
The Robustness Issue

D� Michelucci

Ecole des Mines� F������ Saint�	Etienne ��

micheluc�emse�fr

Abstract

This article �rst recalls with some examples the damages that numerical inaccuracy of �oating
point arithmetic can cause during geometric computations� in methods from Computational Geometry�
Computer Graphics or CADCAM� Then it surveys the various approaches proposed to overcome
inaccuracy di�culties� It seems that the only way to achieve robustness for existing methods from
Computational Geometry is exact computation� it is the �Exact Computation Paradigm� of C�K�
Yap and T� Dub�e� In Computer Graphics or CADCAM� people prefer to abandon methods and
data structures not robust enough against inaccuracy� namely Boundary Representations and related
methods� this may be called the �Approximate Computation Paradigm��

� Introduction

��� The stakes

Geometric modellers provided by commercial CADCAM softwares or Computer Graphics packages� and
methods from the more theoretical �eld of CG �Computational Geometry� all perform geometric com�
putations� For instance� triangulating or meshing geometric domains for �nite elements simulation� or
computing intersections between geometric objects� Inaccuracy is a crucial issue for geometric com�
putations� Not only numerical results can be inaccurate but geometric programs can crash� enter in
in�nite loops� or terminate with inconsistent results� the topology of which is the topology of no possible
geometric objects� This lack of robustness is especially true with the most sophisticated methods� i�e�
methods from CG�

The lack of robustness against inaccuracy� the fact that they do not take into account degeneracies �or
if they do� it is with prohibitive cost� using an exact arithmetic and a perturbation technique� is one
of the reasons why methods and data structures from CG are seldom used in Computer Graphics and
CADCAM� For instance in the ACM Symposiums on SolidModeling and Applications� less than � percent
of the articles was the concern of CG� which is in cruel contrast with the pretensions of CG� Another
reason is that CG says nothing about some basic geometric problems met every day in real applications
�for example the computation of the boundary of semi algebraic objects�� Another well�known reason was
that �rst CG methods were too often di	cult� if not impossible� to implement� Fortunately� randomized
methods break o
 with this prejudicial habit of CG�

��� Exact Computation Paradigm vs Approximate Computation Paradigm

To avoid falling into disuse� solving the arithmetical issues is thus a crucial stake for the future of CG�
This article emphasizes that exact computing �which do not need all operations to be performed in exact
arithmetic� is the only way to achieve robustness for the existing methods in CG� This is in accordance
with the �Exact Computation Paradigm� of Chee K� Yap and Thomas Dub�e
DY���� This idea is quite
recent in the CG �eld� in contrast with the community of symbolic and algebraic computation� where
the essential need for exact computations has always been found natural and obvious�

�

On the other side� the trend in CADCAM �elds is to take another way� more practicable� to achieve ro�
bustness� The main idea is to stop considering the boundary of geometric objects �in complete opposition
with CG�� and to be content with conservative approximations for the interior or exterior of geometric
objects� These approximations are computed from a reference de�nition� typically some non�evaluated
description of a semi algebraic set called CSG �Constructive Solid Geometry� in CADCAM and Com�
puter Graphics� using ray casting or marching methods� or methods combining Interval Analysis and
recursive space subdivision� Such approach can be called the �Approximate Computation Paradigm�� in
opposition to the �Exact Computation Paradigm��

��� Other arithmetical issues

This article only deals with the inaccuracy problem� but the latter is not the only arithmetic issue for
geometric computations� there are two others�

The �rst problem is due to the overwhelming number of degenerate geometric cases �alignment of more
than two points� coplanarity of more than three points� cocircularity of more than three points� intersec�
tion of more than two lines in a point� parallelism between lines� etc� that geometric methods have to
handle and programmers have to treat� It is not obvious that this is an arithmetic problem� but there is
an arithmetic solution� It symbolically perturbs the data by in�nitely small values to remove degenera�
cies
EM��� EC��� Mic��� Yap���� using a non�standard arithmetic �i�e� an arithmetic computing with
non�standard� in�nitely small numbers�� However� this arithmetic solution has a drawback� it requires
an exact arithmetic� Note that inaccuracies and degeneracies pose the so�called �robustness problem��

The second arithmetic issue for geometric computations is that data acquired from some sensors� or
mechanical products machined by imperfect tools� are also known only up to some �nite precision� some
CADCAM applications need to take into account this other kind of inaccuracy
Jus���� for instance
metrology� These two issues are beyond the scope of this article�

��� Outlines

� Section � explains the typical damages due to inaccuracy� Since the many decisions made in �If
Then Else� tests by a geometric program are not all independent� wrong decisions can introduce fatal
inconsistencies� The latter are more serious for the fastest methods than for the na��ve ones� fastest
methods run �and so depend� more on geometric properties� which are invalidated by inaccuracy�

� Section � presents heuristics approaches� Computer Scientists have �rst hoped that they would be
su	cient� The � heuristic �Section ���� declares strictly equal numbers equal up to a prescribed threshold�
classically called �� The � heuristic is based on a correct intuition �Section ����� which has later been
used in exact �gap arithmetics�� Probabilistic arithmetics �Section ���� typically resort to modular
computations� if a rational number vanishes modulo some big enough prime and is small� one may take
the risk to decide it is zero� Careful Programming �Section ���� uses a set of empirical rules to avoid
the more obvious inconsistencies� It is a �rst step towards the Quest for Consistency �Section �����
The latter intends to take decisions which are always consistent though sometimes numerically wrong�
unfortunately this approach stumbles over untractable problems� Last� the Fuzzy approach �Section ����
merges too close geometric entities� it is a recent variant of the � heuristic� It does not seem CG methods
can be reformulated according to this scheme�

� Section � discusses the Exact Computation Paradigm� Due to the �aws of heuristics approaches� it
seems this solution is the only way to save classical CG methods from the ravages of inaccuracy� Typical
exact rational arithmetics are �rst presented in Section ���� the poor man�s exact arithmetic �Section
������� the LN library �Section ������� the lazy arithmetic �Section ������� These rational arithmetics
have proved to be usable� but they are not always su	cient as some problems require exact algebraic
arithmetics� The latter are a topic in its infancy in CG� Computer Graphics or CADCAM� The article
presents two quadratic arithmetics �i�e� supplying the square root� and the usual arithmetic operations��
the �rst is based on towers of quadratic extensions �Section ������� and the second on gap theorems

�

�Section ������� Possible algebraic arithmetics can be based on the D� representation �Section �������
on Gr�obner�s bases �Section ������� or on resultants �Section ������� This section concludes with the
rounding problem �Section ����� the di	culty and importance of which have been under estimated so far�
Rounding operations are needed to communicate between the �oating point world and the exact one�
and to stop the exponential growth of the algebraic complexity �Section ������� Rounding a geometric
object while maintaining its topology turns out to be NP�complete �Section ������� A �rst consequence
is that geometric methods and related data structures must be modi�ed to withstand rounding opera�
tions which may modify the topology� for instance by introducing self intersections �Section ������� A
second consequence of rounding �Section ������ is that CG basically deals with discrete problems and
not continuous ones� but this discreteness has not been really exploited up to now�

� Section � discusses the Approximate Computation Paradigm� Geometric objects are �rst described by
a semantic description� for instance a so�called CSG tree �Section ����� This description is only implicit�
Basic informations like the object boundary or the number of connected components are not available�
Then this description is evaluated� up to a prescribed accuracy� with robust methods� Interval Analysis
and recursive subdivision of space �Section ����� marching method �Section ����� ray casting �Section
����� or ray representation �Section ����� These approximate methods are insensitive to inaccuracy and
only require �oating point arithmetic� An even more radical evaluation method is the discretization of
the object �Section �����

� Section � brings some clari�cations� First� approximate representations are su	cient and are as relevant
as exact ones� despite the pejorative connotation of the word �approximate�� Second� the classi�cation
into� heuristic� approximate� exact methods is also discussed�

� Section � concludes�

� The ravages of numerical inaccuracy

The reader already aware of the ravages of inaccuracy on geometric methods� especially from CG� can
skip this section �partly already published in
Mic�����

��� Notations

We will use the following notations �

�� Straight lines with equation �x� �y � � � are represented by a triple of �oating point numbers
��� �� ���

�� The triple for the line through two distinct points A and B is

�yB � yA� xA � xB� xByA � xAyB��

�� The intersection between two given lines D � ��� �� �� and D� � ���� ��� ��� is the point �x�� y�� with

! det

���� � �
�� ��

���� ��� � ��� ���

!x det

���� �� �
��� ��

���� ��� � ��� ���

!y det

���� � ��
�� ���

���� ��� � ��� ���

x�
!x

!
� y�

!y

!
���

�

�� Geometric algorithms often use the lexicographical order on coordinates� de�ned by�

�x� y� �L �x
�� y��� x � x� or �x x� and y � y���

A line with � � �respectively � �� i�e� parallel to the Oy �respectively Ox� axis is said to be vertical
�respectively horizontal��

The notation a� denotes the �oating point approximation of a� fp is a shortcut for ��oating point�� bxc
stands for x �oor� and dxe for x ceil�

��� Inaccuracy in Computer Graphics

Figure �� A span� delimited by two vertical lines�

This section studies the consequences of inaccuracy on a �D algorithm� The data are segments� For all
lines Lx parallel to the Oy axis and having integer abscissa� x � f�� �� � � � �Ng� the problem is to �nd
the segments crossing Lx and to sort them by increasing ordinate� This problem occurs in Computer
Graphics as a sub�problem in Atherton�s method� which computes images of �D scenes de�ned by boolean
combinations �intersection� union and di
erence� of polyhedra�

The standard method �rst determines the set of spans� a span is a maximal interval
x�� x�� so that
�x�� x�
 contains no initial vertex� but possibly contains intersection points� This stage may be achieved
for instance by sorting all endpoints by increasing abscissa� then by scanning the resulting sorted list V
of vertices while maintaining the set S of active segments� if vj �xj� yj� is the left �respectively the
right� vertex of the segment sj � insert sj in S �respectively remove sj from S� so that S is still the set of
the active segments in the interval �xj� xj��
� It is also possible to use some bucket�sort scheme instead�

Let S be the set of the active segments in the current span �x�� x�
� Let S� �respectively S�� be the result
of sorting S by increasing ordinate in x x� �respectively in x x��� If S� equals S� we are done and we
study the next span� otherwise let i be the lowest index so that S�
i� � S�
i�� Then these two segments
S�
i� and S�
i� cut each other somewhere in
x�� x��� in �xi� yi�� In such a case� recursively study spans
�x�� bxic
 and �dxie� x�
� At the end� either there is no intersection points inside the span� or x� x��

Though correct� this method in�nitely loops because of inaccuracy� or at least it loops until the stack is
�lled up with recursive calls� It happens that the computed intersection point has fp abscissa xi outside
the interval
x�� x��� say between x� and x� � � �of course� this situation is absurd and cannot occur
without inaccuracy�� Thus the procedure span�x�� x�� recursively calls span�x�� x��� an in�nite loop�

This problem is trivially solved� when xi is greater than x�� cut
x�� x�� into
x�� x�� ��� Symmetrically
when xi is lower than x�� It is worth noting that the reliability against inaccuracy of programs from
Computer Graphics is much more easily achieved than for the ones from CG�

�

��� Inaccuracy in Computational Geometry

This section details the consequences of inaccuracy on a classical and representative algorithm from CG�
the Bentley and Ottman�s method�

����� Bentley and Ottman�s algorithm

Figure �� The situations in which two segments become contiguous along the sweeping line� The vertical
dotted line represents the sweeping line� the arrows show the couple of contiguous segments�

In a nutshell� this algorithm computes all the k intersection points between n segments in the plane� in
time O��n� k� logn�� For sake of simplicity� this exposition will ignore degeneracies� intersection points
common to more than two segments� vertical segments� intersection points confused with initial vertices�
and so on� The principle is to sweep the plane by a vertical line from left to right� i�e� initial vertices are
swept in lexicographic order� and to maintain the set of the segments crossing the sweeping line� ordered
upwards� The method exploits the two following remarks� First� the order of the segments crossing the
sweeping line obviously depends on the abscissa of the latter� but it changes only locally when passing an
initial vertex or an intersection point� local changes are insertion or deletion of a segment when passing
a vertex� or permutation of two intersecting segments when passing an intersection point� Secondly� two
segments can cross each other only after they have been contiguous along the sweeping line �ignoring
degeneracies�� Thus� if each time two segments become contiguous along the sweeping line� the algorithm
checks their possible intersection� then all intersection points will be found� The three situations in which
two segments become contiguous along the vertical sweeping line are shown in Fig� �� when a vertex
is the beginning �i�e� the left vertex� of one or several segments� when a vertex is the end �i�e� the
right vertex� of one or several segments� or when a vertex is simultaneously an end and a beginning� for
instance an intersection point�

The algorithm is as follows� Set X to all initial vertices� X is ordered by the lexicographic order� Let
Y be the set of segments crossing the current sweeping line� Y is ordered upwards� X and Y may be
represented by balanced trees �actually� in Bentley and Ottman�s paper� X is represented with a priority
queue�� Initially� Y is empty� While X is not empty� do�

Let p be the �rst point of X� and remove p from X� Let b and a be the segment just below and just
above e� If there are some segments with p as right endpoint� remove them from Y � If p is the left
vertex of some segments s� � � � st �ordered by increasing slope�� insert them in Y � then compare b with
s� and a with st� since b and s� on the one hand and a and st on the other hand become contiguous in
Y � Otherwise� when there are no segments with left vertex p� a and b become contiguous in Y and thus
are compared� Each time a new intersection point is found� insert it in X and cut the corresponding
segments�

����� A special con�guration

�

B

D

x

y

C
A

Figure �� A special con�guration of two segments�

M� Gangnet communicated me the con�guration of segments in Fig� � in ����� Assume for convenience
that a fp arithmetic with base �� is used� with � signi�cant digits�

A ��� �� A�� B ���� �� B�� C ��� �� C�� Finally Du �� � u� ��� D�
u� assuming

there is no cancelation when computing ������ u� For instance� there is no cancelation for u ������
Du ����� D�

u� but there is one for u ������� Du ������� D�
u ����� since there is only �

signi�cant digits� Afterward� u is such that Du D�
u�

The intersection point Iu AB � CDu is computed as follows�

The coe	cients triple for line AB is� ��� �� �� ��� ��� ��� No inaccuracy�

The coe	cients triple for line CDu is ��
�� ��� ��� ���� �u� ����� No inaccuracy�

!x ��� � ��� ���� !x�� No inaccuracy�
!y ��� � ��� �� !x�� No inaccuracy�

! ��� � ��� ���� � u� Here� ! and !� can be di
erent due to cancelation� for instance� with
u ������ ! ������� requires � digits to be exactly represented� but since the used fp arithmetic
has only � signi�cant digits� ������� is truncated to ������� Thus� ! � !�� Actually� !� ������ for
all u in the interval � � ����������
 �and maybe more� depending on the used rounding mode� with a
rounding towards �� !� ������ for all u ��� ��������
�� Anyway� the points Iu are equal for all u in
some interval�

As a �rst consequence� if a con�guration contains segments say CD������ CD�� CD���� on the one hand
and AB on the other hand� the fp arithmetic cannot represent it in a consistent way � and no matter
the algorithm used to compute the intersection points� points I������ I� and I���� have the same fp
coordinates� whereas CI����� � CD������ CI� � CD�� CI���� � CD���� are di
erent segments�

Of course� this fp arithmetic may seem unrealistic� it has been chosen only to simplify the statement� It
is possible to �nd similar con�gurations for all fp arithmetic� no matter the used base and the length of
the mantissa� We now follow the behavior of the Bentley�Ottman�s method on such a con�guration�

����� Inconsistencies due to inaccuracy

Consider the con�guration of two segments AB and DuC� with u � � and u in the inconsistent interval�
for instance u ������ From now on� we just use D for Du and I for Iu� To compute if point
I� �AB �CD�� ���� ���� belongs to the segment DC� two tests are possible�
First� I� � CD i
 D �L I �L C� with this test �mathematically correct when there is no inaccuracy��
I� does not belong to CD� First mistake� the intersection point I� is forgotten�

A second test� mathematically equivalent to the �rst one when there is no inaccuracy� is� I� � CD i

xD � xI � xC and yC � yI � yD� taking into account that DC has a negative slope� Here this test will
correctly conclude that I� belongs to CD� in contradiction with the previous and theoretically equivalent
test� Note it is possible to �nd other examples in which this last test fails�

�

	 If I� is forgotten� Suppose �rst that the �rst test is used� or any test such that I� is forgotten�
Thus� when the sweeping line passes C� the program believes that �or in less anthropomorphic words�
the data structure Y stores that� AB is below CD� which is wrong� Since C is the right endpoint of
DC� the program has to remove DC from Y � When Y is the only data structure accessing segments� as
it is the case in the original Bentley and Ottman�s article� a classic binary search through Y is needed
to �nd DC in Y � starting from the Y root� We can suppose that the left �respectively the right� subtree
stores the segments below �respectively above� the one of the root� Here the program wrongly believes
that AB is below DC in C� Suppose for instance the root carries segment AB� and its right son carries
segment DC� To �nd DC� the program compares the height of the searched DC segment and the one
of the root segment AB� i�e� it computes and compares the ordinate of point DC � fx xCg and the
one of AB � fx xCg� The heights are �� for DC and ��� for AB� thus DC is below AC in C� which
is right� but contradictory with the wrong informations stored in the data structure� Thus the program
searches DC in the left subtree of Y � and it cannot �nd it since it is in the right one� This situation is
theoretically impossible and a fatal failure occurs� like Nil pointer dereferenced�

	 If I� is not forgotten� Suppose now that the second test is used� or any test such that I� is found�
when the sweeping line passes D� So DC is cut into DI� and I�C� AB into AI� and I�B� I� is then
inserted in X� Theoretically I � C but for the program� C C� � I�� Thus I� is inserted in X just
after C C�� Thus the next point to be swept is C� Here� the program has to remove the segment I�C
from Y �since C is now the right endpoint of I�C�� But this segment has not yet been inserted in Y �
Again� a fatal error occurs�

A possible solution is explained in section ������

It is worth comparing the behavior of the na��ve method in O�n�� which compares all couples of segments�
and the one of Bentley and Ottman�s method� Obviously� the na��ve method goes slower �at least when
the number of intersection points k is less than O�n���� but it never crashes� it can output some wrong
results� but the latter are not propagated� contrarily to Bentley and Ottman�s method� The na��ve method
is much more robust against inaccuracy�

��� Inaccuracy and topology

In �D let P be a set of vertices and S � P
P a set of non crossing segments� i�e� two distinct segments
can only cut each other in a known common vertex belonging to P � For instance some method has been
used to compute all intersection points between an initial set of intersecting segments�

Thus S and P de�ne what is called a planar map� a combinatorial structure made of vertices� seg�
ments and faces� and supporting various topologic relations of incidence� contiguity or inclusion� Some
applications �like Geographic Information Systems� need data structures for modelling such planar maps�

An important notion is the half�edges one� A segment is made of two half�edges� the left and the right�
The left half�edge �respectively the right one� contains the left vertex �respectively the right one� of the
segment� or in more general words its smaller �respectively its greater� vertex for the lexicographic order�
Thus if the segment is vertical� the left �respectively the right� half�edge is the one below �respectively
the one above�� The two half�edges of the same segment are said to be complementary�

Moreover each half�edge e having vertex v is linked with its neighbor� it is an half�edge also incident to
v� the �rst one which is met when turning counterclockwise around v and starting from e� In this way all
half�edges sharing the same vertex v are cyclically linked around v� in the counterclockwise orientation�
It is obvious that starting from any initial half�edge� and following the neighbor link will always yield to
the starting half�edge� when the planar map is correct�

This neighbor link makes also possible to follow face contours� Starting from any half�edge e�� take the
complementary of its neighbor to get e�� and then start again from e� to get e�� and so on until the
initial half�edge is reached� this way all half�edges e�� e� � � � e� of the same contour are listed� Here again�

�

�

��

� �

Figure �� A vertex has been forgotten� due to an inconsistent topology� following the contours will lead
to trouble� Here only one contour will be found� which contains all half�edges� � � � ����� ����� ����� �����
����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ���� � � �� where �ij� is the half�edge
containing the vertex i� Of course the correct planar map has one outer contour and three inner ones�

starting from any half�edge� this travel will always yield to the initial half�edge� when the planar map is
correct�

Now� these two properties cannot be guaranteed when the planar map is wrong� for instance when some
intersection points have been forgotten �see Fig� ��� or when half�edges incident in the same vertex
are too close to be correctly ordered by the neighbor link when using a fp arithmetic� In fact� the dual
methods of following a contour and of turning around a vertex until the starting half�edge is reached� can
enter in an in�nite loop never going back to the initial half�edge �for instance with a half�edge sequence
like� e�� e�� e�� e�� e�� e	� e� � � ��� The method can also terminate� but output inconsistent contours�
for instance self intersecting ones �see Fig� �� which will give trouble to a coloring method or a method
locating points in the planar map� for example�

Remark� The previous discussion has used half�edges� but winged�edges or quad�edges or any other
topological data structure could have been used as well�

��� Other examples of contradictions

Basically� inaccuracy invalidates geometric and mathematical properties� This section now gives several
examples of such properties� often used by geometric algorithms� but ruined by inaccuracy� It would be
too long to detail the consequences on geometric algorithms relying on such property� but they would
now be obvious after the previous examples�

����� Example �

The power of a point M �x� y� relatively to a line D with triple ��� �� �� is �x� �y � �� Suppose that
A belongs to the line D� because for instance A has been de�ned as the intersection point between D
and another line� Theoretically� this power must be �� Using fp arithmetic� it is unlikely to be true� So
a data structure can store topological informations� like A � D� that will be contradicted by numerical
computations�

����� Example �

Consider the three lines of �gure number �� h is nearly horizontal� m climbs up and has slope about ��
degrees� d goes down and has slope about ��� degrees� Let the three intersection points be h� d�m�
m� d � h� d� m � h� If we exclude the degenerate case in which all intersection points coincide� then
there are only two possible lexicographic orderings for them� either d� �L h� �L m� or m� �L h� �L d��
in both cases� h� is between m� and d�� Now� with a small enough triangle� the coordinates of the three

�

d� m�

h

m

h�

d

d m

m�

h

d�

h�

Figure �� The two possible lexicographic orders� in the generic case�

points will di
er only by their least signi�cant bits that will likely be corrupted by rounding� so fp
arithmetic will sometimes produce non consistent triangles impossible to draw�

����� Example �

The intersection point between a vertical line AB and an oblique one is a point " with the same abscissa
as A� and B� But the evaluation of the previous formula with fp arithmetic will most of the time gives
a slightly di
erent point "�� such that either xA � x�� or x�� � xA� Actually this also works with
�almost vertical� line or segment� as previously seen�

This means that relying on the property � " �
A�B�� A �L " �L B �to test if " really belongs to the
segment� not only to the straight line� is doomed to failure�

����� Example �

If � and �� are both di
erent from zero� the three following de�nitions for y� are algebraically equivalent�

��� � ���

��� � ���
� ��x� � �

�
and � ��x� � ��

��
�

but evaluated with fp arithmetic� they will generally yield di
erent results� This is quite a serious
problem� as programmers frequently rely on such identities to detect the equality between two objects
constructed in two di
erent and legal ways�

����� Example �

In the projective plane� if three distinct points P�� P�� and P� are collinear� and if the three distinct points
P�� P�� and P	 are also collinear� so are the three points P�P� � P�P�� P�P� � P�P	� and P�P� � P	P�
after Pappus�s theorem� Numerical inaccuracy likely prevents the detection of this property� Actually it
works as well with all geometric theorems�

����	 Example 	

This example will be reused in section ���� It intends to give an intuitive insight on the combinatorial
structures underlying geometric objects� Consider N points in the plane and for each triple �A�B�C� of
distinct points� de�ne jABCj to be�

jABCj sign�

������
� � �
xA xB xC
yA yB yC

�������

This determinant is twice the signed area of the triangle ABC� As well�known� either ABC turns on
the left and jABCj ��� or ABC turns on the right and jABCj ��� or ABC are collinear and
jABCj ��

�

There are ��
N

� � ways to assign signs for all
�
N
�

�
triples� But of course very few of them are geometrically

possible� triples signs are not independent� For instance they must verify jABCj jBCAj jCABj�
and jABCj �jBACj� Other less obvious rules are� jABCj jBCDj jCDAj jDABj � jABDj
jBCAj jCDBj jABCj �hint� ABCD is convex�� and jABP j jBCP j jCAP j � jABCj jABP j
�hint� P is inside the triangle ABC�� See
Knu��� for details�

When the N points are given by their coordinates� it happens that computing jABCjs with fp arithmetic
yields inconsistent signs� Even when the inaccuracy is numerically negligible� a single error on a sign is
su	cient to introduce a fatal inconsistency�

��� Inaccuracies and inconsistencies

The methods proposed in the CG �eld are theoretically fast because they exploit properties of consistent
geometric objects� like properties of total orders� algebraic identities� geometric theorems or deep combi�
natorial structures underlying geometry� Unfortunately inaccuracy invalidates such properties� Maybe
the simplest example is the use of the transitivity in total orders �used for instance in Bentley and
Ottman�s method�� if it is known that a � b and b � c� then it is deduced that a � c without comparing
a and c�

Inconsistent decisions from numerical imprecision have two kinds of consequences on geometric algo�
rithms�

	 Either the algorithm crashes or enters in an in�nite loop� It is typically the case for the most so�
phisticated and e	cient methods proposed by CG� that rely on various geometrical or mathematical
properties� like the transitivity in orders� algebraic identities or theorems� and that propagate �some�
times corrupted� intermediate results� for instance� a � b and b � c � a � c� These methods enter
in theoretically impossible situations� trying to delete an element which has not yet been inserted from
some data structure� or ending up in an in�nite loop while scanning a theoretically �nite sequence�

	 Or the algorithm terminates normally� it is generally the case for �brute�force� algorithms� too stupid
to make the most of intermediate results and geometric consistency� However these algorithms yield
inconsistent results� for instance a graph supposed to be planar will not be �see example in �gure ���
Another algorithm� though mathematically correct and taking this result as its input� can crash� in�nitely
loop or deliver inconsistent results in turn�

Actual commercial geometric modellers cannot work without the active complicity and understanding of
their users� who have learned to avoid the easiest traps� and who accept to slightly perturb their data
until their geometric modeller works� Thus practitioners �programmers or users of geometric modellers�
have been aware of the inaccuracy di	culties since the �rst geometric modellers� a roughly twenty��ve
years�

To overcome them� programmers and users have developed empirical tricks� described as below� These
tricks do not always work� For a long time� people in CADCAM community have put up rather willingly
with these limitations� �rst� engineers are used to the limitations of physical devices� and then they
considered that� anyhow� it was impossible to do otherwise� However� today� CADCAM engineers are
more and more exasperated by this robustness lack� and robustness has become a key issue in CADCAM�

From ���� on� C� Ho
mann
Hof��� devoted in his book a comprehensive chapter to the robustness
issue� studying examples of inaccuracy� pointing out the causes ��The di�culty seems to be rooted in the
interaction of approximate numerical and exact symbolic data�� and proposing approaches like the quest
for consistency or the Exact Computation Paradigm � the main things learned since this overview are
emphasized in the conclusion �Section ���

In CG� awareness of the inaccuracy problem is much more recent� dating back from the late eighties�
with Milenkovic�s work
Mil���� CG assumes a theoretic model for computers� in which each arithmetical
operation is performed exactly in constant time and space� When known� the inaccuracy problem was

��

not considered worthy of any research� it was just a matter of programming� This is probably the reason
why there is up to now so few available libraries solving problems in CG� this is in contrast with the
situation in CADCAM� Computer Graphics� Numerical Analysis or Algebraic and Symbolic Algebra�

� Heuristic approaches

��� The popular � heuristic

To overcome inaccuracy� the most popular trick used in geometric modellers is the � heuristic� When two
fp numbers di
er by less than a given threshold traditionally called �� they are considered to be the same�
The test can be made in an absolute manner � ja� bj � �� or in a relative one � ja� bj � �
max�jaj� jbj��
Some modellers use several �� say one for lengths� another for areas� another for angles�

This heuristic loses the equality transitivity� it is easy to �nd a� b and c so that a � b� b � c� but a � � c
with � meaning �equal for the � heuristic�� thus inconsistencies remain possible�

Moreover� �nding the relevant value�s� for ��s� is much of a di	cult task� depending on the usual range of
numbers �it depends on the applications�� and on the format of used fp numbers � it is common folklore
in CADCAM community that the conversion from ���bits fp numbers to ���bits has required a not so
easy �s updating� Of course the � heuristic can fail� and sometimes it does� In practice� it seems to work
not so bad and to improve the geometric modellers robustness� even though it owes a great deal to active
complicity by the users�

��� Gap arithmetics

The � heuristic is based on a right intuition� following Canny�s gap theorem
Can����

Canny�s gap theorem
 Let x�� x� � � �xn be the solutions of an algebraic system of n equations and
n unknowns� having a �nite number of solutions� with maximal total degree d� with relative integer
coe�cients smaller or equal to M in absolute value� Then� for all i �
�� n�� either xi � or jxij � �c
where

�c
�

��Md�ndn

This theorem gives a way to prove numerically that a number is zero � compute a �guaranteed� interval
containing it� with width smaller than �c� As soon as the interval does not contain �� the number is
clearly not � and its sign is known� Otherwise� if the interval contains � and has width less than �c� the
number can only be ��

Alas� there are several problems� First� �c is far much smaller than the epsilon used in geometric modellers�
actually �c is generally much smaller than the smallest positive fp number� even in simple examples� So�
an extended arithmetic supplying big�oats is required� Second� even if such an arithmetic is available�
such a computational scheme will have an exponential cost � an exponential number of digits is needed
to prove the nullity of a number� because of the term ndn in Canny�s theorem� Now� there is no hope to
signi�cantly widen the Canny�s gap in the worst case� because it is already sharp� it is almost reached
in the following simple case � x��Mx� � �� �� Mx� � x�� � � � �Mxn � x�n�� �� A possibility will
be to �nd a more convenient � depending on the system at hand� and not only on d�M and n� More on
gap arithmetics in section ������ more on gap theorems in Yap�s book
Yap����

��� Probabilistic arithmetics

Another more practicable but only probabilistic method is to compute with some big�oat library� and to
use the � heuristic� with say ������� and hope that life will not be so bad to produce a counterexample�
Some people currently investigate such an approach� but I don�t know any publication�

��

Another probabilistic trick stems from modular arithmetic� The idea is to perform all computations
modulo one �or several� �nite �eld Fn �for instance Z	nZin which n is a prime integer� about �
 ��
��
Clearly� if amodFn does not vanish� a cannot be �� even when a� is very small� we have to precise a� in
some way to reliably �nd its sign� for instance using some big�oat library or some on�line arithmetic� If a�

is small� and if amodFn vanishes� one can take the risk to assume a �� This scheme is straightforward
to implement when only rational operations ��� ��
� �� and numbers are used� because each rational
number has only one homomorphic element in the �nite �eld� The only di	culty arises when a division
by � occurs in the �nite �eld� which is very unlikely� Such a scheme has been investigated by A� Agrawal
and A� Requicha
AR���� as well as by M� Benouamer and his colleagues
BJMM��� �see section �����
below about hash coding lazy numbers��

However this approach becomes more problematic when algebraic non rational operations and numbers
get involved� for instance each quadratic number have two homomorphic images in the �nite �eld �or
in its closure� and it becomes impossible to discriminate them� for example to distinguish the positive
from the negative square root in Fn� Thus� to know if an algebraic number vanishes� all its homomorphic
images in Fn or its closure must be tested
MG����

��� Careful programming

Some computer scientists prefer to avoid the � heuristic and have settled a set of tricks�

	 Check �rst in the data structures before computing� for instance� before computing the power of a
vertex relatively to some line� verify �rst if the line is topologically incident to the vertex from the data
structures at hand� This avoid the inconsistency of which in ������

	 Handle in a special way some particular cases� for instance the intersection point between a vertical
line and an oblique one� In this case� assign the abscissa with the abscissa of the vertical line� not with
the expression !x	!� This avoid the inconsistency of which in ������

	 Do not use several distinct formulas for the same value �though it seems to contradict the previous
rule�� This avoid the inconsistency of which in ������

	 The computation of ab� cd� ab� dc� ba� cd� ba� dc �they are� for instance� segments in �D� generally
give slightly di
erent results� Before computing an intersection� it is worth systematically orienting
segments at hand� so that a �L b and c �L d and so on� thus by exchanging vertices in order to obtain�
ab � cd ab � dc ba � cd ba � dc�
	 Use numerical input data rather than derived �thus corrupted� numerical data�

	 Prefer non redundant data structures� to limit the probability of contradictions�
Quoting C� Ho
mann
Hof���� �Conceptually we view these heuristics as attempts to reduce the logical
interdependence of decisions that are based on numerical computations��

M� Iri and K� Sugihara
IS��� have used this kind of approach for computing Vorono���s diagrams� They
ensure that their program will never crash because of inaccuracy� that the resulting graph is correct
when there is no numerical di	culty� and otherwise that the graph is connected with all vertices having
degree �� like a correct Vorono���s diagram� It is impressive� However remains a great problem� there is
strictly no guaranty that another program� mathematically correct� and using this Vorono���s diagram as
an input� will not crash�

To conclude� all these stratagems sometimes show wits� but they can only avoid the more obvious
inconsistencies� Avoiding more convoluted ones �for instance the non respect of Pappus�s theorem� see
������ and avoiding contradictions between several pieces of software written by di
erent programmers
using di
erent conventions� notations and formulas� seems an impossible task� The next section explains
why�

��

��� Respecting Consistency� the Quest

The aim at careful programming� in Iri and Sugihara�s work
IS���� and in some V� Milenkovic�s work

Mil���� can be paraphrased as�

In Numerical Analysis� it is possible to �nd an approximation in the solution of the problem at stake�
that is to say the exact solution of another but close problem of the same kind� It is even possible to
measure in some way these distances� We would like to do the same in geometric algorithms� i�e� to �nd
an approximation in the solution that happens to be the exact solution of another close problem�

It means that� at least� the solution that has been found out must be �geometrically realizable�� As for
an example� let us read over to the problem in section ������ let P�� P� � � �Pn be n points in the plane�
We want to compute with fp arithmetic any of the jABCj� we accept that some triple sign be wrong
�relatively to exact arithmetic�� but we want to get a consistent signs set� which is the signs set of another
set of points Q�� Q� � � �Qn� close to P�� P� � � � Pn�

This algorithm will be something like this� all triple signs ABC �yes� there are O�n�� of such triples� but
our problem here is not to obtain an e	cient algorithm� but a robust one� are straightforwardly computed
with fp arithmetic� by the devoted formula� and with an error bound� The value of the majority of signs
will be clearly positive� or clearly negative� For remaining ambiguous signs� we want to resort to some
oracle who will give us a set of missing signs that is geometrically realizable�

The question now becomes� is it possible to decide if a partial sign system implies such other missing
sign� or equivalently� if a given sign system is consistent �geometrically realizable� or not#

This problem is not only a toy problem� because a lot of methods �convex hull computations� intersection
between polygons� for example� proposed by CG in �D can be reformulated in order to use only triple
signs in geometric tests� For instance� two segments pq and rs intersect each other �with no degeneracy�
i
 jpqrj
 jpqsj �� and jrspj
 jrsqj ��� Thus� for applications in which all geometric tests can be
reformulated only with triple sign test� the robustness problem will be theoretically solved� It is worth
remarking that this approach can be extended to �D and beyond�

The combinatorial properties of such triple sign systems in �D have been studied� They are partly
characterized� notably in D� Knuth�s CC �CounterClockwise� axioms �see Fig� ��� or equivalently in
uniform acyclic oriented matroids of rank �� see
Knu��� for details� Though illuminating� this axiomatic
system and the corresponding combinatorial structure are too weak to capture all properties of the �true�
geometry� for instance� Pappus�s theorem is not a consequence of Knuth�s axioms� and one can �nd sign
systems that� though verifying Knuth�s axioms� reveal not to be geometrically realizable�

Axiom � �cyclic symmetry�� pqr� qrp
Axiom � �antisymmetry�� pqr � �prq
Axiom � �nondegeneracy�� pqr � prq
Axiom � �interiority�� tqr
 ptr
 pqt� pqr
Axiom � �transitivity�� tsp
 tsq
 tsr
 tpq
 tqr � tpr

Figure �� The �ve Knuth�s axioms� to explore the combinatorial properties of the generic sign systems of
triple of points� pqr means� jpqrj � and �pqr means jpqrj ���

Up to now a complete combinatorial characterization is not known� and perhaps there can be no �nite
set of purely combinatorial axioms �in Knuth�s style� i�e� not using continuity� or coordinalization� that
characterizes geometrically realizable systems� see
Knu��� pp �� for more� Another very bad news
is that the decision problem �is this given set of triple�signs consistent#� for Knuth�s sign systems is
NP�complete�

Actually� it seems that the problem is even more complicated� D� Knuth only considers generic situations�
in which triples have sign �� or ��� but never �� Now some degenerate con�gurations are realizable in

��

some �elds like the real algebraic closure of Q� but not in others like Q� Such a con�guration is given
in B� Gr�unbaum�s book
Gr�u��� and in C� Ho
mann�s one
Hof���� and illustrated in Fig� �� Place
nine points A� B� C� D� E� F � G� H� I so that the following subsets of points �and only these subsets�
are collinear� ABEF � ADG� AHI� BCH� BGI� CFI� DEI� DFH� as well as every couple of points�
obviously� All solutions are projectively equivalent to the one in the �gure� in which a regular pentagon
occurs� As a consequence� this con�guration is not realizable in Q�� it is in R�� actually in Q

p
����

A�F� E�A� F�B� B�E�

G�D�

I�I�

H�C�

C�G� D�H�

Figure �� This con�guration above is not realizable in Q�	 it is in R��

In conclusion� the approach of Computing with fp arithmetic while respecting geometric consistency is
not so easy to achieve� Actually� I think this approach is untractable� as it goes for C�K� Yap and T�
Dub�e
DY���� From ���� on� C� Ho
mann has had the same intuition�

��� Fuzzy boundaries

The � heuristic loses the order transitivity �it is possible to have a � b� b � c and a � � c�� so
inconsistencies remain possible� In such a case� a solution is to give up the distinction between a� b
and c� and to merge them into another larger entity� actually an interval� Computations are performed
with an interval arithmetic or another equivalent method supplying error bounds� as soon as two entities
overlap� they are merged in a third larger entity that contains both previous ones�

One can remark that two close but non overlapping entities have to be merged when gets introduced
a third entity that overlaps both former ones� One can deplore this information loss �the distinction
between the �rst two entities has been lost though they are not modi�ed�� and fear that existing geometric
algorithms will not spontaneously withstand such a non monotonic logic� But this is the spirit of this
approach�

The example in �gure � will become something like in �gure �� This approach has been investigated by

d m

h

Figure �� Three lines with their halos� incident to a fuzzy point
the circle��

��

M� Segal
Seg��� and by D� Jackson
Jac��� in solid modelling� In �D� geometric elements �vertices� edges
or arcs� surfaces� are surrounded by a thin halo of imprecision� two distinct and not adjacent elements
must not have overlapping halos� During say the computation of some boolean set operation �intersection
or union or di
erence between two solid geometric objects�� two elements the halos of which overlap must
be cut or merged to restore the data structure consistency� In ����� D� Jackson has implemented this
way a robust algorithm to compute boolean set operations between �D geometric objects with curved
surfaces� Patrikalakis�s team
HPY��� has also used this method�

The main advantages of this approach are that it applies not only to �linear� problems but also to
algebraic ones� and that it does not rely on an exact arithmetic� so it is fast� Moreover� it is intuitive�
Finally� it can handle inaccurate data in a natural way� either these data are obtained from some sensors
and thus are known only up to some precision� or at the other end� the modelling stage has taken into
account the fact that mechanical objects can be manufactured only within some tolerance� Up to now�
this is the only approach that can represent fuzzy data�

A drawback is that all classical algorithms �for instance for computing boolean operations between
solids� must be reformulated� it cannot be implemented only at the arithmetic level� since some classical
methods cannot withstand the non monotonic logic of such approach� as pointed out before�

More generally� no one can assert this approach really solves the inaccuracy issue� For instance� when
we want to know if the halos of two geometric entities overlap� their distance can be computed in several
but algebraically equivalent ways� with a �rst formula� one may �nd that the elements do not overlap�
but they will with another formula� maybe some contradictions remain possible�

This approach has not been proved yet� For this reason� this paper classi�es it is an heuristic approach�
However this choice is debatable� and people promoting this kind of method would probably classify it
in the Approximate Computation Paradigm�

� The �Exact Computation Paradigm�

��� Outlines

An obvious solution against inaccuracy is the use of an exact arithmetic� Actually� for existing CG
methods and more generally for geometric methods dealing with Boundary Representation or relying on
some other geometric consistency� there is more and more agreement that the only way for consistency is
exactness� there is no de�nitive proof for this statement� but the other approach �respecting consistency
while using approximate computations� comes up against NP�complete problems �see section �����

Alas� even when an exact arithmetic on big integers or big rational is su	cient� the straightforward
implementation is far too slow� From an experiment by M� Karasick� D� Lieber and L�R� Nackmann

KLN���� the Vorono���s triangulation of �� random points in �D takes ��� second� that of �� random
points with rational coordinates �� digits for the numerator� � for the denominator� with radix ��	� takes
���� seconds with a standard rational library and generated intermediate values up to �� digits long� Of
course computers now work faster� but the order of the ratio magnitude between both running times is
still the same� It is easy to understand why exact arithmetics are so seldom used in geometric modellers�

Rational arithmetics �Section ���� are su	cient for a large class of classical methods from CG� In some
cases� the machine numbers are even su	cient to achieve exact computations� with some tricks� Section
����� presents this fast but limited solution� When this solution does not apply� one can contemplate
capitalizing on the fact that the fp arithmetic �or some interval arithmetic to have an upper bound of
errors� is very often su	cient to decide the sign of an expression� and to use an exact arithmetic only
when the fp arithmetic is not reliable� In practice� this idea is implemented in several ways� This paper
only presents the LN library due to S� Fortune and C� Van Wyk
FVW��� in section ����� and the lazy
exact arithmetic due to M� O� Benouamer� P� Jaillon� J�M� Moreau and the author
BJMM��� MM� in

��

section ������ Due to lack of space� other approaches in the same tendency cannot be detailed out but
are worth mentioning�
OTC��� KLN��� Yam��� GT��� NSTY����

These improved rational arithmetics have proved to be usable �up to the rounding problem� see lower��
but they are not su	cient for many geometric problems met in real life� problems involving for instance
intersection between algebraic curves or surfaces� Rotations by k
 with k � Q also introduce algebraic
numbers� Idem for some square lengths� It is an old story�

Thus algebraic arithmetics �Section ���� are required� In CG or CADCAM� they are just a topic in its
infancy� As far as I know� only quadratic arithmetics have been experimented in CG up to now �though
LINETOOL� the geometric editor by L�W� Ericson and C�K� Yap
EY���� may perhaps be considered
as a counterexample#�� Section ����� presents the repeated squaring method �in fact� a natural extension
which gives a true quadratic arithmetic�� Section ����� presents the gap quadratic arithmetic proposed
by C�K� Yap and T� Dub�e
DY����

In Symbolic Computing� Algebraic arithmetics are now classical and many methods from this �eld can
be useful for the Exact Computation Paradigm� e
ective Elimination Theory with Gr�obner�s bases and
resultants� and Real Algebraic Geometry with classic Sturm�s sequences� Collins�s Cylindric Algebraic
Decomposition and its recent developments
BPR���� Discussing all these methods is impossible here�
but fortunately they have already been detailed in a number of papers or books� A special chapter
in Ho
mann�s book
Hof��� gives nonspecialists a nice introduction to Gr�obner�s bases� Resultants are
presented in Wee and Goldman�s survey
WG���� and they have already been used in robotics� and in
CADCAM� notably by D� Manocha�s team
KM���� A comprehensive treatment of the mathematical
background and algorithms of Elimination theory and Real Geometry may be found in B� Mishra�s book

Mis��� or C�K� Yap�s one
Yap����

Section ����� presents the D� representation of algebraic numbers �not only quadratic ones�� It is only
used in the Algebraic and Symbolic Computation �eld for the moment� but seems to be a good candidate
for geometric computations� in conjunction with Gr�obner�s bases� which are discussed in section ������
Another exact algebraic arithmetic has been recently used in CADCAM by D� Manocha and some of his
students
KKM���� see Section ������

Exact Computation Paradigm is confronted with the following problems�

	 What is the best exact arithmetic# The next step is obviously to experiment� improve and compare
these exact arithmetics� and perhaps to imagine new ones�

	 Merging exact arithmetics with non standard arithmetics would solve the robustness issue �inaccuracy
and degeneracies� at the lowest level� the arithmetical one� It is brie�y discussed in Section ����

	 Unfortunately� programs using Symbolic Computing tools �Gr�obner�s bases� resultants� D�� in the
straightforward way� i�e� as black box libraries� are extremely slow� Usable programs are very intricate�
This sophistication makes programs di	cult to implement� enrich and modify� as noticed by Manocha�s
team
KKM��� among others� It seems there is a need for packages e	ciently handling arithmetic
expressions �the DAGs in Sections ����� and ������� which arise as a basic data structure� It turns
out that Symbolic Computing does not provide such tools� likely because it deals with complex but
few arithmetic expressions� In opposition� Geometric Computing deals with a lot of these arithmetic
expressions� generally simpler�

	 Unfortunately� rounding operations �tackled in
Hof��� MN��� BMP��� For���� are sooner or later
unavoidable� �rst for communication with the outside fp world� and overall to break the exponential
degree growth� In other words� exact computations can only be used temporarily to protect some methods
from inaccuracy� and not in a lasting way� Above all� accounting for rounding implies drastic modi�cations
in methods and data structures� even with Exact Computation Paradigm� See Section ����

People promoting Approximate Computation Paradigm �Section �� use these di	culties as arguments�

��

��� Rational Arithmetics

����� The poor man�s exact arithmetic

In some restricted cases� it is possible to use an exact arithmetic which is as fast as the fp one� This
section describes the various tricks I used in ��������� to implement such an arithmetic� for a �D graphic
editor
GM��� Mic��� GHPT���� Probably many people confronted with inaccuracy problems have used
similar tricks at this time� but very few of them were published� if any�

The �D graphic editor used Bentley and Ottman�s method to compute the intersection points between
the data segments� First the coordinates of the initial vertices were rounded on integers in the range
� to G ��� ���� it was not a problem for the application� Thus equations of straight lines could also
be stored in � int �machine integer�� ��� �� �� such that j�j � G� j�j � G and j�j � �G�� a trivial
consequence of formula � in section ���� The intersection points between segments �x �x

� � y �y
� �

could be represented �assuming w�l�o�g� that ! � �� by an int tuple �xe
�
�x
�

�
� xr !xmod!� ye j

�y
�

k
� yr !y mod !�!�� it is easy to see that � � xe� ye � G� and that � � xr� yr � ! � �G��

Some temporarily required values� such as !x or !y� could exceed the maximum int value� but these
computations were exactly performed using double numbers� their mantissa is long enough to store the
met integers� A �nal trick was used to compare and sort these coordinates� the comparison of the two
rational numbers a

b
and c

d
� with � � a � b and � � c � d� cannot reduce to the comparison of ac and bd�

since in some cases� these values were too large to be exactly represented by int� or even by the mantissa
of double numbers� Using a simultaneous continuous fraction expansion of a

b
and c

d
� it is possible to say

that �
Mic��� pp ����

order�
a

b
�
c

d
� order�

d

c
�
b

a
� order�

�
d

c

�
�
dmod c

c
�

�
b

a

�
�
bmod a

a
�

If
�
d
c

� � �
b
a

�
� then�

order�
a

b
�
c

d
� order�

�
d

c

�
�

�
b

a

�
�

otherwise�

order�
a

b
�
c

d
� order�

dmod c

c
�
bmod a

a
�

Since c � d and a � b� the recursion eventually terminates� For instance�

order�
�

�
�
�

��
� order�

��

�
�
�

�
� order�� �

�

�
� � �

�

�
� order�

�

�
�
�

�
�

 order�
�

�
�
�

�
� order�� �

�

�
� � �

�

�
� order��� �� smaller

Despite its interests� the limitations of such tricks are obvious� It cannot work on �D or beyond because
the computation depth increases� involved numbers become too big to be exactly representable by
machine numbers� For the same reason� algorithms cannot be reentrant�

Remark� obviously� the trick for the comparison can be used to compute the sign of the determinant���� a c
b d

����� This idea has since be used and extended to � by � determinants with integer entries by F�
Avnaim� J�D� Boissonnat� O� Devillers� F�P� Preparata and M� Yvinec
ABD����� K�L� Clarkson
Cla���
has also used ideas from lattice reduction for computing the sign of a n by n determinant� The possibility
to compute the sign of a determinant signi�cantly more quickly than its exact value has remained unclear
so far� Note a lot of CG methods use only tests which may be formulated as a determinant sign in a
straightforward way �since all polynomial expression can be reformulated as a determinant� anyway$��

��

����� The LN library

S� Fortune and C� van Wyk proceed in two steps� First the program is pre�compiled and the minimum
number of digits needed for the exact arithmetic �the longest integer generated by the algorithm� knowing
the data range and the arithmetic expressions in the program� is determined� For each test in the
program� they automatically generate C�� code�

�� to compute the test in standard fp arithmetic� using references to original data only�

�� to test if fp value is greater than the maximum possible error for the expression�

�� �nally� to call the exact� long integer library to evaluate the expression�

Second� the program is then compiled and linked with the exact library� Note that every test must be
made with reference to original data� This permits a static �i�e� before running time� computation of
the maximum possible error for each expression when evaluated in fp arithmetic� so the error bound
has not to be computed at run time with intervals or whatever method� It speeds up execution� in
a remarkable fashion� but it is not always very convenient for the user
CM���� it forbids on�line and
reentrant algorithms� in which computation depth is not a priori known� and it causes a proliferation of
types� for instance input points and intersection points cannot be of the same type� this proliferation is
a programmer�s burden� and sometimes a compiler�s one�

����� The lazy arithmetic

The lazy arithmetic computes with lazy rational numbers� A lazy rational number is �rst represented by
an interval of two fp numbers� guaranteed to bracket the rational number� be it known �exactly evaluated�
or not� and then by a symbolic de�nition� to permit recovering the exact value of the underlying rational
number� if need be� The de�nition is either a standard representation of a rational number �for example
� arrays or lists of digits in some basis� for numerator and denominator�� or the sum or the product of
two other lazy numbers� or the reciprocal or opposite of another lazy number� Thus each lazy number is
the root of a tree� whose nodes are binary �sum or product� or unary �opposite or reciprocal� operators�
and whose leaves are usual rational numbers� actually� lazy numbers form a directed acyclic graph rather
than a tree� since any node or leaf may be shared� Each operation is generally performed in constant
time and space � a new cell is allocated for the number� its interval is computed from the intervals of the
operand�s�� and the de�nition �eld is �lled �operation type� and pointers to the operand�s��� Intervals are
more often than not su	cient during computations� the only cases in which they become insu	cient and
thus the de�nition has to be �evaluated� �i�e� with rational arithmetic� are � when one wants to compare
two lazy numbers the intervals of which overlap� when one wants a lazy number sign or reciprocal the
interval of which contains �� A possible evaluation method is the natural and recursive one� Using such
a lazy library is transparent� classical geometric methods need not to be modi�ed�

The lazy library also provides hashing of lazy numbers� Hashing techniques typically permit to recover
topologic data from numerical ones� for instance vertices from coordinates� Obviously this technique
needs to compute hash codes from numbers� Here we face a di	culty since the exact value of lazy
numbers is unknown� and approximations are not relevant to reliably compute hash keys� The solution
stems from modular arithmetic
MM��

Contrarily to LN� the lazy library is fully dynamic and so equally applies to on�line and reentrant
algorithms � the computation depth needs not to be known a priori� In compensation� LN when usable
should be faster than the lazy library�

My colleague J�M� Moreau would not forgive me if I did not mention that his constraint Delaunay
triangulation software �used in Geographic Information System�� using a reluctant arithmetic �a variant
of the lazy arithmetic� but in which laziness is managed by the programmer� not by a library� is less
than � times slower than the pure fp version� when the latter works of course�

��

��� Algebraic Arithmetics

����� Quadratic Arithmetic� with towers of extensions

In Fortune�s method
For���� one has to compare numbers of the form a�
p
b

c
� where a� b� c are integers�

It is possible to use repeated squarings� for this restricted case� This section presents a more general
quadratic arithmetic� which provides exact comparisons and operations� �� �� ��
 and

p
on non

negative numbers� starting from Q� As for an example� such an arithmetic� can be used to compute the
�D arrangement of a set of circles and lines� or the �D arrangement of a set of spheres and planes�

The idea is to compute in a tower of Real quadratic extensions K� Q� � � �Ki Ki���
p
�i��� where Ki

is an algebraic �and quadratic� extension over Ki��� and �i�� � Ki�� is Real and positive and has no
square roots in Ki��� It means Ki Ki���

p
�i��� is the set of the numbers u� v

p
�i��� with u and v

two elements of Ki��� in other words� these numbers are represented by a vector of two components� u�
v � Ki��� and Ki is represented by �i�� � Ki�� �which we already know how to represent� by induction�
and by some reference to Ki��� Operations in Ki straightforwardly reduce to operations in Ki���

�u� v
p
�i��� � �u

� � v�
p
�i��� �u� u�� � �v � v��

p
�i��

�u� v
p
�i���
 �u� � v�
p

�i��� �u
 u� � v
 v�
 �i��� � �u
 v� � u�
 v�
p
�i��

��u� v
p
�i��� ��u� � ��v�p�i��

�	�u� v
p
�i��� �u	
u

� � �i��
 v���� �v	
u� � �i��
 v���
p
�i��

Computing the sign of w u� v
p
�i�� � Ki also boils down to computations in Ki���

u � or v � � trivial

u � � and v � �� w � �

u � � and v � �� sign�w� sign�u� � v��i���

u � �� sign�w� �sign��w�

and in the end K� Q� where we know how to compute a sign� so the recursion eventually stops�

The last required operation is the square root in Ki� Assume w u � v
p
�i�� � Ki is positive� The

�rst thing is to test if w is a square in Ki� say the square of z � Ki with z x � y
p
�i�� � � with

x� y � Ki��� We suppose u and v do not vanish� because this case trivially reduces to the same problem
in Ki���

w u� v
p
�i�� �x� y

p
�i���

�

� u x� � �i��
 v� and v �
 x
 y

� x�
�

�

h
u�

p
u� � �i��
 v�

i
and v �
 x
 y

Thus w � Ki is a square in Ki i
 u
� � �i��
 v� is a square in Ki�� and if

�
�

h
u�

p
u� � �i��
 v�

i
or

�
�

h
u�

p
u� � �i��
 v�

i
is a square in Ki�� �Note that they cannot be both squares in Ki�� because

their product� �i��v
�

� is not a square in Ki����

Thus testing if w � Ki is a square in Ki reduces to computations in Ki��� in the end� testing if
w � K� Q is a square in Q is trivial� If w is a square in Ki� the method also gives its positive square
root x � y

p
�i��� When w � Ki is not a square in Ki� we have to de�ne the quadratic extension of Ki

which contains the square root of w� call this extension Ki�� Ki�
p
w�� In particular� the coordinates

of
p
w in Ki�� are� �� � Ki� � � Ki��

�I have implemented this arithmetic in Lisp and for fun� but not tested it inside a geometric algorithm�

��

For conciseness� this section has only presented the exact part� However several optimizations are
possible� postponing exact computations in the lazy way by using intervals bracketing numbers� managing
several towers �to reduce their depth and thus the complexity of computation� of extensions and waiting
lazily for a collision before merging them� etc� Of course� in the worst case� the complexity is still
exponential� a number in Kn is represented by �n rational numbers�

����� A gap quadratic arithmetic

Gap arithmetics have been proposed by J�W� Hong
Hon��� and by J� Canny
Can��� �see section �����
in the Symbolic and Algebraic Computation �eld� Then T� Dub�e and C�K� Yap
DY��� have used this
scheme for a Real quadratic arithmetic� which supplies the usual rational operations ��� ��
� �� and
comparisons� plus the square root of non negative numbers� starting from Q�

The main idea of gap arithmetic is to maintain an upper bound of the size of an exact and virtual
representation for each number� virtual meaning that this exact representation is not computed� From
this bound for any number z� it must be possible to e
ectively deduce a gap �z such that� jzj � �z �
z �� Thus an accurate enough approximation of the number z� i�e� a braketing interval
a� b� with
��z � a � � � b � �z� proves z is zero� Otherwise� when the interval does not contain �� the sign of z is
trivially known�

As an example� a gap arithmetic is possible in the rational case� i�e� when only rational numbers and
operations are used� The idea is to maintain for each met rational number x upper bounds for the digit
number in of its denominator� d�x�� and numerator� n�x�� for a given base� possibly B �� These upper
bounds are known for the input numbers� and they are computed as follow for x� y� xy� �	x and �x�
without explicitly computing the exact rational form�

n�x� y� � �max�n�x� � d�y�� n�y� � d�x��� d�x� y� d�x� � d�y�
n�x
 y� n�x� � n�y�� d�x
 y� d�x� � d�y�
n��	x� d�x�� d��	x� n�x�
n��x� n�x�� d��x� d�x�

Now� to know if a number x vanishes� just compute a good enough approximation x� of x� by using some
�possibly on�line� big�oat library� the smallest �in absolute value� non�zero rational number� having
denominator with at most d�x� digits in base B� is��x with �x �

Bd�x��� � Thus x vanishes i
 x ����x� �x
�
or more conveniently when x �
�B�d�x
� B�d�x
�� Optimization� when a number appears to be �� its
�elds n and d� and the ones of its dependent numbers can be strengthened on�the��y�

Dub�e and Yap�s gap quadratic arithmetic uses Cauchy�s bound� which says that�

j�j � �

� � h

in which h is the height� or a height bound� of the �non vanishing� algebraic number �� This theorem
gives the required gap� The height of � is the biggest absolute value in the coe	cients of � minimal
polynomial� a characteristic polynomial of � has � as a root� the monic characteristic polynomial with
lowest degree is the minimal polynomial� it gives � height� Characteristic but non minimal polynomials
give upper bounds of the height� Characteristic polynomials are the exact and virtual representation
used� Note Loos
Loo��� also uses in a concrete way this representation� he e
ectively computes these
characteristic polynomials�

Thus Dub�e and Yap�s arithmetic has to maintain a bound for each number height� it turns out that
bounding the degree of the characteristic polynomials is required as well� Polynomials characterizing
���� �
� are computable �they are not computed� it is the virtual representation� from the polynomials
of � and of �� using Sylvester�s resultant� the resultant degree is bounded by the product of the degrees
in both polynomials� and the magnitude of its coe	cients are bounded using a generalized Hadamard�s

��

bound� of course� the heights exponentially increase� See
DY��� for details� Bounding degree and height
is easy for unary operations� �

�
�height and degree are unchanged� and

p
� �height is unchanged� degree

is multiplied by ��� and for the rational numbers of the basic case�

As usual� numbers are represented by a de�nition tree� like in the lazy arithmetic� except that a new
kind of node is used for the square root� Each number comes associated with a bound of its height and
degree� and a bracketing interval� The leaves carry rational numbers� This DAG arises as a basic data
structure in Exact Computation Paradigm� it is also more and more used in Symbolic Computation�
where it is called a �Straight Line Program��

To compute the sign of a number � with height h�� when the available interval is insu	cient� an
approximation accurate to ��

�
��h�

has to be computed� Several ways are possible� Yap and Dub�e have
chosen to propagate the required accuracy from the root down to the leaves� Then the computations are
performed upwards using a big�oat library� Another way would be to use an on�line arithmetic� which
represent numbers by a �potentially in�nite� stream of digits and in a redundant way �i�e� digits can
take negative value�
Vui��� BCRO��� Wie��� MM��� Sch���� This has the advantage that computations
can be stopped as soon as the sign is known� However� on�line arithmetic performances have been
disappointing so far �conclusion in
MM����� this �eld still being in its infancy�

Dub�e and Yap have experimented their gap arithmetic on Fortune�s algorithm
For��� with rather en�
couraging results� better than the repeated squaring method� However the depth of computation is very
low in this case� which hide the e
ects of the bound overestimation in the gap arithmetic� For instance�
the latter is constrained to suppose the degree of a product� a sum or a di
erence is always the product
of the degrees of the operands� which is the worst case� In other words� a gap arithmetic cannot detect
simpli�cation �except when a number turns out to be zero�� The previous representation �see section
������� or the D� representation �see below� have not this drawback�

����� The D� representation of algebraic numbers

The nameD�
Duv��� stems from the names of its authors� J� Della Dora� C� Dicrescenzo and Dominique
Duval� D� represents algebraic numbers in the unordered case� i�e� it does not permit to sort numbers�
it can decide equality� but not the �� �� � and � comparisons� In other words� it does not distinct
between conjugate algebraic numbers� like

p
� and �p�� Using isolating intervals and interval arithmetic

are the most obvious and easy way to overcome this limitation�

Let K be our �ground�eld�� i�e� a computable sub�eld of C � computable means that we know how to
perform the operations� �� ��
� �� and � Initially� and typically�K Q� Let � be a complex number
characterized as a root of ��x� �� in which � � K
X�� i�e� � is a polynomial with coe	cients in K� �
does not have to be the minimal polynomial of �� actually � can even belong to K� It turns out to be the
main feature of D�� However it is a convenient and cheap way to ensure � is square�free �a polynomial
is square�free i
 it has no multiple root� i�e� gcd��� ��� has degree ���

ThenK��� is also computable� K��� is the set of the numbers a A���� where A � K
�� are polynomials
in � with coe	cients in K� Their degree can be made strictly smaller than the degree of �� if by the
euclidean division A�x� Q�x���x��R�x� %here degree�R��degree���% then a A��� Q��������
R��� R���� From now on� assume the polynomials of K��� are in this reduced form� Assuming
a A���� b B���� the sum� product and inverse in K��� are computed as follows �P modulo � is the
remainder of P in the euclidean division of P by ���

a� b A��� � B��� �A �B����

a
 b A���
 B��� �AB modulo �����

�

a A���

U ���A��� � V �������

A���

U ���A���

A���
 U ��� when a � �

��

in which U and V in the last rule follow from Bezout�s equality� since a � �� A and � are coprime�
as proved just below �&�� Then after Bezout�s theorem� there exist U and V such that U �x�A�x� �
V �x���x� �� The subresultant PRS algorithm
Knu��� is a good way to compute U and V �

The last thing to prove K��� is computable is the computability of the equality test between two numbers
b B��� and c C���� which boils down to the nullity test of their di
erence a b � c A���� If �
was irreducible� A��� � would be equivalent for A to be identically null� but it is not always the case�
and a can be zero without A being identically null�

But a A��� � and ���� � imply that � is a common root of A and �� i�e� a root of the greatest
common divisor of A and �� namely G gcd�A� ��� which is computed only with operations in K
�and the ground�eld K is computable�� Let � G
 ��� If the degree of G is zero� then A��� � ��
Otherwise� since ���� G�������� �� either � is a root of G� so as a A��� vanishes� or � is a root
of �� and a does not vanish� There is no way for D� to choose between these two possibilities� thus it
makes a �splitting� and continues the forthcoming computations in both branches of the splitting� in
the �rst branch� a � and � is now characterized by the polynomial G� in the second� a � �� � is now
characterized by ��� and a is represented by a �A modulo ������� Note that �� �the new �� and A are
coprime� thus �� and A modulo �� �the new A representing a� a �A modulo ������� are also coprime�
as previously promised in �&��

Here� we will di
er from D� not using a splitting� we can distinct between the two cases by using
separating intervals� a � i
 degree�G�� � and the interval that isolates a contains �� Intervals that
isolate roots are classically computed with well�known Sturm�s sequences� requiring only operations in
the ground�eld K�

We have proved that K��� is computable� A last thing we have to manage is the occurrence of new
numbers� say �� de�ned� this time� by an equation� ���� � with coe	cients in K���� All we have to
do is to compute in �K���� ���� in the same way as before� in other words� K���� which is computable�
is our new ground�eld� Thus if an algebraic system is available in a triangulated form� f����� ��
f����� ��� �� � � � fn���� ��� � � ��n� �� D� permits exact computations with its roots� We will see
in Section ����� that Gr�obner�s bases can provide such a triangulated form� GCD computations and
resultants are other possible methods�

The main superiority of D� over other representations �for instance� Loos� representation
Loo����� and
its elegance� is that K��� need not be irreducible� which avoids very costly factorizations� Instead� D�

quietly and lazily waits for some simple gcd computation to detect the simpli�cation� if need be�

Remark� D� is not only a representation for algebraic numbers but a way to �compute with parameters�
submitted to algebraic constraints
DD��� GD���� for instance to compute with � and � such that
�� � �� � � �� here there is not a �nite set of possible values for � and �� Finally� it is possible to
extend D� for the Real ordered case� i�e� to provide comparisons� �� �� �� �� However this extension
�using for instance Thom�s lemma and the like� will be too complex and slow for our restricted need of
representing algebraic numbers� isolating intervals seem much simpler and faster�

Up to now� D� has not been used for CG� UsingD� just as a representation for algebraic numbers permits
several optimizations� using bracketing intervals to postpone exact D� computations like in lazy rational
arithmetic� handling several towers of computable �elds to decrease the computation depth �since in CG�
we generally face a lot of small computation trees� rather than a few high trees�� and the like�

����� Gr�obner�s bases

In a nutshell� Gr�obner�s bases permit to exactly solve systems of algebraic equations� When there is a
�nite number of solutions� this method can express the system g��x�� � � �xn� g��x�� � � �xn� � � �
gn�x�� � � �xn� � in a triangulated form� f��x�� f��x�� x�� � � � fn�x�� x�� � � �xn� � in time roughly
dO�n
 �this counts the number of operations in the coe	cients �eld� typically Q� for a system of n
unknowns and n equations with degree not greater than d� From the triangulated form� it is then

��

possible to compute exactly with the roots� using D� �there are other solutions not relying on D�� but
refer to the specialized literature�� and to locate real roots in isolating intervals with Sturm�s sequences�
It is also possible to detect if one of the points �x�� � � �xn� ful�lls or not another given equation�

Applications in geometry are obvious� for instance it is possible to compute exactly the intersection
points between three real algebraic surfaces with known implicit equation� and to detect if some of these
points also lie on a fourth surface� Thus it is possible to compute exactly the �D arrangement of a set
of algebraic implicit surfaces�

The complexity for computing a Gr�obner�s basis� roughly dO�n
 is high but it is in some way almost
optimal� since a dense algebraic system �in n unknowns and n equations with degree not greater than
d� has O�dn� coe	cients� and since the output may also have this complexity� Anyway� the complexity

gets worse when there is an in�nite number of solutions � roughly dO�n�
�

In practice� Gr�obner�s bases are practicable for small systems with low degrees� To give an idea� com�
puting Gr�obner�s basis �with total degree ordering� of three polynomials in three variables with degree
d � � and coe	cient magnitude smaller than ���� takes a fraction of second with Mupad� on a standard
workstation� Gr�obner�s bases have already been used outside the Symbolic Computing �eld� in CAD�
CAM world� especially to solve little systems of geometric constraints
Kon���� It seems that until now
they have been used only as a library� a black box� this approach has the advantage of modularity and
simplicity� but its drawback� very poor performance� like na��vely replacing a fp arithmetic by an exact
rational one�

The exponential complexity of computing Gr�obner�s bases remains� which strongly and de�nitively re�
stricts the size of tractable problems� Thus the need for rounding �section �����

����� Exact Algebraic Arithmetic with Resultants

Very recently in CADCAM �eld� D� Manocha and some of his students
KKM��� have used an exact
algebraic arithmetic to reliably compute intersections between algebraic parameterized surfaces of low
degree ����� e�g� quadrics and torii�� It is probably the very �rst time that an exact algebraic arithmetic
has been used for this problem in CADCAM domain� They use Dixon�s resultants instead of Gr�obner�s
bases for Elimination� with Milne�s multivariate Sturm�s sequences in order to locate roots� A number of
improvementsmakes this approach practicable� for instance modular arithmetic speeds up the calculation
of resultant coe	cients� and intervals with rational endpoints that isolate roots are computed as lazily
as possible� For the moment� it is not clear that extensions to implicit surfaces and to higher standard
degrees are possible� due to the intrinsic exponential cost of the involved symbolic computations�

A solution is perhaps the sparse resultant �see
Emi��� for instance�� which exploits the sparsity of
algebraic systems� It is funny to see that computation of sparse resultant is a CG problem� involving
Minkowski�s sums about Newton�s polytopes�

��� Merging exact and non standard arithmetics

Another issue is the merging of exact arithmetics with non standard arithmetics� which compute with
in�nitely small or big numbers� they permit symbolic perturbations on the data� and remove degeneracies�
These non standard arithmetics are rare� people usually put forward e	ciency arguments to use only
a very restricted perturbation scheme� and not a general non standard arithmetic� however the latter
permits to treat degeneracies on the lowest level� that is to say the arithmetical level� This is the
most convenient for the programmer� Moreover� it works for all methods� generically� In other words it
de�nitively solves the robustness problem� But for the moment� the only general non�standard arithmetic
I am aware of
Mic��� uses only a usual �i�e� non lazy� rational arithmetic�

��

��� The rounding problem

The rounding problem has already been tackled
Hof��� MN��� BMP��� For���� but it seems people have
not yet realized all its possible consequences� notably that it may jeopardize classical methods or data
structures in CG� even in Exact Computation Paradigm�

����� Rounding is unavoidable

For CG methods to be used� we must provide interfaces between the �exact world� and the fp world� i�e�
fp geometric objects �possibly inconsistent� have to be converted into exact geometric objects� and exact
results have to be rounded on fp objects� It is the �rst reason why rounding operations are required�
There is a second one�

Scenes in Computer Graphics� and mechanical parts in CAGD are �nalized after many incremental
modi�cations� for instance� copy and paste� rotations� deformations� blending� boolean operations� In an
algebraic framework� these operations may theoretically be performed exactly� However such an approach
is untractable� because intrinsically exponential� First the number of incremental modi�cations in the
design process cannot be bounded a priori� Then� even trivial but essential operations like rotations by

 k
� k � Q introduce algebraic numbers cos
 and sin
� Moreover the involved polynomial degree
grows as an exponential function of computation depth �height of the DAG in sections ����� and �������
For instance the degree of the sum or the product of two algebraic numbers is already the product of
the operand degrees� though additions and multiplications seem so trivial that we take them for granted�
The size of the polynomial coe	cients also breaks through�

Rounding numerical data �vertices coordinates and coe	cients in surface equations� on integer� rational
or fp numbers is the only way to avoid the degree growth�

Most of the time� geometric modellers only use the fp arithmetic� which performs the rounding� Some
geometric modellers occasionally use exact computations and representations� typically to protect some
routine and data structures from the ravages of inaccuracy �say a routine computing Boolean Operations
over Boundary representations�� but they are obliged to use rounding� sooner or later� It means geometric
modellers do not� and cannot� use exact representations in a lasting way�

����� Rounding and consistency

Unfortunately� it is not a trivial task to round a geometric object while maintaining its topology� or at
least the consistency of its representation� For simplicity this article considers only rounding polyhedra�
say rounding algebraic polyhedra �i�e� with algebraic coordinates� to rational ones� or rational polyhedra
to fp ones�

Figure �� Rounding vertices may introduce self intersections�

Suppose we choose to round vertices �below we consider rounding face equations�� Vertices may be easily
rounded� just round each coordinate by using continued fraction expansions or some transformations like�

x� b�nxe
�n � But rounding independently each vertex destroys the geometric consistency� For instance

��

planar faces with more than � vertices are no longer planar after rounding� A solution is to handle only
triangular faces� consistency of faces is saved� though rounding still loses coplanarities� cocircularities �of
more than � vertices�� and collinearities �of more than � vertices�� Such losses are anyway unavoidable�
since some algebraic con�gurations are not realizable in the rational �eld� as the one in Fig� �� Of course�
the equation of the rounded planes must be re�computed from the coordinates of the rounded vertices�
and not by rounding plane equations� in order to preserve vertex�face incidences� The last di	culty is that
the rounding may introduce self�intersections� see Fig� �� Actually� V�J� Milenkovic and L�R� Nackmann

MN��� have proved that rounding polygons and polyhedra is NP�complete� Fortune�s solution
For���
is to accept self�intersecting polyhedra� As a consequence� the localization test is not based on parity
but on the winding number� Thus accounting for robustness substantially modi�es algorithms and data
structures�

Another approach rounds equations of the polyhedron faces� vertices being re�computed from the rounded
face planes� But the dual from the previous problem arises� rounding independently the equations of
n � � faces incident to a common vertex destroys the co�incidence� thus the topology is altered� Self
intersections may also be introduced�

The last approach represents polyhedra by a boolean formula on half linear spaces� i�e� by a CSG
tree with linear inequalities at leaves� This representation is implicit� vertices� incidence and neighbor�
hood relations are not explicitly known� but they can be computed �with a given accuracy� if need be�
Since this representation is not redundant� rounding is trivially achieved by rounding each inequality
independently� Of course� rounding may still modify the topology of the polyhedron� but it cannot in�
troduce inconsistencies in the representation� In fact� it is nothing else than Approximate Computation
Paradigm�

����� Exploiting discreteness

This section concludes with a more positive consequence of rounding� Since data are rounded on integers
�or rationals�� CG basically deals with discrete problems� not with continuous ones� CGers have exploited
this discreteness on the arithmetical level� for instance when computing the sign of determinants �see
Section ������� or when counting the required number of digits to exactly perform some computations�
Paradoxically� apart from some exceptions like interval trees and related methods� CGers have not
really exploited discreteness on the algorithmic level to compute say convex hulls� Vorono���s diagrams�
Delaunay�s triangulations� or intersections between polytopes�

This CG attitude with discreteness contrasts with Computer Graphics and CADCAM� where bucketing
techniques or spatial subdivision methods �see Section ��� for an example� are widely used� CGers do not
appreciate space subdivision methods� because they still assume a continuous model of space� with this
model� the subdivision depth cannot be bounded a priori� nor can be time and space requirements for
space subdivision methods� The CGers� attitude is a bit contradictory� since they exploit discreteness on
the arithmetic level� and at the algorithmic one� they assume continuity of space� Exploiting discreteness
on the algorithmic level is an open research area for CG� maybe a fertile one�

� �Approximate Computation Paradigm�

��� Outlines� Boundaries are a disease of intelligence

CADCAM community faces and is aware of the robustness problem since its birth� Engineers have �rst
believed that some tricks �the � heuristic� and careful programming� would be su	cient to solve the
problem� Now� a new tendency appears� since say the conferences CSG�� and CSG��
csg��� csg����
that promotes a more radical approach� I call it �Approximate Computation Paradigm�� in opposition to
Yap ' Dub�e�s �Exact Computation Paradigm�� The word �Approximate� has unfortunately a pejorative
connotation that Section � tries to correct�

��

Approximate Computation Paradigm states� algorithms or data structures that do not withstand in�
accuracy are in some way paranoiac and must be rejected� Thus methods from CG must be rejected�
they rely and thus depend on geometric consistencies and exact arithmetic� One must also get rid of
topology�based data structures� like Boundary Representations �BRep for short�� In a nutshell� BReps
explicitly handle representations for vertices� edges and surface patches� and all the topologic incidence
relations between them� they are very explicit but they rely on geometric consistencies and their re�
dundancy exposes them to inconsistencies and failures �does this vertex numerically lie on this surface
though it topologically does#�� In particular� we know that robustness is exceedingly di	cult to achieve
when performing boolean set operations between geometric objects represented by BReps� Note that
CG typically uses BReps� CG methods compute on boundaries�

This tendency promotes to base the geometric modellers on a �semantic� description of geometric objects�
a reference de�nition� the aim at this de�nition is not to speed up this or that geometric algorithm�
Typically this de�nition is a CSG representation �Section ���� or some variant of it�

Then this CSG representation is �evaluated� �to use the accepted word� when need be� with a given �but
�nite� accuracy� to produce a more explicit geometric representation� For instance interval analysis and
a spatial recursive subdivision �Section ��� � can enumerate the set of boxes or voxels �volume element�
which are strictly inside the object� or strictly outside� or which are cut by �or close to� the boundary�
Marching methods �Section ���� can approximately triangulate the object boundary� The ray casting
method �Section ���� displays the object de�ned by CSG representation� or samples it with an array or
parallel rays �Section ���� to obtain a �ray representation�� This last method can also account for non
pure CSG objects� like free form objects the boundary of which is made of sewn parameterized surface
patches�

After an evaluation� the designer corrects the CSG de�nition� and re�evaluates it� and so on� until
completion of the design process� Note CSG de�nition does not refer explicitly data structures produced
during the evaluations� thus possible inconsistencies in these data structures cannot contaminate CSG
de�nition� An additional guarantee�

��� CSG representation

CSG representations �Constructive Solid Geometry� describe objects in only an implicit way� by CSG
trees� A leaf of a CSG tree carries a primitive object� the set of points �x� y� z� verifying some �typically
algebraic� inequality f�x� y� z� � �� for instance a quadric� a torus or a more complicated object� A node
is either the union� the intersection or the di
erence between other CSG trees�

Mathematically speaking� a CSG is a semi�algebraic set� up to some regularization problems �is it
f�x� y� z� � � or f�x� y� z� � � #� which are not relevant here� Note in passing that Symbolic Com�
puting has proposed several methods to evaluate semi�algebraic sets� like Collins�s Cylindric Algebraic
Decomposition or more recent variants� but their cost is prohibitive �worse than exponential��

Thus the contour of the object represented by a CSG tree is not explicitly described� and it is not obvious
that a CSG tree does not describe only the empty set� contrarily to BReps� But there exist very robust
methods to display objects de�ned by CSG trees� to approximately triangulate them� or to discretize
them� they are presented in the next sections�

Two remarks�

	 A �syntaxically correct� CSG tree is a consistent one� in opposition to BReps� the consistency of which
is di	cult to prove and achieve�

	 The analogy between CSG trees� DAGs� and Straight Line Programs �more and more used in Symbolic
Computing� is noteworthy�

��

��� Interval Analysis and recursive subdivision of space

Interval Analysis
Kea��� can compute conservative bounds for a function range on an interval� for
instance for f�x �
x�� x��� y �
y�� y��� z �
z�� z��� in which f is a CSG leaf� When this bound does
not contain �� one knows whether the box
x�� x��

y�� y��

z�� z�� is inside or outside the primitive
object� Other more sophisticated tests
Sny��� from Interval Analysis detect if the box is cut by the
boundary �the surface having equation� f�x� y� z� ��� and if the latter is simple enough� This is so if�
for instance� for any given point x �
x�� x�� and y �
y�� y��� there is at most one z �
z�� z�� so that
�x� y� z� belongs to the surface having equation f�x� y� z� �� It is also possible to detect if a box contains
a single intersection curve between two surfaces� simple enough� or a regular intersection point between
three surfaces� In a cell containing a single surface �respectively a single intersection curve between two
surfaces�� it is also possible to bracket it between two �respectively four� planes�

Otherwise� but if the box is too small according to an a priori threshold� the box is divided in � or
� depending on the implementations� and the sub�boxes are studied the same way� Filiations between
boxes may be stored in an octree� Such a method �nd boxes strictly inside CSG object� strictly outside�
cut by a boundary in a simple way� or residual� Such residual boxes have smaller size than the prescribed
threshold� and they usually contain or are very close to singularities or near�singularities� The robustness
of this method may be obvious� SVLIS modeller
Bow��� uses such a method�

These methods can be used beyond R�� this �dimensionality paradigm� �the name is due to C�M�
Ho
mann
Hof���� has been exploited by J� Woodwark for Feature Recognition� by K�D� Wise and A�
Bowyer for Spatial Planning
WB���� by C�M� Ho
mann for Surface Interrogations
Hof����

To be a bit provocative� note this method can be used when the inequalities at the leaves of CSG tree
are linear� Moreover� for simplicity� we can impose never are there � planes crossing in the same point�
to avoid degeneracies� So we have a CG problem and we have a resolution method� with we can even
remove the condition restricting the boxes smallness� No doubt CGers will be very reluctant in front of
such a method� They will �nd it shocking that depth of the octree depends on the numeric complexity
of the plane equations� for a given structure of CSG tree� they consider coordinates belong to R� so it
is possible to have arbitrarily short or long distances between vertices� the ratios cannot be bounded a
priori� nor can be the depth and size of the octree� nor can be the memory space and time requirements
of the algorithm� In fact� as already pointed out in Section ������ this assumed continuity of space is
in contradiction with the exploitation of discreteness on the arithmetic level which is made by Exact
Computation Paradigm�

��� Marching methods

To approximately triangulate objects de�ned by CSG trees within a given tolerance � �see
PA��� in

csg����
TGP��� in
csg����� the space R� is �rst partitioned with a regular cubic lattice� sided �� Each
cube is then partitioned into tetrahedra� for all vertices v �x� y� z� of the lattice� the value of CSG tree
at v is computed� for a primitive described by an inequality f�x� y� z� � �� it is f�v�� for nodes A�B and
A � B� it is respectively max�A�v�� B�v�� and min�A�v�� B�v�� where A�v� and B�v� recursively stand
for the value of A and B CSG trees in point v� The object surface cut a given tetrahedron when the
values in the � vertices have opposite signs� These � values de�ne� by linear interpolation� a unique linear
map l�x� y� z� from R

� to R� and the plane l�x� y� z� � is considered as a good enough approximation
of the object contour inside the tetrahedron� it gives a triangle or a quadrilateral� The same is done for
all tetrahedra� This technique is illustrated in �D in Fig� ���

Marching methods are not sensitive to inaccuracy� in the worst cases� a vertex value is close to �� and
fp evaluations may yield a wrong sign for the value� but the only and immaterial consequence will be to
move the approximation surface a little�

The true object topology and the one of its linear piecewise approximation may be di
erent� Small
components� with size less than the threshold� can be missed� In the vicinity of singularities and quasi�
singularities of the true object boundary� the approximation remains manifold� CADCAM engineers

��

consider this �ltering as an advantage� a simpli�cation� Geometrically �in opposition to topologically��
the object and its approximation are close� up to ��

Figure ��� A �D curve and its piecewise linear approximation� The topology may be di
erent� and some
small components of the Real curve may be forgotten� But this technique is perfectly robust�

Of course� it is better to use some optimizations not to consider all lattice cells� like some interval
computations
dFS��� Tau���� or like using continuity� once a starting tetrahedron crossed by the surface
is known� the sides by which the contour surface leaves the tetrahedron are easily computed and the
contour surface is then followed in the neighboring tetrahedron� It is also possible to approximate better
the intersection curve between two surfaces in a cell� All the variants and optimizations are beyond the
scope of this article� the main thing being marching methods reliability is preserved�

Thus an approximate BRep �and all its precious informations� can be obtained from a CSG tree� without
having to perform boolean set operations on BReps� which is a very unreliable process�

Remark� it is possible to go further and to question the need for a BRep� why not stopping at the
discretization step#� as Section ��� argues�

��� Ray casting methods

Pictures are described in Computer Graphics with �D arrays of points� the so�called �pixels�� a shortcut
for �picture elements�� To compute such a picture of an object described by a CSG tree� ray casting
methods compute which one of the objects is seen in each pixel� The eye location and the point to be
computed de�ne a half straight line� the ray� whose intersection with the scene has to be computed�
When the object is a primitive f�x� y� z� � �� in which f is typically a polynomial in x� y� z� this problem
boils down to the resolution of an algebraic equation in t� just replace x� y� z in f�x� y� z� � by
x xe � at� y ye � bt� z ze � ct� �xe� ye� ze� being the eye location and �a� b� c� the ray support
vector� The numeric resolution of the resulting equation� F �t� � yields the intersection� a set of
intervals
t�� t���
t�� t�� � � � along the ray� with � � t� � t� � t� � t� � � �� When the object is a boolean
combination� A � B for instance� just recursively compute the ray intersection with subtrees A and B�
so to give two resulting sets of intervals A�� and B��� then calculate A�� �B�� � a trivial merge�

The di	cult part is the numeric resolution of F �t� �� by interval analysis
Kea��� or whatever numerical
methods� Obviously fp and interval arithmetics cannot reliably decide in some ambiguous intervals� for
instance they cannot distinct between the � cases in �gure ��� Idem for the � cases in �gure ��� However�

��

Figure ��� fp or interval arithmetic cannot distinct these � cases� when the polynomial is tangent� or
almost tangent� to the x axis� But a confusion does not matter� since in all these cases� the number of
roots is even�

the main thing is not to make a mistake on the parity of the number of roots in such ambiguous intervals�
that is to say not to confuse a case in �gure �� �even parity� with one in �gure �� �odd parity�� It is
easily achieved�

Figure ��� fp or interval arithmetic cannot distinct these � cases� when the polynomial is tangent� or
almost tangent� to the x axis� But a confusion does not matter� since in all these cases� the number of
roots is odd�

Assuming the parity is correct� mistakes have immaterial consequences on the �nal picture since they
occur only when the ray is tangent or almost tangent to a surface� Thus the only e
ect is to move slightly
and locally the object outline� Useless to indicate� a ray tracer never crashes due to these numerical
errors� and mistakes are not propagated from pixels to pixels� This robustness against errors contrasts
with the CG methods behaviour�

When the list of intervals is stored for each pixel� one gets the �ray representation�� the object has been
sampled by an array of parallel lines� This ray representation permits to measure approximately the
mass� the inerty� the area� the volume� the gravity center and so on
Pri����

��� Ray	representations

For a couple of years� ray representations �rayreps for short� are fashionable data structures in CADCAM

MMZ��� MV��� Pri��� BM��� due to their simplicity� versatility and robustness� A rayrep can be
computed by any visualization method� for instance ray tracing or the well�known Z�bu
er
FvDF�����
or by merging two other rayreps with the same family of rays� It is possible to compute this way boolean
operations between two rayreps �which have possibly been computed with di
erent methods�� Finally�
to account for a new kind of geometric object� it su	ces to implement the corresponding visualization
routine�

An inconvenient of rayreps is its anisotropy� surfaces parallel or nearly parallel to the ray direction are
less sampled than the ones perpendicular or nearly perpendicular to the ray direction� The obvious
solution is to use a triple rayrep� i�e� three rayreps with three orthogonal ray directions� like Ox� Oy
and Oz� A triple rayrep induces a regular cubic lattice in which a marching method can then built an
approximate triangulation of the boundary� Here again� an approximate BRep can be safely obtained

��

from a CSG tree� without unreliable computations of boolean operations over BReps� See
BM��� for
more�

Moreover� triple rayreps make it possible to account for �sculptured solids� �see next paragraph�� con�
trarily to marching and recursive space subdivision methods presented in Section ��� and ����

The major part of commercial CADCAM softwares are based on free form surfaces� these surfaces are
described by parameterized patches� x X�u� v�� y Y �u� v�� z Z�u� v� in which u� v �
�� ���

and X� Y � Z are polynomials or rational functions� not by the implicit form� f�x� y� z� � � in CSG
representation� Note parameterized formulation describes only a surface� not a solid� thus the designer
has to sew together these surfaces very carefully to obtain the boundary of a consistent solid which is
called a �sculptured solid�� Sculptured solids cannot be described by CSG trees �in the original version�
and they are not compatible with the marching and recursive space subdivision methods� since the
implicit form f�x� y� z� � � is not available�

Fortunately� triple rayreps solve the problem
BM���� The idea is to accept at the leaves of CSG trees
a new kind of primitives� sculptured solids� Then all you need to built a triple rayrep is a method to
display such sculptured solids� ray casting is a possible one� though it is slow� A second is the well�known
and fast Z�bu
er method�

��
 Discretization

Boundary representations are basically used to �evaluate� more or less accurately the boundary of a
CSG object� However they are not the only possible way� just the usual one� due to the CADCAM
history� Discretization is another solution� the space is represented by a �D array of points� the so�called
�voxels�� a shortcut for �volume elements�� This discrete representation makes trivial the most frequent
geometric problems �estimating mass properties� interference detection� boolean operation� etc� and it
virtually removes the inaccuracy problem�

Nowadays� Computer Tomography and Magnetic Resonance Imaging make it possible to acquire such
image data in �D� At the other end� from such a voxel�based representation� Rapid Prototyping
SBE���
can produce real tactile plastic prototypes for manufacturers� chemists or biologists with �printing in
�D�� i�e� with stereolithography� The stereolithography apparatus builds the prototype slice by slice�
laying down a thin layer �between ��� and ��� millimeters� of liquid resin on the previous slice� instantly
curing it into solid plastic� and starting again� Moreover� at this level of precision� the voxel�based
representation is also the most precise one� this is in contrast with the not that old reluctance of some
theorists for this discrete representation� which they considered as a trivial and very rough approximation
of �exact� CSG models� Last� the voxel�based representation is always the simplest one� obviously�

It is worth comparing the history of space representation with the one of pictures� In the beginning of
Computer Graphics and CADCAM� more than twenty years ago� pictures were usually not represented
by discrete representations� i�e� �D arrays of pixels� but by BReps� because discrete representations were
too cumbersome at this time� and available devices only provided wire frame display for which BReps
are best suited� Related algorithms� for removing hidden parts for instance� already had trouble with
inaccuracy� Nowaday� pictures are represented by discrete representations� and everybody has forgotten
these algorithms and their inaccuracy problems� One can wonder if� similarly� the time has not come
for discrete representations of space to supplant boundary representations of solids� and to remove the
inaccuracy problem in geometric computations�

For the moment� some technical facts or habits delay this mutation� for instance� graphic workstations
are mainly built for displaying polygons in real time� not array of voxels or CSG trees� Finite Element
methods are often based on BReps for their geometrical part�

��

� Some clari�cations

��� Accuracy vs Exactness

The word �Approximate� sounds unfortunately pejorative and this clari�cation may be useful� If purely
mathematical problems like automatic theorem proving require exactness� applications in CADCAM�
Computer Graphics� Medicine� Physics only need accurate enough approximations� In such �elds� data
themselves are approximate� and at the other end the computed results are materialized only up to some
tolerance� for instance in the CADCAM world� milling machines are not perfectly exact� Thus it makes
no sense to compute results more precise than data� and a forti�ori to compute exact results� Here
exactness is mostly illusory�

Symmetrically� with Exact Computation Paradigm� exactness does not mean data structures in the
computer are an exact representation of the corresponding object in the real world� For instance� �exact�
polytopes of CG are only approximations for geometric objects in the real world� In the same way�
algebraic surfaces used in Computer Graphics are only approximations for natural objects or livings
�what could be the algebraic surface describing a pear boundary#�� Even algebraic surfaces used in
CADCAM are only approximations �accurate and convenient� of course� for machined mechanical parts
� it is the basis of the so�called tolerancing problem� In Exact Computation Paradigm� exactness only
means that results are exactly computed from data� which are anyway approximate� it is just a way to
achieve consistency� Moreover� there is the rounding problem�

As an aside� F� Chaitin�Chatelin
CC��� recently argues that� in Physics �the inaccuracy problem touches
almost every scienti�c computing �eld�� the exact solution of a single simulation may be less signi�cant
than samples of wrong fp ones� This is the �Qualitative Computing Paradigm�� To quote F� Chatin�
Chatelin� �Because no equation is exact in the real world� computer simulations can be closer to the
physical reality of unstable processes than exact computation��

��� About the classi�cation

This paper has classi�ed the existing approaches to achieve robustness into three groups� heuristic�
exact� and approximate approaches� Roughly� the �rst class� heuristic approaches� groups together the
empirical techniques engineers have found to avoid the more frequent inconsistencies� The second class�
the Exact Computation Paradigm� groups together methods using �requiring� exact computations in
order to work� i�e� roughly CG methods and methods handling Boundary Representations� this scheme
is probably the only solution to save these methods from inconsistency� The third class� the Approximate
Computation Paradigm� groups together the reliable methods which computer scientists� especially in
the CADCAM �eld� have recently proposed to bypass the inaccuracy problem� these methods don�t need
exact computations� This classi�cation is convenient but things are not so simple�

As already pointed out� classifying the �Fuzzy Boundary� approach as an heuristic method and not as an
approximate one is questionable� Moreover� a lot of hybrid methods mixing exactness and approximations
can be imagined� For instance to approximately evaluate the boundary of a CSG object� it is possible
to �rst approximate the CSG primitives with polyhedra� then to compute the boolean operations on
these polyhedra� Robustness is then achieved thanks to Exact Computation Paradigm� polyhedra are
rounded into say rational polyhedra �with triangular faces and rational coordinates for vertices�� then
exact computations avoid inconsistencies� Another hybrid method is to use exact computation in a
marching method �Section ����� the values at the lattice vertices are rounded on rational numbers� then
the Exact Computation Paradigm is used to obtain a consistent and �exact� triangulation�

	 Conclusions

This paper has shown how crucial for geometric computations the inaccuracy issue is� Some examples
have shown the speci�city of geometric computations� the fact that below geometry lay deeper combina�

��

torial structures� the non�respect of which lead to topological inconsistencies and running time crashes�
This paper has surveyed the most typical proposed approaches to overcome inaccuracy problems� Main
conclusions are�

	 It is sure that arithmetic issues �inaccuracies and degeneracies� are the current crucial challenge for
CG �eld� As long as the robustness problem is not solved� CG will not apply to problems in the real
world� and it will stay a theoretical �eld� its algorithms and data structures will not be used�

	 Though there is no formal proof� there is more and more agreement that the classical algorithms from
CG� and geometric methods working on Boundary Representations� cannot achieve a perfect robustness
without exact computations� Exact computations do not mean all computations must be done exactly�
it means all test decisions must be exact� This is the �Exact Computation Paradigm��

	 For algebraic problems� the Exact Computation Paradigm is today an emerging �eld� it is very probably
a fertile research area�

	 For linear problems� i�e� when a rational arithmetic is su	cient� Exact Computation Paradigm has
proved to be feasible� However�

	 Exact �rational or algebraic� computations can only be used temporarily� typically to protect some
routines against inaccuracy and inconsistency� rounding steps are sooner or later unavoidable� since
they are the only way to stop the exponential growth in the algebraic complexity� Rounding geometric
objects without modifying their topology is NP�complete� thus geometers are obliged to use rounding
operations which may modify the topology and introduce self�intersections� Thus� even with the Exact
Computation Paradigm� data structures and algorithms have to be modi�ed to account for the need of
rounding operations�

	With Exact Computation Paradigm� CG basically deals with discrete problems� Discreteness has been
mainly exploited on the arithmetic level� but not really on the algorithmic one� Exploiting discreteness
on the algorithmic level is an open research area for CG�

	Robustness is possible without exact computations� This is the �ApproximateComputation Paradigm��
It is more and more used in CADCAM and Computer Graphics� This approach rejects non reliable
methods and data structures� not robust enough against inaccuracy� namely methods exploiting� relying
and depending on geometric consistencies and thus requiring exact computations� This includes CG
methods and Boundary Representations� It is a complete review since classical CADCAM modellers are
based on Boundary Representations�

	 The last approach dealing with robustness issue is Discrete Geometry� This paper has shown than CG
problems are not so far from Discrete Geometry�

	Whatever the used paradigm� Exact or Approximate� the robustness issue has to be accounted for at the
very �rst start when designing geometric methods� data structures and modellers� they are profoundly
modi�ed�

References

�ABD���� F� Avnaim� J�D� Boissonnat� O� Devillers� F�P� Preparata� and M� Yvinec� Evaluation of a new
method to compute signs of determinants� In Proceedings of the 		th Symposium on Compututational
Geometry� pages C�	
C��� ACM Press� �����

�AR��� A� Agrawal and A�G� Requicha� A paradigm for the robust design of algorithms for geometric
modeling� Computer Graphics Forum
EUROGRAPHICS��
�� �
�
��C

C
��� �����

�BCRO�	� H��J� Boehm� R� Cartwright� M� Riggle� and M�J� O�Donnell� Exact real arithmetic� a case study in
higher order programming� In Proc� ACM Conference on Lisp and Functional Programming� pages
�	�
��
� ���	�

��

�BJMM�
� M�O� Benouamer� P� Jaillon� D� Michelucci� and J�M� Moreau� A lazy arithmetic library� In Proceed�
ings of the IEEE 		th Symposium on Computer Arithmetic� pages ���
�	�� Windsor� Ontario� June

��July �� ���
�

�BJMM��� M�O Benouamer� P� Jaillon� D� Michelucci� and J�M� Moreau� Hashing lazy numbers� Computing�
�
�

������
���� �����

�BM��� M�O� Benouamer and D� Michelucci� Bridging the gap between csg and brep via a triple ray represen�
tation� In Proceedings of the Symposium on Solid Modeling Foundations and CAD�CAM Applications�
May �����

�BMP��� M�O Benouamer� D� Michelucci� and B� P�eroche� Error�free boundary evaluation based on a lazy
rational arithmetic� a detailed implementation� Computer�Aided Design� �	�	����

��	� June �����

�Bow��� A� Bowyer� SVLIS � Introduction and User Manual� Information Geometers Ltd� �� Stockers Avenue�
Winchester� SO�� �LB� UK� second edition� �����

�BPR�	� S� Basu� R� Pollack� and M�F� Roy� On the combinatorial and algebraic complexity of quanti�er
elimination� Journal of the ACM� �
�	������
����� november ���	�

�Can��� J� Canny� The complexity of robot motion planning� M�I�T� Press� Cambridge� Mass�� �����

�CC�	� F� Chaitin�Chatelin� Is �nite precision arithmetic useful for physics � Journal of Universal Computer
Science� �����
��

��� May ���	� http���www�iicm�edu�jucs�

�Cla��� K�L� Clarkson� Safe and e�ective determinant evaluation� IEEE Foundations of Computer Science�

�
��

��� �����

�CM�
� J�D� Chang and V� Milenkovic� An experiment using ln for exact geometry computations� In Proceed�
ings of the �th Canadian Conference on Computational Geometry� pages 	�
��� Waterloo� Canada�
August ���� ���
�

�csg��� CSG�
� Set Theoretic Solid Modelling Techniques and Applications� Information Geometers Ltd�
�� Stockers Avenue� Winchester� SO�� �LB� UK� ����� Proceedings of the CSG �� Conference�
Winchester� UK� �
��� april �����

�csg�	� CSG��� Set Theoretic Solid Modelling Techniques and Applications� Information Geometers Ltd�
�� Stockers Avenue� Winchester� SO�� �LB� UK� ���	� Proceedings of the CSG �	 Conference�
Winchester� UK� ����� april ���	�

�DD�
� D� Duval and T� Gomez Diaz� A lazy method for triangularizing polynomial systems� In SEA ���
nov� ���
�

�dFS��� L�H� de Figueiredo and J� Stol�� Adaptive enumeration of implicit surfaces with a�ne arithmetic�
In Proceedings Eurographics Workshop on Implicit Surfaces� pages �	�
���� INRIA� �����

�Duv��� D� Duval� Handling algebraic numbers in computer algebra� In ISSAC���� �����

�DY��� T� Dub�e and C�K� Yap� The exact computation paradigm� In �nd Edition Du andHwang� World
Scienti�c Press� editor� Computing in Euclidean Geometry� �����

�EC��� I� Emiris and J� Canny� An e�cient approach to removing geometric degeneracies� In Proc� �th ACM
Symp� on Comp� Geometry� pages ��
��� Berlin� Germany� �����

�EM��� H� Edelsbrunner and E�P� M�ucke� Simulation of simplicity� a technique to cope with degenerate
cases in geometric algorithms� ACM Trans� Graph� ��		
���� �����

�Emi��� I�Z� Emiris� Sparse Elimination and Applications in Kinematics� PhD thesis� Computer Science
Division� Dept� of Electrical Engineering and Computer Science� University of California� Berkeley�
December �����

�EY��� L�W� Ericson and C�K� Yap� The design of linetool a geometric editor� In Symposium on Computa�
tional Geometry� pages �

��� �����

�For��� S� Fortune� A sweep�line algorithm for Voronoi diagrams� Algorithmica� ����

���� �����

�For��� S� Fortune� Polyhedral modelling with exact arithmetic� In Proceedings of the Symposium on Solid
Modeling Foundations and CAD�CAM Applications� pages ���
�

� May �����

�FvDF���� James D� Foley� A� van Dam� Steven K� Feiner� John F� Hughes� and Richard L� Phillips� Introduction
to Computer Graphics� Addison�Wesley� Reading� Mass�� �����

��

�FVW�
� S� Fortune and C� Van Wyk� E�cient exact arithmetic for computational geometry� In Proceedings
of the �th ACM Symposium on Computational Geometry� pages �	

���� San Diego� May ���
�

�GD��� T� Gomez�Diaz� Quelques applications de l��evaluation dynamique� PhD thesis� Universit�e de Limoges�
janvier �����

�GHPT��� M� Gangnet� J�C� Herv�e� T� Pudet� and J�M� Van Thong� Incremental computation of planar maps�
ACM Computer Graphics
SIGGRAPH ���� �
�
��
��

��� July �����

�GM��� M� Gangnet and D� Michelucci� Un outil graphique interactif� In Proceedings of MICAD �
� pages
��
���� Herm�es� Feb��Mar �����

�Gr�u	�� B� Gr�unbaum� Convex polytopes� London Interscience� ��	��

�GT��� M� Gangnet and J�M� Van Thong� Robust boolean operations on �d paths� In Proceedings of
COMPUGRAPHICS�	� volume �� pages �
�
��
� Sesimbra� Portugal� �����

�Hof��� C� M� Ho�mann� Geometric and Solid Modeling� An Introduction� Morgan Kaufmann� �����

�Hof��� C�M� Ho�mann� A dimensionality paradigm for surface interrogations� IEEE Computer Aided Geo�
metric Design� �����
�
�� �����

�Hon�	� J�W� Hong� Proving by example and gap theorem� In IEEE Computer Society Press� editor� ��th
symposium on Foundations of computer science� pages ���
��	� Toronto� Ontario� ���	�

�HPY�	� C��Y� Hu� N� Patrikalakis� and X� Ye� Robust interval solid modelling� part �� Representations� part
�� Boundary evaluation� CAD� ����������
���� ���
�
�� ���	�

�IS��� M� Iri and K� Sugihara� Construction of the Voronoi diagram for one million generators in single�
precision arithmetic� In Proceedings of the 	st Canadian Conference on Computational Geometry�
Montr�eal� �����

�Jac��� D� Jackson� Boundary representation modelling with local tolerances� In Proceedings of the Sympo�
sium on Solid Modeling Foundations and CAD�CAM Applications� pages ���
��
� �����

�Jus��� N�P� Juster� Modelling and representation of dimensions and tolerances� a survey� CAD� ������

���
jan �����

�Kea�	� R�B� Kearfott� Rigorous Global Search� Continuous Problems� Kluwer� Dordrecht� Netherlands� ���	�

�KKM��� J� Keyser� S� Krishnan� and D� Manocha� E�cient brep generation of low degree sculptured
solids using exact arithmetic� In Proceedings of the Symposium on Solid Modeling Foundations and
CAD�CAM Applications� May �����

�KLN��� M� Karasick� D� Lieber� and L�R� Nackmann� E�cient delaunay triangulation using rational arith�
metic� ACM Transactions on Graphics� �����
��� Jan� �����

�KM�	� S� Krishnan and D� Manocha� E�cient representations and techniques for computing b�reps of csg
models with nurbs primitives� In Information Geometers Ltd� editor� Proceedings of CSG��� pages
���
���� Winchester� UK� April ���	�

�Knu��� D�E� Knuth� Seminumerical Algorithms� volume �� Addison�Wesley� Reading� Mass�� �����

�Knu��� D�E� Knuth� Axioms and hulls� Lecture Notes in Computer Science �	�	�� Springer�Verlag� �����

�Kon��� K� Kondo� Algebraic method for manipulation of dimensional relationships in geometric models�
Computer Aided Design� ���
�����
���� mars �����

�Loo�
� R� Loos� Computing in algebraic extensions� In Computer algebra� symbolic and algebraic computa�
tion� Springer�Verlag� ���
�

�MG��� M�B� Monagan and G�H� Gonnet� Signature functions for algebraic numbers� In Proceedings ISSAC�
pages ���
��	� ACM Press� �����

�Mic��� D� Michelucci� Les repr�esentations par les fronti�eres � quelques constructions� di�cult�es rencontr�ees

in french�� PhD thesis� �Ecole Nationale Sup�erieure des Mines de Saint��Etienne� �����

�Mic��� D� Michelucci� An epsilon�arithmetic for removing degeneracies� In Proceedings of the IEEE 	�th
Symposium on Computer Arithmetic� pages �
�
�
�� Windsor� Ontario� July �����

�Mic�	� D� Michelucci� Arithmetic issues in geometric computations� In J�C� Bajard� editor� Proceedings of
the �nd real Numbers and Computers� April ���	�

��

�Mil��� V�J� Milenkovic� Veri�able Implementations of Geometric Algorithms Using Finite Precision Arith�
metic� PhD thesis� Carnegie�Mellon� �����

�Mis�
� B� Mishra� Algorithmic Algebra� Springer�Verlag� New York� ���
�

�MM� D� Michelucci and J�M� Moreau� Lazy arithmetic� To be published in IEEE Transactions on Com�
puters� Available at� �ftp���ftp�emse�fr�pub�papers�LAZY�lazy�ps�gz��

�MM��� V� M�enissier�Morain� Arithm�etique exacte� PhD thesis� Universit�e Paris VII� �����

�MMZ��� J� Menon� R�J� Marisa� and J� Zagajac� More powerful solid modeling through ray representations�
IEEE Computer Graphics and Applications� ���
����

�� May �����

�MN��� V�J� Milenkovic and L�R� Nackmann� Finding compact coordinate representations for polygons and
polyhedra� IBM Journal of Research and Development�
�������

�	�� Sept� �����

�MV��� J� Menon and H� Voelcker� On the completeness and conversion of ray representations of arbitrary
solids� In Chris Ho�man and Jarek Rossignac� editors� Solid Modeling ���� pages ���
��	� May �����

�NSTY�
� J� Nakagawa� H� Sato� K� Toshimitsu� and F� Yamagushi� An adaptive error�free computation based
on the �x� determinant� The Visual Computer� ����

���� ���
�

�OTC��� G� Ottmann� G� Thiemt� and Ullrich C� Numerical stability of geometric algorithms� In Proceedings
of the �rd ACM Symposium on Computational Geometry� pages ���
���� �����

�PA��� R�M� Persiano and A� Apolin�ario� Boundary evaluation of csg models by adaptative triangulation� In
CSG �
 � Set Theoretic Solid Modelling Techniques and Applications� Information Geometers Ltd�
april �����

�Pri�	� M�G� Prisant� Application of the ray�representation tp problems of protein structure and function�
In Information Geometers Ltd� editor� Proceedings of CSG��� pages

��� Winchester� UK� April
���	�

�SBE��� P� Stucki� J� Bresenham� and R� Earnshaw� Computer graphics in rapid prototyping technology�
IEEE Computer Graphics and Applications
special issue on Rapid Prototyping�� ���	����
��� Nov�
�����

�Sch��� J� Schwarz� Implementing in�nite precision arithmetic� In Proceedings of the IEEE �th Symposium
on Computer Arithmetic� pages ��
��� IEEE Computer Society� �����

�Seg��� M� Segal� Using tolerances to guarantee valid polyhedral modeling results� Computer Graphics

SIGGRAPH ��� Proceedings�� ���������
���� August �����

�Sny��� J�M� Snyder� Interval analysis for computer graphics� Computer Graphics� �	�������
�
�� july �����

�Tau�
� G� Taubin� An accurate algorithm for rasterizing algebraic curves� In Second Symposium on Solid
Modeling and Applications� ACM�IEEE� pages ���
�
�� May ���
�

�TGP�	� R�F� Tobler� T�M� Galla� and W� Purgatofer� Acsgm
an adaptative csg meshing algorithm� In
Information Geometers Ltd� editor� Proceedings of CSG��� pages ��

�� Winchester� UK� April
���	�

�Vui��� J�E� Vuillemin� Exact real computer arithmetic with continued fractions� IEEE Trans Computers�

���������
����� �����

�WB�	� K�D� Wise and A� Bowyer� Using csg models to map where things can and cannot go� In Informa�
tion Geometers Ltd� editor� Proceedings of CSG��� pages
��

�	� Winchester� UK� April ���	�

�WG��� Chionh Eng Wee and Ronald N� Goldman� Elimination and resultants� part �� Elimination and
bivariate resultants� IEEE Comp� graphics and applications� pages 	�
��� jan� �����

�Wie��� E� Wiedmer� Computing with in�nite objects� Theoretical Computer Science� ����

���� �����

�Yam��� F� Yamagushi� Theoretical foundations for the �x� determinant approach in computer graphics and
geometrical modeling� The Visual Computer�
���
��� �����

�Yap��� C�K� Yap� A geometric consistency theorem for a symbolic perturbation scheme� In Proceedings of
the
th ACM Symposium on Computational Geometry� pages �
�
���� �����

�Yap�	� C�K� Yap� Fundamental Problems in Algorithmic Algebra� Princeton University Press� ���	�

��

