
Robust Set Operations on
Polyhedral Solids
Christoph M. Hoffmann, Purdue University
John E. Hopcroft, Cornel1 University
and
Michael S . Karasick, IBM T.J. Watson Research Center

We describe zXn algorithm for performing regularized
Boolean operations on polyhedral solids. Robustness is
achieved by adding symbolic reasoning as a supplemen-
tal step to resolve possible numerical uncertainty. Addi-

tionally, numerical redundancy and numerical computa-
tion based on derived quantiies are reduced as much as
possible. We also discuss our experience with our imple-
mentation of the algorithm.

w e present a robust algorithm for performing reg-
ularized set operations on polyhedral solids de-
scribed using a boundary representation. That is, we
give a reliable method for the regularized intersection,
union, difference, and complement of polyhedral sol-
ids.

Algorithms for regularized set operations on poly-
hedral objects have been implemented before.'-5
However, the robustness problem has not been ad-
dressed deeply, and certain input configurations of
simple objects may lead to failure. An example illus-
trates the problem: Consider a unit cube. Take a sec-
ond cube, obtained from the first by successive
rotation about each principal axis by a small angle,
and intersect it with the first cube. Many polyhedral
modelers fail when the angle of rotation drops below
2 degrees, because the two cubes are sufficiently sim-
ilar that errors are made when computing their inter-
~ e c t i o n . ~

The robustness problem is rooted in floating-point
arithmetic. While floating-point calculation can dis-
tinguish object features that are sufficiently sepa-
ra ted, it can never reliably determine their
coincidence. Moreover, in a certain region of proxim-
ity, floating-point computation will give seemingly
random results because of round-off errors. This re-
gion of criticality, in which many modelers fail, de-
pends on the machine precision and on the nature of
the computation. It cannot be addressed satisfactorily
by declaring two features coincident whenever they
are closer than some tolerance E. Doing so leads to
inconsistent decisions in certain situations. A more
sophisticated approach is needed.

Because incidence testing is a fundamental opera-
tion in an intersection algorithm, we are ill-advised to
base these tests on floating-point calculations alone.
Conversely, using purely symbolic calculation or
exact arithmetic is not the answer, because of ineffi-

nz72-17-16/89/1100-00508n1 .nn 01989 IEEE IEEE Computer Graphics &Applications 50

ciency and the fact that the original data is often inex-
act: For example, four planes meant to intersect at a
common vertex probably intersect in sets of three at
four distinct points near the vertex. An approach is
needed that satisfies the following criteria: The
method must be efficient, it must account for data
imprecision, and it must make consistent incidence
decisions.

In this article, we give a preliminary formulation of
such a method; it relies on floating-point calculation
when this is safe, and deduces relative position sym-
bolically and reproducibly when floating-point calcu-
lation yields ambiguous results. It is perhaps not
possible to formulate a complete and consistent gen-
eral calculus for all geometric computations while
maintaining the simplicity and efficiency of our ap-
proach, but it appears to be possible for many specific
geometric operations. We have considered the prob-
lems of accuracy and robustness more generally else-
 here.^,^

We begin with an illustration of the robustness prob-
lem and how it is manifest in polyhedral intersection.
Then, the chosen representation and a global descrip-
tion of the algorithm are given. Finally, we discuss
how to structure and implement certain details to
achieve robustness. A more detailed description of
this material is available,' and a somewhat differently
structured algorithm has been d i s c ~ s s e d . ~

An example of intersection
failure

The central difficulty in achieving robustness can be
formulated as follows:

A floating-point computation C is carried out. De-
pending on whether the result of Cis zero, two geo-
metric structures intersect or do not intersect
(coincide or do not coincide). When the magnitude
of the result of Cis large, then nonintersection (non-
incidence) can be determined with certainty. How-
ever, when the result has a small magnitude, then an
uncertain decision must be made. When this deci-
sion conflicts with other, similar decisions made at
other times during the computation, we could con-
struct inconsistent data structures, which will cause
the geometric algorithm to fail.

The difficulty of achieving consistency depends on
the geometric operation and on the requirements of

November 1989

Figure 1. Cube and pyramid to be intersected.

the data structures it accesses. For instance, we can
prove fairly simply that two polygons can be robustly
intersected, but we cannot yet prove a similar theo-
rem about polyhedral intersection.

We examine how polyhedral intersection might fail.
Consider a cube and a triangular pyramid, shown in
Figure 1, and consider computing their intersection.
The two objects have been positioned such that edges
e, and e3 intersect. Edge e2 approaches e, to within a
small tolerance, but does not intersect.

The algorithm will determine independently, on the
surface of each solid, a set of curves that are the inter-
section of the two surfaces of the solids. On the basis
of this determination, the surfaces of the cube and of
the pyramid will be subdivided into regions that are
on the surface of the intersection and regions that are
not on the surface of the intersection. However, since
the intersection curves were determined indepen-
dently on the solids, they happen to be incompatible.
The cause of the incompatibility is as follows.

When determining a subdivision of the facef, to find
a face of the intersection of the two objects, the algo-
rithm intersects edges e2 and e3 with the face plane of
f , and determines whether the two points lie on the
edge e,. Because of close proximity, it decides that
both points are on e,; that is, both e2 and e3 intersect
e,. In consequence, a short edge segment e4 is created
that lies on e,. The computation for f and the analo-

51

f

I

Figure 2. Subdivision of the cube’s surface.

~ ~

Figure 3. Subdivision of the face g .

gous computation for the top facef, of the cube results
in a subdivision of the cube’s surface shown in
Figure 2.

Next the face g is analyzed, and the algorithm deter-
mines whether the vertices U and vof edge e, lie in the
face plane of g. Because of the length of the edge, the
vertices are at a considerable distance from the plane,
and so it is decided that e, does not lie in the plane of
g. Note that this decision contradicts the earlier find-
ing that both e, and e3 intersect e,. The resulting sub-
52

division of g is as shown in Figure 3. It is clearly
incompatible with the subdivision of the cube, for the
edges of the shaded triangle have no adjacent faces on
the cube. Hence, the subsequent phase of assembling
the surface of the resulting polyhedron cannot suc-
ceed, and the intersection algorithm fails because of
the unexpected inconsistency in the data structures.

The problems of accuracy and robustness ingeomet-
ric modeling are difficult, both on theoretical and
practical g r o ~ n d s . ~ Clearly, each specific case such as
the one just illustrated can be eliminated by restruc-
turing the intersection algorithm. However, no gen-
eral proof exists to date that this restructuring is
possible without introducing other, different opportu-
nities for inconsistency.

Representation
The difficulty of implementing a polyhedral solid

modeler depends to a certain extent on the underlying
representation. We choose to represent the surface as
an orientable nonmanifold; that is, there are points
whose neighborhoods are not homeomorphic to a
disk, but the surface is bounded, enclosing a possibly
infinite volume. This class of objects is closed under
set operations. We have found that this representation
delivers the simplest algorithms for intersecting ob-
jects in special positions.

We are especially concerned with limiting the re-
dundancy of numerical data in our object representa-
tion, thereby reducing the opportunities to introduce
inconsistencies when testing incidence. For this rea-
son, the only numerical data used in our representa-
tion are the coefficients of the face plane equations.
Vertex coordinates are specified implicitly as the in-
tersection of three face planes. If avertex is incident to
more than three faces, its coordinates are defined as
the intersection of three explicitly specified face
planes. Auxiliary planes can be used to define edges
and vertices when planes of the solid boundary are
nearly tangent. All other model data are given in sym-
bolic form-for example, which face planes intersect
to define an edge, which edges are incident to a com-
mon vertex.

A vertex is a point in Euclidean three-space, defined
as the intersection of three planes, although we allow
more than three planes to meet at a vertex. An edge is
the line segment connecting two distinct vertices and
is defined by the intersection of two planes, although
we allow more than two faces to meet on an edge.

A convex polyhedron is the intersection of finitely
many half-spaces of finite volume, each bounded by a
plane. The regularized intersection (complement,

IEEE Computer Graphics & Applications

union, difference) of two polyhedra is the closure of
the interior of their set-theoretic intersection (comple-
ment, union, difference). l o ~ l l These operations consti-
tute the regularized set operations on polyhedra.
Since we consider only regularized operations, we
drop the adjective.

A polyhedron is either a convex polyhedron or it is
the result of a finite sequence of set operations on
convex polyhedra. Note that an edge of a solid can be
adjacent to more than two faces, and each vertex can
be incident to more than one corner. Such edges and
vertices consist of surface points whose neighbor-
hoods are not homeomorphic to a disk. Moreover, a
polyhedron may have infinite volume, but it must
have a finite, bounded surface area.

Each face of a polyhedron is bounded by one or more
cycles of directed edges. Each edge in a cycle is di-
rected so that the interior of the face is locally to the
right. Associated with each directed edge is a tangent
vector in the direction of the edge, and a face-direc-
tion vector that points orthogonally from the interior
of the directed edge into the interior of the face be-
longing to the directed edge (see Figure 4).

The shell of a solid is a connected component of the
surface of the solid. The representation for a solid is
given as a list of representations, one for each shell.
Each shell representation is given by lists of the faces,
edges, and vertices of that shell. Our representation is
called the star-edge representation.' It is equivalent to
Weiler's nonmanifold representation for solids." Re-
lated representations are described by Hanrahan,13
and Dobkin and Lasz10.'~

There may be more than two directed edges incident
to a vertex on a face. Therefore, we store them in
radially sorted order, about the vertex. Moreover, the
edges incident to the same vertex on a face are paired
so that two consecutive directed edges, in radial
order, enclose face interior. In this case we speak of an
area-enclosing pair of edges (see Figure 5). Similarly,
the faces incident to a common edge are radially or-
dered about this edge, and these faces are paired so
that consecutive faces enclose a wedge of solid inte-
rior. Here we speak of a volume-enclosing pair of
faces.

It is well known that all Boolean set operations can
be reduced to intersection and complement. For the
star-edge representation, a solid is complemented by
complementing each of its shells, and a shell is com-
plemented by inverting the normal vector to each
face, the orientation of each directed edge, and the

Figure 4. Edge-direction and face-direction vectors.

Figure 5. Area-enclosing pairs of edges.

radial order of the directed-edge lists for each vertex
on a face. Thus such regularized set operations as
union and difference can be efficiently implemented
in terms of intersection.

The intersection algorithm
We describe the polyhedral intersection algorithm

conceptually. The description does not touch on sev-
eral robustness issues except in one respect: The
asymmetric structure of the algorithm reflects the
asymmetry of incidence tests that are described in a
later section.

Conceptually, the algorithm to intersect solid A with
solid B merges intersecting shells and retains or dis-
cards nonintersecting shells on the basis of a contain-
ment test:

1. Intersect every shell of A with every shell of B.
2. Merge intersecting shells into a set of shells that

constitute a portion of the boundary of A n B.
3. Add all shells of A contained entirely within B, and

add all shells of B contained entirely within A.

November 1989 53

I .

Edge e of B is transferred ‘ I to faces g and h of B.

Figure 6. Transfer of edge segment of Type 4.

We describe only the method for merging intersecting
shells, since the other steps are straightforward.

Merging intersecting shells
By far the most complex step of the algorithm is

intersecting and merging shells. Conceptually, shells
are intersected by intersecting their faces. If no inter-
sections are found, the shells do not intersect. If there
are intersections, then the shells are merged as re-
quired.

Assume that a shell of A and a shell of B intersect
and must be merged. The standard approach proceeds
as follows:

1. Intersect all faces of A with all faces of B, determin-
ing the correct subdivision of the appropriate faces.

2. Add to the subareas on the surface of A n B the faces
of A in the interior of B and the faces of B in the
interior of A.

The numerical computations implementing these
steps are asymmetric: As described later, a vertex of A
may lie on every plane defining a vertex of B, but not
vice versa. Therefore, the merging step has been re-
structured slightly by introducing a corresponding
asymmetry, as follows:

1. For each face f of A, intersect its plane P with B,
yielding a cross-face graph called Gp. Classify the
areas into which G, partitions Pas being inside, on
the surface, or outside of B, encoding this informa-
tion suitably by orienting the edges of G,

2. Intersect G, with the boundary off, and determine
which areas on Pare faces of A n B.

3. Add all faces of A that are in the interior of B.
4. Transfer the relevant edges of subareas off bound-

ing A n B to the corresponding faces of B, thereby
subdividing the faces of B that intersect the surface
of A.

5. Add all faces of B that are in the interior of A.

This approach should be interfaced with heuristics
that quickly reject nonintersecting face-pairs, and
combined with techniques from computational geom-
etry to yield an asymptotically efficient a1g0rithm.l~
Briefly, each face is boxed. The set of boxes is inter-
sected to determine a subset of face-pairs that might
intersect. The time required to find all intersecting
boxes is O(n log2(n) + k), where n is the number of
boxes and k is the number of box-pair intersections.

The cross-sectional graph GP
The graph G, comprises the intersection of solid B

with the plane P containing the face f of solid A. To
construct it, edges of Bare intersected with P, yielding
intersection points. Certain intersection points are
then linked by line segments representing the inter-
section of faces of B with P. The resulting graph G,
partitions P. The areas delimited by its edges and
vertices consist of points that lie inside, outside, or on
the surface of B. Such areas could then be labeled as
inB, outB, or onB. If an area delimited by edges and
vertices of Gp is on the surface of B, then we distin-
guish whether on B this surface area is oriented in the
same way as P. If the orientation is opposite, then the
area cannot be part of the surface of A n B. Accord-
ingly, the label onB could be refined to onhB for areas
oriented the same way, and on,,,B for areas oriented
the opposite way. This area classification is effected
by suitably orienting the directed edges of G,, ignor-
ing the distinction between inB and oni&

The construction of G, requires many incidence
tests. It is critical to robustness that the outcome of a
test be the same if this test is repeated when construct-
ing a graph for an adjacent face. This is achieved by
annotating the data structures for the boundary ele-
ments of A and B. For example, an edge of A is anno-
tated with the vertices, edges, and faces of B that the
edge intersects, and the edges and vertices induced by
the intersections are also annotated.

The edges of G,are either edges of solid B or they are
cross-face edges across faces of B. Each cross-face
edge is the intersection of the interior of a face g of B
with P. The edges of G, are oriented so that the surface
area of A n B is locally to the right, as seen from the

IEEE Computer Graphics & Applications 54

exterior of solid A. After orienting edges, all face areas I
of A n B are enclosed by oriented cycles of edges and
are assembled from them.

Subdividing faces of solid A
We subdivide a face of solid A to identify those

subareas that are on the surface of A n B. The subdivi-
sion is effected by intersecting the boundary of that
face with the associated cross-sectional graph. (Recall
that Gp is the cross-section of solid B with plane P of
face f) The areas bounded by G, are a set of faces or
the 2D regularized complement of such a set. Inter-
secting Gp with f therefore has the flavor of an inter-
section algorithm of polygonal 2D objects, and many
of the steps to be described here are analogous to the
entire 3D intersection algorithm. The structural anal-
ogy with polyhedral intersection is seen by equating
edge cycles with shells. The intersection of fwith G,
is done as follows:

1. Intersect the edges offwith the edges of G,.
2. At each intersection point, determine which inci-

dent edge segments bound faces of A n B.
3. Construct directed-edge cycles bounding the sur-

face area of A n B, by traversing the directed edges
of Gp and f between intersection points.

4. Add all additional directed edges and vertices that
are contained, nonintersecting components of Gp
and f.

Adding faces induced by B
When the processing described above is complete,

all faces of A n B that lie on the surface of A have been
generated. The final step in the shell-merging algo-
rithm is the subdivision of faces of B. That is, we add
to A n B all missing faces that lie on the surface of B.
The simplest way to obtain those faces is to run the
algorithm with the roles of A and B interchanged, but
a more direct approach results in greater robustness.

First we examine the known edges and vertices of
A n B. We identify those that are adjacent to faces g
of B extending inside A. Note that they are found from
the vertex, edge, and face annotations described in the
section on the cross-sectional graph. That is, every
intersection point or line between g and a face of A is
transferred to g.' As an intersection line is transferred
to g, the area it bounds on g is classified as inA or
outA. Again, this information is expressed by orient-
ing edge segments on the faces of B. Finally, all faces
of B are examined, and the relevant face areas on those
faces are assembled into faces ofA n B. Note that areas
that lie on the surface of both A and B can be ignored,

I I I a volume-enclosing pair of faces.

Figure 7. Transfer of edge segment of Type 5.

since they were classified as oninB and have already
been accounted for.

Let P be the plane containing the face f of A. In f , a
directed edge of A n B is one of the following:

1. An edge segment off bounding an inB area of G,.
2 . An edge segment off bounding an oninB area of Gp.
3. A cross-face edge segment of Gp not coincident with

4. An edge segment of B not coincident with any edge

5 . An edge segment of G, coincident with an edge off.

an edge off

off

When considering the segment for transfer to the
appropriate faces of B, we proceed as follows. All
edges of Type 1 can be ignored, for no face of B inter-
sects in that edge. An edge segment e of Type 2 is also
located on a face g of B; e is transferred to g by creating
a directed edge of e on g with orientation opposite to
the directed edge of e already created. A cross-face
edge-segment Z of Type 3 is a portion of the intersec-
tion of g with P. It is added to g by creating a directed
edge of Z on g with opposite orientation to that di-
rected edge of E already created. An edge segment e of
Type 4 is transferred to each face of B adjacent to e and
below P (see Figure 6). Finally, an edge segment of
Type 5 is transferred to all those faces of B that lie
between volume-enclosing face pairs of the coinci-
dent edge of A. In Figure 7, face gis inside A, whereas
face h is not. This transfer is implemented by merging
the radially ordered directed edges of the two coinci-
dent edges of A and B.

Robustness in the operations
Robustness is achieved primarily by designing reli-

able basic operations with which the algorithm is im-
plemented. Our approach is based on three concepts:

November 1989 55

By understanding the inherent error of the floating-
point calculations involved, we can distinguish be-
tween trustworthy and inconclusive results. A
decision based on inconclusive, numerical results
is checked for consistency with earlier decisions
where possible.
There is no redundancy in the numeric input data.
This eliminates the possibility of contradictory
input data.
To contain the propagation of errors, all numerical
computations are based on input data whenever
possible.

The basic operations and tests on which the consis-
tency and correctness of the algorithm depend are
demonstrated by the following examples:

Incidence tests. Does a vertex lie on a plane, do two
vertices coincide, or do two edges intersect?
Ordering operations. What is the relative order of
points along a line, and what is the radial order of
directed lines originating in a common point?
Pairing operations. Which pair of faces enclose vol-
ume at an edge, and which pair of edges enclose
face area at a vertex?

What is fundamentally different about incidence
tests, as opposed to the ordering and pairing opera-
tions, is that we are comparing features from distinct
objects and thus these features can be arbitrarily close:
They can be closer than the accuracy of the model
data. Thus, there is no guarantee that all ambiguities
can be resolved, and we will have to make an arbitrary
choice at some point. This choice must be consistent
with related choices.

Whenever a decision is needed as to whether a fea-
ture of one object coincides with a feature of another
object, we perform the necessary numerical computa-
tion. If the features are separated by some predeter-
mined tolerance, we can safely assume that the
features do not coincide. However, we can never nu-
merically determine that features do coincide, be-
cause of the uncertainty caused by numerical round
off. Thus, we need some way to make a positive deci-
sion when features are within this tolerance. When-
ever features are sufficiently close, we are free to
conclude that they do or do not coincide, provided
that we do not make a decision that is inconsistent
with some known fact or previous decision.

At first it appears that a powerful theorem prover is
necessary to determine whether a given decision is
independent of previously made decisions. However,
by understanding the types of inconsistencies that

56

arise in a limited domain, such as set operations on
solids, we can develop a small set of tests that main-
tain consistency for situations that arise in a specific
algorithm. Whenever we must make a logical decision
about the relative position of two possibly coincident
features, we apply these tests to see if they separate
these features. If not, then we say that these features
coincide. We say this because our experience in such
situations indicates that features coincide, and we are
simply observing the result of numerical round off. At
some small separation we must declare that two fea-
tures do coincide, or we will get many features topo-
logically distinct, but infinitesimally separated. We
will still get a certain number of small structures, but
they will be necessary to keep the topology consistent
during construction of the resulting object. Afterward
a post-processor might be used to perturb the face
equations to eliminate structures of a size smaller
than some tolerance. In this way a new object is con-
structed with some minimum feature separation.

This philosophy of using symbolic reasoning to en-
sure consistency of logical decisions when using nu-
meric calculations should have widespread
application in areas outside geometric modeling.

Accuracy
The accuracy and dependability of a floating-point

calculation depends on both the machine precision
and on the computation at hand. With each numerical
computation is associated an uncertainty estimate E.

A logical decision based on two numerical values is
reliable, provided the values differ by at least the sum
of the two uncertainty estimates. If the numerical
computation does not support a reliable logical deci-
sion, then additional symbolic computation is done to
resolve the ambiguity. Two basic floating-point calcu-
lations are involved when testing incidence:

1. Given a vertex defined by the intersection of three

2. Given point a and plane equation P, evaluate P (a)
planes, compute its coordinates.

to determine whether a is on P.

The first computation can be implemented by
Gaussian elimination, and its associated uncertainty
can be estimated from the condition number of the
linear system and the machine precision.'6 The sec-
ond computation can be done by substituting and
evaluating the point coordinates into the plane equa-
tions. Some authors evaluate instead a 4 x 4 determi-
nant.

While it is not possible to exceed machine precision
efficiently, we can easily assume less precision than is

IEEE Computer Graphics &Applications

actually delivered. We are able to do this by supplying
an input parameter to the algorithm specifying a nom-
inal machine precision. This is very useful when
studying experimentally the effects of changing the
tests for deciding incidence.

Let E, denote the error for determining the coordi-
nates of point a. Points a and b are distant if they are
separated by at least E, + E ~ . Otherwise, these two
points are near. Note that near points may, but need
not, coincide.

Now assume that we test whether a lies on plane P.
The accuracy of this answer, depends on E, and
the accuracy of evaluating the equation of P. Cer-
tainly, a is distant from P if the magnitude of P(a)
exceeds E , , ~ Otherwise, a is near Pand a may lie on P.
In the following discussion we drop all subscripts and
collectively refer to the uncertainty estimates as E.

Vertex incidence testing
One test performed when computing the intersec-

tion of two solids determines whether vertex v coin-
cides with vertex w. This test can be implemented by
testing whether vis on each of the three planes whose
intersection defines w. This is not, however, equiva-
lent to testing whether w lies on the planes intersect-
ing in v. In fact, the test is neither symmetric nor
transitive. For this reason, the incidence rules devel-
oped below must be limited to carefully chosen situa-
tions.

All incidence tests first make the necessary floating-
point calculations. If the features in question are dis-
tant, no further action is required. Otherwise the
features are near, and we examine adjacent features to
obtain information on which to base a decision.

Vertex on plane. We test whether vertex v lies on
plane Pas follows:

If the magnitude of P(v) is greater than E, then v is
distant from P, and the sign of P(v) determines
whether vis above or below P.
Otherwise, we examine the intersection of P with
each edge incident to v. Consider an edge e inci-
dent to vand a vertex w, where wis shown to be off
P by a recursive invocation of the vertex-on-plane
test. If e intersects P at point a far from v, then vis
not on P; v and ware on the same side of P if a is not
in the interior of e; otherwise, vand ware on oppo-
site sides of P.
Finally, if Step 2 fails to classify v, then vis on P.

November 1989

Vertex on edge. First, we determine if vertex v is on
the defining planes, P and Q, of edge e. If v is on P but
not on Q, we know whether vis to the left or right of
P n Q from testing whether vis on Q. If v is on both
P and Q, then we determine if v lies on or between the
planes defining the endpoints of e.

Vertex on vertex. Vertex vis coincident with vertex
w if v lies on each of the three planes that define w.

Note that asking whether v is coincident with w
might result in a different answer than asking whether
w is coincident with v. To avoid such an inconsis-
tency we always perform this test asymmetrically, by
asking if a vertex of solid A is coincident with a vertex
of solid B. Another approach would have been to
make the test symmetric by also requiring w to be on
each plane defining v. However, if the first test suc-
ceeded and the latter test failed, we would be in the
situation where vis on the defining planes of a vertex,
but not coincident with their intersection.

Our tests do not guarantee transitivity of vertex co-
incidence. However, this cannot introduce an incon-
sistency, since the minimum separation between
features on objects guarantees that at most one vertex
from each object can be in the same neighborhood.

Edge and face-incidence tests
Edge and face-incidence tests arise in our intersec-

tion algorithm as follows. A plane P of a face fof solid
A can intersect solid B in a collection of faces, edges,
vertices, points in the interior of edges, and line seg-
ments in the interior of faces. Together, these elements
form a cross section of solid B. We must identify inter-
sections offwith this cross section. Iffis adjacent to
another face g, then the cross sections induced by the
planes offandgmust agree, and it is critical to enforce
this agreement. For example, if we determine that an
edge common to f and g intersects an edge of B in the
plane off, then this common edge must intersect that
same edge of B in the plane of g. Structured in this
way, three questions arise when deciding edge inter-
section. Given face fcontained in plane P of solid A,
and edge e off defined by the intersection of P with
plane Q, we ask if e intersects one of the following:

1. An edge e’ of B where e’ is in P.

2. An edge e’ of B where e’ is not in P.

3. A cross-face edge E defined by the intersection of P
with a face of B.

57

/

Figure 8. Sample heptahedron.

Each edge may be intersected in the interior or near
a vertex. To distinguish among these cases, we test
whether e’ or E intersects the line P n Q that contains
e. Then we check whether e’ or Z contains, in addition,
a vertex of e.

If e’ intersects both P and Q transversally, then e’
intersects the line Pn Q if the two intersection points
are near P n Q.E Assume then that e‘ is in P; that is,
both vertices lie in P. If the vertices of e‘ are on oppo-
site sides of Q, then e’ intersects the line P n Q in an
interior point. If only one vertex of e’ is in Q, then e’
intersects P n Q in that vertex. Now if the interior of e’
intersects P n Q, then we test whether e’ intersects in
the interior of e or at a vertex of e. To do so, we test
whether e’ also intersects the lines P n R or P n S,
where R and S are planes defining a vertex of e. If both
vertices of e’ lie on Q, then e and e‘ are collinear. Here
further testing is required to determine how the edges
overlap.’

A cross-face edge i3 is by definition in P. Its interior
intersects P n Q if the endpoints of 2 are on opposite
sides of Q. Note that these endpoints are either verti-
ces of B or points in the interior of edges of B. We
examine the planes defining the vertices of e to deter-
mine whether E intersects e in its interior or at a ver-
tex. If one or both endpoints of Z lie on the plane R that
defines a vertex v of e, or if both endpoints of E lie on
the same side of R, then we can determine whether we

58

have an intersection. Otherwise, we test the vertices
of e against the plane of the face of B that induces E .

Experience with the algorithm
As a simple test object for robustness we used the

unit-cube example outlined in the beginning of the
article. After rotating a unit cube about each principal
axis by a small amount, we obtained a second cube
with which the first one was intersected. As Laidlaw,
Trumbore, and Hughes have pointed out, most model-
ers break when the angle of rotation is less than 2
degrees.* More specifically, above a certain angle j3 an
intersection is correctly computed, and below a cer-
tain angle a the objects are so close that the modeler
cannot distinguish them. The critical region of failure
is thus 6 = p - a. With the heuristics that they advo-
cate, Laidlaw, Trumbore, and Hughes achieve a criti-
cal range 6 = 0.4 degree. In our algorithm, the critical
range is 6 = 10-l’ degree, with an E of

A nonregular heptahedron, shown in Figure 8, was
rotated through various angles and intersected with
itself. As the angle of rotation was decreased, the in-
tersection gracefully converged to the original
heptahedron as various vertex-pairs were deemed co-
incident. With E = final convergence occurred at
l/lO,OOOth of a degree. Other robustness experiments
have been reported.’

Recall that all objects to be intersected have no fea-
tures smaller than a given tolerance E. After a set oper-
ation, however, the resulting object may well have
such features, and in a postprocessing step we might
wish to adjust its surfaces to eliminate them. Such an
adjustment must include, among other things, the
elimination of short edges, called &-edges.

Suppose that an &-edge e exists. If one of the vertices
adjacent to e is of degree 3, then e can be removed by
tilting the third face incident to that vertex. If the face
has at most two vertices of degree 4 or higher, then the
face can be rotated about the line through these two
high-degree vertices without creating new E-edges.
Otherwise, if the face has at most three high-degree
vertices, one of which is of degree 4, then tilting the
face about the other two high-degree vertices transfers
the &-edge to a new set of faces, from which it might be
removed. rn

Acknowledgments
This work was supported in part by NSF grants CCR

86-19817, DMC 88-07550, and DMC 86-17335; and
ONR contracts NOOOl4-86-K-0465, N00014-86-K-
0281, and N00014-86-K-0591.

IEEE Computer Graphics & Applications

References

1.

2.

3.

4.

5.

6.

7.

8.

I.C. Braid, “The Synthesis of Solids Bounded by Many Faces,”
CACM, Vol. 86, NO. 4, April 1975, pp. 209-216.

M.A. Wesley et al., “A Geometric Modeling System for Auto-
mated Mechanical Assembly,” IEM]. Research and Develop-
ment, Vol. 24, No. 1, Jan. 1980, pp. 64-74.

A.A.G. Requicha and H.B. Voelcker, “Boolean Operations in
Solid Modeling: Boundary Evaluation and Merging Algo-
rithms,’’ Proc. IEEE, Vol. 73, No. 1, Jan. 1985, pp. 30-44.

D.H. Laidlaw, W.B. Trumbore, and J.F, Hughes, “Constructive
Solid Geometry for Polyhedral Ohjects,” Computer Graphics
[Proc. SIGGRAPH), Vol. 20, No. 4, Aug. 1986, pp. 161-170.

M. Mantyla, “Boolean Operations of 2-Manifolds through Ver-
tex Neighbourhood Classification,” ACM Trans. Graphics, Vol.

C.M. Hoffmann, J.E. Hopcroft, and M.S. Karasick, “Towards
Implementing Robust Geometric Computations,” 4th ACM
Symp. Computational Geometv, ACM, New York, 1988, pp.

C.M. Hoffmann, Geometric and Solid Modeling, Morgan
Kaufmann, San Mateo, Calif., 1989, Chaps. 3,4.
M. Karasick, On theRepresentation andManipulation ofRigid
Solids, doctoral dissertation, McGill Univ., Montreal, 1988.

5, NO. 1, Jan. 1986, pp. 1-29.

106-1 17.

9.

10.

11.

12.

13.

14.

15.

16.

17.

J. Bokowski and B. Sturmfels, “On the Coordinatization of
Oriented Matroids,” Discrete Computational Geometq Vol. 1,

K. Kuratowski and A. Mostowski. Set Theory, North-Holland,
Amsterdam, 1968.
A.A.G. Requicha, “Mathematical Models of Rigid Solid Ob-
jects,’’ Tech. Memo 28, Production Automation Project, Univ.
ofRochester, Rochester, N.Y., 1977.
K. Weiler, Topological Structures for Solid Modeling, doctoral
dissertation, Rensselaer Polytechnic Inst., Troy, N.Y., 1986.

P.M. Hanrahan, Topological Shape Models, doctoral disserta-
tion, Univ. of Wisconsin, Madison, Wis., 1985.
D.P. Dobkin and M.J. Laszlo, “Primitives for the Manipulation
of Three-Dimensional Subdivisions,” Proc. 3rd ACM Symp
Computational Geometry, ACM, New York, 1987. pp. 86-99.
K. Mehlhorn, Data Structures and Algorithms, Vol. 3, Springer-
Verlag, New York, 1984, pp. 185-244.
G. Forsythe and C.B. Moler, Cornpuler Solution of Linear Alge-
braic Systems, Prentice-Hall, Englewood Cliffs, N.J., 1967,
Chap. 8.

K. Sugihara and M. Iri, “Geometric Algorithms in Finite-Preci-
sion Arithmetic,” Research Memo 89-01, Mathematical Eng.
and Information Physics Dept., Univ. of Tokyo, 1988.

1986, pp. 293-306.

Christoph M. Hoffmann is a professor in the
Computer Science Department at Purdue Uni-
versity. He has also held a faculty position at
the University of Waterloo, Canada, and visit-
ing faculty positions at the University of Kiel,
West Germany, and Cornell University. His
research interests are programming languages
and compiler design, algorithms for computa-
tional algebra and graph theory, and solid mod-
eling and robotics.

Hoffmann received his BS in mathematics from the University of
Hamburg in West Germany, his MS in mathematics from Indiana
University, and his PhD in computer science in 1974 from the
IJniversity of Wisconsin. He is a member of ACM and SIAM.

John E. Hopcrofl is the Joseph C. Ford Profes-
sor of Loniputer science and chairman of the
Department of Computer Science at Cornell
University. He has also served for three years
on the faculty of Princeton University.
Hopcroft’s research interests include the anal-
ysis of algorithms, formal languages, automata
theory, and graph algorithms. His most recent
work has been in the theoretical foundations of
solid modeling and robotics.

Hopcroft received his PhD in electrical engineering from Stanford
University in 1964. He received the A.M. Turing award in 1986,
and is a fellow of the American Academy of Arts and Sciences, the
American Association for the Advancement of Science, IEEE, and
the National Academy of Engineering.

Hoffmann can be reached at the Department of Computer Sci- Hopcroft’s address is Department of Computer Sciences, 4130B
ences, Purdue University, West Lafdyette, IN 47907. Upson Hall, Cornell University, Ithaca, NY 14853

Michael S . Karasick is a research staff member
with the modeling systems project at the IBM
T.J. Watson Research Center. His research in-
terests include geometric modeling, computa-
tional geometry, and parallel algorithms.

Karasick received his BS in computer sci-
ence from the University of Manitoba in 1981,
and MS and PhD degrees in computer science
from McGill University in 1983 and 1989. He
was a member of the robotics research group

at Cornell University’s Department of Computer Science from 1985
to 1988. Karasick is a member of ACM and IEEE.

Karasick can be contacted at the IBM T. J. Watson Research Center,
Box 218, Yorktown Heights, NY 10598.

November 1989 59

