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Regression Diagnostics

Checking the Gauss-Markov assumptions on the error vector
using graphical and numerical methods.

Checking the normality assumption.

Weighted least squares: Heteroscedascity.

Outlier and influential point detection.



Assumptions on the error vector

E [ε] = 0

var(ε) = σ2In

ε ∼ N (0, σ2In)

First two are the G-M assumptions under which β̂ is BLUE.



Residuals

ε̂i = yi − ŷi , i = 1, · · · , n.

Residuals are useful for answering questions such as

The regression function is not linear.

The error terms do not have a constant variance.

The model fits pretty well but there are a few outliers.

The error terms are not normally distributed.

One or several important predictors have been omitted from
the model.



Informal diagnostic plots of residuals

residuals vs predictor variable,

absolute or squared residuals vs predictor variable,

residuals vs fitted values,

residuals vs time or other sequence,

residuals vs omitted predictor variables,

box plot of residuals,

normal probability plot (quantile plot) of residuals.



Nonlinearity of the regression function
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Figure: Relation between maps distributed and bus ridership in eight test
cities. Whether a linear regression function is appropriate for the data
being analyzed can be studied from a residual plot against the predictor
variable or equivalently from a residual plot against the fitted values.



Checking var(ε) = σ2In
Plot residuals ε̂ versus fitted values ŷ or residuals ε̂ versus
predictor variable X .
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Figure: Heteroscasdicity?.



Checking var(ε) = σ2In

Plotting the absolute values of the residuals or of the squared
residuals against the predictor variable X or against the fitted
values ŷ are also useful for diagnosing nonconstancy of the
error variance. Especially useful when there are not many
observations in the data set.



How can we deal with these?

Weighted least squares (when the linearity assumption is ok,
but the only concern is nonconstant variance).

Transformation of the variables, i.e., response or the predictors
(nonlinearity and nonconstant variance might go together).

Changing the linear model.



Weighted Least Squares
Although the mean of the dependent variable might be a
linear function of the regressors, the variance of the error
terms might also depend on those same regressors.
Heteroscedasticity is often seen with aggregate data.
Assume we are collecting data from n groups, e.g., different
days, regions etc...
For individual i in group j , we have the following linear model

Yij = β0 + β1Xij + εij , var(εij) = σ2.

Now, assume that we only observe group averages (Can you
think of examples??):

Ȳj =
1

nj

nj∑
i=1

Yij , X̄j =
1

nj

nj∑
i=1

Xij .

Then,

Ȳj = β0 + β1X̄j + ε̄j , var(ε̄j) = σ2

(
1

nj

)
= σ2hj .



Apple trees

[Weisberg, 1985] Apple trees produce “long shoots” (which may
grow as much as 15 to 20 cm over a growing season) as well as
“short shoots”. Samples of both of these types of shoots were
taken from trees in an orchard every few days during a growing
season (106 days), and they were then analyzed in a laboratory.
We will look at only long shoots. Among the measurements taken
was a count of the number of “stem units” on each shoot.

day of the growing season (X̄j),

# shoots sampled that day (nj),

mean number of stem units among the sampled shoots
(Ȳj = 1/nj

∑nj

i=1 Yij),

standard deviation of the stem unit counts (σ̂
√

nj).



Interested in modelling

mean # stem units ∼ day of the growing season.

General linear model:

Y = Xβ + ε, E [ε] = 0, cov(ε) = σ2V = Σ.

This no longer satisfies the G-M conditions.

What is the least squares estimator for β?

(XTX )−1XTY

What happens if we blindly use β̂OLS = (X ′X )−1X ′Y as an
estimator of β?

Statistical properties to check: unbiasedness, efficiency !

Can we find the unique BLUE for β (when X is full rank)?

Consider transforming this linear model into a form that we
know about!



V = KKT (Cholesky decomposition)

Y ∗ = K−1Y , X ∗ = K−1X

Now multiply Y = Xβ + ε, E [ε = 0], var(ε) = σ2V .

K−1Y︸ ︷︷ ︸
Y ∗

= K−1X︸ ︷︷ ︸
X∗

β + K−1 + K−1ε, var(K−1ε) = σ2In

Y ∗ = X ∗β + ε∗ G-M satisfied!

0 =
∂

∂β
(Y ∗ − X ∗β)T (Y ∗ − X ∗β)

=⇒ β̂ = ((X ∗)TX ∗)−1(X ∗)TY ∗ = (XTV−1X )−1XTV−1Y

=⇒ var(β̂) = σ2(X tV−1X )−1.

β̂ is called the generalized least squares estimator, and it is called
weighted least squares estimator when V is diagonal.

How about the statistical properties of β̂?



Properties of the GLE β̂?

GLE β̂ is simply the ordinary least squares estimator for the
transformed model, we would expect β̂ to have the same statistical
properties of the ordinary least squares estimator in this
transformed model.

E [β̂] = β (OLS for the transformed model) and E [β̂OLS ] = β
(OLS for the original model).

var(a′β̂) ≤ var(a′β̂OLS), ∀ap×1 and var(a′β̂) ≤ var(a′β̃)
where β̃ is any unbiased estimator in the general linear model.

So, β̂OLS is inefficient but unbiased. Can we use it for inference?



Apple trees data

day
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R script for the apple trees example

all = read.table("apple_shoots.txt", header = F)
names(all) = c("day", "total", "mc", "std")
attach(all)
lm.wls = lm(mc ~ day, data = all, weights = total)
lm.ols = lm(mc ~ day, data = all)
? lm
...
weights: an optional vector of weights to be used

in the fitting process. Should be ’NULL’ or a
numeric vector. If non-NULL, weighted least squares
is used with weights ’weights’ (that is, minimizing
’sum(w*e^2)’); otherwise ordinary least
squares is used.



> summary(lm.ols)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.7688811 0.337028691 28.98531 6.310058e-33

day 0.1963376 0.005648492 34.75930 1.094398e-36

#Utilize total number of counts as weights.

> summary(lm.wls)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.0354917 0.414189300 24.22924 2.736109e-29

day 0.1909468 0.006364845 30.00023 1.237558e-33

#Utilize 1/(standard errors^2) as weights

lm.wls1 = lm(mc ~ day, data = all, weights = std^-2)

> summary(lm.wls1)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.8150263 0.271764428 36.11593 5.655701e-37

day 0.1894794 0.004640411 40.83246 1.671095e-39



Diagnostic plots for the apple trees example
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Figure: Ordinary least squares
fit.
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Figure: Weighted least
squares fit using n as weights.

No substantial differences between the two fits!



Diagnostic plots for the apple trees example
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Figure: Mean counts vs
standard errors.
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Figure: Weighted least squares
fit using 1

σ̂2
i

as weights.

Which of three models is preferable?

> c(summary(lm.ols)$r.squared, summary(lm.wls)$r.squared,
summary(lm.wls1)$r.squared)

[1] 0.9602610 0.9473692 0.9714500



Checking normality of the error terms: ε ∼ N (0, σ2In)

We observe estimates ε̂ of the error terms.

We can use these estimates to compare observed values to the
theoretical values.

This can be done via a normal probability plot or a
quantile-quantile (Q-Q) plot.

Each residual is plotted against its expected value under
normality (comparing empirical cumulative distribution with
the theoretical one). A plot that departs substantially from
linearity provides evidence against normality of the error
distribution.



Q-Q plots

Quantile point qp for random variable X is the point such that

FX (qp) = P(X ≤ qp) = p, qp = F−1(p).

If qX
p and qY

p are quantile functions of random variables X and Y ,

Q-Q plot of X and Y is the plots of (qX
p , qY

p ) for all p.

1 Sort the residuals ε̂(1) ≤ ε̂(2) ≤ · · · ,≤ ε̂(n).

2 Compute ui = Ψ−1
(

i
n

)
, where Ψ is the probability

distribution function of the standard normal distribution.

3 Plot ε̂(i) against ui .



Example

set.seed(1)

n = 300

x = rnorm(n, 1, 3)

y = 0.5 + 4*x + rnorm(n, 0, 1)

lm1 = lm(y ~ x)

> summary(lm1)

Call: lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-2.97733 -0.67295 -0.02005 0.70834 3.85267

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.47995 0.06459 7.431 1.15e-12 ***

4.00851 0.02091 191.708 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.045 on 298 degrees of freedom Multiple

R-Squared: 0.992, Adjusted R-squared: 0.9919 F-statistic:

3.675e+04 on 1 and 298 DF, p-value: < 2.2e-16



Example

sigma = sqrt(sum(lm1$resid^2)/(n-2))

> sigma

[1] 1.045298

sresid = sort(lm1$resid)

tsresid1 = qnorm(c(1 : n) / n)

postscript("qqplot.eps")

qqnorm(lm1$resid)

points(tsresid1, sresid, pch = 3, col = "red")

qqline(lm1$resid)

dev.off()
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is also useful for checking
normality.
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Figure: Examples of deviation from normality.

Possible solutions: Transform Y , i.e., use log Y , expY as the
response variable.



Are the errors independent?
In general no way to check this assumption from the plots alone,
need to know how the data were collected.
Whenever the data is obtained in a time sequence or some other
type of sequence, such as for adjacent geographic areas, it is useful
to prepare a sequence plot of the residuals.
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Figure: Nonindependence of error terms.



Omission of important predictor variables

Residuals should also be plotted against variables omitted from the
model that might have important effects on the response.
E.g.
Consider three explanatory variables X1, X2, X3 where X2 and X3

are binary variables.
True model Y ∼ X1 + X2.
Fitted model Y ∼ X1.

X1 = runif(n, 20, 45)

X2 = rbinom(n, c(0, 1), 0.7)

X3 = rbinom(n, c(0, 1), 0.5)

Y = 0.4 + 0.1 * X1 + 2 * X2 + rnorm(n, 0, 0.5)

Plot residuals from the fitted model Y ∼ X1 versus X2 and X3 to
see whether either of these should be included in the model.
Any ideas how these plots might look like?
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Figure: Omission of important predictor variables. Residuals from the
fitted model Y ∼ X1 versus X1, X2, and X3.
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Figure: Omission of important predictor variables. Y : blood pressure in
the morning. X1: Calories at dinner. X2: Age range.



Omission of important predictor variables

Does not mean the original model is wrong.
Implies that it can be improved by adding another predictor
variable.



Added-variable plots

Residual plots may not properly show the nature of the
marginal effect of a predictor variable, given the other
predictor variables in a model.

Added-variable plots, also called partial regression plots or
adjusted variable plots, are refined residual plots that provide
graphic information about the marginal importance of a
predictor variable Xj , given the other predictor variables
already in the model.

In addition, these plot might be useful for identifying the
nature of the marginal relation for a predictor variable in the
regression model.



How to obtain added-variable plots?

Both the response variable Y and the predictor variable Xj

under consideration are regressed against the other predicted
variables in the model and the residuals are obtained for each.

These residuals reflect the part of each variable that is not
linearly associated with the other predicted variables already
in the regression model.

The plot of these residuals against each other (1) shows the
marginal importance of this variable in reducing the residual
variability and (2) may provide information about the nature
of the marginal regression relation for the predictor variable Xj

under consideration for possible inclusion in the regression
model.



Consider Y ,X1,X2.

Ŷ (X1) = β̂0 + β̂1X1

ε̂(Y | X1) = Y − Ŷ (X1)

X̂2(X1) = β̂∗0 + β̂∗1X1

ε̂(X2 | X1) = X2 − X̂2(X1)

The added-variable plot for predictor variable X2 consists of a plot
of the Y residuals ε̂(Y | X1) against the X2 residuals ε̂(X2 | X1).
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Figure: Added-variable plot. True model: Y ∼ X1 + X2.
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2 .
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relate to the slope of the regression line on the right panel?



lm0 = lm(Y ~ X1 + X2)

lm1 = lm(Y ~ X2)

lm2 = lm(X1 ~ X2)

> lm0

Call: lm(formula = Y ~ X1 + X2)

Coefficients:

(Intercept) X1 X2

-205.719 6.288 4.738

> lm(lm1$resid ~ lm2$resid)

Call: lm(formula = lm1$resid ~ lm2$resid)

Coefficients: (Intercept) lm2$resid

-2.458e-15 6.288e+00

Exercise: Can you argue this analytically?



Notes on added-variable plots

An added variable plot only suggests the nature of the
functional relation in which a predictor variable should be
added to the regression model but does not provide an
analytical expression.

The relation shown is for predictor Xj adjusted for the other
predictor variables in the regression model, not for Xj directly.

These plots may not show the proper form of the marginal
effect of a predictor variable if the functional relations for
some or all of the variables already in the regression model are
misspecified.



Outliers and Influential observations

Regression outliers.

High leverage points.

Influential points.

What are these and how can we measure them?

One should be cautious about unusual data points in linear models
since they can influence the results of the analysis, and their
presence might may be a signal that the model fails to capture
important characteristics of the data.



Outliers

Outliers are extreme observations.

It is common practice to distinguish between two types of
outliers.

Outliers in the response variable are called residual outliers.

Outliers with respect to the predictors are called leverage
points. They can affect the regression model, too. Their
response variables need not be outliers. However, they may
almost uniquely determine regression coefficients. They may
also cause the standard errors of regression coefficients to be
much smaller than they would be if the observation were
excluded.



Outlier detection

Residual outliers can be identified from (1) residual plots
against X or Ŷ ; (2) box plots, stem-and-leaf plots, and dot
plots of the residuals.

Plotting standardized residuals might be helpful.

Standardized residuals: ε̂i/
√

var(ε̂i ).

var(ε̂) =?



Standardized (internally studentized) residuals

var(ε̂) = var(Y − Ŷ )

= var(Y − PY ) = σ2(I − P),

where P = X (XTX )−1XT is the projection matrix. It is also called
the hat matrix H.
Then, var(ε̂i ) = σ2(1− hii ) where hii is the i-th element on the
main diagonal of the hat matrix, and the covariance between
residuals ε̂i and ε̂j (i 6= j) is σ2(0− hij) = −hijσ

2, where hij is the
element in the i-th row and j-th column of the hat matrix.
Note: This can only correct for the natural non-constant variance
in residuals when errors εi have constant variance.



Leverage

hii is called the leverage (in terms of the X values) of the i-th
case.

Properties of hii : 0 ≤ hii ≤ 1,
∑n

i=1 hii = p.

The hii values theoretically range from 1/n to 1. Those that
exceed 2p/n are said to be large.

Interpretation: It is a measure of distance between the X
values for the i-th case and the means of the X values for all
of the observations. It measures the degree of conformity of a
single observation to the linear pattern established by the
other n − 1 observations.

For a linear regression with model with one predictor, the
leverage associated with the specific observation (xi , yi ) is

hii =
1

n
+

(xi − x̄)2∑n
i=1(xi − x̄)2

.



#Computing standardized residuals
xx = cbind(1, x)
H = xx %*% solve((t(xx)%*%xx)) %*% t(xx) #Hat Matrix
dhat = (1-diag(H))
#Could also use lm.influence(lm1)$hat
lm1.stdres0 = lm1$resid/sqrt((sum(lm1$resid^2)/(n-2 ))*dhat)
#Two R functions that will give us standardized residuals
lm1.stdres2 = rstandard(lm1)
library(MASS)
lm1.stdres1 = stdres(lm1)
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Figure: Outlier detection.
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Figure: Outlier detection. What to do with outliers? Should only discard
these if there is a direct evidence that it represents an error in recoding, a
miscalculation, a malfunctioning of equipment, or a similar type of
circumstance. Sometimes detection of an outlier itself might be of interest.



#Model fit with all observations:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.47995 0.06459 7.431 1.15e-12 *** x

4.00851 0.02091 191.708 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.045 on 298 degrees of freedom Multiple

R-Squared: 0.992, Adjusted R-squared: 0.9919 F-statistic:

3.675e+04 on 1 and 298 DF, p-value: < 2.2e-16

#Model fit omitting the circled outlier point:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.46061 0.06340 7.265 3.3e-12 *** x[-195]

4.01431 0.02051 195.681 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.023 on 297 degrees of freedom Multiple

R-Squared: 0.9923, Adjusted R-squared: 0.9923 F-statistic:

3.829e+04 on 1 and 297 DF, p-value: < 2.2e-16

#Model fit omitting the highest leverage point:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.47060 0.06499 7.241 3.83e-12 *** x[-232]

4.01307 0.02122 189.098 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.044 on 297 degrees of freedom Multiple

R-Squared: 0.9918, Adjusted R-squared: 0.9917 F-statistic:

3.576e+04 on 1 and 297 DF, p-value: < 2.2e-16


