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Outline

Measuring performance of a candidate estimator (predictor)
by its risk (expected loss). Notions of loss and risk functions.

Various estimators of risk: resubstitution estimator, test set
estimator, cross-validation estimator.

Choosing the best estimator based on cross-validated risk.
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Figure: Mean residual sum of squares based on training data (data used
to estimate the regression coefficients) and independent test data (new
data) [code in Training Test Error.R].



Prediction error of best model at various model sizes.

> cbind(msize[PEindex], PE[PEindex])
[,1] [,2]

[1,] 2 3.656369
[2,] 3 1.376367 *BEST MODEL W.R.T. TEST DATA*
[3,] 4 1.400373
[4,] 5 1.466514
[5,] 6 1.731655

> cbind(msize[RSSindex], RSS[RSSindex])
[,1] [,2]

[1,] 2 1.4166478
[2,] 3 0.8908512
[3,] 4 0.6719834
[4,] 5 0.6700969
[5,] 6 0.6683968 *BEST MODEL W.R.T TRAINING (LEARNING) DATA*



Notions of loss and risk functions

Data: We have n i.i.d. observations Xi = (Yi ,Wi1, · · · ,Wip),
i = 1, · · · , n from a data generating distribution P0, i.e., Xi ∼ P0,
i = 1, · · · , n.
We usually refer X1, · · · ,Xn as the learning set since these data are
used to estimate or learn population parameters.
Model: Y = Wβ + ε, E [ε | W ] = 0.
Parameter of interest. We will denote the parameter of interest
by µ0 = µ(W ) = EP0 [Y | W ].



Notions of loss and risk functions

Loss function.

Loss functions are typically used to quantify error in
prediction.

A loss function L : (X , µ) −→ L(X , µ) ∈ R is a real valued
function of a candidate parameter value µ and an observation
X ∼ P0. L(y , ŷ) elaborates the loss incurred when predicting
y by ŷ .

In the regression context, we work with the squared error loss
function defined as L(y , ŷ) = (y − ŷ)2.



Notions of loss and risk functions

Risk function. For a given loss function L(X , µ), with µ ∈ Ψ (Ψ
represents the parameter space, i.e., Rp for β in a linear regression
model with p explanatory variables) and X ∼ P0, the risk is the
expected value of the loss function with respect to P0,

R(µ,P0) = EP0 [L(X , µ)] =

∫
L(x , µ)dP0(x) =

∫
L(x , µ)f (x)dx .

When (unrealistically) P0 is known, it is possible to define an
optimal predictor µopt , which minimizes the risk function:
µopt = argminµ∈ΨR(µ,P0).
Exercise: Show that for the squared error loss function, the optimal predictor is
µopt(W ) = EP0(Y | X ). Our goal is to use the sample X1, · · · , Xn to estimate
the parameter of interest µ0 of the unknown data generating distribution P0.
We will potentially have many candidate estimators and we would like to
choose among these based on their risk.
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Notions of loss and risk functions

Let Pn be the empirical distribution of the data (X1, · · · ,Xn), i.e.,
each data point Xi = (Yi ,Wi1, · · · ,Wip) gets mass 1/n.
Definition. An estimator µ̂ is a mapping from the empirical
distributions to the parameter space Ψ. A realization of this
mapping corresponding to a particular empirical distribution Pn is
denoted by µn = µ̂(Pn). E.g.

µn = W β̂LS , from the full model fit.

µn = W1β̂1,LS , from a submodel fit.



True risk vs resubstitution and test set estimators of risk

The true, unknown risk of this estimator µn is

EP0 [L(X , µn)] =

∫
L(x , µn)dP0(x), (1)

where L(x , µn) = (y − µn(w))2.

Note that this risk is a random variable as it depends on the data
X1, · · · ,Xn via the empirical distribution Pn.
If we knew the true data generating distribution P0, we could compare
various candidate estimators µn based on their risk.
Resubstitution risk estimator. The empirical or resubstitution risk
estimator for µn = µ̂(Pn) replaces the unknown data generating
distribution P0 by the known empirical distribution Pn.
Any guesses what this corresponds to in the linear regression model, i.e.,
plug in Pn for P0 in the equation 1?
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Resubstitution risk estimator

EPn [L(X , µn)] =

∫
L(X , µn)dPn(X )

=
1

n

n∑
i=1

L(Xi , µn) =
1

n

n∑
i=1

(Yi − µn(Wi ))
2

=
1

n

n∑
i=1

(Yi −Wi β̂)2.

Resubstitution estimator of risk equals mean residual sum of
squares.
This estimator is severely biased downward due to overfitting. The
learning data used to estimate the parameter of interest is also
used to estimate its risk!
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True risk, resubstitution and test set estimators of risk for
candidate linear regression estimators of EP0

[Y | W ]

E.g. Define X = (Y ,W ) where W ∼ N (4, 1) and
Y = 3− 5W + ε with ε ∼ N (0, 2), thus
Y | W ∼ N (µ0(W ) = 3− 5W , σ2

0 = 2). Parameter of interest
µ0 = EP0 [Y | W ] = 3− 5W . Let β0 = 3, β1 = −5.

set.seed(1)

w = rnorm(50, 4, 1)

y = 3-5 * w + rnorm(50, 0, 2)

lm1 = lm(y ~ w)

> betan = lm(y ~ w)$coef

> betan

(Intercept) w

3.608191 -5.091097

We have µn(W ) = βn,0 + βn,1W where βn,0 = 3.608191 and
βn,1 = −5.091097.



First let’s look at the true risk of this estimator
µn(W ) = βn,0 + βn,1W .

EP0 [(Y − µn(W ))2] = EP0 [(Y − µ0(W ) + µ0(W )− µn(W ))2]

= EP0 [(Y − µ0(W ))2] + EP0 [(µ0(W )− µn(W ))2]

+EP0 [(Y − µ0(W ))(µ0(W )− µn(W ))]

Cross-term vanishes (hint: first condition on W ):

= σ2
0 + EP0 [(β0 + β1W − β0,n − β1,nW )2]

= σ2
0 + (β0 − β0,n)

2 + 2(β0 − βn,0)(β1 − βn,1)EP0(W )

+(β1 − βn,1)
2EP0(W

2).

This is a quantity that we can calculate when we know P0 (or

equivalently the marginal distribution of W and the conditional

distribution of Y | W ).



First let’s look at the true risk of this estimator
µn(W ) = βn,0 + βn,1W .

EP0 [(Y − µn(W ))2] = EP0 [(Y − µ0(W ) + µ0(W )− µn(W ))2]

= EP0 [(Y − µ0(W ))2] + EP0 [(µ0(W )− µn(W ))2]

+EP0 [(Y − µ0(W ))(µ0(W )− µn(W ))]

Cross-term vanishes (hint: first condition on W ):

= σ2
0 + EP0 [(β0 + β1W − β0,n − β1,nW )2]

= σ2
0 + (β0 − β0,n)

2 + 2(β0 − βn,0)(β1 − βn,1)EP0(W )

+(β1 − βn,1)
2EP0(W

2).

This is a quantity that we can calculate when we know P0 (or

equivalently the marginal distribution of W and the conditional

distribution of Y | W ).



[R code in handout 110308.R]

#Resubstitution (empirical) risk estimate for \mu_n

> sum(lm1$resid^2)/50

[1] 3.673798

#True risk

sigma0 = 2

beta0 = 3

beta1 = -5

betan0 = betan[1]

betan1 = betan[2]

muw = 4 #E[W]

muwsq = 17 #E[W^2] obtained using var(W) = E[W^2]-E[W]^2

#Plug in the formula for the true risk

sigma0^2 + (beta0 - betan0)^2 + 2*(beta0 - betan0)

* (beta1 - betan1) * muw + (betan1 - beta1)^2 * muwsq

4.067739 #True risk



Test set risk estimator
Test set risk estimator. Another risk estimate is based on an
independent sample.

Let (XTS
1 , · · · ,XTS

nTS
)be an independent

sample of size nTS . Then, the test set risk estimate is given by

1

nTS

nTS∑
i=1

(Y TS
i − µn(W

TS
i ))2.

Compute a test set risk estimator for the above example:

set.seed(1)
wts = rnorm(10000, 4, 1)
yts = 3 - 5 * wts + rnorm(10000, 0, 2)
mean((yts - betan0 - betan1 * wts)^2)
[1] 4.000341

So, if we have an independent data set (a data set that we have
not touched while learning the parameter of interest, i.e., while
constructing the candidate estimator), we could get a better
estimate of the risk. What happens when nTS −→∞?
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However, very rarely, we have the luxury of setting aside a portion
of the dataset ”untouched”. Cross-validation tries to bypass this,
by reusing the learning data set in a clever way.

Again remember that we would like to have a good estimator of
the risk for a given candidate predictor, because we will be using
the estimated risk to choose among predictors.
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Cross-validation
Cross-validation is a general approach for the following two tasks:

Risk estimation. Given a candidate estimator µn = µ̂(Pn) of
a parameter µ0 = µ(P0), we wish to estimate the risk of µn

with respect to the unknown true data generating distribution
P0, that is ∫

L(X , µn)dP0.

Estimator selection. Select an optimal (in terms of risk)
estimator among K possible candidate estimators

{µn,k = µ̂k(Pn) : k = 1, · · · ,K},
for a parameter µ0 = µ(P0).
E.g.

µn,1 = β̂0 + β̂1W1

µn,2 = β̂0 + β̂1W1 + β̂2W2

µn,3 = β̂0 + β̂1W1 + β̂2W2 + β̂3W3

...



Cross-validation

The main idea in CV is to divide the available learning data
into two sets: a training set and a validation set.

Observations in the training set are used to compute or train
the estimators and the validation set is used to assess the risk
(or validate) these estimators.

Define a binary random n-vector or split vector, Bn ∈ {0, 1}n,
independent of the empirical distribution Pn.



Split vector for cross-validation

A realization of Bn = (Bn(1), · · · ,Bn(n)) defines a particular split
of the learning set of n observations into a training and a
validation set.

Bn(i) =

{
0 i-th observation is in the training set
1 i-th observation is in the validation set.

Let P1
n,Bn

and P0
n,Bn

denote the empirical distributions of the
training and the validation sets. pn = n1/n be the proportion of
the observations in the validation set, where n1 =

∑
i I (Bn(i) = 1).



Cross-validation risk estimator

A general definition of the cross-validation risk estimator for
µn = µ̂(Pn) is

EBn

∫
L(x , µ̂( P0

n,Bn︸ ︷︷ ︸
training

)) dP1
n,Bn︸ ︷︷ ︸

validation

(x)

= EBn

1

n1

∑
i :Bn(i)=1

L(Xi , µ̂(P0
n,Bn

)).

The particular distribution of the split vector Bn defines the type of
cross-validation procedure. This representation covers many types
of CV.



Commonly used cross-validation schemes
LOOCV (Leave-one-out CV). Each observation in the learning
set is used in turn as the validation set and the remaining n − 1
observations are used as the training set. The corresponding
distribution Bn places mass 1/n on each of the n binary vectors,
bn = (bn(1), · · · , bn(n)) such that

∑
i bn(1) = 1 (pn = 1/n).

V-fold CV. The learning set is randomly divided into V mutually
exclusive and exhaustive sets, and each set is used in turn as the
validation set. The corresponding distribution of Bn places mass
1/V on each of V binary vectors bv

n = (bn(1)v , · · · , bv
n(n)),

v = 1, · · · ,V such that
∑

i bn(i)
v ≈ n/v and

∑
v bv

n(i) = 1
(Pn = 1/V ).

Training set Validation set

Figure: Five-fold cross-validation. Bn has 5 realizations.
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Selecting an optimal estimator

Estimators. µn,1, · · · , µn,K where µn,i = µ̂i (Pn), e.g., estimator
from the model fit using k predictors. We would like to select k̃
such that the true risk of the estimator with respect to P0 is
minimized

k̃ = argmink=1,··· ,K

∫
L(X , µ̂k(Pn))dP0(x).

k̃ is usually referred to as oracle or benchmark selector.



Selecting an optimal estimator

Problem. P0 is usually unknown!
To bypass this, we use cross-validated risk estimator to choose
among the candidate estimators

k̂ = argmink=1,··· ,KEBn

∫
L(X , µ̂k(P0

n,Bn
))dP1

n,Bn
(X ).

That is, the cross-validation estimator µ̂n,k̂ is chosen to have the
best performance on the validation set.

Can show that k̂ is optimal in the sense that it performs (in terms
of risk) asymptotically as well as the optimal benchmark or oracle
selector k̃ based on the true unknown data generating distribution
P0.
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library(DAAG)
cvv2 = cv.lm(data.frame(cbind(y, w)), y ~ w, 2)

cv.lm(data.frame(cbind(y, w)), y ~ w, 2)

#cross-validation risk estimate with v = 2 is 3. 73.
#cross-validation risk estimate with v = 3 is 3. 94.
#cross-validation risk estimate with v = 5 is 3. 83.
#cross-validation risk estimate with v = 10 is 3. 95.

#In practice, typically 5 or 10 fold CV is commonly used.



#A cross-validation function is

#available through the boot package.

library(boot)

glm1 = glm (y ~ x1, data = egdata, family = gaussian)

cv1 = cv.glm(egdata, glm1, K = 5)$delta[1]

glm2 = glm (y ~ x1 + x3, data = egdata, family = gaussian)

cv2 = cv.glm(egdata, glm2, K = 5)$delta[1]

glm3 = glm (y ~ x1 + x3 + x2, data = egdata, family = gaussian)

cv3 = cv.glm(egdata, glm3, K = 5)$delta[1]

glm4 = glm (y ~ x1 + x3 + x2 + x4, data = egdata, family = gaussian)

cv4 = cv.glm(egdata, glm4, K = 5)$delta[1]



Summary
If we believe that the correct model is in fact

Y = Xkβk + ε,

where Xk is the design matrix with only k variables and the full
design matrix is of dimension p ≥ k.

(Nishi, 1984) For fixed p and n −→∞, AIC, Cp and CV(1)
are asymptotically the same, and all tend to overfit, e.g., the
probability of selecting a subset properly containing the true
subset converges to a positive number rather than 0. The
probability of underfitting converges to 0.

Under the same asymptotics, BIC selects the true model with
probability converging to 1.

When the number of coefficients is small, the AIC-like criteria
tend to overfit.

Cross-validation asymptotics hold even when the underlying
linear model is just an approximation of the true model.
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