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Polynomial regression

Useful when transformations cannot linearize the relation between
the predictors and the response.
General polynomial model with one predictor:
Y = β0 +

∑k
i=1 βjX

j + ε.
Parameter estimation?

Numerical problems: Different powers of the same variable could
be highly correlated, numerical values can easily get very large or
very small.
To overcome this, one could normalize X :

X ∗ =
2X −max(X )−min(X )

max(X )−min(X )
.

A better way is to use orthogonal polynomials.
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Consider the model

Yi = γ0φ0(Xi ) + γ1φ1(Xi ) + · · ·+ γkφk(Xi ) + εi ,

where φr (Xi ) is an r -th degree polynomial in X and the
polynomials are orthogonal over X :

n∑
i=1

φr (Xi )φs(Xi ) = 0, ∀r , s, r 6= s.

We have Y = Xγ + ε, where

X =


φ0(X1) φ1(X1) · · · φk(X1)
φ0(X2) φ1(X2) · · · φk(X2)
· · · · · · · · · · · ·

φ0(Xn) φ1(Xn) · · · φk(Xn)


How about XTX?



XTX =


∑

i φ
2
0(Xi ) 0 · · · 0
0

∑
i φ

2
1(Xi ) · · · 0

· · · · · · · · · · · ·
0 0 · · ·

∑
i φ

2
k(Xi )


Hence,

γ̂r =

∑
i φr (Xi )Y∑
i φ

2
r (Xi )

, r = 0, · · · , k.

How about obtaining φr?



Generating orthogonal polynomial basis

Various ways to do so.
Hayes (1974) suggested: Normalize X so that −1 ≤ Xi ≤ 1 and

φr+1(X ) = 2(X − ar+1)φr (X )− brφr−1(X ),

where φ0(X ) = 1, φ1(X ) = 2(X − a1),

ar+1 =

∑n
i=1 Xiφ

2
r (Xi )∑n

i=1 φ2
r (Xi )

br =

∑n
i=1 φ2

r (Xi )∑n
i=1 φ2

r−1(Xi )
,

with b0 = 0, a1 = X̄ .
In practice, use poly().



Example: 133 observations of acceleration against time for a
simulated motorcycle accident (Silverman, 1985).

> library(MASS)
> data(mcycle)
> attach(mcycle)
> plot(times, accel)
> lm1 = lm(accel ~ poly(times, 3))
> lines(times, lm1$fitted, lty = 3, col = "red")
> lm2 = lm(accel ~ poly(times, 6))
> lines(times, lm2$fitted, lty = 5, col = "blue")
> legend(40, -100, c("degree = 3", "degree = 6"),

lty = c(3, 5), col = c("red", "blue"))
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Figure: Polynomial regression.



> cbind(times, times^2, times^3)[1:7, ]

times

[1,] 2.4 5.76 13.824

[2,] 2.6 6.76 17.576

[3,] 3.2 10.24 32.768

[4,] 3.6 12.96 46.656

[5,] 4.0 16.00 64.000

[6,] 6.2 38.44 238.328

[7,] 6.6 43.56 287.496

> model.matrix(lm1)[1:7, ]

(Intercept) poly(times, 3)1 poly(times, 3)2 poly(times, 3)3

1 1 -0.150978025 0.228360989 -0.2572341691

2 1 -0.149652433 0.223634171 -0.2473124239

3 1 -0.145675655 0.209670791 -0.2186500006

4 1 -0.143024469 0.200542765 -0.2004466931

5 1 -0.140373284 0.191559455 -0.1829542651

6 1 -0.125791765 0.144738044 -0.0989511020

7 1 -0.123140580 0.136695387 -0.0858056922



Is the design matrix orthogonal?

> X = model.matrix(lm1)

> t(X[, 1]) %*% X[, 2]

[,1]

[1,] 1.110223e-15

> t(X[, 1]) %*% X[, 3]

[,1]

[1,] 1.665335e-16

> t(X[, 1]) %*% X[, 4]

[,1]

[1,] 6.661338e-16

> t(X[, 2]) %*% X[, 3]

[,1]

[1,] -5.691384e-17

> t(X[, 2]) %*% X[, 4]

[,1]

[1,] 1.996287e-17

poly() function generates orthogonal polynomials which represent
a basis for polynomial regression. Orthogonal polynomials are not
uniquely defined.



Comparing fits from different order polynomial regressions

> anova(lm1, lm2)
Analysis of Variance Table

Model 1: accel ~ poly(times, 3)
Model 2: accel ~ poly(times, 6)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 129 206424
2 126 138921 3 67503 20.408 7.645e-11 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1



Model/variable selection

Why select?

In practice, we never know the underlying true variables that
are associated with the response of our interest (e.g., true
model is unknown to us). Typically, we will be given p
variables and we would like to find out which of these we
should include in the regression model. Many investigators
like a small model, i.e., small number of variables because of
its simplicity to explain and understand.

Often, we might have p > n variables. Can we fit a linear
regression model using all these p variables?

We might have variables that are very correlated. We will see
that multicollinearity can be a severe problem.

The emphasis in the next couple of lectures is model/variable
selection.
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Multicollinearity: why it might be a problem and what can
we do?

Possible remedies:
- Subset selection.
- Shrinkage estimators: Ridge and Lasso (regularization); Principal
components regression (PCR), and Partial least squares regression
(PLS) (methods using derived input directions).

Overall idea: we will give up some bias (in estimates of β) to gain
in variance. Recall that mean squared error of an estimator =
Bias2 + Variance.
First, let’s investigate what happens with collinearity with simple
examples.
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x1 = c(2, 8, 6, 10)

x2 = c(6, 9, 8, 10)

y = c(23, 83, 63, 103)

#Obtain the design matrix

x = cbind(1, x1, x2)

> qr(x)$rank #QR decomposition

[1] 2

xx = t(x)%*%x

> xx

x1 x2

4 26 33

x1 26 204 232

x2 33 232 281

#R will not report an estimated coefficient for all predictors

> lm(y~x1+x2)

Call: lm(formula = y ~ x1 + x2)

Coefficients:

(Intercept) x1 x2

3 10 NA

#Though it will give us the fitted values of Y

> lm1 = lm(y~x1+x2)

> lm1$fitted

1 2 3 4

23 83 63 103



#Finding generalized inverse using SVD
svd1 = svd(xx, nu = 2, nv = 2)
ginv1 = svd1$v%*%diag(1/svd1$d[1:2])%*%t(svd1$u)

[,1] [,2] [,3]
[1,] 0.005247813 -0.01974733 0.01636540
[2,] -0.019747328 0.07628377 -0.06059475
[3,] 0.016365403 -0.06059475 0.05152964

#check whether this satisfies the g-inverse property.
> xx%*%ginv1%*%xx

x1 x2
4 26 33

x1 26 204 232
x2 33 232 281



#Another way of obtaining a generalized inverse.
lxx = xx[1:2, 1:2]
a = solve(lxx)
a = cbind(a, 0)
a = rbind(a, 0)
ginv2 = a
> ginv2

x1
1.4571429 -0.18571429 0

x1 -0.1857143 0.02857143 0
0.0000000 0.00000000 0

#check whether this satisfies the g-inverse property.
> xx%*%ginv2%*%xx

x1 x2
4 26 33

x1 26 204 232
x2 33 232 281



hatbeta1 = ginv1%*%t(x)%*%y
hatbeta2 = ginv2%*%t(x)%*%y
> hatbeta1

[,1]
[1,] -0.8095238
[2,] 9.6190476
[3,] 0.7619048
> hatbeta2

[,1]
3

x1 10
0



#Let’s check the predictions from two fits:
> x%*%hatbeta1

[,1]
[1,] 23
[2,] 83
[3,] 63
[4,] 103
> x%*%hatbeta2

[,1]
[1,] 23
[2,] 83
[3,] 63
[4,] 103
#This confirms that x*hatbeta is the same for both set of
parameter estimates.



#Other coefficient estimates computed using
#other generalized inverses...
hatbeta3 = matrix(c(-87, 1, 18), nrow = 3)
hatbeta4 = matrix(c(-7, 9, 2), nrow = 3)
> x%*%hatbeta3

[,1]
[1,] 23
[2,] 83
[3,] 63
[4,] 103
> x%*%hatbeta4

[,1]
[1,] 23
[2,] 83
[3,] 63
[4,] 103



Notes

> x1
[1] 2 8 6 10
> x2
[1] 6 9 8 10

We have x2 = 5 + 0.5 ∗ x1, perfect correlation (perfect
multicollinearity) between the two predictors!

So, what is the problem ? Can you say which predictor is
more important?

What happens when we get a new observation (x1 and x2),
and we want to predict Y for this observation? E.g. x1 = 6,
x2 = −3.
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#Example 1:
newx = c(1, 6, -3)
> newx%*%hatbeta1

[,1]
[1,] 54.61905
> newx%*%hatbeta2

[,1]
[1,] 63
> newx%*%hatbeta3

[,1]
[1,] -135
> newx%*%hatbeta4

[,1]
[1,] 41
#4 different predictions are obtained!!



#Example 2:
newx = c(1, 7, 8.5) #note that 5 + 0.5 * 7 = 8.5
> newx%*%hatbeta1

[,1]
[1,] 73
> newx%*%hatbeta2

[,1]
[1,] 73
> newx%*%hatbeta3

[,1]
[1,] 73
> newx%*%hatbeta4

[,1]
[1,] 73



If the new observations are following the same collinearity pattern,
the predictions are not affected, i.e., predictions for new
observations are unique for different estimates of regression
coefficients.



Almost perfect multicollinearity

n = 100

p = 2

set.seed(1)

#I am not showing you how I generated

#predictors X1 and X2

Y = 1.3+ 0.5 * X[, 1] + 0.05 * X[, 2] + rnorm(n, 0, 1)

Now, lets regress Y on X1 and X2.



> summary(lm(Y~ X))

Call: lm(formula = Y ~ X)

Residuals:

Min 1Q Median 3Q Max

-2.943591 -0.436453 0.002018 0.636917 2.639407

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.3254 0.1052 12.599 <2e-16 ***

X1 0.8963 0.7770 1.154 0.252

X2 -0.3290 0.7761 -0.424 0.673

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.043 on 97 degrees of freedom

Multiple R-Squared: 0.1988, Adjusted R-squared: 0.1823

F-statistic: 12.03 on 2 and 97 DF, p-value: 2.144e-05

Notice anything strange?



> cor(X[, 1], X[, 2])
[1] 0.988647

The paradoxical result is due to the fact that X1 and X2 are highly
correlated, they essentially convey the same information regarding
Y .

> summary(lm(y~ X[, 1]))

Call: lm(formula = y ~ X[, 1])

Residuals:

Min 1Q Median 3Q Max

-2.91800 -0.46847 -0.04045 0.64358 2.64128

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.3271 0.1047 12.679 < 2e-16 ***

X[, 1] 0.5707 0.1163 4.908 3.66e-06 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.039 on 98 degrees of freedom

Multiple R-Squared: 0.1973, Adjusted R-squared: 0.1891

F-statistic: 24.09 on 1 and 98 DF, p-value: 3.663e-06

> summary(lm(y~ X[, 2]))

Call: lm(formula = y ~ X[, 2])

Residuals:

Min 1Q Median 3Q Max

-2.87904 -0.59994 -0.02733 0.63548 2.62335

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.3323 0.1052 12.664 < 2e-16 ***

X[, 2] 0.5561 0.1168 4.761 6.67e-06 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.045 on 98 degrees of freedom

Multiple R-Squared: 0.1878, Adjusted R-squared: 0.1795

F-statistic: 22.66 on 1 and 98 DF, p-value: 6.671e-06



How about the fitted values?

> lm1

Call: lm(formula = y ~ X)

(Intercept) X1 X2

1.3254 0.8963 -0.3290

> lm2

Call: lm(formula = y ~ X[, 1])

(Intercept) X[, 1]

1.3271 0.5707

> lm3

Call: lm(formula = y ~ X[, 2])

(Intercept) X[, 2]

1.3323 0.5561

> cor(lm1$fitted, lm2$fitted)

[1] 0.9962594

> cor(lm1$fitted, lm3$fitted)

[1] 0.9719647

> cor(lm2$fitted, lm3$fitted)

[1] 0.988647



Summary

Perfect multicollinearity (rank deficient design matrix X ,
singularity) affects interpretability, causes unreliable
predictions for future observations.

In case of high collinearity (not perfect but in the range of ∼
0.90), we won’t be able to understand how various predictors
impact Y , e.g., individual p-values might be misleading,
confidence intervals will be wide and adding or deleting a
single data point might change the coefficients dramatically
(unstable coefficient estimates).

We might be interested in only a subset of the predictors
when we have thousands of them.

Prediction accuracy might be improved by sacrificing a bit of
bias in exchange for reducing the variance.

It is often easier to interpret a simple model than a complex
one.


