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Topology-Oriented Implementation—An Approach to
Robust Geometric Algorithms

K. Sugihara,1 M. Iri, 2 H. Inagaki,3 and T. Imai4

Abstract. This paper presents an approach, called the “topology-oriented approach,” to numerically robust
geometric algorithms. In this approach, the basic part of the algorithm is described in terms of combinatorial
and topological computation primarily; this description guarantees robustness of the algorithm because com-
binatorial and topological computation is never contaminated with numerical errors. However, this part of the
algorithm is usually nondeterministic, the flow of processing containing many alternative branches. Hence,
numerical computation is used in order to choose the branch that seems the most promising to lead to the
correct answer. The algorithm designed in this way is robust and simple. The basic idea of this approach as
well as the basic properties of the resulting algorithms is shown with examples.

Key Words. Clipping a convex polyhedron, Line-segment Voronoi diagram, Robust implementation, Topo-
logical consistency.

1. Introduction. There is a great gap betweentheoretically correctgeometric algo-
rithms andpractically valid computer programs. This is mainly because actual com-
putation contains numerical errors; these errors sometimes generate inconsistencies in
topology and thus make computer programs fail.

To overcome this difficulty many approaches have been proposed. Roughly speaking,
they can be classified into three categories according to how much they rely on the
numerical computation.

The approaches in the first category rely on the numerical computation “moderately.”
They use inexact arithmetic, such as floating-point arithmetic, but they assume that the
amount of error in the computation is bounded. On the basis of evaluation of the errors, the
predicates computed in the algorithm are divided into reliable and unreliable. The reliable
predicates are used positively while the unreliable ones are used carefully in order to avoid
inconsistency. This category includes the hidden-variable approach [25], theε-geometry
approach [11], the approximate predicate approach [7], [8], the tolerance approach [33],
[45], and other error-analysis approaches [5], [14], [15], [30]. In these approaches, in-
dividual problems more or less require their own sophistications, but once they are im-
plemented, they run fast because the floating-point arithmetic can be executed quickly.
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The approaches in the second category rely on the numerical computation “com-
pletely.” They use exact arithmetic such as integer arithmetic and thus always obtain cor-
rect predicates. In the early days their primal interest was how to achieve exact arithmetic
[10], [28], [40], [44], and how to cope with degeneracy [6], [43]. It is now considered a
standard method to use multiple-precision arithmetic together with symbolic perturba-
tion. This method seems promising because theoretical algorithms can be implemented
directly. The main practical issue is how to decrease the cost of exact computation.

A typical technique is the floating-point filter, in which the predicates are first com-
puted in floating-point arithmetic, and only when it turns out to be unreliable is exact
arithmetic used [1], [9], [21], [38]. A more sophisticated version is an adaptive filter
in which the precision of the filter is adjusted [31]. Methods to decrease the required
precision are also proposed. They include the basis-reduction technique [3], [4], the
modular arithmetic techniques [2], [17], and the implicit representation technique [23].
Because of these acceleration techniques, many geometric algorithms concerned with
low-degree objects such as lines and planes can be implemented into practically fast
software [24].

The approaches in the third category rely on numerical values the least. In other words,
they aim at algorithms that are robust even if numerical errors are large. This category
includes the axiomatic approach [22], [29], in which numerical computation is done only
when it is not redundant; this approach is also called the parsimonious approach.

In this paper we present another approach to robustness belonging to the third cate-
gory, which we call the “topology-oriented approach” or the “combinatorial-abstraction
approach.” In this approach the basic part of an algorithm is described in terms of com-
binatorial and topological computation primarily, and numerical computation is used as
secondary information. A remarkable point in this approach is that the inconsistency
issue is completely separated from the numerical error issue. We need not consider the
amount of numerical errors when we construct the basic part of the robust algorithm; in
this sense the design process is simple.

We proposed the first idea of this approach in 1988 [39]. Since then we have been
developing this approach by applying the idea to many geometric problems, such as
construction of various Voronoi/Delaunay diagrams in two and three dimensions [18]–
[20], [27], [35], [41], [42], construction of three-dimensional convex hulls [26], [36],
and intersection of convex polyhedra [37].

In what follows, we summarize the basic idea behind these works from a unifying
point of view, and thus try to clarify the general idea of the topology-oriented approach.

2. Robustness against Numerical Errors and Consistency in Topology.Let P be
a geometric problem, and letf be a theoretical algorithm to solveP. By a “theoretical”
algorithm, we mean an algorithm that is designed assuming precise arithmetic, namely,
one whose correctness is based on the assumption that no numerical error takes place in
the computation.

The algorithmf can be considered a mapping from the set4(P) of all possible inputs
to the setÄ(P) of all possible outputs. Each inputX ∈ 4(P) represents an instance of
the problemP, and the corresponding outputf (X) ∈ Ä(P) is a solution of the problem
instance.
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Both the input and the output can be divided into the “combinatorial and/or topological
part” (“topological part” for short) and the “metric part.” We represent the topological
part by a subscript T and the metric part by a subscript M. More specifically, the input
X is divided into the topological partXT and the metric partXM, and the outputf (X)
is divided into the topological partfT(X) and the metric partfM(X).

For example, suppose thatP is the problem of constructing the Voronoi diagram
for a finite number of given points in the plane. Then the topological partXT of the
input consists of a single integer to represent the numbern of points, and the metric
part XM is the set of then pairs of coordinates of the points:XT = {n} and XM =
{x1, y1, . . . , xn, yn}. The topological partfT(X)of the output is the planar graph structure
consisting of the Voronoi vertices and the Voronoi edges, and the metric partfM(X)
consists of the coordinates of the Voronoi vertices and the directions of the infinite
Voronoi edges.

For another example, suppose thatP is the problem of constructing the intersection
of two convex polyhedra in three-dimensional space. ThenXT consists of the incidence
structure among the vertices, the edges, and the faces of the two polyhedra, andXM

consists of the three-dimensional coordinates of the vertices and/or the coefficients
of the face equations. Similarly,fT(X) and fM(X) are the topological part and the
metric part, respectively, of the polyhedron which is the intersection of the two input
polyhedra.

Let f̃ denote an actually implemented computer program to solveP. The program
f̃ may be a simple translation of the algorithmf into a programming language, or it
may be something more sophisticated aiming at robustness. The programf̃ can also be
considered a mapping from the input set to the output set. However, in actual situations,
the program runs in finite-precision arithmetic, and consequently the behavior off̃ is
usually different from that off .

The programf̃ is said to benumerically robust(or robustfor short) if f̃ (X) is defined
for any inputX in 4(P). In other words,f̃ is robust if it defines a total (not partial)
function from4(P) to superset̂Ä(P) ofÄ(P), i.e., if the program always carries out the
task, ending up with some output, neither entering into an endless loop nor terminating
abnormally.

The program f̃ is said to betopologically consistent(or consistentfor short) if
f̃ is robust and f̃T(X) ∈ ÄT(P) for any X ∈ 4(P). In other words, f̃ is consis-
tent if the topological partf̃T(X) of the output coincides with the topological part
fT(X′) of the correct solution of some instanceX′ (not necessarily equal toX) of the
problemP.

Our goal is to construct̃f that is at least robust and hopefully consistent.

3. Basic Idea. In the topology-oriented approach, we start with the following assump-
tions.

ASSUMPTION1. Logical and combinatorial computations can be done correctly, whereas
numerical computations contain errors.

ASSUMPTION2. There is no a priori bound available on the amount of numerical errors.
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The readers might feel that Assumption 2 is too pessimistic, because a certain precision
is usually guaranteed in actual computation. However, we do not like to be pessimistic,
but just want to show that, even if we do not rely on numerical results at all, we can
still design robust algorithms. As we show later, Assumption 2 necessarily separates the
robustness issue from the error-analysis issue, and thus makes the design of the algorithm
simpler.

Suppose that we are given a geometric problemP together with a conventional
algorithm f to solveP. We construct a robust implementatioñf of f in the following
three steps.

Step I. Collect purely topological properties that should be satisfied by the solutions of
the problemP and that can be checked efficiently. LetQ be the set of such properties.

By “purely topological properties” we mean those properties that can be represented
by only combinatorial and/or topological terms, without referring to numerical values.
On the other hand “can be checked efficiently” means that the computational cost for
checking the property is acceptable. For example, suppose that the algorithmf runs in
O(n logn) time, andq is a topological property possessed by any solution of the problem
P. If it is NP-hard to checkq, we should definitely not putq in Q. In general, whether
we can putq in Q or not depends on the time allowed in applications.

EXAMPLE 1 (Clipping a Convex Polyhedron by a Plane). Suppose that we are given a
convex polyhedron5 and a half-spaceH , and we want to construct the intersection
5 ∩ H . Let ∂H denote the boundary plane ofH . Constructing5 ∩ H is equivalent to
cutting5 by the plane∂H and removing one part, as shown in Figure 1(a).

The setV of vertices and the setE of edges of5 form a graphG = (V, E). We call
this graph thevertex–edge graphof 5. For any subsetV ′ ⊆ V , let G(V ′) denote the
subgraph ofG induced byV ′. The cutting plane∂H divides the vertex setV into two
subsets, sayV1 andV2: V = V1 ∪ V2, V1 ∩ V2 = ∅.

Now we can see the following properties:

(P1.1) The vertex–edge graphG = (V, E) of 5 is planar.
(P1.2) BothG(V1) andG(V2) are connected.

Property (P1.1) holds because the boundary of a convex polyhedron is homeomorphic
to a sphere. Property (P1.2) comes from the fact that5 is convex and∂H is a plane.
Note that these properties come from the convexity of5 and the convexity is a metric
property. However, both of the resulting properties are stated in combinatorial terms
only. Hence they are purely topological properties.

When we cut5 by ∂H, the new face5 ∩ ∂H is generated. The next property also
holds.

(P1.3) The new face5 ∩ ∂H is a convex polygon.

However, this property is not purely topological, because whether a face is convex or
not depends on the coordinates (i.e., numerical values) of the vertices of the face.

Thus, (P1.1) and (P1.2) belong toQ, but (P1.3) does not.
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Step II. Describe the basic part of the algorithm only in terms of combinatorial and
topological computation in such a way that the properties inQ are guaranteed. Here we
need not consider degenerate cases.

Combinatorial and topological computations can always be done correctly, and hence
we can design this part of the algorithm without worrying about numerical errors. We
call this part of the algorithm thetopological skeleton.

Note that numerical computation is not assumed to be exact, and hence we cannot
detect whether the input is degenerate. This is the reason why we ignore degenerate
cases. The consequence of this are discussed in Section 5.

The topological skeleton designed in Step II does not specify the behavior of the
algorithm uniquely. It usually contains nondeterministic branches.

EXAMPLE 1 (continued). On the basis of properties (P1.1) and (P1.2), we can construct
the topological skeleton of the algorithm in the following way. The statements in brackets
are comments describing what we actually want to do, and the statements in parentheses
refer to the example shown in Figure 1.

Fig. 1.Topological skeleton of the intersection operations.
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ALGORITHM 1 (Topological Skeleton for Intersection5 ∩ H ).

Input: Planar graphG = (V, E) [G is supposed to be the vertex–edge graph of5].
Output: Planar graphG′ = (V ′, E′) [G′ is hopefully the vertex–edge graph of5 ∩ H ].
Procedure:

1. DivideV into V1 andV2 in such a way that (P1.2) is satisfied [hopefully the vertices
in V1 are outsideH and those inV2 are insideH ] (in Figure 1(b), the vertices inV1

are represented by solid circles).
2. On each edge connectingV1 andV2, generate a new vertex (the vertices represented

by open circles in Figure 1(b)).
3. Generate a new circuit passing through all the new vertices and separatingV1 from

V2 (the circuit represented by broken lines in Figure 1(b)).
4. Remove the vertices inV1 and the edges incident to them; name the resulting graph

V ′, and report it (the graph in Figure 1(c)).

Note that in this algorithm numerical values are not referred to at all. Steps 2–4 are
deterministic. Only Step 1 is nondeterministic; there are in general many possible ways
to divideV into V1 andV2. However, as far as (P1.2) is fulfilled, all the steps can be done
consistently and the resulting graphG′ is planar.

As shown in this example, the topological skeleton usually contains nondeterministic
branches. Hence in general the flow of processing can be represented by a rooted acyclic
directed graph as shown in Figure 2. The algorithm starts at the root node at the top, and
goes downward, choosing one of the branches nondeterministically at each node of the
graph; the algorithm terminates when it reaches one of the leaf nodes. This graph contains
the path reaching the correct solution ofP as shown by the bold path in the figure, but at

Fig. 2.Nondeterministic branches in the topological skeleton of a geometric algorithm.
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this moment we do not know which is the correct path because the topological skeleton
is described only by combinatorial and topological computations. It should be noted,
however, that in this graph any path from the root node represents a consistent behavior
of the algorithm in the sense that the topological properties inQ are preserved at all
nodes.

Step III. Conduct numerical computations at each node of the tree in order to choose
the branch that is most likely to lead to the correct solution of the problemP.

Step III adds numerical information to the topological skeleton, and thus makes the
behavior of the algorithm deterministic. We denote the resulting implementation of the
algorithm by f̃ .

EXAMPLE 1 (continued). We use the results of numerical computation in order to make
Step 1 in Algorithm 1 deterministic. More specifically, we add vertexv ∈ V to V1 if the
numerical computation tells us thatv is outsideH and the addition ofv to V1 does not
violate (P1.2).

Figure 3 shows an example of the behavior of the computer program constructed in
this way. Figure 3(a) is the output of the program which cuts a large cube by many planes
tangent to a common paraboloid of revolution (there is no special reason in choosing
this surface; any convex smooth surface can be used similarly). All the floating-point
computations were done in single precision. The input is highly degenerated in the
sense that many cutting planes have a common point of intersection. Figure 3(b) is the
figure around the degenerate vertex at the top (pointq in Figure 3(a)) magnified by

Fig. 3. Output of Algorithm 1 for degenerate input: (a) output, (b)!diagram around the degenerate vertex at
the top magnified by 5× 105.
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5×105. We can see that there is a complicated microstructure around such a degenerate
point. However, in this example the disturbance arises only in very small areas, and
we cannot see it in the normal scale as shown in Figure 3(a); hence we can use this
program in applications such as graphics where strictly exact solutions are not necessarily
required.

Implementationf̃ of the algorithm based on Steps I–III behaves in the following way.
If the arithmetic is precise, the correct path is chosen and the correct solution is obtained
as the output off̃ . If the arithmetic is not precise, on the other hand, the output off̃
may not be correct, but at least it satisfies the topological properties inQ and hopefully
it can be considered an approximation of the correct solution. Thus, through Steps I–III
we can construct a program̃f that is at least robust.

It should also be noted that we need not be bothered by degenerate inputs. We assume
that numerical errors cannot be avoided, and consequently we cannot judge whether the
input is degenerate. Even if the numerical computation tells us that degeneracy takes
place, we need not believe it. It simply implies that the situation isclose todegeneracy. It
might sound paradoxical, but once we admit the existence of numerical errors, we need
not consider degeneracy and consequently the implementation of an algorithm becomes
much simpler.

4. Another Example. The topology-oriented approach shows its merit clearly when
it is applied to “high-degree’ problems, where exact arithmetic is very expensive (see
[23] for the “degree” of a geometric problem). For an example of such problems, here
we consider the Voronoi diagram for line segments.

EXAMPLE 2 (Voronoi Diagram Generated by Line Segments). LetS= {s1, s2, . . . , sn}
be a set of mutually disjoint closed line segments in the planeR2. For any pointp ∈ R2

we defined(p, si ) = infq∈si d(p,q). We call the set

R(si ) = {p ∈ R2 | d(p, si ) < d(p, sj ) for any j 6= i }
theVoronoi regionof si . The partition of the plane intoR(s1), R(s2), . . . , R(sn) and their
boundaries is called theVoronoi diagramfor S, and is denoted by Vor(S).

Let p2i−1 and p2i be the endpoints ofsi , and let5 be the set of all the endpoints of
line segments inS, and letSo = {so

1, s
o
2, . . . , s

o
n} be the set of open line segments that

are obtained when we remove the endpoints from the line segments inS. To construct
Vor(S), we first construct Vor(5) by the topology-oriented algorithm for the ordinary
Voronoi diagram presented in [41] and [42], and next modify it step by step by adding
elements ofSo.

During the modification we treat open line segments and their endpoints as distinct
generators. Therefore, the Voronoi region ofso

i and that ofp2i−1 (resp. p2i ) share a
common boundary edge; we assume that this edge is on the line passing throughp2i−1

(resp.p2i ) perpendicular toso
i . Those virtual edges will be removed at the end of the

construction.
Suppose that we have constructed the Voronoi diagram Vor(5∪{so

1, s
o
2, . . . , s

o
i−1})and

want to addso
i . LetV andE be the set of vertices and edges of Vor(5∪{so

1, s
o
2, . . . , s

o
i−1}).
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Fig. 4.Topological skeleton of the addition of a new open line segment.

ThenG = (V, E) can be considered a planar graph embedded in the plane. An example
of changing the diagram from Vor(5 ∪ {so

1, s
o
2, . . . , s

o
i−1}) to Vor(5 ∪ {so

1, s
o
2, . . . , s

o
i })

is depicted in Figure 4, where Vor(5 ∪ {so
1, s

o
2, . . . , s

o
i−1}) is shown by the solid lines in

(a) and the new line segmentso
i is shown by the broken line. We first find the setV ′ of

vertices and the setE′ of edges that should be entirely included in the Voronoi region
of so

i ; elements ofV ′ are represented by small solid circles in Figure 4(b). Sometimes
there exist edges that connect two vertices inV ′ but are not included inE′. These
edges are partially included in the Voronoi region ofso

i , that is, both parts of these
edges close to the endpoints are included in the Voronoi region ofso

i , whereas the
middle parts are not included. We denote the set of those edges byE′′. On the other
hand, there is no edge whose middle part is included in the Voronoi region ofso

i but
whose endpoints are not included; this is because we add the endpoints first and the
open line segments next. We next generate new vertices on the edges, one new vertex
on each edge inE′ and two new vertices on each edge inE′′, as shown by the open
circles in Figure 4(b). Then we connect these new vertices by new edges in such a way
that they form a circuit separatingV ′ from V − V ′, as shown by the broken edges in
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Figure 4(b). Finally we remove the vertices inV ′ and the edges incident to them as
shown in Figure 4(c).

In this process, we can observe the following topological properties:

(P2.1) The subgraph(V ′, E′) is a tree (i.e., a connected graph without circuit).
(P2.2) The subgraph(V ′, E′) contains a path connectingR(p2i−1) andR(p2i ).

The graph(V ′, E′) is connected because the Voronoi regionR(si ) is connected, and
(V ′, E′) does not contain a circuit because none of the old Voronoi regions disappears
entirely whenso

i is added. Therefore, property (P2.1) holds. Property (P2.2) holds because
the new line segmentso

i connectsp2i−1 and p2i . On the basis of these observations, we
can construct the topological skeleton of the above process in the following way.

ALGORITHM 2 (Topological Skeleton of the Voronoi Diagram for Line Segments).

Input: Planar graphG = (V, E) [G is supposed to be the graph of Vor(5 ∪ {so
1, s

o
2,

. . . , so
i−1})]

Output: Planar graphG∗ = (V∗, E∗) [hopefully G∗ is the graph of Vor(5 ∪ {so
1, s

o
2,

. . . , so
i })].

Procedure:

1. Select subsetsV ′ ⊆ V and E′ ⊆ E that satisfy (P2.1) and (P2.2) [V ′ and E′ are
supposed to be the set of vertices and that of edges that should be deleted completely
in the addition ofso

i ]. Let E′′ be the edges that connect two vertices inV ′ but are not
included inE′.

2. Generate a new vertex on each edge inE′ and generate two new vertices on each
edge inE′′.

3. Generate a new circuit passing through all the new vertices and separatingV ′ from
V − V ′.

4. Remove the vertices inV ′ and the edges incident to them. Name the resulting graph
G∗ = (V∗, E∗) and report it.

In this algorithm, Step 1 is nondeterministic. We use the result of numerical compu-
tation in order to choose asV ′ the set of vertices that are most likely to be deleted in the
addition ofso

i . Thus, we can make Algorithm 2 deterministic.
Figure 5 shows examples of the output of the computer program based on Algorithm 2.

The input set of line segments in Figure 5(a) was obtained in such a way that they were
generated one by one at random and if they intersect the newer one was cut near the
point of intersection. On the other hand, the input set of line segments in Figure 5(b)
was obtained in such a way that first they were generated at random and next pairs of
mutually intersecting line segments were flipped until no intersection remains.

This method was extended to the construction of the Voronoi diagram for poly-
gons [16].

There are many other examples of topology-oriented implementations of geomet-
ric algorithms. They include the incremental construction of two-dimensional Voronoi
diagrams [41], [42], the divide-and-conquer construction of two-dimensional Voronoi
diagrams [27], construction of the three-dimensional convex hull [26], [36], construc-
tion of line arrangements in the plane [34], construction of three-dimensional Voronoi
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Fig. 5.Outputs of Algorithm 2.

diagrams [19], [20], and approximate construction of the Voronoi diagram for general
figures in the plane [35].

5. Discussion. Here we consider some general properties of the topology-oriented
algorithms.

Robustness. A topology-oriented algorithm is completely robust in the sense that it does
not require any minimum precision in numerical computation. All possible behavior is
specified by the topological skeleton, and therefore even if numerical precision is very
poor (or even if all the results of numerical computation are replaced by random numbers),
the algorithm still carries out the task and generates some output.

Topological Consistency. Whether the algorithm is topologically consistent depends on
the chosen setQ of purely topological properties. The topology-oriented implementation
guarantees that the output satisfies all the properties inQ. In general, however,Q gives
only a necessary condition for the output to belong to the setÄ(P) of all the possible
solutions of the problemP; it does not necessarily give a sufficient condition. This is
because the purely topological characterization of the solution set is not known for many
geometric problems, and even if it is known, it is usually time-consuming to check the
conditions (recall thatQ contains only those properties that can be checked efficiently).

Hence, topological consistency can be attained for a limited number of problems.
A trivial example is the problem of constructing a convex hull in the plane. For this
problem, any cyclic sequence of three or more vertices chosen from the input points can
be the solution of a perturbed version of the input, so that topological consistency can
be easily attained.
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More nontrivial examples arise in the class of problems related to convex polyhedra.
The topological structures of convex polyhedra can be characterized by Steinitz’s the-
orem, which says that graphG is a vertex–edge graph of a convex polyhedron if and
only if G is a 3-connected planar graph with four or more vertices [32]. Because of this
theorem we can see that Algorithm 1 in Example 1 is topologically consistent. Actually
we can prove that if the input graphG is a 3-connected planar graph, then the outputG′

is also a 3-connected planar graph. Hence, the output of Algorithm 1 is the vertex–edge
graph of some polyhedron, that is, the output is the vertex–edge graph of the solution of
some instance of the problem though it is not necessarily the given instance.

On the other hand, since there is no known necessary and sufficient topological
condition for a graph to be a vertex–edge graph of a Voronoi diagram for line segments,
we cannot prove that Algorithm 2 in the previous example is topologically consistent or
that the chosen setQ of topological properties gives a sufficient condition.

For two-dimensional Voronoi diagram for points, necessary and sufficient conditions
are known [12], [13]. However, these conditions require much time to check, and hence
cannot be included inQ. Hence topological consistency is not easy to achieve, either.

Convergence. If the input to the algorithm is not degenerate, the output converges to
the correct solution as the computation becomes more and more precise, because the
correct branch of the processing is chosen with sufficiently high precision. However, the
speed of convergence cannot be stated in a unifying manner, because it depends on the
individual problem and on the implementation of numerical computation.

The situation is different for degenerate input. If the algorithm is topologically consis-
tent, the output converges to an infinitesimally perturbed version of the correct solution.
In any high precision, the true degenerate output cannot be obtained, because degenerate
cases are not taken into account in Step II of the implementation. For example, suppose
that the cutting plane∂H goes through a vertexv of the polyhedron5 in Example 1.
Then our algorithm classifies the vertexv either inside or outside the half-spaceH . If v is
classified inside, the algorithm connects this vertex to a new vertex by a very short edge,
which does not disappear in the output data even if the precision increases to infinity,
though its length converges to 0.

If the algorithm is not topologically consistent and the input is degenerate, the output
also converges to a certain structure, but this structure may not be obtained by any
perturbation of the input. This situation reminds us of the way of introducing real numbers
from rational numbers. The set of real numbers is obtained by the “completion” procedure
such that the limits of any Cauchy sequences are added to the set of rational numbers.
It might be thought that the output of the topology-oriented algorithm converges to
something obtained by a similar “completion” procedure.

Time Complexity. The time complexity of the program̃f implemented by the topology-
oriented approach is either equal to or greater than that of the original algorithmf . Let
the time complexity off be O(g(m)). There are two factors that may increase the time
complexity of f̃ .

First, we have to check the properties inQ. Let Q consist of propertiesq1,q2, . . . ,qk.
Suppose that to checkqi requires O(ti (n)) time, and thatqi is checked O(ui (n)) times
in the whole program. Leth(n) = max1≤i≤k ti (n)ui (n). Then the time complexity of
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the programf̃ is O(g(n) + h(n)). Hence if O(h(n)) is greater than O(g(n)), the time
complexity increases.

The above argument is much too simplified; actually that is true only whenf̃ behaves
like f . Suppose that the input is far from degenerate and the arithmetic precision is
high enough to compute all the predicates correctly. Thenf̃ behaves likef , with the
additional cost for checking the properties inQ. Thus the above argument is true.

On the other hand, suppose that the input is relatively close to degenerate (or, equiv-
alently, the precision in the arithmetic is relatively low). Thenf̃ may behave quite
differently from f because numerical errors often generate complicated microstructures
such as shown in Figure 3(b). In that case, the time complexity of the actual program
may become larger than that of the theoretical algorithm. This is the second factor that
may increase the time complexity. However, this happens only when the precision is
too poor to get a meaningful output. Usually the programf̃ behaves like the original
algorithm f with the additional cost of checking the topological properties.

6. Concluding Remarks. We have presented the basic idea of the topology-oriented
approach to numerically robust geometric algorithms, and have given examples of algo-
rithms designed in this approach. Since we can separate the topological-inconsistency
issue from the error-analysis issue completely, the algorithm designed in this approach
has the following advantages:

(1) No matter how large the numerical errors are that may take place, the algorithm
never fails; it always carries out the task and gives some output.

(2) The output is guaranteed to satisfy the topological propertiesQ used in the topolog-
ical skeleton of the algorithm.

(3) For a nondegenerate input, the output converges to the correct solution as the preci-
sion in computation becomes higher.

(4) The structure of the algorithm is simple because exceptional branches for a degen-
erate input are not necessary.

We did not discuss the numerical computation. This is mainly because in our ap-
proach we can separate the error-analysis issue from the design of the robust algorithm.
However, the quality of the output substantially depends on the quality of the numerical
computations used in the algorithm. Therefore, once we have constructed a robust algo-
rithm by the topology-oriented approach, we should next tune up the numerical part of
the algorithm in order to get a better output. Refer to [42] for an example of tuning up
the numerical computation.

There are some limitations in our approach. First, we have to find the setQ of
purely topological properties that should be satisfied by the correct output, and next we
have to describe the topological skeleton of the algorithm usingQ. These steps are not
trivial. Actually the topology-oriented approach gives a “principle” for designing robust
software, and there are freedoms in applying this principle to individual problems; for
example, the freedom in choosing the properties and in choosing the ways of numerical
computations.

Another limitation is that the output is in general an approximation of the true answer.
Hence, this is not appropriate if we need strictly correct answers.



18 K. Sugihara, M. Iri, H. Inagaki, and T. Imai

However, in many cases we want just approximations. An example of such cases
is computer graphics, where invisible errors are acceptable. Another example is the
case where the input itself is an approximation (for example, the application of the
Voronoi diagram to dot-pattern analysis for the dots extracted from a digital image).
Moreover, sometimes we have to abandon the correct answers because they require too
much computational cost. Our approach is suitable in these cases. An example is the
Voronoi diagram for line segments (Example 2). Another example is the approximate
construction of the Voronoi diagrams for general figures [35].

Acknowledgments. The authors express their thanks to the three anonymous referees
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paper very much.
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[2] Brönnimann, H., Emiris, I. Z., Pan, V. Y., and Pion, S., 1997: Computing exact geometric predicates
using modular arithmetic with single precision.Proceedings of the13th Annual ACM Symposium on
Computational Geometry, Nice, June 1997, pp. 174–182.
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