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Abstract

In this paper, we give a very simple and purely topological condition
for two surfaces to be isotopic. This work is motivated by the problem
of surface approximation. Applications to implicit surfaces are given,
as well as connections with the well-known concepts of medial axis and
local feature size.

1 Introduction and related works

Finding approximations of given surfaces certainly is one of the core prob-
lems in the processing of 3-dimensional geometry. When seeking for an
approximation S’ of a surface S, in addition to geometric closeness, one usu-
ally requires that S’ should be topologically equivalent to S. While much
work has been done on homeomorphic approximation, in particular in the
context of surface reconstruction [AB], only a few recent articles tackle the
more difficult problem of ensuring isotopic approximation [APR, SP]. Let
us recall that two surfaces are isotopic whenever they can be continuously
deformed one into the other without introducing self-intersections. Isotopy
is thus a finer relation than homeomorphy, since for instance a knotted torus
is not isotopic to an unknotted one, though both are homeomorphic. Rather
than homeomorphy, isotopy is what one should look for, since it completely
captures the topological aspects of surface approximation.

The main result of [SP] is that S and S’ are isotopic whenever the pro-
jection on S defines a homeomorphism from S’ to S. In [APR], it is shown
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that a specific piecewise linear approximation of S is isotopic to S, using
indirectly the same condition as the one considered in [SP]. Note that this
condition involves not only the topology of the surfaces, but also their ge-
ometry, as the projection on S is involved. In particular, it cannot be met
when S is not smoothly embedded, as the projection is then undefined in
the vicinity of singular areas. Also, checking this condition usually requires
to bound the angle between the normals to S and S’ carefully, which is
useful for other purposes, but may seem irrelevant for strictly topological
purposes.

In this work, we show that if S" and S are homeomorphic, then a simple
and purely topological condition is sufficient to ensure the existence of an
isotopy between them. When S is connected, the condition is merely that
S’ is contained in some topological thickening of S and separates the two
boundary components of that thickening. We also show that if in addition
S separates the boundary components of some topological thickening of S’,
then the homeomorphy condition can be dropped with the same conclusion.

Note that the smoothness of S is not required any more. Tedious analysis
of the deviation between normals is also avoided. Finally, the condition
is easy to check, and as we will see, various interesting corollaries can be
obtained according to the kind of thickenings considered. The proof of our
theorem is based on several results of 3-manifold topology. To begin with,
we state the theorem precisely (section 2), and give some mathematical
preliminaries (section 3). Then we prove our result (section 4), and give some
applications (section 5), including a quantitative version of an existential
result proved in [SP] about interval solids. Furthermore, an isotopy criterion
involving medial axes is derived, and the case of implicitly defined surfaces
is discussed.

2 Main results

Throughout the paper we use the following notations. For any set X, X,
X¢ and 90X denote respectively the closure of X, the complement of X, and
the boundary of X. Also, S and S’ denote two compact orientable surfaces
embedded in R?.

Definition 2.1 (Isotopy and ambient isotopy)

An isotopy between S and S’ is a continuous map F : S x [0,1] — R3 such
that F(.,0) is the identity of S, F(S,1) = S’, and for each t € [0,1], F(.,t)
is a homeomorphism onto its image. An ambient isotopy between S and S’



is a continuous map F : R3 x [0,1] — R? such that F(.,0) is the identity of
R3, F(S,1) =5, and for each t € [0,1], F(.,t) is a homeomorphism of R3.

Restricting an ambient isotopy between S and S’ to S x [0,1] thus yields
an isotopy between them. It is actually true that if there exists an isotopy
between S and S’, then there is an ambient isotopy between them [Hi], so
that both notions are equivalent in our case. If X C R3, we will say that S
and S’ are isotopic in X if there exists an isotopy between S and S’ whose
image is included in X. Isotopies between sub-surfaces of other 3-manifolds
than R3, which we will consider in the proof of the theorem, are defined in
the same way.

Definition 2.2 (Topological thickening)
A topological thickening' of S is a set M C R? such that there exists a
homeomorphism ® : S x [0,1] = M satisfying ®(S x {1/2}) =S C M.

The boundary of a topological thickening M of S thus is the union of
®(0S x [0,1]) and two surfaces, ®(S,0) and ®(S,1), which will be referred
to as the sides of M. Our main theorem is the following :

Theorem 2.1 Suppose that :

1. S’ is homeomorphic to S.

2. S’ is included in a topological thickening M of S.
3. S’ separates the sides of M.

Then S’ is isotopic to S in M.

Here “separates” means that one cannot go from one side of M to the
other one without crossing S’ or leaving M. Proving that two surfaces are
homeomorphic is not straightforward in general. The next theorem shows
that if the assumptions 2. and 3. of theorem 2.1 also hold when S and S’
are exchanged, then homeomorphy is not needed :

Theorem 2.2 Suppose that :

1. S is included in a topological thickening M of S.
2. S is included in a topological thickening M' of S'.
3. S’ separates the sides of M.

4. S separates the sides of M'.

Then S and S’ are isotopic in M and in M'.

!Our definition actually is a special case of what is usually called a thickening in the
algebraic topology litterature.



3 Mathematical preliminaries

3.1 Surface topology : Euler characteristic and coverings

This section is dedicated to some basic recall about topology of compact
orientable surfaces which are widely used in the following. Let S be a com-
pact orientable surface with possibly non empty boundary 9S. Denote by
b the number of connected component of 9S. If T is a triangulation of S,
denote by f the number of its faces, by e the number of its edges and by s
the number of its vertices. The Euler characteristic x(S) of S is defined as

x(S)=f—e+s.

It is well known that such a number does not depend on the choice of the
triangulation 7 (see [Ma] for example). It is also well known that S always
admits a triangulation (see [Re]). So Euler characteristic is well defined
for compact surfaces and two homeomorphic surfaces have the same Euler
characteristic. The genus, g(S) of S is defined as

9(5) = 5(2~ x(5) - b).

The genus and the number of boundary components (or equivalently the
Euler characteristic and the number of boundary components) are sufficient
to classify compact connected orientable surfaces.

Theorem 3.1 (see [Ma] for a proof) Two connected compact orientable
surfaces are homeomorphic if and only if they have the same genus and the
same number of boundary components.

In the following of this paper, we will also use the notion of topological
covering between surfaces (see [Ma]). A map p : 8" — S is a topological
covering of S if there exists a non empty discrete set F' (finite or infinite
denumerable) satisfying the following property: for any point z € S, there
exists a neighbourhood V' of z and an homeomorpism ® between p~! (V) and
V x F such that p; o ® = p where p; : V x F — V is the canonical projec-
tion. If F' is finite, the cardinality of F' is known as the number of sheets of
the covering. The simplest examples of topological coverings are canonical
projections py : V X F' — V ; such coverings are said ¢rivial. Let us now give
a more interesting example : consider the map from the torus § = S x S!
to itself defined by p(0, ) = (20, ¢). It is an easy exercise to prove that
p is a 2-sheeted covering of torus S by itself. Important facts are, that a
1-sheeted covering between two compact surfaces is an homeomorphism and



that if p: S” — S is a n-sheeted covering of S, then x(S’) = nx(S).

Finally, in the proofs of our main theorems, we will use an argument
resorting to singular homology theory. This theory is beyond the scope of
this paper and we refer the reader to [G] for an introduction to the subject.

3.2 3-manifold topology

The proof of theorem 2.1 is based upon the following theorem ([JS], [Wal,
see [H] p.16 for a proof), which we explain below.

Theorem 3.2 Let M be a connected compact irreducible Seifert-fibered man-
ifold. Then any essential surface S' in M is isotopic to a surface which is
either vertical, i.e. a union of reqular fibers, or horizontal, i.e. transverse
to all fibers.

Let us explain the various terms involved in this theorem. A 3-manifold M is
said to be irreducible if any 2-sphere embedded in M bounds a 3-ballin M. A
Seifert manifold is a 3-manifold that decomposes into a union of topological
circles, the fibers, satisfying certain properties. The simplest example of
Seifert manifold is the cartesian product of a surface S and a circle ST, the
fibers being the circles {z} x S!, z € S. In what follows, we shall only
deal with Seifert manifolds of that kind. We will not explain what a regular
fiber is because in our case all the fibers are regular. An oriented surface
embedded in a 3-manifold M is incompressible if none of its components is
homeomorphic to a 3-dimensional sphere and if for any (topological) disk
D C M whose boundary is included in S, there is a disk D' C S such that
0D = dD'. Any disk D for which there is no such D’ is called a compressing
disk for S (see figure 1). Intuitively, S is incompressible when it has no
extra handle with respect to M. An essential surface in a 3-manifold M is
an incompressible surface, satisfying certain additional conditions related to
OM. In particular, when M has no boundary, any incompressible surface is
essential. We will actually see that all the incompressible surfaces considered
in this paper are essential, even in the case with boundary. Finally, two
sub-manifolds of M are said to be transverse if in any point z where they
intersect, the (vectorial) sum of their tangent space spans the tangent space
of M at z. The intersection of two transverse sub-manifolds Sp and Sy is
again a sub-manifold, with codimension the sum of the codimensions of Sy
and Sy (see [Hi]). In particular, a surface of a Seifert 3-manifold transverse
to a fiber meets that fiber in a discrete set of points. Also, two surfaces in
a 3-manifold are transverse if and only if they are not tangent at any point.



4 Proofs

In sections 4.1 and 4.2, we prove theorem 2.1 in the case where S is con-
nected. Section 4.3 completes the proof of theorems 2.1 and 2.2 in the case
where S has several connected components. Let M be a topological thick-
ening of S, and suppose that S, S" and M fulfill the assumptions of theorem
2.1. From now on, we identify M with S x [0, 1], using the map ® associated
with M (see definition 2.2). Let M be the Seifert 3-manifold S x S* obtained
from M by identification of its sides S x {0} and S x {1}. We denote by
S the surface corresponding to the sides of M in M, and by S’ the surface
corresponding to S’ in M. Note that in M, S corresponds to the surface
S x{1/2}. As S x {1/2} and S =S x {0} = S x {1} are obviously isotopic
in M, it will be sufficient to prove that S’ is isotopic to S in M to prove our
result.

By the assumptions of theorem 2.1, S and S’ are homeomorphic and
disjoint. Also, M \ &’ is connected?.

Note that since we do not assume that S is closed?, S, and thus S’
and M may have non-empty boundaries. Although it is possible to prove
directly the proposition in the general case, one first gives the proof in the
case where S is closed in order to avoid some technical difficulties. The
additional technicalities occuring in the case with boundary are detailed in
section 4.2.

Any compact topological surface which admits a thickening being isotopic
to a C* smooth surface, we suppose from now on, and without loss of
generality, that S and 8" are C*° smooth surfaces.

4.1 The case of a surface without boundary

Note that the case where & = S? is a 2-dimensional sphere, M = $2 x S! is
not irreducible ([H] prop 1.12 p.18) , so it has to be considered separately.
Fortunately, isotopy holds when S = S? is a sphere, since it follows from
Schoenflies theorem (see [Ro] P.34 for a statement of it and [Br] for a proof)
that there is no smooth knotted 2-sphere in R3. From now on, we assume
that S is not a sphere.

We first prove that M and &' fulfill the hypothesis of theorem 3.2 and
then deduce that S’ is isotopic to S. Since S is not a sphere, M is an
irreducible manifold ([H] prop 1.12 p.18). Hence, we just have to prove the
following

2We omit the somewhat lengthy proof of this intuitively clear statement.
3 A closed surface is a surface without boundary component.



Proposition 4.1 S’ is an essential surface in M.

Proof. — Since M has no boundary, it is sufficient to prove that &’ is
incompressible. Suppose S’ is compressible. So one can find a simple curve
v on 8’ which is not null homotopic in &' and which bounds an embedded
disc D in M. Do the following surgery: cut S’ along 7 and glue a disk
homotopic to D along each of the two boundary components of S\ v (see
fig 1). In this way, one obtains a new surface with Euler characteristic
greater than x(S') = x(S). The previous surgery does not change the
homology class: the new surface is homologous to 8’. The surface S’ (with
well choosen orientation) is homologous to S (S and S’ form the boundary
of an open subset in M), and it follows from Kiinneth formula (see [G] p.198
for example) that the homology class of S in M is not zero. So one of the
connected components S’ of the new surface in M is not homologous to zero.
Moreover, S’ has a smaller genus than the one of S. Indeed, suppose it is not
the case. As the new surface has a larger Euler characteristic than x(S') and
has at most 2 connected components, the only possibility is that this surface
is the disjoint union of 8" and a sphere. Indeed, the sphere is the only closed
orientable connected surface with positive Euler characteristic. Considering
the complement of the compressing disk in the sphere component shows that
0D bounds a disk in §’, which is a contradiction.

Figure 1: Surgery along a compressing disk

Lemma 4.1 It is possible to choose D such that D NS = ().

Proof. — Consider the embedded disks having with v as boundary and
which meet § transversally. Each of these disks meets S in a union of n
closed loops. Take as D the disk such that this number n is minimum.
Suppose that n is not zero. Among all these curves there is one, denoted



by «, which bounds a disk in D \ (§ N D) (when the curves are nested,
consider any innermost curve on D, see fig. 2 on the right). The surface S
is incompressible, so « also bounds a disk in S. The 3-manifold M being
irreducible, the sphere defined by these 2 disks bounds a 3-ball. One can
then make an isotopy to obtain a disk D’ such that D'NS = (DNS) \ a.
This contradicts the minimality of n (see fig. 2). O

Figure 2: Decreasing the number of components of DN S

The previous surgery cannot be iterated an infinite number of times,
since the genus of S’ decreases each time. Upon termination, one obtains a
surface, called S’ again, which is incompressible or the sphere S?, and which
does not intersect the surface S because we chose compressing disks that
do not meet S. If S’ is a 2-sphere, it does not bound a 3-ball because its
homology class in Ha(M) is not zero. This implies that M is not irreducible :
a contradiction. So S’ is an incompressible surface. Applying theorem 3.2,
one deduces that S’ is isotopic to either a horizontal or a vertical surface.
Claim: S is not isotopic to a vertical surface.

Proof: Suppose it is. Then there exists a surface S” which is an union
of fibers of M and which is isotopic to S’. Choose one fiber ¢ included in
S". Tts intersection number with S is equal to 1 and has to remain constant
during the isotopy. So S’ contains a simple closed curve whose intersection
number with § is equal to 1, namely the image of ¢ under the isotopy. But
S’ does not intersect S : contradiction.

Hence &' is isotopic to a horizontal surface, which is a covering of § under
the canonical projection of M. But this is not possible since genus([;” ) <

*Indeed, the injection of S in M induces an injection between corresponding funda-
mental groups (see [H] p. 10).



genus(S). So, 8’ is incompressible, which concludes the proof of proposition
4.1. Il

Now, it follows from theorem 3.2 that S’ is isotopic to either a horizontal
or a vertical surface. S’ does not intersect S, so it cannot be isotopic to
a vertical surface, by the same argument as above. So &' is isotopic to
a horizontal surface. This surface is a covering of S under the canonical
projection of M. Because M \ &' is connected, it follows from [H] p.17-18
that the covering is trivial. Hence, S’ is isotopic to a horizontal surface
S” which meets each fiber in one point. It is now a classical fact that
this horizontal surface can be “pushed along the fibers” to construct an
isotopy to S (see Fig. 3). Note that, using the same argument as the one
used previously to prove that one can construct S’ such that it does not
intersect S, the isotopy Fy, ¢ € [0, 1] between S” and S can be chosen so that
F,(8"),t €]0,1] never intersects S. So &' is isotopic to S in M.
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Figure 3: Pushing §” to S along the fibers of M

4.2 The case of surfaces with boundary

The proof of theorem 2.1 for a surface S with non empty boundary is almost
the same as the previous one. The few changes are outlined in this section.
As in the case where S = S2, there is no smooth knotted disk in R? and
theorem 2.1 holds if § is a disk. So consider the case where S is not a
topological disk. Let us begin by a few remarks. First, note that if S # (),
then M is irreducible (see [H] p.18 or [JS] p.13). Second, since the boundary
components of S are simple closed curves, the boundary of M is a finite union
of tori 17, - - - T;. Moreover, the boundary components of S are meridians of
Ty, -- T} respectively. Let v; € T, -- v, € T be these meridians.

Each torus T; contains exactly one boundary component ~y; of S" and v;Ny, =



0. Since M \ S’ is connected, /! is not null homotopic in T;. So, 7! is also a
meridian of T; and it is then isotopic to v; (see figure 4).

T;

Figure 4: Torus on the boundary of M

So, since S is not a topological disk, the boundary components of S’ are
not null-homotopic in M. Now, proposition 4.1 remains valid.

Proposition 4.2 S’ is an essential surface in M.

Sketch of proof. — The framework of the proof is the same as in proposition
4.1. Each boundary component of M being a torus, it follows from lemma
1.10 p.15 in [H] that if S’ is incompressible, then S’ is essential. So it is
sufficient to prove that S’ is incompressible.

In order to deal with the boundary of M, one has to consider the relative
homology of M mod M instead of the homology of M.

Suppose that S’ is compressible. One can do the same surgery along a
compressing disk D as in the proof of proposition 4.1. Such a surgery does
not change the homology class relative to M : the surface obtained after
the surgery is homologous (mod M) to S’ which is itself homologous to S
(mod OM). Thus, one of the connected component S’ of the new surface
is non homologous to 0. Unlike in the case without boundary, the surgery
on 8’ may have 2 different consequences on the topology of S’. The genus
of S’ either decreases or its number of boundary components decreases (see
figure 5). So one has to consider the genus plus the number of boundary
components of S’ as the decreasing quantity during the surgery. As in above
section, the compressing disk D may be choosen so that it does not intersect
S.

By iteration one obtains a surface, denoted S’ again, which is incompress-
ible or the sphere S? or a disc with boundary on the boundary of M. As
in previous section, because M is irreducible, S’ cannot be a sphere. The
boundary components of S’ are boundary components of S’ so they are not

10



null-homotopic in M. It follows that S’ cannot be a disk and then it is
incompressible and hence it is isotopic to either a vertical or an horizontal
surface. As in previous section, this surface cannot be vertical so it is hor-
izontal. Tt follows that S’ is a topological covering of S: its genus and its
number of boundary components must be at least as large as the one of S.
This is not the case. So, &' is incompressible and it is then isotopic to an
horizontal or vertical surface. The proof of proposition then concludes in
the same way as in the case of a surface without boundary. O

The proof of theorem 2.1 now ends as in previous section.

- Surgery
e

Surgery

Number of boundary

enus decreases
G components decreases

Figure 5: The effects of a surgery on &'

4.3 Case of several connected components

Once we showed theorem 2.1 in the connected case, the general case follows
easily by repeated application of the pigeonhole principle. Indeed, since S
and S’ are homeomorphic, they have the same number of connected com-
ponents. Moreover, as S’ is included in M and separates its sides, each
component C' of M contains at least one component of S’. As a conse-
quence, C'N S’ is a connected surface. Similarly, S and S’ have the same
number of boundary components. Also, for each boundary component B of
S, B x[0,1] has to contain at least one boundary component of S’, otherwise
S" would not separate the sides of M. Thus, B x [0, 1] contains exactly one
boundary component of S’, that is C NS’ and C' NS have the same number
of boundary components. They also have the same genus. Indeed, the proof
of theorem 2.1 in the connected case shows that the genus of a surface sep-
arating the sides of a topological thickening of a connected surface has to

11



be larger or equal than the one of the surface. If equality would fail for any
component of M, then the genus of S’ would be larger than the one of S, a
contradiction. We thus deduce that C NS and C'NS are homeomorphic by
the classification of compact connected orientable surfaces, and conclude by
applying the connected case separately to each component of S.

The proof of theorem 2.2 follows similar lines : for each component C' of M,
C'N S’ has at least as many components, boundary component, and handles
as C'NS’. Since the same holds for M’, we deduce that all these inequalities
are equalities : S and S” are thus homeomorphic, and the conclusion follows
by theorem 2.1.

5 Applications

This section gives several applications of theorems 2.1 and 2.2.

5.1 Isotopy between implicit surfaces

For implicitely defined surfaces, dedicated topological thickenings are pro-
vided by Morse theory. Recall that if f is a Morse function® defined on R3, a
real number c is said to be a critical value of f if there exists a point p € R?
such that Vf(p) = 0 and f(p) = ¢. Such a point p is called a critical point.
Recall that f is said to be proper if for any compact set K C R, f!(K) is
a compact subset of R3. In particular, if f is proper, any level set f~!(a)
of f is compact.

Theorem 5.1 (Morse) Let f be a proper Morse function defined on R? and
I a closed interval containing no critical value of f. Then for any a € I,
f~H(I) is diffeomorphic to f~(a) x [0,1].

Let us denote by ms the magnitude of the critical value of f of minimum
magnitude. Together with theorem 2.2, the previous theorem gives the
following :

Theorem 5.2 Let f and g be two proper Morse functions defined on R3.
If

suplf — g| < min(my,mg), then the zero-sets of f and g are isotopic.

Proof. — Set m = min(mys,m,) and take S = f~1(0), M = f~'([—-m,m)),
S" =g 1(0), and M’ = g *([~m,m]) in theorem 2.2. 0

"We refer to [MIL, HAR] for some background on Morse theory.
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In order to approximate the level-sets of a function f by the ones of a
function ¢ in a topologically correct way, it is thus sufficient to control the
supremum norm of f — g and the critical values of g.

5.2 Isotopy criteria involving medial axis

Let us first recall the definitions of tubular neighbourhood and medial axis.
In this section we assume that S is C2-smooth and closed. The medial axis
Sk of S is defined as the set of points in S¢, the complement of S, which
have at least two closest points on S :

Sk={x€S8°:3y,z€ S,y # =z, dz,y) =d(z,z) =d(z,S)}

For ¢ > 0, one denotes by S = {z € R? : d(z,5) < ¢} the tubular
neighbourhood of S, which is sometimes called the e-offset of S. If Sk is
the medial axis of S, [fs(S) denotes the number [fs(S) = inf,cs d(z, Sk).
S being C?, one has [fs(S) > 0 (see [Wo] or [APR]). It can be shown that
if ¢ is smaller than [fs(S) then S¢ is diffeomorphic to S x [—¢; +¢], so that
tubular neighborhoods are topological thickenings. Also, R3\ Sk is known
to be homeomorphic to S x R.

Topological criteria

Corollary 5.1 Suppose that S' is homeomorphic to S and that each con-
nected component of S’ encloses exactly one connected component of Sk.
Then S’ is isotopic to S.

Proof. — This result follows almost immediately from theorem 2.1. All we
need to do is to shrink R?\ Sk slightly in order to get a topological thickening
of S. More precisely, denote by h : S x R — R?\ Sk a homeomorphism.
Because S’ is compact, the Hausdorff distance between S’ and Sk is non
zero. There exists a real K > 0 such that S’ C h(S x [-K,+K]). Taking
M = h(S x [-K,+K]) gives the desired result. Indeed, S’ separates the
sides of M since the components of S’ enclose the bounded side of M but
not the unbounded one. O

Note that from a practical point of view, if S’ is a triangulated surface,
it is sufficient to compute the Euler characteristic of S’ of each of its com-
ponents to decide whether it is homeomorphic to S. If S’ is also C? and Sk’
denotes the medial axis of R3\ S, the same argument as above used with
theorem 2.2 yields :
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Corollary 5.2 If each connected component of S' encloses ezactly one con-
nected component of Sk and each connected component of S encloses exactly
one connected component of SK', then S and S’ are isotopic.

Metric Criteria We denote by d(X'|X) the “half Hausdorff distance”
from a subset X’ C R? to another subset X C R?, that is :

d(X'|X) = sup inf d(z,)
zex o’ exX’
Note that d(X'|X) is the minimum value of ¢ such that X C X".
Also, d(X,X") = max(d(X|X"),d(X'|X)) denotes the Hausdorff distance
between X and X'. By using offsets as topological thickenings, one obtains
the following results :

Corollary 5.3 If S’ is homeomorphic to S and d(S|S") < min(lfs(S),1fs(S")),
then S’ is isotopic to S. Moreover, the isotopy F can be chosen in such a
way that the half Hausdorff distance from S to F(S',t) never exceeds the
initial half Hausdorff distance.

Proof. — We apply theorem 2.1 with M = S, where e = min(lfs(S),[fs(S")).
The only condition that is not trivially satisfied is that S’ separates the sides
of M. We now prove it by contradiction, in the connected case. Let S; and
S9 be the sides of M. First remark that for any z € S; there exists a unique
point, f(z) € Sy such that the segment [z, f(z)] is included in M and meets
S perpendicularly (see figure 6). Suppose that S’ does not separate S; and
Ss. Then for any x € S; if the segment [z, f(z)] intersects S’, then it inter-
sects in at least two points (if it is not the case, one can construct a path
from z to f(z) which does not intersect S’ and the union of this path with
the segment [z, f(z)] is a closed path which meets S’ in only one point : a
contradiction).

Now for any point y € S’ there exists a unique point p(y) € Sy such that
y € [p(y), f(e(y))]. Let y € S’ be such that the distance between y and ¢(y)
is the largest among all the points in S’. Thus the segment [p(y), f(¢(y))]
is also normal to S” at point y. Let now 4’ # y be another intersection point
between [p(y), f(¢(y))] and S’. The ball with diameter [y, y'] is tangent to
S’ at y and meets S’ in at least two points : the segment joining its center
and y has to contain a point of Sk’. But such a point is at distance less
than ¢ from S’, which is a contradiction. O

The argument used in the preceding proof applied the other way around
leads to :
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Figure 6: Proof of corollary 5.3.

Theorem 5.3 If d(S,S’) < min(lfs(S),lfs(S")), then S’ is isotopic to S.
Moreover, the isotopy F can be chosen in such a way that the Hausdorff
distance between F(S',t) and S never exceeds the initial Hausdorff distance.

Interval Solid Models Another consequence of theorem 2.1 is related
to the notion of Interval Solid Models studied in [SSP] and [SP]. Roughly
speaking, an interval solid S8 associated to a smooth C? surface S embedded
in R? is a finite covering of S by rectangular boxes whose edges are parallel to
the co-ordinate axes which satisfy some additional contitions (see [SSP] for
precise definition). It is proven in [SSP] that the two boundary components
S1 and Sy of this covering are homeomorphic to S. Moreover, [SP] recalls
the notion of e-isotopy which is stronger than the notion of isotopy: points
cannot move outside of an e-neighbourhood of their initial position during
the isotopy. T. Sakkalis and T.J. Peters prove in [SP], section 5, that if the
boxes are small enough then S; and Ss are e-isotopic to S. Note that this
result is existential, that is it does not provide any particular bound on the
maximum box size allowed to guarantee that isotopy holds. In our setting,
one can slightly generalize their result.

Corollary 5.4 If SB does not intersect the medial azis of S, then its two
boundary components are isotopic to S.

So one can relax the hypothesis about the size of the boxes in [SP] : here,
the size of the boxes should merely be smaller than v/3/fs(S). The major
drawback is that one does not obtain that S; and Sy are e-isotopic to S
any more. Indeed, one has that the boundary components of S® can be
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isotoped to S within S5, so that the Hausdorff distance is controlled, but
each particular point may move arbitrarily far from its initial position during
the isotopy.

Conclusion

We have presented two general conditions ensuring the existence of an iso-
topy between two surfaces embedded in R?, and given several applications of
them in some widely considered particular situations. These conditions are a
versatile and easy to use tool for proving that two surfaces are topologically
equivalent, and we hope that they will prove useful in other applications than
the ones mentioned in this paper. Though the formulation of our conditions
directly extend to hypersurfaces of any dimension, the proof techniques used
in this paper are typically 3-dimensional, and there is little hope that they
extend in higher dimensions. It would be interesting to know which part of
our results still hold in arbitrary dimension.
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