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Abstract

A solid is a connected orientable compact subset of R3 which is a 3-manifold with boundary.

Moreover, its boundary consists of finitely many components, each of which being a subset

of the union of finitely many almost smooth surfaces. Motivated by numerical robustness

issues, we consider a finite collection of boxes, with faces parallel to the coordinate planes,

which covers the boundary of the solid. An interval solid is the union of this collection

and the solid. In this paper we study the topology of a 3-manifold, when its boundary is

covered by such a collection of boxes. We develop sufficient conditions on the collection

of the boxes and the manifold, so that the union of the collection and the manifold is

homeomorphic to the manifold itself. In particular, we apply this procedure to a solid and

the associated interval solid. Finally, we present a method of constructing an interval solid,

using interval arithmetic, homeomorphic to the solid.

Keywords: robustness, approximate equality, solid modeling, data exchange, CAD model

defects.
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1 Introduction

Building ideal boundary representation (B-rep) models of solids still remains beyond the

reach of current computing technology, because most geometries in solid modeling cannot

be represented exactly due to the precision limitation of the computer [2, 3]. In addition,

pathological behaviors of geometric algorithms (particularly, geometric approximations)

introduce significant computational errors. Together with round-off errors in numerical

computations, such errors make topological decisions inconsistent, especially when geomet-

ric degeneracies occur. In boundary model representations, these errors leave gaps along

edges and thus create inconsistency between topological and geometric information.

One solution widely adopted by CAD/CAM practice is the use of numerical or algorithmic

tolerances. However, the semantics of such tolerancing and its influence on validity and

topological properties of models have not been fully studied, although some aspects of this

topic relating to data exchange are addressed in [1].

Research efforts have been mainly directed to develop new arithmetic systems in which

numbers are representable in floating point and operations are closed. Essentially, these

are approximation methods. Typical examples are integer and rational arithmetic (viewed

here as approximations of real arithmetic), and interval and lazy arithmetic. See [4, 5, 6,

7, 8, 9, 10, 11, 12, 13] for some detailed descriptions.

As an efficient and powerful extension of traditional floating point representation, interval

arithmetic and interval geometric representation not only increase numerical stability but
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also assist in achieving model validity by defining gap-free boundaries. Hu et al [10, 11]

introduced a method for robust solid modeling using interval arithmetic, and developed a

data structure and Boolean operations for manifold and non-manifold interval boundary

models. The required curve and surface intersection algorithms using interval arithmetic

were presented in [14, 15]. However, topological issues involved in interval solid modeling

were not studied in these papers [10, 11, 14, 15]. As an interval boundary model defines a

family of infinitely many boundaries, maintaining topological invariance of such boundaries

is, by no means, a trivial problem. This paper addresses such topological issues. Although

the results presented here are primarily useful in boundary model reconstruction, they are

also relevant in Boolean operations and boundary evaluation of interval models.

The paper is organized as follows: Section 2 studies the topology of the union of a collec-

tion of boxes which covers the boundary of a solid M . In particular, conditions on boxes

are derived, so that the interval model constructed using such boxes defines a solid that

is homeomorphic to M . Section 3 explains how such a collection of boxes can be con-

structed using interval surface intersection algorithms. Section 4 concludes the paper with

a summary and identification of applications. The paper also includes an appendix which

discusses construction of boxes guaranteed to contain a point on a B-spline surface, also

needed in the developments of Section 3.
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2 Covering Manifolds with Boxes

Throughout this paper, a box b refers to rectangular, closed parallepiped in R3 with positive

volume, whose edges are parallel to the axes. A box defines a region in R3, and can be

represented by an interval vector with nonzero components1. The size of a box is the

maximum length of its edges. Operations on boxes using rounded interval arithmetic [16]

preserve enclosure, meaning that the computed boxes always contain exact boxes under

the same operations.

In this section, we present some results concerning the topology of a finite union of boxes.

In particular, we shall be interested in the topology of a manifold when covered with boxes.

The motivation behind this is our way of constructing interval models. See Section 3. We

assume that the reader is familiar with the basic notions of topology [17]. Most of the

terminology used here can be found in our earlier work [19].

Definition 2.1 Let B be a finite collection of boxes, and let A ⊆ R3. We define B =

∪{b|b ∈ B} and AB = A ∪B.

We begin with a general result. Let B be as above so that the following condition is

satisfied:

A. Let bi, bj ∈ B. Whenever bi ∩ bj 6= ∅, then bij = bi ∩ bj is a box.

Then we have,

1An interval vector is a vector whose components are interval numbers.
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Proposition 2.1 Let the collection B satisfy condition A. Then, B is a compact 3-manifold

with boundary.

Proof: Without loss of generality, we may assume that B is minimal in the sense that

B 6= ∪{b | b ∈ B, b 6= β}, for any β ∈ B. Now notice that B is a compact subset of R3, since

it is the union of a finite number of compact boxes. Moreover, we see that
⋃
bi∈B{Int(bi)}

is the interior of B.

We first observe that the boundary of B, Bd(B) = B − Int(B), is non-empty, since B is

compact. Evidently, the boundary of B consists of pieces from the boundaries of boxes. In

fact, the boundary of every box b contains a piece of Bd(B). For, if q ∈ Bd(b) belongs to

the interior of B, then q is in the interior of some box bj . Since B is minimal, not all points

of Bd(b) are interior points of B, for otherwise, the removal of b would not alter B.

Let then p ∈ Bd(B), and let Bp = {b ∈ B | p ∈ b}. Obviously, p ∈ Bd(b) for every b ∈ Bp.

To simplify the notation, we may assume, after a translation, that p is the origin. We

are going to show that near p, B has a 3D neighborhood homeomorphic to a halfspace.

For r > 0, let C = [−r, r]3. Denote by C1, C2, C3, C4 the intersection of C with the first

four octants that are above the xy plane, and by C5, C6, C7, C8 the cubes symmetric to

C1, C2, C3, C4 with respect to the xy-plane, respectively. We may pick r small enough so

that: (a) no Ci intersects any element of B−Bp, and (b) whenever Ci intersects the interior

of a box b, then Ci ⊂ b. Now, we consider the possible non-manifold configurations of the

set B near p, using the cubes Ci. B can be one of the following:
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1. Either Cij = ∪iCi, where there exist i 6= j so that Ci∩Cj is equal to an edge l shared

only by Ci and Cj , or its complement C − Cij.

2. Either Dij = ∪iCi, where there exist i 6= j so that Ci∩Cj = {p} and p is shared only

by Ci and Cj , or its complement C −Dij.

We shall now prove that none of the above cases can happen.

1. Suppose that Ci, Cj share the edge l, which in turn is not shared by any other of the

C ′ks. Then, from (b) above, there exist boxes bi, bj so that Ci ⊂ bi, Cj ⊂ bj . Let bij = bi∩bj .

Since p ∈ Bd(B), l is part of an edge of bij . But since bij is nondegenerate from A, l, by the

above construction of the C ′ms, is also shared by another one of the C ′ks, a contradiction.

The proof of case 2. is similar to the above.

Notice in the above that the boundary of B consists of pieces of planar surfaces.

Recall from [19] that a solid M is a (non-empty) connected compact orientable subset of

R3 which is a 3-manifold with boundary ∂M . Moreover, ∂M consists of finitely many

components, each of which is a subset of the union of finitely many almost smooth (AS)2

surfaces Ri. The following is an immediate application of the previous result.

Corollary 2.1 In case where B is connected, then B is a solid.

Now let V ⊂ R3 be a compact connected orientable 2-manifold without boundary, and B

as above. Suppose that, in addition to condition A, B satisfies the following:

2A differentiable surface Φ ⊂ R3 is smooth at a point (u0, v0, w0) if there is a tangent plane to Φ at
(u0, v0, w0). We also call Φ an almost smooth (AS) surface if Φ is smooth for all points in its domain,
except at a set of points of measure zero.
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B1. V ⊂ B, that is, B covers V , and

B2. b ∩ V 6= ∅, for every b ∈ B.

Recall, from Definition 2.1, that V B = V ∪ B = B. It is easy to see that V B is path

connected. Indeed, let u, v ∈ V B. Then, u ∈ b1 and v ∈ b2, for some b1, b2 ∈ B. Pick points

u1 ∈ b1 ∩ V and v1 ∈ b2 ∩ V . Since b1, b2 and V are (path) connected, there is a path in

V B that joins u and v. Thus, the above corollary gives us:

Corollary 2.2 For B and V B as above, V B is a solid.

If V is as above, the General Separation Theorem, [18], p. 179, asserts that its complement

has precisely two connected components, VI , VO; we may assume that VI is bounded and

VO unbounded. An argument similar to the one used in the proof of Proposition 2.1 shows

that

Remark 2.1 Let B be a finite collection of boxes that satisfies conditions A, B1 and B2.

Then, V BI = VI ∪B is a solid.

Evidently, the above construction can be applied to solids as well. Indeed, if M is a solid,

and B satisfies conditions A, B1 and B2 when V is replaced by Ci, where Ci is a connected

componenet of ∂M , then the above result shows that MB = M ∪B is a solid. In that case

we shall call MB the interval solid generated by M and B. Figure 1(c) shows a 2D example

of such an MB. We shall see in the next section that such a solid can be constructed using

interval surface intersection algorithms [14, 15].
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A first step in this construction is the following set of conditions on B and V . The conditions

are the following (see Figure 2):

C1. {Int(bi), bi ∈ B} is a cover of V .

C2. Each member b of B intersects V generically; that is, b ∩ V is a (closed) disk that

separates b into two (closed) balls, B+
b and B−b , with B+

b , (B
−
b ) lying in VO (VI),

respectively.

C3. Whenever bi ∩ bj 6= ∅, then bij = bi ∩ bj is a box that satisfies C2, for bi, bj ∈ B.

Notice that the conditions C1 and C3 are similar in nature to B1 and A. Condition C2,

on the other hand, says that: (1) every b intersects V nicely, and (2) that V is a “locally

flat” manifold; that is, every point in V has a neighborhood U in R3 so that (U,U ∩ V ) is

homeomorphic to (R3,R2).

Consider now S = V ∪ VI . We will show that S is homeomorphic to V BI = VI ∪ B.

To achieve that, we first need a technical lemma. We begin with some notation. Let

R = [a1, a2]× [c1, c2], a1 < a2, c1 < c2 be a square and let P = [x1, x2]× [y1, y2]× [r, r], x1 <

x2, y1 < y2, r > 0 be such that [x1, x2]× [y1, y2] ∈ Int(R). Call the convex hull of the set of

vertices of R and P a “g-trapezoid”. Let T be a finite collection of g-trapezoids so that their

union T=∪T is a 3-manifold with boundary. Let also the half space Z = {(x, y, z) | z ≤ 0}.

Then, evidently Z ∪T is a connected 3-manifold with boundary. Moreover, we have:

Lemma 2.3 If T , Z as above, then
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1. Z ∪T is homeomorphic to Z, and

2. The boundary of Z ∪T is homeomorphic to R2.

Proof: 2. Let p(x, y, z) = (x, y) be the projection map restricted to the boundary of Z∪T.

Then, it is easy to see that p is a homeomorphism.

1. Let T ′ be the mirror image of the collection T with respect to the xy-plane, and let T′

be the union of the elements of T ′. Let q ∈ T′, and let Lq be the line that goes through

q and is parallel to the z-axis. By 2., Lq intesects the boundary of Z ∪T at precisely one

point, say Q′. Let Q′′ be the point symmetric to Q′ with respect to the xy-plane. Define

the point q′ = q + ~Q′′q. Now, define the map g : T′ → T′ ∪ T by g(q) = q′. Notice

that g maps the vertical segment [Q′′, Q] to [Q′′, Q′] in an 1-1 and onto fashion. Moreover,

g(Q′′) = Q′′. Thus, g is a homeomorphism whose fixed points are precisely those points of

the boundary of T′ that lie strictly below the xy-plane. Finally, define

f : Z → Z ∪T, f(q) =


q′ if q ∈ T′

q otherwise

Then, f is easily seen to be a homeomorphism.

The above shows that when a g-trapezoid t is removed (unglued) from Z ∪T, the topology

of the resulting manifold remains unchanged.

The above gives us the following:



INTERVAL SOLID MODEL 11

Remark 2.2 If b ∈ B, then S ∪ b is homeomorphic to S.

Proof: Consider the disk D = b ∩ V . From C2 we see that D separates b into two

balls B+
b and B−b , with B+

b lying in the exterior of S while B−b lies in its interior. By

“flattening” the disk D and imitating the proof of the above lemma, we see that we can

find a homeomorphism f : B−b → b so that the following is satisfied: f(x) = x for x ∈

∂B−b − Int(D) Finally, if g : S → S ∪ b is defined by:

g(x) =


x if x ∈ S −B−b

f(x) if x ∈ B−b

(1)

then, g is easily seen to be a homeomorphism.

We are now in a position to show the following:

Lemma 2.4 S is homeomorphic to V BI .

Proof: The proof will be by induction on the number of elements of B. Remark 2.2

provides the first step in the induction procedure. Let us then consider a subcollection B1

of B having more than one element, and let S1 = S ∪ B1. Take an element b ∈ B1, and

consider the disk ∆ = V ∩ b. By flattening the disk ∆ and invoking Lemma 2.3, as well

as condition C3, we see that near ∆, S1 looks like the halfspace Z with a g-trapezoid t

attached to it. But then, when t is removed, the topology of S1 near ∆ remains the same,

and thus S ∪ B1 is homeomorphic to S ∪ B2, where B2 = B1 − {b}. By induction, that
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means that S is homeomorphic to S ∪B1.

Now we are ready to state the main result of this section. Let M be a compact connected

3-manifold with boundary, and let B be a finite collection of boxes in R3 that satisfies

conditions C1-C3, when V is replaced by ∂M . Then we have:

Theorem 2.5 Let M , B be as above. Recall that MB = M ∪B. Then, MB is a 3-manifold

homeomorphic to M . In fact, MB is a solid.

Proof: Since M is compact, its boundary ∂M consists of finitely many components, say

C1, C2, · · · , Ck. If b is in B, notice from C2 that b intersects only one component of ∂M .

Then, for 1 ≤ i ≤ k, define Bi to be the collection of boxes that intersect Ci. In that case

Lemma 2.4 shows that M ∪Bi is homeomorphic to M , for each i. Finally, using induction

on the number of components of ∂M , Lemma 2.4 and Remark 2.1, we complete the proof.

Corollary 2.6 If M is a solid and B satisfies conditions C1 through C3, then MB and

M −B are interval solids that are homeomorphic to M .

Observe that in Corollary 2.6 condition C1 is very natural in order for MB to be an interval

solid. The fact that B has to satisfy C2 says that for every connected component Ci of

∂M , every member of Bi has to be in an open neighborhood Ni of Ci, and these Ni’s are

mutually disjoint. The latter puts a constraint on how big the boxes can be. In fact, we

may confine each member of Bi to be in a tubular neighborhood Ti of Ci. Condition C3
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puts some constraints on the structure of B. In the next section we shall show how such

a collection can be constructed by using interval surface intersection (ISI) algorithms (e.g.

[15]) with sufficiently tight resolution.

We close this section with the following definition which is motivated by the above results:

Definition 2.2 Let M be a solid, and B be a finite collection of boxes. We say that the

interval solid MB is approximately equal to M if MB, as well as M−B, are homeomorphic

to M .

Figure 1 gives an example of an MB which is approximately equal to M .

3 Construction of interval solids

The aim of this section is the construction of interval solids approximately equal to a solid

using methods of interval arithmetic.

The size of a box, in general, has little influence on approximate equality. The example

in Figure 3(a) illustrates that no matter how small the sizes are, approximate equality

may not be achievable; on the other hand, Figure 3(b) shows that the sizes could be fairly

large while still maintaining approximate equality. As discussed in the previous section, it

is the structure of boxes that determines the property of approximate equality. However,

boxes constructed by evaluating surfaces and computing their intersections using interval

arithmetic, have certain properties which guarantee that a sufficiently tight resolution ε
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exists such that the conditions C1–C3 are all satisfied if the box sizes are no larger than

ε.

The appendix shows that boxes evaluated on a B-spline surface have centers on the exact

surface and their sizes are piecewise monotonous over the parameter domain. In the follow-

ing, we illustrate that interval models constructed using an ISI algorithm have, in general,

the property of approximate equality. The ISI algorithm used in our work is described in

Hu et al [15].

In an interval model generated from a solid M , we call boxes that cover only the interiors

of faces face boxes, i.e. face boxes do not intersect edges and vertices. A face box can be

constructed by evaluating an interval point in the interior of a region bounded by a collection

of rectangles in the parameter domain of the underlying surface. These rectangles are

solutions of surface intersections using an ISI algorithm, and their union contains the pre-

images of edges and vertices in the parameter domain. See Figure 4 for an example. As an

intersection curve computed by an ISI algorithm is an ordered list of boxes, the intersection

of two such curves is a cluster of boxes whose union contains the exact intersection point.

If this point happens to be an vertex, the boxes in the cluster are called vertex boxes. Boxes

between two clusters of vertex boxes on an intersection curve, are called edge boxes. Notice

that an edge box only covers a piece of an edge but none of vertices. See also Figure 4

for examples of edge box and vertex box. Because boxes computed using an ISI algorithm

always contain exact surface intersections, such a collection of boxes is guaranteed to cover

the exact boundary ∂M so that C1 is satisfied.
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Now note that the topology of Rn remains the same when one replaces “open balls” with

“open boxes”. Since ∂M is a 2-manifold without boundary, for each point p ∈ ∂M , there

exists a box b that contains p so that Int(b) ∩ ∂M is an open disk, as well as b ∩ ∂M is a

closed disk.

Let b be a face box, because its center is a point in ∂M , b∩∂M is a closed disk for sufficiently

small box size. If b is an edge box, it is an intersection box of two surfaces. Assume that

the exact solution for one intersection point is {u, v} and {s, t} in the parameter domains.

Due to the use of rounded interval arithmetic, the interval solution is ([ul, uu], [vl, vu]) and

([sl, su], [tl, tu]) such that u ∈ (ul, uu), v ∈ (vl, vu), s ∈ (sl, su) and t ∈ (tl, tu). Therefore,

the interior of b also contains at least one point in ∂M . When the box size is sufficiently

small, C2 is satisfied. For a vertex box, the same argument holds.

In general, C3 is satisfied. Exceptions happen when boxes intersect 1) at the positions

of the global minimum self-distance; 2) due to the variation of box size. See Figure 5(a);

3) due to small geometric features. See Figure 5(b); 4) at a lower dimensional entity. At

a given resolution, indeed, case 1 and 2 will be detected by an ISI algorithm as surface

intersections. As the resolution increases, in both cases overlapping boxes will eventually

become disjoint. For example, if the maximum box size is less than d/
√

3, where d is the

minimum self-distance, case 1 will never happen3. Case 4 can be eliminated by slightly

reducing or increasing the size of one box while maintaining its relations with other boxes.

3This is because the circumscribed spheres of any two boxes do not intersect due to the minimum
self-distance.
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For case 3, we have the following remark:

Remark 3.1 If bij ∩ V = ∅ in C3, then, Lemma 2.4 holds if there exists a subcollection

Bk such that 1) Bk = ∪{b|b ∈ Bk} is a closed ball satisfying C2; 2) Bk ∩ bij is also a closed

ball, and 3) Bk ∩ bi and Bk ∩ bj satisfy C3.

This is because bi, bj and Bk can be replaced by closed balls satisfying C3. For example,

in Figure 6, bi, bj and bk can be replaced by b′i = bi − bk1, b
′
j = bj − bk1 and b′k = bk ∪ bk2,

where bij ⊂ bk1 ⊂ bk2 and bk1 ∩ V = ∅, bk2 ∩ V = ∅.

In the following, we study how to construct 2D boxes satisfying the conditions in Remark

3.1. The discussion serves as an explanation of the existence of such a box collection, rather

than a computation method.

Let b1, b2 be two boxes evaluated on the same B-spline curve C and (b1 ∩ b2) ∩ C = ∅.

Denote the half-widths of a 2D box by (εx, εy). See the example in Figure 7. Assume that

εy1 ≤ εy2 and the half-width of boxes between b1 and b2 varies monotonously. Observe

that if the curve segment
_
c1c2 −(

_
c1c2 ∩(b1 ∪ b2)), where c1, c2 are the centers, is above

line l : y = cy2 − (εy1 + εy2), then, boxes covering
_
c1c2 forms a closed ball satisfying the

conditions in Remark 3.1. A sufficient condition for this to happen is that the part of C

between c1 and c2 lies inside the circle which passes through c1, c2 and intersects line l at

point p with the condition that p is the intersection point with the larger x-coordinate,

where p is the intersection point of line l and the right edge of b1. See Figure 7(a). If p does

not exist as shown in Figure 7(b), the circle should pass through c1, c2 and tangent to line l.
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Without loss of generality, assume that c1 is the origin. Then, the radius of the said circle,

r depends on the position of c2 and the half-widths, i.e.

r = ψ(cx2, cy2, εx1, εy1, εx2, εy2), (2)

with

cx2 ∈ [0, εx1 + εx2],

cy2 ∈ [0, εy1 + εy2],

such that b1 ∩ b2 6= ∅. Let εt be the resolution in the parameter domain of curve C. The

half-widths of boxes are bounded in [εlx, ε
u
x] and [εly, ε

u
y ], where the bounds can be computed

using Eq. (13) in the appendix with ε = 1
2
εt. The overall maximum radius is thus

Rmax = max(ψ(cx2, cy2, εx1, εy1, εx2, εy2)), (3)

cx2 ∈ [0, 2εux],

cy2 ∈ [0, 2εuy ],

εx1, εx2 ∈ [εlx, ε
u
x],

εy1, εy2 ∈ [εly, ε
u
y ]..
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Thus, the conditions in Remark 3.1 will be satisfied if

Rmax ≤ Rκ. (4)

In summary, for a sufficiently tight resolution, boxes constructed using an ISI algorithm

form an interval solid which is approximately equal to the exact solid.

4 Conclusion

In Hu et al [10, 11] the concept of an interval solid model was first introduced and methods

for its construction were presented. Moreover, the issue of topological equivalence of a solid

and its associated interval solid was recognized, but not fully resolved. This paper provides

a set of sufficient conditions on the collection of boxes as well as the solid’s boundary

which guarantee this equivalence. In doing so, we introduced the notion of approximate

equality between a solid and its associated interval solid. We also provide a procedure for

constructing interval solid models in the case where the boundary of the solid consists of

B-spline patches. The theoretical results of this paper are used in [20, 21, 22] to provide

methods for verifying the geometric consistency of B-rep models and evaluate existing

inconsistencies using interval solids. In those papers we also convert B-rep models into

interval solid models in order to rectify them. In addition, examples are provided to

illustrate the above concepts and procedures. Methods for verifying the above topological
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equivalence are expected to be time consuming because of the plethora of boxes involved in

actual models and the complexity of the rectification process itself. Future research should

focus on making the above procedures more efficient in order to help realize the potential

of interval solid modeling methods in resolving the long standing robustness problem in

solid modeling.

Appendix: Boxes on B-spline surfaces

Evaluation of a B-spline surface P (t) at a certain parameter value t0 using interval arith-

metic creates a box guaranteed to containing P (t0). In the following, we study the location

and size of such boxes. For detailed description of interval arithmetic and interval B-splines,

see [23, 24].

An interval number [X] represents an interval [X l, Xu], where X l and Xu are the lower and

upper bounds. The center of [X] is Xc = 1
2
(X l +Xu), and the width is w([X]) = Xu−X l.

Thus, [X] = Xc + 1
2
w([X])[I], where [I] = [−1, 1].

Let [Di] be the control points of a B-spline function, {ti} be the knot vector. Let [t] = t+ε[I]

be an interval parameter, where ε is the half-width of [t]. The recursive formula of de Boor’s

algorithm is

[Dj
i ] = (1− [αji ])[D

j−1
i−1 ] + [αji ][D

j−1
i ], (5)



INTERVAL SOLID MODEL 20

where

[Dj−1
i−1 ] = Dj−1

i−1 + hj−1
i−1 [I], (6)

[Dj−1
i ] = Dj−1

i + hj−1
i [I], (7)

with [D0
i ] = [Di], h

0
i = 1

2
w([Di]), and

[αji ] =
[t]− ti

ti+k−j − ti
. (8)

By plugging [t] in the formula, we have

[Dj
i ] = (1− αji )D

j−1
i−1 + αjiD

j−1
i

+
(
(1− αji )h

j−1
i−1 + αjih

j−1
i + (|Dj−1

i |+ |D
j−1
i−1 |)∆t

j
i + (hj−1

i + hj−1
i−1 )∆tji

)
[I], (9)

where

αji =
t− ti

ti+k−j − ti
, (10)

∆tji =
ε

ti+k−j − ti
. (11)

Therefore, [Dj
i ] can be represented as Dj

i + hji [I] with

Dj
i = (1− αji )D

j−1
i−1 + αjiD

j−1
i , (12)
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hji = (1− αji )h
j−1
i−1 + αjih

j−1
i + (|Dj−1

i |+ |D
j−1
i−1 |)∆t

j
i + (hj−1

i + hj−1
i−1 )∆tji . (13)

Denote the function value as [P ([t])]. Then, the center of [t] maps to the center of [P ([t])].

Note that Eq. (13) is a polynomial function of t in each span of the parameter domain,

and therefore, the width of [P ([t])] varies piecewise monotonously. If a knot ti ∈ [t],

w([P ([t])]) = w([P ([t1])]) + w([P ([t2])]) where [t1] = [t] ∩ [ti−1, ti] and [t2] = [t] ∩ [ti, ti+1].

In summary, a box evaluated on a surface has its center on the exact surface. The size in

each axis direction varies piecewise monotonously.
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Figure 1: An example of interval solid
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Figure 2: 2D version of condition C2 and C3
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Figure 3: Influence of box sizes on approximate equality
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Figure 4: Boxes of an interval model
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Figure 5: Exceptions to C3



INTERVAL SOLID MODEL 28

V

bk

bj

bi bij

bk1

bk2

V

bk

bj

bi

’

’

’

Figure 6: Illustration of Remark 3.1
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Figure 7: Construction of 2D boxes satisfying the conditions in Remark 3.1
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Figure 8: Construction of 3D boxes satisfying condition Remark 3.1


