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1. Introduction 
Computational geometry has the unique opportunity to 

bridge the sharp gap between theoretical and applied com- 
puter science. Indeed, practical computations with geometric 
objects are of  intense interest to a wide range of  applied work 
including computer aided design, robotics, mathematics, 
engineering, etc. At the same time, these computations pose 
many challenging problems of  considerable theoretical depth 
and interest. 

Implementing numerically robust algorithms for compu- 
tational geometry is a nontrivial task. Except for very limited 
classes of  geometric objects, it is incorrect to assume that 
infinite precision arithmetic or symbolic computation will 
yield correct implementations, because basic operations such 
as translation or rotation introduce inaccuracies into the 
representation. For example, a boundary representation of a 
polyhedral solid consists of  two components: A topological 
component describing the incidence of vertices, edges and 
faces, and a numerical component consisting of  face equa- 
tions. When the coefficients of the face equations have been 
truncated, the topology may claim that four faces meet at a 
vertex when in fact the face equations indicate that they meet 

in a structure consisting of  two vertices connected by a very 
short edge. This inconsistency can lead to a fatal error in a 
program that is manipulating the representation and is relying 
on its consistency for program correctness. 

It is desirable to assume that the incidence relations are 
correct and that the numeric data are only approximations to 
the real data. For instance, [10] shows that the number of 
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significant digits more than quintuples when intersecting 
linear, three-dimensional structures. Moreover, rotating a line 
by exact angles such as sin (n/7) requires the symbolic 
representation of  high degree algebraic numbers. In these and 
other cases, the machinery implementing exact arithmetic 
operations soon dominates the running time of  an algorithm 
and renders it useless in practice. 

It is clear that infinite precision computations cannot deal 
with inaccuracies of  the numerical data: Typically, an algo- 
rithm computes a numerical quantity, say x, and then derives 
logical information by testing whether x is less than, equal to, 
or greater than zero. It is at this point where there is potential 
for trouble: When x is less than a certain threshold e, the 
numerical inaccuracies of  the input and, possibly, the arith- 
merle computations simply yield no further information. 
Arbitrarily assuming that x = 0 leads to program failure. 
Assuming that the input is correct as written yields, at best, an 
unpleasant proliferation of  microscopically small geomewie 
structures, but may also lead to contradictory information and 
program failure. 

In this paper, we discuss several paradigms for develop- 
ing provably correct implementations of  geometric algo- 
rithms, accounting for the possibility of imprecise numerical 
input data. These paradigms are based on the concept that, in 
the presence of  numerical uncertainty, the logical decision 
cannot be based on the arithmetic computation alone, but 
must be consistent with all previous such decisions. It is our 
experience that even in situations where a full correctness 
proof of  the algorithm is not yet completed, this paradigm 
leads to robust and efficient implementations [5,6]. We illus- 
trate these ideas in a variety of intersection problems. 

2. The Reasoning Paradigm 
If we base logical tests such as incidence on numerical 

calculation, assuming approximate data and arithmetic opera- 
tions of  limited precision, then there is an interval of uncer- 
tainty in which the numerical data cannot yield further infor- 
mation. In such a situation, a decision must be made that has 
to be consistent with other such decisions and with the 
topological data. For example, points that have been declared 
collinear by the topology must be treated as collinear points 
by the algorithm. Malting decisions consistently requires 
symbolic reasoning, and it is important to understand how 
complex the reasoning steps could be. 

Let  M denote a geometric object such as a polygon and 
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let R denote a representation of the object. The difference 
between an object and its representation is that the object can 
have equations with arbitrary real numbers whereas the equa- 
tions in the representations are fixed precision numbers. A 
representation has associated with it a set of models. A model 
is a geometric object with the same incidence structure as the 
representation and numeric specifications that approximate 
those of the representation. For many geometric objects the 
representation is a model of  itself, called the natural model. 
A binary operation such as intersection is said to be correct 
for input representations R 1 and R 2 if it produces an output 
representation R3 such that there exist models M 1, M2, and 
M3 where Mi is a model of Ri and M3 = M1 n M 2. 

The fact that the algorithm is correct in this sense does 
not mean that it can be used naively as a subroutine in a 
larger problem. The notion of correctness is one which 
applies only to a single operation. To see this, consider the 
problem of intersecting robustly a pair of  line segments. Each 
line segment is represented by a pair of points whose coordi- 
nates are only approximately correct. In our framework, a 
correct implementation can be given using exact or approxi- 
mate computation. The algorithm will give correct answers 
for line segment intersection, but does not account for possi- 
ble additional topological structure. Therefore, it cannot be 
used unaltered to implement polygon intersection, since the 
property of  consecutive edge incidence in a common vertex is 
not accounted for in the computation. 

We examine the utility of  the reasoning paradigm when 
intersecting two and three polygons, and discuss the complex- 
ity of  the needed reasoning steps. As we shall see, virtually 
no reasoning is required when intersecting two polygons, pro- 
vided the algorithm is based on vertex/vertex and vertex/edge 
incidence computations. This is not the case for simultane- 
ously intersecting three polygons. There, theorems from pro- 
jective geometry must be accounted for. 

3. Intersecting Two Polygons 
A representation for polygons consists of the following 

data: 

(1) Symbolic vertex specifications, of the form 
v = (l,13, where I and l" are lines. 

(2) Symbolic edge specifications, of  the form e = (v,w) 
where v and w are vertices. 

(3) Numeric line specifications of the form 
l = ax + by + c, where a, b, and c are numbers, 
e.g., in floating-point format. Here line equations 
are oriented such that the gradient (a,b) points to 
the polygon exterior along the edge. 

Note that the natural model polygon may not be simple. We 
quantify the accuracy between a representation and a model 
by 

Definition. A representation R is g-correct provided 
there is a model polygon M that satisfies the symbolic infor- 
mation of  the representation, is a simple polygon, and its ver- 
tices are within e of  the vertices of  the natural model. 

Next, we need the concept of  minimum feature separa- 
tion. Intuitively, a representation has minimum feature 
separation if  no two vertices are closer than a certain toler- 
ance, all edges are larger than a certain minimum length, and 

consecutive edges have angles not smaller or larger than 
specific critical values. The purpose of  this definition is to 
limit the effect that perturbing the numerical data has on the 
polygon geometry. The precise statement is the following: 

Definition. A representation A has minimum feature 
separation if consecutive" edges form an angle larger than 
and smaller than ~ - t~, i f  all edges are longer than 3 e, two 
vertices are separated by at least 3 e, and no vertex is closer 
to an edge than 3 e. 

Here e is a function of ~ and represents the maximum 
error the determination of  vertex coordinates can incur assum- 
ing that the lines intersecting in the vertex are at an angle t~. 
For example, the condition number [3] of  the two line gra- 
dients can be used to define e. 

Suppose a vertex of one model lies on an edge of  the 
other model. Then the vertex and the edge are said to be con- 
strained. A vertex so constrained in turn constrains its adja- 
cent edges. Thus, an edge can be constrained by its own ver- 
tices as well as by vertices of  the other object. An edge with 
more than two constraints is overconstrained. 

Lemma 1. Let M1 and M2 be two model polygons. 
Then not every edge of  Mt  and every edge of M 2 can be 
overconstrained. 

Corollary. There is at least one edge of  M1 or M2 that 
is not overconstrained. 

Lemma 2. Let R 1 and R 2 be two representations with a 
set of  incidence constraints of  the forms "vertex u is on edge 
e ,"  and "vertex v and w coincide." Then there are models of  
M1 and M 2 such that the incidence constraints are satisfied 
provided there is at least one edge that is not overconstrained. 

Intuitively, the proof of  Lemma 2 works as follows: 
Remove all edges that are not overconstrained and also 
remove their end points. By a counting argument, there 
remain edges that now are not overconstrained. These are 
removed, along with their end points. This process continues 
with the remaining edges until all edges are removed. The 
edges are now placed in reverse order of  removal. 

We can obtain an intersection algorithm based on 
Lemma 2 as follows: Here e depends on the minimum feature 
separation constant and the norm of  the line equation L. 

(1) Say that a vertex u is on an edge e =(v ,w)  if 
L (v) < e, where e is a chosen tolerance and L is the 
line equation for e, and if u is between v and w and 
not close to either vertex. 

(2) Say that vertices u and v are coincident if  u is close 
toy .  

It is possible that the algorithm overeonstrains every edge of  
both polygons. A case for potential trouble is shown in Fig- 
ure 1. This case is excluded by minimum feature separation. 
A more subtle difficulty arises as shown in Figure 2 where the 
tests announce incidences B on DE and E on BC implying 
B = E or DE and BC are collinear. The test whether two ver- 
tices are near must be such that if  u and v are not coincident, 
then neither u nor v is on both edges defining the other vertex. 

Theorem 1. Let R I and R2 be two representations with 
e correct models. Then there exists a representation R 1 n R 2 
with a model M 3 such that there are models M1 and M2 of 
R1 and R2 with M3 = Mi  cn M2. Moreover, there exists a 8 
such that all models are 5-correct. 
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Note that the theorem shows correctness and quantifies 
the accuracy of the intersection algorithm. The accuracy cru- 
cially depends on the incidence tests, especially the 
vertex/vertex incidence tests. 

After two representations have been intersected, the 
result need not satisfy the minimum feature separation condi- 
tion for e. Thus, a post-processor may be needed to restore 
the minimum feature separation condition. This may require 
the obliteration of short edges, i.e., affects the symbolic data 
as well as the numeric data of the representation. As noted in 
[7,11], adjusting the numeric data to fixed precision rational 
data is expensive. It is not difficult to extend these results on 
intersecting polygons to embedded planar graphs, provided 
that no relationships of collinearity or parallelism are assumed 
among the edges. 

We can now explain why an algorithm for intersecting 
polygons based on vertex incidence tests is robust whereas 
one based on edge intersection computation is not. All 
vertex-on-edge questions are independent but the set of edge 
intersection questions is not. Asking if a vertex is on the 
infinite line defined by an edge is not allowed. The reason for 
this is that these questions add additional constraints on edges 
and destroy the independence argument. In Figure 3, edges 
AB and CD do not intersect and a vertex can be close to at 
most one of the edges. However, asking if vertex v is on the 
infinite line defined by AB and on the infinite line defined by 
CD, could result in a constraint on both edges. In fact, a ver- 
tex could constrain an arbitraiily large number of edges and 
the proof of Lerrmaa 2 would not work. Similarly, we must 
require that the polygons to be intersected be simple. If edge 
AB were to cross edge CD and vertex v were close to the 
point of intersection, then it would again constrain two or 
more edges. 

Even though there are no relationships assumed to hold 
among the edges of each input polygon, edges in the output 
polygon may have such relationships. For example, in Figure 
4 two sides of a polygon must be on the same infinite line. 
This will cause a problem when we try to intersect the result 
with a third polygon. We may choose to discard all such rela- 
tionships. Then we can iterate polygon intersection. How- 
ever, in that case the algorithm cannot be used as a subroutine 
by a more general algorithm whose correctness depends on 
some global property that might be destroyed. One also 
should be aware of the fact that the pairwise intersection algo- 
rithm is not associative. In general, 
(R 1 ¢"~R2) ("~R 3 ~R 1 ('~ (R 2 chR3). This suggests that 
there should be two definitions ~or correctness of the polygon 
intersection algorithm: one definition for the isolated problem 
of intersecting two polygons and another definition if the 
intersection algorithm is a subroutine of a larger computation. 
This is exactly analogous to the edge intersection problem. 

4. Simultaneously Intersecting Three Polygons 
Rather than intersecting polygons successively, we may 

consider intersecting more than two polygons simultaneously. 
We show that doing so introduces new complexities into the 
reasoning done to resolve numerical uncertainty. 

When intersecting three polygons simultaneously, one 
cannot arbitrarily place a vertex with respect to a nearby edge 
as illustrated in Figure 5. Assume that we are given three 
polygons X, Y and Z, whose boundaries include the line seg- 

ments shown in Figure 5. If one claims the incidences 

(A,A'),  (C,C') ,  (1,1"), (2,2'), (3,3"), (4,4"), (5,5'), and (6,6'), 

then, by Pascal's Theorem, the edges (3,4), (1',6), and (A,C) 
must intersect in a common point: 

• P a s c a l ' s  Theorem.  If alternate vertices (1,3,5, and 2,4,6) 
of a hexagon are collinear then the three points that are the 
intersection of the lines (1,2) and (4,5), (2,3) and (5,6), and 
(3,4) and (6,1), are collinear. 

The theorem is illustrated in Figure 6. Thus the problem 
of intersecting three polygons is sufficiently complex that 
determining if vertices are on edges requires a theorem prover 
powerful enough to handle theorems from projective 
geometry such as Pascal's Theorem. It is not difficult to 
prove that intersecting two embedded planar graphs with col- 
linearity constraints requires proving all theorems of linear 
projective geometry (p2). 

5. Line Sweep Algorithms 
We consider the line segment intersection problem again 

as vehicle to explore other paradigms for implementing 
geometric computations: Given n line segments 
l l ,  12 . . . . .  In and a collection of subsets of the I i that appear 
to intersect at various points, find a consistent set of intersec- 
tions. 

Since the geometric structure of the problem is simple, 
the following solution could be proposed: Assume the natural 
model and compute all intersections with sufficient precision 
to find the exact intersection points. If the line coefficients 
are integers of length L, then a precision of 3L + 2 is needed 
[10]. This approach is the exact -as-wri t ten  paradigm. How- 
ever, the coefficients in the line equations often are not exact, 
and it is unlikely that any three lines will intersect in a single 
point. In many applications close coincidence really would be 
coincidences were it not for the approximate line coefficients. 
In those cases it is desirable that we perturb the line positions 
so as to enlarge the number of common intersections. 

Assume then that the equations of the lines are only 
approximate and adjust the equations so as to change a maxi- 
mal number of near incidences of three lines to true 
incidences. This can be done as follows. Select a maximal 
set of lines with the property that no three lines go through 
any one point. These lines are said to be of type 1. The 
intersection point of a line of type a with a line of type b is 
said to be of type a-b. Each line not in S appears to go 
through a type 1-1 intersection point. If a line not in S 
appears to go through two or more type 1-1 intersection 
points, then add it to S and call i t  type 2. New intersections 
of types 1-2 and 2-2 may be created. Now add to S a maxi- 
mal set of lines that go through type 1-1 intersection points 
and no other intersection points. These lines are designated 
type 3. All remaining lines appear to go through a type 1-1 
intersection point and a point of type 1-2, 1-3, 2-2, 2-3 or 3-3. 
These remaining lines are designated type 4. 

The equation for each line of type 1 is assumed to have 
exact coefficients. Coefficients of lines of type 2 are adjusted 
so that they go exactly through two points of type 1-1. Thus 
their coefficients require higher precision than the coefficients 
of type 1 lines. In turn lines of types 3 and 4 have their 
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coefficients adjusted. Finite precision arithmetic is then used 
to test all other intersections. For example a line of type 2 
may go through three intersection points of type 1 but only 
two of the points were used in defining it. The third point 
must be tested to determine if indeed it is a real intersection. 
In this manner we can insure that the set of answers for line 
intersection is indeed consistent. Again, with input 
coefficients of length L, a precision of mL digits suffices, 
where m is approximately 27, see [10]. Note, that implement- 
ing this strategy using the line sweep paradigm entails report- 
ing the true intersection points off-line. A greedy on-line 
algorithm implementation would create lines of higher type 
and lead to an unacceptable growth in the number of digits 
required to test incidence correctly that is not independent of 
the problem size. 

Although logically consistent, the model so obtained 
may require large coefficient perturbations. Figure 7 illus- 
trates the problem: If we select lines a, b, c, and d as a maxi- 
mal set of type 1 lines, then a small perturbation of the input 
coefficients of the equation for b creates a very large perturba- 
tion of line g. It is much better to select the lines a, d, e, and 
f as type 1 lines. In view of this, the following approach 

yields an algorithm for polygon intersection that is likely to 
yield practically satisfactory results for polygon intersection: 
Consider one polygon exact as written, i.e., use the natural 
model for it. Now perturb the edge positions of the other 
polygon by trying to satisfy first those near-incidences on an 
edge that are farthest apart. If this distance is small such that 
the resulting vertex position would be perturbed by more than 
a specified maximum distance, then drop one of the con- 
straints. Again, one can implement this algorithm with 
bounded precision arithmetic. 

6. Robustly Computing the Intersection of Two Polyhedra 
The intersection of two polyhedra can be obtained by a 

sequence of polygon intersections. Two types of difficulties 
arise in this approach. In certain situations we are dealing 
with more than two polygons simultaneously. The other 
difficulty is that line segments belonging to different polygons 
may arise from the same face and thus cannot be adjusted 
independently. 

Consider the intersection of an arbitrary polyhedron with 
a convex polyhedron. There is a surprising degree of flexibil- 
ity in the definition of correctness. From a mathematical 
point of view, the intersection of a convex polyhedron P 1 
with an arbitrary polyhedron P2 is equivalent to intersecting 
P2 with the set of halfspaces defining the convex polyhedron. 
However, with approximate representations, intersecting P i 
and P2 differs from intersecting P2 with each of the 
halfspaces defining P 1. In the first case, given representations 
R 1 and R2, R3 is a correct result if there exist corresponding 
models Mi such that M 3 = M1 c~ M2. In the second case, the 
definition of correctness for a halfspace representation R n and 
a polyhedron representation R 1 is that there exist correspond- 
ing models M1 and M n such that we obtain an output 
representation R2 with model M2 such that M2 =M1 n M n .  

The intersection of R I and R 2 is then obtained by succes- 
sively intersecting with halfspaces. A representation R n that 
is a correct intersection by the second definition need not be 
correct for the first definition since intersection is not associa- 
tive. Whatever definition is adopted, it must yield valid 

objects that agree with the ordinary set theoretic intersection 
for objects none of whose features coincide or nearly coin- 
cide. Moreover, it must be implementable in a provably 
correct manner. 

The usefulness of the second definition is that it can be 
implemented in a provably correct fashion. When intersecting 
with a halfspace, we must determine for each vertex of the 
polyhedron on which side of the plane that bounds the 
halfspace it lies. Numerical computation suffices for certain 
vertices. If the polyhedron is trihedral, we can arbitrarily 
place the other vertices on one side or the other, except that if 
several vertices of the same face are near the plane then we 
must place them in a consistent manner. For example, we 
cannot claim that three noncollinear vertices of a face are on 
the plane and a fourth vertex of the same face is off the plane. 
However, since the output polyhedron need not be trihedral, 
this approach does not lead to an algorithm for intersecting a 
trihedral and a convex polyhedron. 

The halfspace intersection approach requires one of the 
polyhedra to be convex. A better algorithm that can be 
extended to the intersection of arbitrary polyhedra Px and P2 
is as follows: Intersect the plane of each face of P 1 with solid 
P2 to obtain a set of cross sectional graphs. Each cross sec- 
tional graph is clipped by the face of P 1 associated with the 
plane that gave rise to the cross section. Similarly intersect 
the plane of each face of P2 with solid P1 and clip the cross 
sectional graphs with the appropriate face of P2. The 
representation of P I  ('~P2 is then constructed from these 
cross sections. 

Constructing the cross section is analogous to intersect- 
ing polyhedra with a half space. Clipping the cross sections, 
however, presents added difficulties. First, if  the plane cuts 
P2 so that the cross section contains a face, an edge, or a ver- 
tex of P2, then the cross sectional graph will have a structure 
that represents two cross sections of P2;  i. e., the cross sec- 
tion on each side of the plane. Thus the cross section is 
equivalent to superimposing two polygons and clipping gives 
rise to a third. Figure 8 shows a polyhedron and one of its 
cross sections. Clipping with the polygon shown again intro- 
duces a complexity equivalent to Pascal's theorem. In the 
case where one of the polyhedra is convex, the solid on one 
side of the plane was discarded, as described above. This 
reduced robust clipping to intersecting two polygons. When 
neither polyhedron is convex we can simplify clipping by dis- 
carding edges of the cross sectional graph that arise solely 
because of the structure of the solid on the side of the plane 
determined by the positive face normal. This reduces the 
cross sectional graph to a collection of polygons intersecting 
only at vertices and hence reduces the clipping problem to the 
polygon intersection problem which can be done robustly. 

Two problems arise. The first has to do with constraints 
on the edges of the polygons involved. For example, in the 
cross sectional graph, it may be the case that several edges 
arise from the intersection of the cross sectional plane with 
the same face of the solid. In this case the resulting edges 
must be on the same infinite line. These additional con- 
straints may not permit robust clipping. Note, however, that 
the problem can be resolved, as shown in Figure 9, by parti- 
tioning the face. 

The second problem is one of global consistency. 
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Although each cross sectional graph can be clipped robustly, 
we must make sure that they are clipped consistently, as 
explained next. 

7. (;lipping Different Cross Sections Consistently 
Given two faces F 1 and F2 we must insure that the 

cross sectional graphs generated by the planes of F 1 and F2 
are clipped in a consistent manner. Since an edge a of F 1 
and an edge b of F 2 may be generated by the same face F3, 
they cannot be reoriented independently in the respective 
planes (Figure 10). In addition, a face of the other solid may 
intersect the planes containing F 1 and F 2 simultaneously, and 
thus its intersection lines may also not be moved indepen- 
dently. Both types of constraints must be accounted for. 
They become especially delicate when an edge e'  of the 
polyhedron P2 intersects a face of polyhedron P 1 near an 
edge e of the face. Here, the edge e' intersects the face plane 
in a vertex of the cross section graph, and we must specify 
where this vertex lies with respect to the face boundary e. 
Further complications arise in the vicinity of a vertex of e, 
and a detailed case analysis is required. See also [6]. 

8. Discussion 

We have presented several paradigms for correctly 
implementing a variety of geometric computations. The rea- 
soning paradigm considers the numerical information to be 
approximate to real data, and seeks to derive information from 
the symbolic data describing adjacencies. As we showed, the 
reasoning component varies considerably with the geometric 
structure of the input: Intersecting two polygons is easy, but 
intersecting simultaneously several polygons requires proving 
theorems from projective geometry. So far, we have been 
unable to prove correctness of a polyhedral intersection imple- 
mentation, but we feel that this approach will succeed. We 
have implemented a polyhedral intersection algorithm based 
on these ideas and have tested it in a variety of cases. For 
example, a unit cube was intersected with randomly rotated 
copy of itself. The resulting polyhedron was in turn inter- 
sected with a randomly rotated copy of itself, and so on. 
After twelve iterations, the polyhedron shown in Figure 11 
was obtained; see also [5,6]. When intersecting polyhedra 
with a rotated copy, angles as small as 1/10,000 of a degree 
have been used. As the angle of rotation is diminished, the 
algorithm starts to consider near-coincident features to be 
coincident. Below a certain threshold, the algorithm declares 
the two copies to be identical. Experimental evidence given 
in [6] suggests that the algorithm gives a topologically correct 
result for all rotation angles except those in a very small 
range. Depending on the particular experiment, this range has 
been as large as 10 -5 degrees and as small as 10 1° degrees. 

Even though the reasoning paradigm is logically satisfac- 
tory, it may not have very good numerical behavior and may 
lead to large perturbations. The placement strategy of Section 
5 strikes a compromise in that some numerical data is taken 
as accurate while other data is perturbed. This approach 
seems to produce smaller perturbations than the reasoning 
paradigm. Nevertheless, in practice this has not been a prob- 
lem, and the paradigm has led to a polyhedral intersection 
algorithm that is substantially more robust than the algorithms 
previously reported in the literature. 

The exact-as-written paradigm of Section 5 is very satis- 

factory for simple objects such as line segments. It has been 
used for provably correct polyhedron intersection [10], but 
has a number of draw-backs. Briefly, it is not possible to 
rotate or translate such a polyhedron without reconstructing it 
from the rotated or translated primitives, due to the presence 
of very small features. Moreover, it seems that this paradigm 
cannot be extended to nonlinear geometric objects: The inter- 
section point of linear structures with rational coefficients has 
rational coordinates, but the same is not true for nonlinear 
structures. Finally, the proliferation of small features is not 
desirable in many applications. 
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Polyhedral approximation to a sphere 
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