spooler in the proposed model, accepts tasks exposed
by the programmer, but admits only independent tasks into
the task pool; dependent tasks, when identified, are sus-
pended. Once their dependences have resolved, they are
introduced into the task pool and become candidates for
the Scheduler to assign to worker threads. (Two example
implementations of the Spooler are presented in §3.)

The Regulator changes the DoP by changing the number
of workers in the worker pool. The change is effected without
pausing the program. It is straightforward to add idle or new
workers to the pool. Workers are removed from the pool only
after they complete their currently assigned tasks.

The Scheduler operates independently from the Regula-
tor. Given a pool of workers, it assigns tasks from the task
pool, if available, to a worker, as soon as the worker is free.

2For brevity, we do not show TH3 operations.

THO DRV THO:RORD X THORD®RD)

mee. | [me me

OO TH2ED) — TH2E

TH3 (@O @D -- 0 1 time
(@) (W)

Task
Pool

el

® ®
© ©
@ X X X
@

time t0 tl 2 3 t4 {5
(c) (@

@

-
|

Figure 3: Comparison of independence-based and
dependence-aware execution of Pbzip2

It also ensures that tasks eventually receive resources, either
by way of a predefined or an aged-based priority. A decou-
pled Scheduler helps maximize resource utilization without
waiting for the Regulator to optimize the DoP.

Now consider the same Pbzip2 example in our model. Fig-
ure 3(c) shows its computations formulated as tasks, R1, R2,
CO0 - C3, and the dependences between them®. Figure 3(d)
shows the execution as per our model in finer time steps. At
time t0, U0, Ul and U2 are alloted to the program. RO ex-
ecutes. Since no other independent computations exist, the
task pool is empty. When RO completes in t1, dependences
of R1 and CO have resolved, and hence they are added to
the task pool. The Scheduler assigns them to UO and Ul
in t2. In t2 the task pool is once again empty since R2 and
C1 are suspended. R2 and C1 are added to the task pool
once R1 completes in t3. In t3, say UO is taken away. The
Scheduler assigns R2 and C1 to Ul and U2 in t4. Note that
unlike in Figure 3(b), C2 does not get scheduled unless R2
completes. Thus the model ensures dependent tasks do not
occupy execution resources. The program can make forward
progress as long as it is allotted at least one worker.

Recent research proposals also exploit task-dependence in-
formation, albeit for a different purpose, to execute parallel
programs. SMPSs [38] and Gupta et al. [18] leverage this
philosophy to discover distant parallelism. Prometheus [3]
and DPJ [6] execute only independent tasks concurrently
to achieve determinacy. We also note that TBB presents
a “pipeline” abstraction that would capture the dependence
information in the above Pbzip2 example, if used.

2.2.2 Assessing Execution Efficiency

To continuously regulate parallelism, the Regulator needs
a metric to assess: (i) the instantaneous efficiency of the
program for a given DoP, and (ii) changes in the execution

3Dependences not germane to the discussion are not shown.

environment without the involvement of any external entity
such as the OS. We note that any change in the efficiency of
the program or the execution environment ultimately mani-
fests as a change in the total system energy expended and/or
the program’s instruction execution rate. Although changes
in the system energy and the instruction rate may be used
individually, we propose a simple, holistic, unified metric,
Joules Per Instruction (JPI) that is affected by changes to
both. As we demonstrate in our experiments (§ 4), JPI
serves as an adequate metric.

In a program composed of N instructions, let JPI(P1)
be the system energy expended per instruction when par-
allelism P; is deployed. The total system energy expended
to execute the entire program, TE(P,) is

TE(Py) = JPI(P))* N (1)

If the parallelism is changed from P; to P2, the total system
energy expended, TE(P2) is

TE(Py) = JPI(P;) * N (2)

For the given program, to determine whether Py is more
efficient than P, we define Efficiency (Eff) as follows:

_ TE(P;) JPI(P)
Eff(P1, P2) = TE(P) ~ JPI(Py) ®)

Eff(P1,P2) is a measure of relative JPI; a value less than
1 indicates P2 is more efficient and is preferred over Pi,
whereas a value greater than 1 indicates parallelism P; is
preferred.

Equation (3) defines Eff for the entire program. In order
to use Eff as an online metric, the Regulator computes Eff
and adapts the parallelism at frequent intervals. Given two
such intervals D; and D2, and the respective parallelism
points, P1 and P2, Eff is computed as follows.

Ef fontine((Pr, D1), (P2, D3)) = % @

When P; is the same as P2, Effoniine is expected to be
around 1. Any other value would suggest a change in the
execution environment indicating that the optimum paral-
lelism point has shifted. We demonstrate how this observa-
tion is utilized, in the next subsection.

2.2.3 Optimizing Parallelism

Once the Regulator determines that the program effi-
ciency can be improved, it employs a heuristic to optimize
the DoP. The heuristic is based on the commonly used hill-
climbing search algorithm. It locates the optimum DoP by
systematically exploring the direction in the search space
that yields higher efficiency.

Hill climbing algorithms are known to get “stuck” in a lo-
cal optimum and fail to reach the global optimum. Hence
the heuristic, developed using the guidelines due to Gen-
dreau [15], incorporates Tabu search [17] to escape local op-
tima. The Tabu search maintains a fixed-size tabu_list to
log previously searched points along with their JPIs. The
heuristic periodically “diversifies” the search from the cur-
rent optimum by exploring unvisited points. Any time a
point is searched, it is logged in the tabu_list. The oldest
point in the list is evicted to make room for a new point, if
needed. The heuristic, divided into five steps, is as follows:

Step 1: Establish Sequential Measure: Before begin-
ning the search, the Regulator establishes a notion of Se-

quential JPI (JPlseq) to ensure that the optimum point it
finds is indeed profitable. Hence, whenever the program en-
counters new conditions, the Regulator alters the DoP to
one (sequential) and executes the program for a pre-defined
duration until the Monitor measures the baseline JPI,qq.

Step 2: Establish Initial Search Direction: Next, the
Regulator establishes the search direction for the optimiza-
tion process. It gathers JPIs corresponding to three DoPs;,
the mid-point, P4, of the predetermined maximum DoP
(often, total hardware contexts in the system), and P,iq4
+/- 1. Tasks are executed for a pre-defined duration in each
configuration. The better of the three points, Pcyy, sets the
search direction. The points are added to the tabu_list and
the execution is switched to Peyy.

Step 3: Search for Optimum Parallelism: If P.; is the
same as P4, we already have the local optimum, else the
Regulator linearly searches in the established direction . Tt
picks new unvisited points (not in the tabu_list) and executes
tasks in each of these points for a pre-defined duration. Vis-
ited points are added to the tabu_list until a local optimum,
Piopt, is found. If JPI;op: is not significantly better than
JPIscq, the Regulator starts over from step 1, otherwise it
fixes the current configuration to Piope, and enters a “Sleep”
mode.

Step 4: Sleep Mode: The Regulator continues to sleep
until either: (i) the value of JPI;op: changes by more than a
pre-defined threshold, which may indicate phase change or
introduction of another program in the system or change in
the operating conditions, or (ii) the diversification threshold
is reached. In case of (i), the Regulator clears the tabu_list
and begins the search once again from step 1. In case of (ii),
the Regulator saves the current JPI;,,: and moves to step 5.

Step 5: Diversification: The diversification threshold is a
pre-defined interval after which the Regulator ensures that
the execution is not trapped in a local optimum. The Reg-
ulator begins the search from the original mid-point in the
direction opposite to the original, similar to step 3 (updat-
ing the tabu_list and avoiding already visited points), until
a local optimum P2 is reached. If JPIjop2 is better than
JPIiopt, the configuration is switched to Piopi2, else it is
switched back to Piope. In either case, the Regulator enters
the sleep mode and moves to step 4.

3. THE PROTOTYPES

We evaluated PD by applying it to independence-based
and dependence-aware task-based parallel programming
models. For the former we picked TBB due to its ubig-
uity and its rich programming APIs. For the latter we chose
Prometheus, from among the different research proposals,
for its TBB-like APIs. TBB details can be found in [42] and
Prometheus details are described in [2,3]. Both models pro-
vide C++ runtime libraries. The runtimes provide the APIs
to programmers, and employ state-of-the-art dynamic load
balancing schedulers to avoid resource underutilization.

Two PD run-time library prototypes, one each for TBB
and Prometheus, were developed. We incorporated the TBB
and Prometheus runtimes into our prototypes to leverage

“In our experiments on 8 and 24-context machines, the
search space is small enough to perform linear search. For
larger search spaces, binary search may prove to be better.

their capabilities. Their runtime engines were modified and
plugged into the PD runtime. The PD runtimes expose the
respective APIs to programmers, and provide the efficiency
mechanisms (common to both prototypes) described in §2.
We describe the prototypes in this section and discuss their
evaluation in §4.

Independence-based Prototype (PD_TBB)

Since TBB programs do not always convey dependence
information, the Spooler in this prototype simply passes all
dynamically discovered tasks into the task pool. For reasons
described in §2, we ensured that the TBB-programs we de-
veloped did not explicitly enforce a specific order between
their tasks.

Dependence-aware Prototype (PD_PM)

Prometheus exploits sequential program order and data
objects accessed by tasks to automatically serialize depen-
dent tasks while parallelizing the execution of independent
tasks. It handles WAW dependences between tasks, but re-
lies on the programmer to quiesce the parallel execution to
prevent RAW and WAR hazards; the program may resume
parallel execution once the hazards are avoided. Clearly this
limits the degree of parallelism that the runtime can expose.

We enhanced the Prometheus runtime to also automati-
cally handle RAW and WAR dependences, much like out-of-
order superscalar processors. As the program executes, tasks
stalled due to any dependence are skipped over in search
of other dependence-free tasks, resources permitting. The
Spooler in PD_PM uses the dependence information to only
expose independent tasks to the task pool.

Given the above mechanisms in the two prototypes, to
discover tasks in a program and expose them for execution,
we now describe how they are efficiently executed.

3.1 Scheduling Execution

Both Prometheus and TBB use Pthreads as abstractions
to create OS threads. Upon initialization, they create a
fixed global pool of threads (by default, one per hardware
context) and associate a worker with each thread. Each
worker maintains a separate double ended queue (deque).
Tasks are scheduled for execution by enqueuing them in the
deques. Both TBB and Prometheus employ a Cilk-style
work stealing algorithm to balance the load [13]. A worker
seeks tasks first from its own deque, failing which it steals
from someone else’s deque. PD_TBB and PD_PM retain
the schedulers from the respective runtimes, but replace the
worker pool component with the PD worker pool design as
described in §3.2.

3.2 Regulating Parallelism

To find the optimum operating point, the Regulator
changes the DoP by controlling the size of the worker pool.
Instead of a fixed pool of workers, it maintains two variable-
sized disjoint pools: an active pool and a suspended pool. A
worker can be associated either with the active pool or the
suspended pool, but not both. Only the workers in the active
pool are seen by the Scheduler. Workers in the suspended
pool are put to sleep until the Regulator awakens and moves
them to the active pool. The core algorithm for each worker
remains the same as described in §3.1. An increase/decrease
in the number of workers in the active pool results in an in-
crease/decrease in the program’s exposed DoP.

Table 1: Machine configurations

Machine Parameters Xeon Core
E5-2420 i7-2600

Sockets 2 1
Hardware Contexts 24 8
Clock Speed 1.9 GHz 3.4 GHz
Total Cache 15 MB 8 MB
Memory 32 GB 16 GB
Linux Kernel 2.6.32 2.6.32
Memory Controllers/Channels | 1/2 2/6

Table 2: Benchmarks and input sizes
[Benchmarks [Description [Input |
Histogram [41] Image analysis 1.4 GB bitmap file
Hash Join [11] In-memory DB join | 28 MB tables
Pbzip2 [16] Compression 1.3 GB file
Reverse Index [41] | HTML Analysis 1.3 GB directory
Barneshut [24] N-Body Simulation | 100000 bodies
RE [4] Packet dedup 1300000 packets
Stream [30] Memory Streaming | 915MB of data

3.3 Monitoring System Parameters

The Monitor is a system-specific component of the proto-
types. It relies on information available from the system to
measure Eff described in §2.2.2. At present, the monitor as-
sumes an Intel SandyBridge-based microarchitecture which
exports energy and performance counters. It can as easily
work with other platforms with similar capabilities.

To measure processor energy, we use the RAPL (Running
Average Power Limit) power management interface provided
in the Intel SandyBridge microarchitecture [1]. To measure
the number of instructions completed, we use the PAPI li-
brary APIs [32]. We do not count instructions that may
cause potential side effects when determining the efficiency
of the program. For example, we omit instructions used for
synchronization, and OS mode instructions.

4. EVALUATION AND RESULTS

In this section, we describe our experimental setup, the
hardware and the benchmarks used in our experiments, and
the results obtained. Experiments were conducted on two
64-bit x86 machines, described in Table 1.

Table 2 lists the benchmarks and the input data sizes we
selected from different benchmark suites to evaluate PD.
The baseline parallel versions use the fast NPTL Pthreads
library (which comes along with the 2.6.32 Linux kernel that
both the platforms run) to parallelize their algorithms. We
compiled all the benchmarks with GCC 4.4.3 using -O3 op-
timization and architecture flag (-march=core2).

We present results of PD for two different environments:
dedicated, where a benchmark is the only program run-
ning on the machine (§4.1), and multiprogrammed, where
other applications run simultaneously with the benchmarks
(8§4.2). We evaluated PD for performance and energy effi-
ciency. We measured the execution time and energy of the
entire program, including the overheads associated with any
thread/task creation, rather than just the parallel regions.
We used the RAPL interface to measure the total energy
consumed. We fixed the measurement time interval for the
Regulator at 100ms and the diversification threshold to 5s.
PD sought a new DoP when JPI changed by more than 10%.

4.1 Dedicated Environment

To demonstrate the effectiveness of PD in a dedicated en-
vironment, we provide four points of comparison. The first

Table 3: Dedicated environment: Optimum DoP
(execution time, energy consumed).

[# | Benchmarks [i7-2600 [E5-2420 |
1 Histogram 1 (12s,937) 1 (11s,1027)
Hash Join 1(9.75,3531) | 11 (27s,898J)
Pbzip2 8 (36s,16083) | 24 (23s,9997)
Reverse Index | 4 (81s,384J) 10 (38s,853J)

| O O = W N

Barneshut 8 (26s,1163]) | 24 (18s,919J)
RE 5 (155,806]) | 13 (32s,1401J)
Stream 2 (82s,5627) 7 (17s,8217)

point is the Pthreads baseline. The second and third points
are the Prometheus (PM) and TBB implementations. The
fourth point of comparison is a recently proposed technique,
Feedback Driven Threading (FDT) [45], which dynamically
adjusts the number of threads for homogeneous loops and
considers contention to only two types of resources, locks and
memory bandwidth. The original version of FDT is imple-
mented in OpenMP. We faithfully implemented FDT in the
PM runtime to provide a fair comparison against PD. For
PD, we present the results for the two prototypes: PD_PM
and PD_TBB.

Figures 4 and 5 present the performance and energy re-
sults for all our benchmarks on both the platforms for the
dedicated environment. Every data point in our results is
an average of 10 runs and normalized to the Pthreads base-
line (not shown). Table 3 shows the optimum DoP that PD
reaches for each benchmark along with its execution time
and energy consumed.

The results demonstrate the following: (i) in situations
where there is resource contention, PD always results in
time- and energy-efficient execution when compared to
Pthreads, PM, TBB and FDT; (ii) PD is able to handle
contention to different resources using a single holistic met-
ric, unlike FDT, which can handle only synchronization and
memory bandwidth issues; (iii) in situations where paral-
lelism is not excessive and contention does not occur, PD is
unlikely to be beneficial but does not incur overheads; and
(iv) the optimum DoP depends on the benchmark and the
underlying platform, and can range between one and the
maximum number of hardware contexts. We organize the
results into “contention” and “no contention” scenarios. We
will refer to Figures 4 and 5 in the discussions to follow.

4.1.1 Contention Scenarios

Our benchmarks exhibit five different contention cases:

Contention in external software components

Histogram is a data parallel benchmark that carries out
computations on a 1.4GB bitmap file. The benchmark in-
vokes mmap which allocates memory in a region in the kernel
space, marks the new region as allocated but defers updat-
ing the page table entries. Pages are loaded from the disk
only when the application accesses them. When a new page
is accessed, a page fault occurs and the kernel locks the en-
tire region with a read lock. If multiple threads try to access
different pages in parallel, concurrent page faults can occur,
potentially creating contention for the lock [8]. The bench-
mark scales poorly and incurs degradation in both perfor-
mance and energy for even a modest increase in the number
of threads. As shown in Table 3, Histogram does not scale
beyond one thread on either machine.

Histogram is an example of a very likely future scenario:
a programmer can work hard to avoid contention, but has

little or no control over external software components (e.g.,
libraries or the OS). By controlling the parallelism appro-
priately, PD is able to reduce the execution time and energy
consumption by 20% and 68% on 17-2600, and 32% and 80%
on E5-2420, respectively. FDT cannot detect this contention
since it happens within the OS, and hence performs as poorly
as Pthreads, PM and TBB.

Contention due to memory bandwidth

Stream mainly moves data from one region of the memory
to another. Again, there is ample application-level paral-
lelism, however, there is a significant demand for the mem-
ory (bus) bandwidth. i7-2600 has a single memory controller
with two memory channels, while E5-2420 has two memory
controllers with three channels each. Any parallelism be-
yond the total number of channels available on these plat-
forms will result in contention leading to performance and
energy degradation. Both PD and FDT are able to control
the parallelism, alleviating the contention, thus preventing
increase in memory latencies. This results in reducing the
processor idle time, and thus more time- and energy-efficient
execution. PD reduces the execution time and energy con-
sumption by 12% and 64% on i7-2600, and 15% and 17% on
E5-2420, respectively.

Contention due to disk bandwidth

Reverse Index is a benchmark whose parallel execution
makes excessive demands for another resource, disk band-
width. Each parallel computation in Reverse Index does the
following: (i) open an HTML file, (ii) parse the file contents
to identify links to other pages, (iii) extract the links and
update a local data structure based upon some computation,
and (iv) close the HTML file. In addition to significant disk
activity, the benchmark performs CPU activity. Though
there is abundant parallelism—each file can be processed
independently—parallel accesses to the disk can be a source
of contention.

As in the case of Histogram, Pthreads, PM, TBB and
FDT have no mechanism in place to detect contention to
disk bandwidth. On the other hand, PD’s heuristic is able
to detect and alleviate this contention by appropriately con-
trolling parallelism. This demonstrates the effectiveness of
the Eff metric that PD employs. PD is able to reduce the
execution time and energy consumption by 0% and 65% on
i7-2600 and 8% and 51% on E5-2420 respectively. Reduc-
tions in execution time are modest because the performance
of this benchmark does not degrade significantly for higher
thread counts wrt the best operating point. But not using
unwanted processors (Table 3) significantly reduced energy
consumption.

Contention due to cache capacity

In Hash Join there is potential for contention in a shared
cache. The working set size of each thread is over 2MB. i7-
2600 has a shared L3 cache capacity of 8 MB, whereas E5-
2420 has L3 cache capacity of 15MB per socket and hence
contention is likely if the working set size exceeds the re-
spective capacities.

PD controls the parallelism to ensure that the working set
does not exceed the available cache capacity, thereby reduc-
ing both energy consumption and execution time. FDT can-
not detect contention to shared caches. While a more sophis-
ticated technique like Thread Tailor [25] (TT) may detect
contention to shared caches and control parallelism accord-

OPM O TBB B FDT B PD_PM W PD_TBB

Relative exec. time
-

(a) Execution Time

Relative energy

opPm oTBB EFDT HPD_PM

W PD_TBB

oy
kS

=
N
1

(=Y

o
()

o
o

e
>

o
)

<& < il *
3 S o
N v\

(b) Energy

Figure 4: Performance and energy comparison of PM, TBB, FDT and PD on i7-2600 relative to Pthreads.

OPM O TBB B FDT H PD_PM EPD_TBB

=Y
w

I
= N

Relative exec. time

e o 09
o N o b »

(a) Execution Time

Relative energy

OPM OTBB B FDT B PD_PM W PD_TBB

e
©

e o
n oy

Figure 5: Performance and energy comparison of PM, TBB, FDT and PD on E5-2420 relative to Pthreads.

ingly, TT cannot detect other types of contention, such as
disk bandwidth and in external components, whereas PD’s
holistic approach easily can. PD reduces the execution time
and energy consumption by 25% and 42% on i7-2600, and
25% and 46% on E5-2420, respectively.

Contention due to user-level locks

RE has abundant packet-level parallelism but uses a lock
protected shared hash table that each concurrent packet
must access. Only one packet (thread) can update the hash
table at a given time. As the number of concurrent pack-
ets increases, updates to the hash table increase, which in-
creases the contention to the critical section. The bench-
mark incurs degradation both in execution time and energy
beyond a thread count of 5 and 13 on i7-2600 and E5-2420
respectively. Both PD and FDT avoid this degradation by
accurately estimating the best number of threads, in turn
reducing the execution time and energy up to 22% and 24%
on i7-2600, and 20% and 18% on E5-2420, respectively.

4.1.2 No Contention Scenarios

We consider two benchmarks, Barneshut and Pbzip2, to
illustrate no contention scenarios. Both have abundant par-
allelism and few contention concerns in common circum-
stances. PD neither incurs any degradation nor provides

any savings. For PD_TBB, we wrote Pbzip2 such that we
avoided the ordering issues described in §2.2.1.

4.2 Multiprogrammed Environment

We now consider the effectiveness of PD in a multipro-
grammed environment. We consider two different scenarios.
In the first, we launch our benchmark alongside other in-
stances of non-adaptive, resource-intensive programs. In the
second, we co-locate pairs of our benchmarks that have dif-
ferent resource constraints. We present data for Pthreads,
PM, FDT and PD_PM (TBB and PD_TBB trends are sim-
ilar to PM and PD_PM, respectively).

The results from these experiments demonstrate: (i) PD
continuously adapts the parallel execution when the re-
sources allocated to the program dynamically and continu-
ously change due to the resource demands of other co-located
programs; (ii) PD adapts the DoP to the instantaneous sub-
scription of resources; and (iii) creating contention to one
resource can indirectly alleviate contention to another re-
source, potentially improving a program’s scalability.

4.2.1 Scenario 1

In this scenario, multiple instances of (non-adaptive) mcf,
a highly cache- and memory-intensive single-threaded appli-
cation, are executed simultaneously with our benchmarks.

Figure 6 shows PD adapting the DoP for Barneshut in re-

0.0045 =JPl =DoP
0.004 }.........
0.0035 [[
0.003
_ 0.0025
[-9
0.002
0.0015

0.001
0.0005

DoP

©O B N W & U1 O N © ©

0 20 40 60 80
Time steps (100ms)

Figure 6: PD’s continuous adaptation ability for
Barneshut.

9 —+mcf_2 =~mcf_4
8
7 /
6
[}
B4
3
2
1 L. B
0
0 20 40 60 80

Time steps (100ms granularity)

Figure 7: PD’s heuristic under different degrees of
contention for Barneshut.

sponse to the demands placed by four instances of mcf, on i7-
2600. The X-axis shows time incremented in 100ms. There
are two vertical axes: the primary axis shows the instanta-
neous JPI of the benchmark and the secondary axis shows
the corresponding DoP predicted by PD. From t=3to t=12,
Barneshut executes at a stable DoP of 3. A change in JPI, at
t=12, indicates change in the resource demands of the co-
scheduled mcf instances. At t=13, the PD runtime reacts
by waking up from the sleep mode and restarting the search
from sequential execution (§2.2.3) to find the new operating
point. At t=19, PD arrives at the new optimum (DoP=8)
after establishing the search direction and performing the
necessary search, and re-enters the sleep mode. PD takes a
similar course of action whenever JPI changes, e.g., at t=41,
t=68, etc. Thus, PD continuously alters the parallelism to
best suit the variations in the execution environment. Note
that in Figure 6, there is no single best operating point for
Barneshut unlike in the dedicated environment. Techniques
that assume static operating conditions, e.g., FDT, are un-
able to handle this scenario. They identify the optimum
degree of parallelism, typically once at the beginning of the
program or at the inception of every user-defined phase, and
fix that value for the rest of the program/phase. Techniques
like Parcae [40] that propose to continuously adapt, employ
search heuristics that can get stuck in local optima.

PD adapts a program’s DoP to match the available capac-

ity of resources. Figure 7 shows the DoP for Barneshut when
co-scheduled with two (mcf.2) and four (mcf4) instances
of mcf on i7-2600. In general, two instances of mcf utilize
fewer resources than four instances, and over time PD ex-
poses higher DoP when Barneshut is co-scheduled with two
rather than four instances of mcf.

Figure 8 shows the summary of execution time and the
energy consumed by all the benchmarks normalized to
Pthreads, when co-scheduled with four instances of mcf on
i7-2600. PD outperforms its Pthreads, PM and FDT coun-
terparts for all the benchmarks on average, 19% in time and
21% in energy. FDT measures a program’s characteristics,
when it begins, to establish the DoP. It can neither account
for system-wide conditions nor run-time variations in the
conditions. Hence it is inadequate in a multiprogrammed
environment. Even for the two instances in which FDT per-
formed as well as PD in the dedicated environment, Stream
and RE, FDT fares poorly in the multiprogrammed envi-
ronment since it makes the same decisions as it made in the
dedicated environment.

Stream, in this environment, shows particularly interest-
ing results as compared to the results shown in Figure 4 for
the same platform, i7-2600. Unlike in the dedicated environ-
ment, in which it scales poorly due to memory bandwidth
contention, Stream scaled up to the maximum number of
hardware contexts in this environment (Figure 1(b)). This
is because the contention created by mcf instances to cores
and caches slowed down Stream’s demand for resources, thus
avoiding the memory contention in the first place. Note that
FDT is unable to take advantage of this fact since it does
not account for the co-located mcfinstances in its metric. It
picks the same DoP as in the dedicated environment and
hence incurs significant degradation in both performance
and energy consumption. This demonstrates the effective-
ness of PD’s holistic approach to controlling parallelism as
opposed to taking a limited view of the execution environ-
ment.

4.2.2 Scenario 2

In the next scenario, we co-schedule selected pairs of our
benchmarks on E5-2420. We compare the time and energy
efficiency of PD with Pthreads and PM. Table 4 presents
the results. The first main column shows the pairs of co-
scheduled benchmarks. The next three main columns, one
for each runtime, show the execution time of each bench-
mark and the total energy consumed by the pair. The last
main column gives the stable DoP that PD reaches for each
benchmark.

Pthreads and PM create as many threads as hardware
contexts (24) to execute the benchmarks. As Table 3 shows,
24 contexts are already too many for most of them. Depend-
ing on their type, simultaneously executing Pthreads/PM
benchmarks can make things worse. Note that PD ensures
that only as many threads as the hardware contexts are cre-
ated (Table 4, DoP column). We describe the other results
using three types of benchmark pairs.

Contention-prone and contention-free

In this case, we co-schedule a benchmark prone to con-
tention in the dedicated environment, e.g., Reverse Index
and Hash Join, with one that is not, e.g., Barneshut. Row
#1 and row #2 from Table 4 are examples of this case.

As shown in Table 3, Reverse Index and Hash Join do

opPm OFDT H PD_PM

L o
w

Relative exec. time
_O -
(-] -

(a) Execution Time

Relative energy

oo

opPm OFDT EPD_PM

PR RRRe
B NWd 0

0 W =

ee
o N

05 1 - L - L L L

Figure 8: Performance and energy comparison of PM, FDT and PD on i7-2600 relative to Pthreads, when

scheduled with 4-instances of mcf.

not scale beyond 10 and 11 threads, respectively, when exe-
cuted in isolation (row #4 and row #2 in Table 3). When
their Pthreads and PM versions are co-scheduled with Bar-
neshut, the contention created by Barneshut to cores and
private caches further degrade their performance by a factor
of 1.7x and 3x, respectively, as compared to the dedicated
environment (not shown).

By using only the required number of contexts and return-
ing the rest to the OS, PD versions of Reverse Index and
Hash Join reduce contention not only to shared resources
(disk and shared cache), but also to cores and private caches,
reducing their execution times by 42% and 60% as compared
to their Pthreads and PM counterparts. When compared to
their dedicated versions (row #4 and row #2 in Table 3), PD
limits the degradation in execution times of Reverse Index
and Hash Join by 1.07x and 1.5x, respectively, as compared
to 1.7x and 3x degradation incurred by Pthreads and PM.

PD is also able to reduce the execution time of Barneshut
by more than a factor of 2 when compared to Pthreads and
PM. Reducing the number of contexts to execute both Re-
verse Index and Hash Join allows Barneshut to take advan-
tage of the free resources available to execute its compu-
tations in an uninterrupted fashion, thereby improving its
performance.

Contention-prone and contention-prone

In the second case, both co-located benchmarks are prone
to contention in the dedicated environment, e.g., Hash Join
and Stream (row #3 and row #4 in Table 4).

When two instances of Hash Join (Pthreads/PM versions)
are co-scheduled (Table 4, row #3), they create more con-
tention to the shared L3 cache, degrading the performance
(by a factor of 4 compared to the dedicated environment
(not shown)), and energy consumption. PD alleviates this
problem by dynamically decreasing the parallelism in each
instance close to the best DoP (11). The execution time is
almost comparable to the one in the dedicated environment
(Table 3, row #2). The total energy reduces by a factor of
4 as compared to its Pthreads and PM counterparts.

The result for Hash Join co-scheduled with Stream (row
#4, Table 4), reiterates the inference made in §4.2.1 for
Stream. The interference caused by Hash Join slows down
Stream’s demand for memory bandwidth, thereby reduc-
ing the negative impact on performance for all its versions

(Pthreads, PM and PD). However, the Pthreads/PM ver-
sions of Hash Join slowed down by a factor of 2 due to
Stream’s interference as compared to dedicated environ-
ment (not shown). PD improves the performance and en-
ergy of Hash Join by 20% and 27% respectively against its
Pthreads/PM counterparts by reducing its DoP to 10 (Ta-
ble 4, row #4, column DoP-B1).

Contention-free and contention-free

In the final case, both benchmarks were scalable, e.g., Bar-
neshut and Pbzip2 (row #5, Table 4). PD has only marginal
impact since neither suffers from contention. It simply di-
vides the resources evenly amongst the benchmarks. For all
the versions, the execution times are worse than the dedi-
cated times since both benchmarks can benefit from higher
number of resources which they are not provided in the mul-
tiprogrammed environment.

4.3 Summary

As above results show, PD provides the best time and
energy efficiency in every case. Thus PD frees program-
mers to focus on composing functionally correct programs
rather than optimizing/re-writing them for different execu-
tion environments. PD dynamically optimizes the program’s
parallel execution. Without PD, this is an arduous task.

S. RELATED WORK

Efficient parallel execution using hardware and software
techniques is a much studied topic. We summarize the work
here using broad categories.

OS scheduling techniques have been proposed to control
parallelism in programs [5,29,31,44]. They mainly focus on
controlling the resources allocated to a program. PD focuses
on controlling the program’s parallelism and the resources it
occupies. It does not require OS support and can be applied
at the user level. Lithe [37], a user level approach, controls
the resources alloted to a heterogeneous mix of runtime sys-
tems, e.g., TBB alongside OpenMP. PD focuses within a
runtime and can be deployed on top of Lithe.

Several recent proposals dynamically vary a program’s de-
gree of parallelism [9, 10, 25, 26, 39, 40,45]. While [9, 10, 26]
dynamically control parallelism, they require offline analy-
sis and learning. It is unclear how their runtimes will adapt
the program on a different machine with different character-

Table 4: Performance and energy comparison of Pthreads, PM and PD on E5-2420 when benchmarks with
different resource constraints are co-scheduled. S(B*): B*’s execution time in seconds; J: Total energy
consumed by Bl and B2 in joules; DoP: stable parallelism points for B1 and B2.

| Benchmarks Pthreads PM [PD [DoP |
[Bl [B2 [SB1)s[SB2)s] J [SB1)s[SMB2)s] J [SMB1)s[SMB2)s] J | Bl]B2]
1 Reverse Index | Barneshut 71 63 | 3245 73 68 | 3502 41 24 | 1552 9 15
2 Hash Join Barneshut 97 68 | 3644 99 69 | 4764 38 21 | 1845 11 13
3 Hash Join Hash Join 101 103 | 5404 102 104 | 5603 25 28 1352 13 11
4 Hash Join Stream 46 19 | 2544 46 19 | 2565 37 19 | 1856 10 14
5 Barneshut Pbzip2 25 36 | 1870 22 38 | 1889 23 38 | 1872 12 12

istics. Importantly, they cannot continuously and dynami-
cally vary the degree of parallelism. Suleman’s approach [45]
employs a resource specific parallelism adaption mechanism
which is not holistic. Thread Tailor [25] requires support
from a static compiler tool chain to identify parallel inter-
actions and is not purely dynamic. DoPE [39] and Par-
cae [40] are compiler-based approaches to controlling paral-
lelism. Both pause a program’s execution when altering its
parallelism, potentially underutilizing resources. PD can be
applied to existing programming models. It adapts the par-
allelism without pausing the execution. PD adapts to the
dynamic changes and any contention in the system, whereas
DoPE does not. Parcae’s search for optimum DoP may stop
at a local optima whereas PD searches for global optima.

Several papers have considered multiprogrammed envi-
ronments. They have investigated a range of techniques,
both architectural/microarchitectural and system software,
to address contention in hardware resources such as on-chip
caches [20,21,23,33-36]. These proposals mostly partition
the shared resources amongst the different programs, though
recent work reduces the demand for a shared resource (and
thus the resulting contention) by slowing down the execution
speed of a program [12,19]. PD simply views such scenar-
ios as inefficiencies due to excessive parallelism and handles
them without additional support.

Li and Martinez [27,28] propose runtime heuristics for
parallelism and DVFS control to find power/performance ef-
ficient execution points for specific soft performance/power
targets. PD can achieve both time- and energy-efficient ex-
ecution whereas their approaches can only achieve either
time-efficiency or energy-efficiency, but not both. Unlike
their approach, PD requires no soft targets to control paral-
lelism; it begins executing from an unknown operating point
to arrive at an optimized operating point.

PD may also be viewed as an example of autonomic com-
puting, in which systems self-monitor and self-regulate to
achieve desired objectives, without user-intervention [22].
PD’s periodic monitoring and control of execution to im-
prove efficiency is analogous to the MAPE cycle of auto-
nomic systems and observer-controller paradigm of organic
computing [43]. Invasive computing is another proposal
whose one goal is to optimize parallel execution of pro-
grams [46]. It requires pervasive changes to all aspects of
a system, whereas PD works with existing hardware and
prevalent programming methods.

6. CONCLUSION

Parallel systems often consume more time and energy
than necessary to execute parallel programs. This results
from inefficient utilization of resources. Program behavior
and unpredictable dynamic operating conditions can make
performance-tuning complex and non-intuitive. As increas-

ingly more programmers develop parallel programs that are
portable to a diverse range of systems, an automated ap-
proach is necessary. We presented ParallelismDial, a model
that automatically tunes a program’s performance to the
underlying system. It monitors the system efficiency, reg-
ulates the degree of exposed parallelism, and continuously
navigates the execution to an optimum point of operation.

The model was applied to two different runtime systems:
TBB and Prometheus. Programs were developed using both
systems. ParallelismDial was used to tune their execution
on two stock multicore workstations, in dedicated and mul-
tiprogrammed environments. Their efficiency improved on
an average by 15% in execution time and 31% in energy in
the dedicated environment and by 19% in time and 21% in
energy in the multiprogrammed environment.

7. ACKNOWLEDGMENTS

This material is based upon work supported, in part, by
the National Science Foundation under Grant CCF-0963737.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

8. REFERENCES

[1] Intel64 and IA-32 Architectures Software Developer’s
Manual Combined Volumes
3A and 3B: System Programming Guide, Parts 1 and 2.
http://www.intel.com/Assets/PDF /manual /325384.pdf.

[2] M. D. Allen. Data-Driven Decomposition of Sequential
Programs for Determinate Parallel Execution. PhD
thesis, University of Wisconsin, Madison, 2010.

[3] M. D. Allen, S. Sridharan, and G. S. Sohi.
Serialization sets: a dynamic dependence-based
parallel execution model. In PPoPP ’09, pages 85-96,
New York, NY, USA, 2009.

[4] A. Anand, C. Muthukrishnan, A. Akella, and
R. Ramjee. Redundancy in network traffic: findings
and implications. SIGMETRICS ’09, pages 37—48,
New York, NY, USA, 2009.

[5] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and
H. M. Levy. Scheduler activations: effective kernel
support for the user-level management of parallelism.
In Proceedings of the thirteenth ACM symposium on
Operating systems principles, SOSP ’91, pages 95-109,
New York, NY, USA, 1991. ACM.

[6] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A type and effect system
for deterministic parallel java. OOPSLA ’09, pages
97-116, New York, NY, USA, 2009.

[7] S. Borkar. Designing reliable systems from unreliable
components: the challenges of transistor variability
and degradation. MICRO 05, 25(6):10-16, 2005.

[8] S. Boyd-Wickizer, A. T. Clements, Y. Mao,

A. Pesterev, M. F. Kaashoek, R. Morris, and
N. Zeldovich. An analysis of linux scalability to many

[10]

[11]

[12]

[20]

[21]

[26]

[27]

[28]

cores. OSDI’10, pages 1-8, Berkeley, CA, USA, 2010.
USENIX Association.

M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos,
and D. S. Nikolopoulos. Online power-performance
adaptation of multithreaded programs using hardware
event-based prediction. ICS ’06, pages 157-166, New
York, NY, USA, 2006.

M. Curtis-Maury, A. Shah, F. Blagojevic, D. S.
Nikolopoulos, B. R. de Supinski, and M. Schulz.
Prediction models for multi-dimensional
power-performance optimization on many cores.
PACT 08, pages 250259, New York, NY, USA, 2008.
D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,
M. R. Stonebraker, and D. A. Wood. Implementation
techniques for main memory database systems.
SIGMOD ’84, pages 1-8, New York, NY, USA, 1984.
E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt.
Fairness via source throttling: a configurable and
high-performance fairness substrate for multi-core
memory systems. In ASPLOS ’10, pages 335-346,
New York, NY, USA, 2010.

M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
In PLDI 98, pages 212-223, 1998.

S. H. Fuller and E. Lynette I. Millett. The Future of
Computing Performance: Game Over or Next Level?
The National Academies Press, 2011.

M. Gendreau. An Introduction to Tabu Search. In

F. Glover and G. Kochenberger, editors, Handbook of
Metaheuristics, chapter 2, pages 37-54. Kluwer
Academic Publishers, 2003.

J. Gilchrist. Parallel data compression with bzip2. In
ICPDCS 04, pages 559-564, 2004.

F. Glover and M. Laguna. Tabu Search. Kluwer
Academic Publishers, Norwell, MA, USA, 1997.

G. Gupta and G. S. Sohi. Dataflow execution of
sequential imperative programs on multicore
architectures. In MICRO ’11, pages 59-70, New York,
NY, USA, 2011.

R. Illikkal, V. Chadha, A. Herdrich, R. Iyer, and

D. Newell. PIRATE: QoS and performance
management in CMP architectures. SIGMETRICS
Perform. Eval. Rev., 37:3—10, March 2010.

R. Iyer. CQoS: a framework for enabling QoS in
shared caches of CMP platforms. In ICS ’04, pages
257-266, New York, NY, USA, 2004.

R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni,

D. Newell, Y. Solihin, L. Hsu, and S. Reinhardt. Qos
policies and architecture for cache/memory in cmp
platforms. SIGMETRICS Perform. Eval. Rev.,
35(1):25-36, June 2007.

J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41-50, Jan.
2003.

S. Kim, D. Chandra, and Y. Solihin. Fair cache
sharing and partitioning in a chip multiprocessor
architecture. In PACT 04, pages 111 — 122, 2004.

M. Kulkarni, M. Burtscher, K. Pingali, and

C. Cascaval. Lonestar: A suite of parallel irregular
programs. In ISPASS 09, pages 65-76, April 2009.

J. Lee, H. Wu, M. Ravichandran, and N. Clark.
Thread tailor: dynamically weaving threads together
for efficient, adaptive parallel applications. In ISCA
’10, pages 270-279, New York, NY, USA, 2010.

D. Li, B. de Supinski, M. Schulz, K. Cameron, and
D. Nikolopoulos. Hybrid MPI/OpenMP power-aware
computing. In IPDPS 10, pages 1 —12, April 2010.

J. Li and J. Martinez. Power-performance implications
of thread-level parallelism on chip multiprocessors. In
ISPASS ’05, pages 124 —134, March 2005.

J. Li and J. Martinez. Dynamic power-performance

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

37]

(38]

39]

(40]

(41]

42]

(43]

(44]

(45]

(46]

adaptation of parallel computation on chip
multiprocessors. In HPCA 06, pages 77 — 87, Feb.
2006.

R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovié,
and J. Kubiatowicz. Tessellation: space-time
partitioning in a manycore client os. HotPar’09, pages
10-10, Berkeley, CA, USA, 2009.

J. D. McCalpin. Memory bandwidth and machine
balance in current high performance computers.
TCCA Neuwsletter, pages 19-25, Dec. 1995.

C. McCann, R. Vaswani, and J. Zahorjan. A dynamic
processor allocation policy for multiprogrammed
shared-memory multiprocessors. ACM Trans. Comput.
Syst., 11(2):146-178, May 1993.

P. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A
portable interface to hardware performance counters.
In Proc. Dept. of Defense HPCMP Users Group
Conference, pages 7-10, 1999.

O. Mutlu and T. Moscibroda. Stall-time fair memory
access scheduling for chip multiprocessors. In MICRO
07, pages 146 —160, 2007.

O. Mutlu and T. Moscibroda. Parallelism-aware batch
scheduling: Enhancing both performance and fairness
of shared dram systems. In ISCA ’08, pages 63-74,
2008.

K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E.
Smith. Fair queuing memory systems. In MICRO 06,
pages 208-222, 2006.

K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual
private caches. In ISCA ’07, pages 57—68, New York,
NY, USA, 2007.

H. Pan, B. Hindman, and K. Asanovi¢. Composing
parallel software efficiently with lithe. In PLDI 10,
pages 376-387, New York, NY, USA, 2010.

J. Perez, R. Badia, and J. Labarta. A
dependency-aware task-based programming
environment for multi-core architectures. In Cluster
Computing, 2008 IEEE International Conference on,
pages 142 —151, 29 2008-oct. 1 2008.

A. Raman, H. Kim, T. Oh, J. W. Lee, and D. 1.
August. Parallelism orchestration using DoPE: the
degree of parallelism executive. In PLDI ’11, pages
26-37, New York, NY, USA, 2011. ACM.

A. Raman, A. Zaks, J. W. Lee, and D. I. August.
Parcae: a system for flexible parallel execution. In
PLDI ’12, pages 133-144, New York, NY, USA, 2012.
C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating mapreduce for
multi-core and multiprocessor systems. HPCA ’07,
pages 13—24, Washington, DC, USA, 2007.

J. Reinders. Intel Threading Building Blocks. O’Reilly
Media, Inc., 2007.

U. Richter, M. Mnif, J. Branke, C. MAijller-Schloer,
and H. Schmeck. Towards a generic observer/controller
architecture for organic computing. In C. Hochberger
and R. Liskowsky, editors, GI Jahrestagung (1),
volume 93 of LNI, pages 112-119. GI, 2006.

H. Sasaki, T. Tanimoto, K. Inoue, and H. Nakamura.
Scalability-based manycore partitioning. In PACT ’12,
pages 107-116, New York, NY, USA, 2012.

M. A. Suleman, M. K. Qureshi, and Y. N. Patt.
Feedback-driven threading: power-efficient and
high-performance execution of multithreaded
workloads on CMPs. In ASPLOS 08, pages 277-286,
2008.

J. Teich, J. Henkel, A. Herkersdorf,

D. Schmitt-Landsiedel, W. Schroder-Preikschat, and
G. Snelting. Invasive computing: An overview. In
Multiprocessor System-on-Chip, pages 241-268. 2011.

