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Université de Montréal, CP6128, Succursale CentreVille,
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1 Introduction

The first significant study of the problem of attaching formal meaning to computer representations, in the
context of shape interrogation and geometric modeling, was contained in work by Requicha and Voelcker
that began in the 1970s. It was observed there that first, we must distinguish between a representation
and the subset (or the class of subsets) that the representation specifies, since there may be many different
representations for the same subset, or the same class of subsets. But, further, these early papers introduced
formal semantics related to several other relevant aspects of the problem:

• an ideal solid (an r-set [1], which is defined as a bounded, semi-analytic, regular-closed subset of R3);

• a class of ideal solids [2, Sec. 3.5], (which may be defined [3] using set inclusion as C = {S : S− ⊆
S ⊆ S+}, with various possible conditions on S, S− and S+); this is appropriate in cases where an
individual solid is not specified (an example [3, Fig. 4] is shown in Figure 1);

• a certain method of representation, referred to by the name of constructive solid geometry , or CSG
(which defines a solid procedurally, by means of a binary tree); and

• another method of representation, referred to by the name of boundary representation (which defines a
solid in terms of a finite two-dimensional cell complex, embedded in R3, with injective attaching maps
and, possibly, multiply-connected faces [4]).

S
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+

Figure 1: Specifying a class of solids

Other, different, representations and semantics were introduced later, by other authors, that are appropriate
in certain circumstances. For example, the selective geometric complexes [5] provide a semantics for objects,
along with a corresponding representation for these objects, in cases where for practical purposes the objects
may be considered to be infinitely thin, or where objects are not composed of homogeneous material (see also
[6]). In the present paper, however, we restrict our attention to the case of objects composed of homogeneous
material.

For many practical reasons, the kernel of a modern commercial solid modeler is based on a boundary
representation, and such representations (which use trimmed-NURBS patches1) suffer inherently from error.
This error implies that they are inaccurate, and may contain many kinds of geometric and topological
inconsistencies. The main sources of these errors are as follows: uncertainty in input data; the use of low
finite-precision numerical representations for numbers which require higher precision, or which may, even in
perfectly ordinary circumstances, be irrational; the use of finite-precision arithmetic to implement arithmetic
operations; and, the use of low-degree polynomials to approximate high-degree intersection curves. Two
common situations where these errors cause serious and costly difficulties are Boolean set operations, and

1NURBS (Non-Uniform Rational B-Splines).
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translation between different kinds of boundary representations. These factors have led to various efforts
to define the semantics of inaccurate boundary representations, as a first step towards proving theorems
about the robustness of numerical algorithms applied to these representations. Such semantics supplies the
meaning for, and must be based on, the data provided by a “user” – a generic term we will use throughout
the paper to refer to a human user and/or computer application.

The present authors have, in separate papers [7, 8, 9], proposed two different approaches to defining the
semantics of inaccurate boundary representations. One of the main differences between these two approaches
is the nature of the topological regularity on which they are based. The two approaches will be described
very briefly now, and in more detail in the next section.

The first approach was used in the context of trimmed-NURBS representations, and depended on the
Whitney Extension Theorem to introduce Quasi-NURBS surfaces that provide well-defined solids [7]. The
mathematical theory was based on the classical concept of regularity , and the underlying concepts of in-
terior and closure in the topology of R3. This approach introduced the concepts of well-formedness of an
(inaccurate) representation, along with the definition of the (single) regular-closed set specified by such a
representation, and showed how these concepts can be used to support a classical backward error analysis
[7, 8]. Similar concepts can be introduced, by an appropriate interpretation of the “detail vectors” suggested
in [10], for the case of subdivision-surface representation of non-manifold r-sets, a method which is becoming
predominant in graphical-animation software.

The second approach [9] was based on a new concept of regularity, called ε-regularity, which captures the
idea of tolerating small (ε-size) irregularities in the forms of errors, uncertainty, and/or approximation. We
can view this approach as a generalization of the classical concept of regularity, and also as an extension of
the idea of representing a class of solids in the form

C = {S : S− ⊆ S ⊆ S+}, (1)

as mentioned above (see [2], and [3, 11, 12]). Assigning a semantics to inaccurate and inconsistent repre-
sentations using ε-regularity provides, in particular, an alternative way to deal with the gaps and overlaps
inherent in trimmed-NURBS representations. It can also be used, however, in more general contexts, as will
be described below.

The purpose of this paper is to show that the two semantic models, just described, are complementary,
and that each may be useful, depending on the context. We will do this by describing circumstances where
each is appropriate, and by proving some simple facts in each case, to illustrate the fundamental ideas.

The organization of the remainder of the paper is as follows. In Section 2 we compare the two models,
discussing in particular the Quasi-NURBS semantics for boundary representations, and the Virtual-Interval
representational method. In Section 3 we give an elementary proof for a point-membership-classification
result, to illustrate clearly the contexts in which each of the semantic models is useful. Section 4 is the
conclusion.

2 Two approaches to the semantics of inaccurate boundary rep-
resentations

The Quasi-NURBS semantics for inaccurate data [7, 8] was introduced in the context of the standard
trimmed-patch representation [13, 14]. It defines defines a single (unique) set to be interpreted as the
set specified by a well-formed representation, and we will refer to it therefore as an example of “single-set
semantics”. The concept of regularity used in single-set semantics is classical regularity in the usual topology
of R3. In contrast to these ideas, certain representational methods related to the concept of ε-regularity can
be viewed as associating a class of sets, or even classes of sets, with the inaccurate data (thus providing a
“class-of-sets semantics”). The ε-regularity approach can be used in the contexts of standard trimmed-patch
representations, of subdivision-surface representations, or more generally. In this section we will describe
single-set and class-of-sets semantics, and discuss the tradeoffs between them.
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2.1 Single-set semantics

Figure 2 shows a collection of geometric data, and the associated topological data, in a trimmed patch
representation for an ordinary solid cube. The topological data, in this case, is simply the ordinary three-
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Figure 2: Geometric and topological data for an approximate cube

dimensional hypercube, with eight 0-cells, twelve 1-cells, and six 2-cells. There are six geometric faces,
which correspond to the six 2-cells of the topological data. Similarly, there are are twelve explicit geometric
boundary curves between the faces, corresponding to the twelve 1-cells of the topological data, and there
are eight explicit geometric vertices, corresponding to the eight 0-cells of the topological data. As illustrated
in Figure 2, none of the geometric entities necessarily fit together as they should: edges of two adjacent
geometric faces may overlap, or be separated by a gap, or both; a geometric boundary curve may fail to
coincide with its adjacent face edges; and, finally, the geometric vertices will usually not correspond to the
corners of the adjacent geometric faces, nor even to the endpoints of the incident geometric boundary curves.

Let us suppose that, for a cube with the approximate dimensions shown in Figure 2, the problem of
entering the solid into the modeling system is well-conditioned ; that is, if there is uncertainty about the
exact value that is intended for one of the geometric dimensions, perturbing this value does not have a
noticeable effect on, say, the image displayed by a certain renderer. Similarly, suppose the algorithm to
create this solid (for example, by extruding an approximate rectangle lying approximately in a plane) is
stable. Such an algorithm will certainly incur small errors, due to the use of finite-precision arithmetic, but
the assumption just mentioned means that these errors have no significant effect from the point of view of
the user [8]. Even with these assumptions, and even for a solid as simple as a cube, the geometric data of
the resulting model is mathematically inconsistent, as illustrated in Figure 2. If we wish to assign a meaning
to this inconsistent data, in order to prove theorems about the the results of subsequent operations applied
to the solid, how should we proceed?

One approach to this question is to assign (under certain weak hypotheses on the data which permit the
assignment to be made), a single set S that is considered to be the unique set specified by the inconsistent
data ∆. (We write S |= ∆.) This set S is first proved to satisfy many desirable conditions. For example, it
is proved that the geometric characteristics of S are very similar to those of the provided data ∆, that the
boundary ∂S satisfies certain smoothness criteria, that under suitable conditions the topological properties
of S are the same as those of the provided data (and consistent with the previously mentioned geometric
data), and so on. Then, it is assumed that S is an appropriate interpretation of the inconsistent data ∆.

The outline just given is a brief description of the approach taken in [7, 8]. There, it was assumed that
the given geometric data for a trimmed-NURBS patch is as shown in Figure 3: the domain D of a patch is
a subset of D0 = [0, 1]2 that is defined by so-called p-curves p within D0; further, the underlying NURBS
surface is defined by F , and the trimmed patch itself by F [D]; also, between two adjoining trimmed patches
F [D] and F ′[D′], there is an explicit parametric boundary curve b(t), which approximates the corresponding
edges of F [D] and F ′[D′]; and, finally, at each corner formed by a group of adjoining patches, there is an
explicit geometric vertex v which approximates the endpoints of b(t), and which approximates the corners of
the adjoining patches. This geometric data, along with the topological data mentioned earlier, constitute the
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Figure 3: Two adjoining trimmed-NURBS patches

given data ∆. Then, the given geometric faces and boundary curves of the trimmed-NURBS representation
were perturbed, or slightly adjusted, to yield what was called a Quasi-NURBS set. The adjusted faces of
the Quasi-NURBS set S fit together exactly, in a way that is consistent with the given topological data.
Furthermore, the size of the adjustment in a geometric face is no larger than the largest discrepancy already
existing in the face at its boundary, according to the given data. Also, the rate of variation of the necessary
adjustment, as measured by a Lipschitz constant over the entire domain D, is no larger than the rate of
variation already present in the given face along its boundary. (Informally, we might say that the G0 and
G1 quality of each face in the Quasi-NURBS set S is as consistent with the given data as it possibly can
be.) Finally, smoothness guarantees2 for the boundary of S were given.

It is important to be clear about the fundamental assumption involved here: as already stated, it is
assumed that S is an appropriate interpretation of the inconsistent data ∆. In order to convince the end
user that S is in fact an appropriate interpretation of ∆, we can list all of the desirable characteristics of
the set S satisfying S |= ∆, as in the preceding paragraph; we can, further, point out that a user who
has provided inconsistent information, and who also views this data as a representation of an r-set, should
not object if we take the data to represent some particular r-set that is nowhere in error by more than the
error inherent in the original data; we can, also, observe that the uncertainty inherent in the user’s data
(measurement error, and rounding error incurred when entering the data into the computer) may well be as
large or larger than the data adjustment involved in matching S with ∆; and, finally, we can observe that
error must be tolerated in the eventual manufacture of the solid, and discrepancies in the provided data
should be smaller than this. But ultimately, in order to proceed, we must assume that the end user accepts
S as an appropriate interpretation of the inconsistent data ∆.

Suppose, however, that in view of the remarks above, this assumption is acceptable. We are then in
the enviable position of having available a unique, well-defined mathematical object about which we can
prove theorems. For example, we might prove that certain attributes, such as texture coordinates, can be
correctly associated with the faces of the objects [16, 17]. Or, we might prove that a certain algorithm
correctly computes the surface area of the boundary, or part of the boundary, to within a specified error.
Or, we might prove that the straightforward algorithm to effect rigid motions on the solid produces another
well-formed solid which is correct to within a specified error. And, similarly, we are as well-positioned as we
possibly can be to prove that more complicated algorithms, such as set-intersection algorithms, are stable

2In [7], only continuity was assured, although the extension theorems necessary to obtain higher degrees of continuity are
available [15].
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when applied to given input data [7, 8].

2.2 Class-of-sets semantics

In contrast to the ideas of Section 2.1, the approach described in [9] is based on associating a class of sets,
and often even classes of sets, with inaccurate data. A typical model or engineering artifact undergoes many
transformations, translations, and other changes over the duration of its life cycle. The model’s topology
and geometry may be subject to any number of additional application-dependent constraints, including
constraints on smoothness and engineering parameters (such as dimensions and tolerances). Under these
conditions, a combinatorially equivalent well-formed set, such as a Quasi-NURBS set, or a set obtained by
another single-set-semantics approach, may not exist, or may not be easily computable (even theoretically)
for a particular inconsistent representation. More generally, data exchange standards do not specify the
topology or the smoothness of the representations, and many geometric repair procedures modify both the
geometry and topology of the representation. In such situations, the single-set semantics is not applicable.
Even if a suitable well-formed representative does exist for any particular instance of the model, there is no
guarantee that it will preserve all other constraints throughout the model’s life cycle.

To establish the context for the subsequent discussion, we note that we are now concerned not with the
use of a single boundary-defining representational method, such as trimmed-NURBS patches, but rather with
a more general environment where many different representations may be involved, including representations
that might not be known in advance, and even including representations whose nature might not be clearly
understood by the end user. The intuitive idea of representing sets in terms of their boundaries is still
present, but at this point little is assumed about the nature of these boundaries. For example, they might
be defined by trimmed-NURBS patches; or, by data originating from trimmed-NURBS patches but which
contains inconsistencies, as in Section 2.1; or, by a triangular mesh; or, say, by a triangular mesh badly
in need of repair. In fact, in principle, they might be defined by a fractal, or some other complicated
mathematical process that uses given numerical data. This minimalist view is particularly useful in situations,
such as translation between different kinds of boundary representations, where it may be necessary to deal
simultaneously with more than one interpretation of the given data. Additional geometric and topological
properties of the represented sets will however need to be known, or have to be assumed, for development
of specific algorithms, as will be explained in Section 2.2.3 and illustrated in Section 3.2.4.

2.2.1 The Virtual-Interval representational method

The class-of-sets semantics is assigned to a given geometric representation via an associated representational
method, which we call the Virtual-Interval representational method. We begin our discussion, as in Sec-
tion 2.1, by describing the mechanics of the representational method. The name “Virtual-Interval” arises
from the fact that the representation is based on intervals of the form {S : S− ⊆ S ⊆ S+}, which is suggestive
of the “virtual conditions” used in mechanical tolerancing [18].

We will again denote the given data (i.e., a collection of numbers stored in the computer), for a specific
set, by ∆, but it should be understood that initially nothing is assumed known about ∆: it might correspond
to any of the cases listed in the second paragraph of Section 2.2, or to some representational method unknown
to us.

We define the Point Membership Classification (PMC) function by

Π∆ : R3 7→ {in, out, on};
this function defines the output of an actual implemented version of a procedure that attempts to compute
whether a point in R3 is, or is not, in the set S represented by ∆, or whether the point is on the boundary.
We next define

Sin = {x : Π∆(x) = in},
and

Sout = {x : Π∆(x) = out},
from which it follows that

Sin ⊆ Sc
out,
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where c denotes set complement. (Usually we will think of Sin as a bounded set, and Sout as an unbounded
set, but nothing we have said so far implies that this is the case.)

Suppose now that we can prove that there exist sets S− and S+, depending on the choice of PMC
algorithm, satisfying

S− ⊆ Sin ⊆ Sc
out ⊆ S+, (2)

where S− and S+ are known to be in some sense close. Then the PMC algorithm, in conjunction with the
theorem establishing (2), induces a class of sets

{S : S− ⊆ S ⊆ S+}

and we can think of the pair
[S−, S+]

as representing the set associated with ∆. This is the Virtual-Interval representational method. It can be seen
that this approach involves a class-of-sets semantics, with S represented procedurally (albeit approximately)
through the PMC function Π∆ and its implementing algorithms.

An example illustrating how to prove the existence of such sets S− and S+ will be given below, in
Section 3.2, but here we will discuss the approach by introducing the plausible hypothesis that the level of
precision of the PMC algorithm is known, and that it can be used to define the sets S− and S+.

Without making further assumptions, there is nothing to exclude, say, a Π∆ which produces in for an
open rectangle, except for a certain number of holes (isolated points) near the middle of the rectangle; in
for a certain number of isolated points outside and far from the rectangle; and, out for all other points (see
Figure 4). But, in practice, users will generally have a good idea of the precision of the PMC algorithm. For

Figure 4: Black: in. White: out

example, with many CAD systems the user can set tolerances on entities such as faces and edges. Similarly,
simple voxelization or octree-based methods, such as those used for model repair, can provide a reasonable
estimate for a “maximum gap size” δ.

Suppose, then, that the geometric data in ∆ is a collection of geometric entities (subsets of R3, such as
faces, edges, voxels, etc., of a geometric representation ∆), and that the union of these entities is G ⊆ R3.
If it is believed that the maximum gap size for the PMC algorithm being used is δ, it may be reasonable to
assume that ⋃

x∈G

Bδ(x), (3)

where Bδ(x) is the open ball of diameter δ about x, determines regions S− and S+ such that (2) is satisfied,
as illustrated in Figure 5. Furthermore, it may be possible to find easily computable subsets of these
regions. Requiring such a hypothesis places increased responsibility on the user, but as we will illustrate in
Section 3, below, the hypothesis will often be appropriate.
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Figure 5: Covering G with δ-balls

2.2.2 The concept of ε-regularity

Interpreting a representation ∆ as a class of sets in a virtual interval [S−, S+] introduces a new complication.
With a single-set semantics, the represented set is assumed or proved to be a valid r-set: a compact, regular
and semi-analytic subset of R3. This definition clearly does not apply to a virtual interval [S−, S+]. We
could require that every set in the interval is an r-set, but this requirement would limit the usefulness of the
Virtual-Interval method. For a detailed discussion of this and related issues, the reader is referred to [9],
but here we simply mention the key properties of a virtual interval that make it useful in practice. A virtual
interval should be “regular” in some sense similar to the classical notion of a regular-closed or regular-open
set. But since we have no explicit notion of exact boundary, the new notion of regularity must tolerate some
errors and imperfections of small size measured by a distance between S− and S+. In turn, this implies that
S− and S+ should be in some sense close to each other.

In the context of the class-of-sets semantics, these requirements are expressed by means of an ε-regular
interval . Indeed, in [9] it was argued that a suitable class-of-sets semantics is captured through the ε-
topological operations kε, iε, and the notion of ε-regular interval requiring that

iε(S+) ⊆ S− and kε(S−) ⊇ S+, (4)

where ε ≥ 0, and S− ⊆ S+. (For ε = 0, these concepts reduce to their usual counterparts in the ordinary
topology of R3.) When [S−, S+] is an ε-regular interval, the set of points in S+\S− plays the role a “thickened
boundary” that hides small imperfections and inconsistencies. This concept embodies what is perhaps the
most striking difference, between the two major approaches to assigning semantics to inconsistent data,
namely, that the class-of-sets semantics does not require preservation of the specific combinatorial structure
of the model’s boundary. Thus, the class-of-sets semantics does not guarantee the topological or even the
geometric similarity of the sets in the class, at least not in the classical sense. On the other hand, if [S−, S+]
is an ε-regular interval, the Hausdorff distances between the sets S−, S+, their complements, and their
boundaries are all less than ε [9].

2.2.3 Class-of-sets semantics in boundary representations

We return now to the motivation for the class-of-sets approach, in the context of boundary representation.
In practice, the amount of inconsistency in a representation tends to be determined by the algorithms be-
ing applied to the representation. If the same underlying data ∆ is to be used by a range of algorithms,
with varying precision, its semantics will in practice be determined by PMC algorithms of different preci-
sion, corresponding, say, to the functions Π∆ and Π′∆, which will therefore determine different classes of
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sets [Sin, Sout] and [S′in, S′out]. This situation arises often when a representation is used in a collaborative
environment, or in the case of translation between systems with different precision.

We must be careful, however, not to confuse or confound the problem and the high-level method. To
simplify the notation, consider a simple case where the problem input is defined by a single solid: for
example, the problem of computing the intersection of the input set with a fixed hyperplane. Different end
users, perhaps using different systems, would interpret the same underlying data ∆ in different ways, as
defined by the two different PMC functions Π∆ and Π′∆; this is illustrated in Figure 6. They might also use

Data

Interpretation’Interpretation

User User’

Algorithms Algorithms’

interpretations differ because of
tolerances, roundoff, degree of
approximation, ...

P
D

P¢
D

Figure 6: Multiple interpretations

different methods to compute the cross-section, and the precision of the method used by User may be related
to the precision of Π∆ (while the precision of the method used by User ′ is likely related to the precision of
Π′∆). But the method and the PMC function are different things: Π∆ is part of the definition of the problem
to be solved. Thus, for example, User may be interested in the difference in the cost and accuracy of two
different cross-section methods applied to the problem defined by ∆ and Π∆.

Suppose now that ∆ is a boundary representation, and the precision of Π∆ is a constant δ that is measured
by the maximum error in distance to the faces, edges, and vertices in ∆. In this case, the δ-cover defined
in (3) plays the role of the thickened boundary representation, with all other points classifying either in or
out, and thereby inducing the set interval [S−, S+]. However, in order to ensure that the PMC function Π∆

makes sense, this interval must be ε-regular for some predefined value ε ≥ δ. For example, if contrary to
the assumption in Section 2.2.1, δ is smaller than the maximum size gap between faces, edges, and vertices,
then S+ \ S− may not be a connected set, raising the possibility that the boundary representation ∆ does
not bound any interior. Even if δ is larger than the maximum gap size, but [S−, S+] is not ε-regular, the
closeness of sets in the interval cannot be guaranteed. This implies that treating the δ-cover defined in (3) as
a thickened boundary is in this case arbitrary and is not likely to be consistent with the intended semantics.

Furthermore, ε-regularity of the interval [S−, S+] is a necessary but not sufficient condition for using a
PMC algorithm with precision δ on the data in ∆, because ε-regularity does not say anything about the
topological properties of the sets in the interval3. Indeed, there are no guarantees that the boundaries of
S− and S+ are homeomorphic or in the same homotopy class. If such a guarantee is required, it must come
from additional knowledge or from an assumption based on the origin and type of data in the boundary
representation ∆. We will give an example of such an assumption in Section 3.2.4 in the context of a specific
PMC algorithm.

3 Comparison of the semantic models

In this section it will be shown that the two semantic models, described above, are complementary, and that
each is useful in the right context.

3This is consistent with the fact that the classical notion of regularity guarantees homogeneity of the solid’s interior but
does not say anything else about the topology of set [1].
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3.1 General outline

A general outline, describing typical circumstances under which each of the two semantic models is appro-
priate, is as follows. If it is appropriate to make assumptions such as those of Section 2.1 where, for a
NURBS representation, conditions were given permitting a proof that S |= ∆, then for many applications
the single-set semantics will be the most useful choice. On the other hand, if it is not appropriate to make
the assumptions of Section 2.1, but it is appropriate to make some other assumption, such as an assumption
implying that (3) determines sets satisfying (2), then the class-of-sets semantics is the most useful (and
indeed the only) choice.

For example, consider the straightforward algorithm to transform S by a rigid motion, by applying the
rigid motion to the control points of each of the trimmed patches F [D], to the control points of each explicit
boundary curve b, and to each explicit geometric vertex v, using ordinary floating-point arithmetic. Let
the computed representation of the transformed set be ∆R, and let R(S) be the theoretically exact result
of applying the rigid motion R to S. It is easy to prove, using standard a priori bounds for floating-point
arithmetic [19, Ch. 3], that under weak conditions the computed representation ∆R is well-formed, and
specifies a unique set Sapprox such that Sapprox |= ∆R, and the Hausdorff distance between R(S) and Sapprox

is on the order of floating-point precision (about 10−7 for IEEE single precision [20]). In fact, it is possible
to prove that the faces of the two Quasi-NURBS sets are close, on a pairwise basis. It would clearly be
inappropriate to discard such strong conclusions, by using a class-of-sets semantics, if the hypotheses of the
single-set semantics are justified.

As a second example, we might use numerical quadrature techniques, in the context of the single-set
semantics, to estimate the area of a face of the represented set S. Rigorous proofs about such an operation
would not be possible using the class-of-sets approach alone: it will be necessary to introduce additional
hypotheses about analytic and/or topological properties of the geometric model, such as those used in the
single-set theory. But this, of course, is exactly what should be done: there is nothing to prevent use of the
single-set approach in conjunction with the class-of-sets approach.

It may also happen, however, that it is not appropriate to make the assumptions of Section 2.1. For
example, suppose we are dealing with a representation ∆ that suffers from ill-definition arising from the
circumstances described in Section 2.2.3. If it is appropriate to make some other assumption, such as an
assumption implying that (3) determines sets satisfying (2), then the class-of-sets semantics is the most
useful (and indeed the only) choice. There is no possibility, in such a case, of using single-set semantics, or
of obtaining results about the topological form of a computed approximation to a set transformed by a rigid
motion. But this does not mean that nothing can be proved. Suppose that ∆ represents a valid solid in a
sense that the virtual interval [S−, S+] is ε-regular and δ corresponds to the maximum gap size for the PMC
algorithm, as described in Section 2.2.1. If representation ∆ is transferred to another system without error,
but the new system relies on a PMC algorithm that assumes a gap size δ′ < δ, then it is straightforward to
show that the virtual interval [S′−, S′+] is still ε-regular in the new system as long as S′− ⊇ S− and S′+ ⊆ S+

are maintained. In this case, no repair of the transferred model is needed, even though its topological form
may differ from the original model. For other examples of how class-of-sets semantics may be used in the
context of data translation, the reader is referred to [21].

In what follows, the differences between the two semantics will be demonstrated in the context of a
certain PMC algorithm, which we describe in the following section.

3.2 Example: a PMC algorithm

It has been observed [22, 23] that PMC is a fundamental operation underlying many other operations in
solid modeling. In this section we will prove statements about a PMC algorithm for extruded solids, a case
which is general enough to be of practical interest, but simple enough to be transparent. We will use these
results to illustrate the remarks of Section 3.1.

The algorithm discussed here is implemented using finite-precision floating-point arithmetic, is applicable
to extruded solids (defined by means of generalized cylinders [24, Sec. 8.3]), and is a variant of an algorithm
proposed by Nishita et al [25]. We will refer to this algorithm as the NSK algorithm; it is based on an idea
(known to Poincaré [26, p. 49]) for computing the winding number, combined with linear separation and
repeated subdivision.
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The fact that our results apply only to parametric extruded solids means, of course, that we are really
only dealing with a two-dimensional problem in disguise. Similar results, for more general solids, will require
different formal machinery. On the other hand, the extruded-solid example is general enough to illustrate
the trade-offs between the two semantical approaches.

In [24, Sec. 8.3], a generalized cylinder S is defined4 as the Cartesian product of a simple closed planar
NURBS curve C(u), 0 ≤ u ≤ 1, and a closed interval on the real line. (We will suppose that the endpoints
of the NURBS curve interpolate its initial and final control points.) Then, an extruded solid (based on the
generalized cylinder), can be defined as

{x ∈ R3 : (x1, x2) ∈ int(C(u)), 0 < x3 < d}

where int(C(u)) is the open interior of the bounded region, defined by C(u), whose existence is guaranteed
by the Jordan curve theorem.

In this paper, however, rather than requiring that the cross-sections of the extruded solid be defined by
a NURBS curve, we will permit instead a finite sequence of NURBS curves, C1(u), . . . , Cn(u), forming a
cycle, as illustrated in Figure 7. There may be gaps in the chain of curves: the dotted lines in Figure 7 are,

Figure 7: Cross-section of ruled-surface object

for now, intended only to logically link the ordered sequence of curves. There may also be self-intersections,
and overlaps between segments Ci(u) and Ci′(u).

We begin by proving certain statements about the NSK algorithm, when applied to a closed (not neces-
sarily simple) curve. Although this information is not needed immediately, we will mention now, for purposes
of motivation, how we will later transform a set of curve segments like those of Figure 7 into a closed curve,
so that the statements proved here can be applied. One possibility (which will be used for single-set se-
mantics) is, for each of the dotted lines in Figure 7, to define b to be, say, the midpoint of the dotted line,
and to use the Whitney Extension Theorem to adjust the adjacent curves so that they terminate at b. A
second possibility (which will be used for class-of-sets semantics) is to replace each dotted line by an actual
straight-line segment. Both choices lead to a closed curve.

3.2.1 The Poincaré algorithm

Suppose first that each Ci(u) is a straight-line segment (1− u)v(i−1) + uv(i), 0 ≤ u ≤ 1, i = 1, . . . , n, where
each v(i) lies in the x1 − x2 plane. The winding number of p is defined as the sum over i of the signed
angles between v(i) − p and v(i−1) − p, divided by 2π. Poincaré [26] pointed out the now well-known fact
that it is sufficient to count the number of times that the vector v(i) − p passes through a given predefined
direction (say, x1 = 0, x2 = 1) in order to compute the winding number. (This version of the winding-number
algorithm is closed related to the line-crossing algorithm [27, p. 965 ] for the point-in-polygon problem: the
latter algorithm can be viewed as computing the winding number modulo 2.)

4Actually, in [24, Sec. 8.3], a slightly more general case is considered.
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The angle through which v − p turns as v moves along the polygon from v(i−1) to v(i) is defined to be
the angle between the two vectors, measured positively in the counterclockwise direction, and chosen in the
interval [−π, π]. Thus in Figure 8, if u = v(i−1) is the previous vertex, and w = v(i) is the current vertex,

w = v
(i)

u = v
(i-1)

-p/2

Figure 8: The angle from u to w is negative

then the angle between u− p and w − p is −π/2, and not 3π/2. We omit discussion of the ambiguous case
when the angle is ±π, and the cases when u = p or w = p, since these will not be needed below.

A pole crossing means that in following the boundary of the polygon from v = u ≡ v(i−1) to v = w ≡ v(i),
v − p passes through the positive x2-axis (the “North Pole”). If one or the other (but not both) of u and
w is on the positive x2-axis, a half pole crossing is said to have occurred. In either case, if the angle from
u− p to w − p is positive, we say that a positive pole crossing has occurred, and the algorithm increments
the counter W by 1 (or by 1/2 if w1 − p1 = 0, w2 − p2 > 0 or if u1 − p1 = 0, u2 − p2 > 0); if the angle from
u−p to w−p is negative, we say that a negative pole crossing has occurred, and the algorithm decrements
the counter W by 1 (or by 1/2 if w1 − p1 = 0 , w2 − p2 > 0 or if u1 − p1 = 0 , u2 − p2 > 0).

Define v(n) = v(0), and initialize the variable W to 0. For each i = 1, ..., n let u ← v(i−1) and w ← v(i),
and change the value of W (which at the end will contain the value of the winding number) according to the
following.

If u1 − p1 > 0, there is a pole crossing if and only if

• w1 − p1 ≤ 0 and
• − (u2 − p2)(w1 − p1) + (u1 − p1)(w2 − p2) > 0.

(5)

It is a half pole crossing if w1 = p1, in which case W ← W + 1/2; otherwise, W ← W + 1. This case is
illustrated in Figure 9. Note that the case, where the second inequality displayed above is replaced by
equality, cannot occur in our application, since we will not need to deal with the case where p is on the
boundary.

If u1 − p1 < 0, there is a pole crossing if and only if

• w1 − p1 ≥ 0 and
• − (u2 − p2)(w1 − p1) + (u1 − p1)(w2 − p2) < 0.

(6)

It is a half pole crossing if w1 = p1, in which case W ← W − 1/2; otherwise, W ← W − 1. This case is
illustrated in Figure 10. Again, the case where the second inequality is replaced by equality cannot occur.

If u1 = p1, there is a half pole crossing if w1 − p1 6= 0; in this case, W ← W + 1/2 if w1 − p1 < 0, and
W ← W − 1/2 if w1 − p1 > 0. Note that is is not risky to check “u1 = p1?” using floating-point arithmetic,
since the v(i) and p are data items, uncontaminated by round-off error due to previous calculation. In
particular, when v

(0)
1 − p1 = 0, the half pole crossing on initially leaving v(0), and the half pole crossing on

later arriving at v(n) ≡ v(0) will both be recognized.
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p

u

Figure 9: Zone for positive pole crossing

p

u

Figure 10: Zone for negative pole crossing

Neither is there any risk or difficulty in checking the sign of w1− p1 in floating point, and therefore there
is no worry about “almost” crossing the pole, but missing it, or “accidentally” crossing the pole when we
should not.

There is, however, a potential difficulty in the evaluation of the inner products in (5) and (6). If the inner
product is close to zero, the change in angle is in absolute value close to π, and it is possible to miss a pole
crossing, or add a spurious one. Because of round-off error, the vector v− p may be sent back in the wrong
direction to an almost diametrically opposite point, and we would neglect to add (subtract) 1 to (from) W ,
or we would do so when we should not. This corresponds to a p which is very close to the boundary: see
Figure 11.

This difficulty can be avoided in a fail-safe manner by means of the standard a priori bounds on floating-
point arithmetic, i.e., we can give sufficient conditions that, say, the sign of the inner product in (6) is
correctly computed. Furthermore, the width of the region, near the line-segments in the polygon, whose
status is ambiguous because the sufficient conditions are not applicable, is narrow. We note that the use of a
priori bounds for other, similar purposes can be found in the computational-geometry literature [28, 29, 30].

We now give the derivation of the sufficient conditions. Let fl[a ◦ b] be the floating-point result of
computing a ◦ b, and let

M = max{|u1 − p1|, |u2 − p2|, |w1 − p1|, |w2 − p2|}.
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p

u

w

w

Figure 11: p close to the boundary

Then [19, Ch.3] we have5, when verifying (6):

fl[u2 − p2] = (u2 − p2)(1 + γ1)
fl[w1 − p1] = (w1 − p1)(1 + γ2)
fl[(u2 − p2)(w1 − p1)] = (u2 − p2)(w1 − p1)(1 + γ1)(1 + γ2)(1 + γ3)
fl[u1 − p1] = (u1 − p1)(1 + γ4)
fl[w2 − p2] = (w2 − p2)(1 + γ5)
fl[(u1 − p1)(w2 − p2)] = (u1 − p1)(w2 − p2)(1 + γ4)(1 + γ5)(1 + γ6)

and
fl[(u1 − p1)(w2 − p2)− (u2 − p2)(w1 − p1)]
= (u1 − p1)(w2 − p2)(1 + γ4)(1 + γ5)(1 + γ6)(1 + γ7)
−(u2 − p2)(w1 − p1)(1 + γ1)(1 + γ2)(1 + γ3)(1 + γ7) .

Here, |γi| ≤ η, where η is the precision of the floating-point arithmetic being used (about 10−7 for IEEE
single precision [20]). Consequently,

|(u1 − p1)(w2 − p2)− (u2 − p2)(w1 − p1)
−fl[(u1 − p1)(w2 − p2)− (u2 − p2)(w1 − p1)]|
≤ 8M2η + O(η2).

(7)

Furthermore, in practice [19, pp. 113-114], we can omit the O(η2) terms by making a small change in η, so
that the bound (7) can be written as

8M2ηo, ηo
∼= 10−7.

Consequently, a sufficient condition that the second inequality in (6) is satisfied is that

fl[(u1 − p1)(w2 − p2)− (u2 − p2)(w1 − p1)] < −8M2ηo,

and a sufficient condition that it is not satisfied is that

fl[(u1 − p1)(w2 − p2)− (u2 − p2)(w1 − p1)] > 8M2ηo.

Suppose, on the other hand, that u1 − p1 < 0 and w1 − p1 ≥ 0, but the second inequality in (6) cannot be
verified or excluded, since |[fl[(u1 − p1)(w2 − p2) − (u2 − p2)(w1 − p1)]| ≤ 8M2ηo. One or the other of the
two vectors [ −(u2 − p2)

u1 − p1

]
,

[ −(w2 − p2)
w1 − p1

]

5The notation fl refers to the actual value computed using floating-point arithmetic. There is an abuse of notation in the
displayed quantities: it is assumed that the method of calculation of combined quantities is understood. Thus, for example,
fl[(u2 − p2)(w1 − p1)] is shorthand for fl[fl[u2 − p2] · [fl[w1 − p1]].
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has norm at least M . Without loss of generality, suppose that it is the first of these vectors, and let

n =
[ −(u2 − p2)

u1 − p1

]
.

The maximum distance from p to the line-segment u−w is
√

2
∣∣∣ n
‖n‖ · (w − p)

∣∣∣. We have ‖n‖ ≥ M , and

√
2

∣∣∣∣
n

‖n‖ · (w − p)
∣∣∣∣ ≤

√
2

M
| − (u2 − p2)(w1 − p1) + (u1 − p1)(w2 − p2)| ≤ 16

√
2Mηo.

A similar analysis applies to the computation of the second inequality in (5).

3.2.2 The NSK algorithm

Let us now consider the case of curve segments that are not straight lines, but, instead, more general curves
such as those illustrated in Figure 7. The fundamental idea of the NSK algorithm is that this more general
case can be reduced to the straight-line case, in the following way. Suppose that the convex hull of, say, the
top NURBS segment (the one containing a loop) in Figure 7 can be separated from a point p by a straight line.
Then, for the purposes of computing the winding number, a NURBS segment whose endpoints interpolate
its initial and final control points can be replaced by a straight line joining the endpoints: whatever the
number of pole crossings for the NURBS segment, the net total will be −1, 0 or 1, the number of crossings
for the straight-line segment joining the endpoints of the NURBS segment.

If it is not possible to separate a certain NURBS segment from p, then the NSK algorithm recursively
subdivides the segment, placing one part of the segment on a stack, and recursively attempting to separate
the other part of the segment from p. Suppose that the stopping criterion for this recursive subdivision
process is such that the distance from p to the original NURBS segment is less than or equal to σ. (Note
that the derivation of the constant σ will itself involve use of the a priori bounds on floating-point operations.
We omit this derivation.) Then we can guarantee that the NSK algorithm will produce the correct value of
the winding number for all points p at distance at least

max{σ, 22.8Mηo}

from the NURBS segments forming the cross-section of the ruled solid, and that it will either produce the
correct answer or the output “don’t know” for points closer than this. This is done by returning “don’t
know” if (5) or (6) ever fails to produce a guaranteed answer, or if the subdivision algorithm stops because
it is unable to separate p from a boundary segment. The algorithm never produces an incorrect answer, and
points of uncertainty are all within max{σ, 22.8Mηo} of the boundary curve.

3.2.3 The algorithm in the context of single-set semantics

Consider the following class of extruded solids. The boundary patches (see Section 2.1) of the solid are
defined by

F i(u, v) = {(Ci(u), v) : 0 ≤ u, v ≤ 1},
where the Ci(u) are NURBS curves, i = 1, . . . , n, as described at the beginning of Section 3.2. Thus, the
domain D of each patch is D0 = [0, 1]2, and the patches are not trimmed. The explicit boundary curves are
defined by (Ci(u), 0) and (Ci(u), 1), 0 ≤ u ≤ 1, along each side of the patch, and by a constant function
(independent of u) along the ends of the patch. (For example, we might have

bi(v) =
(

1
2
[Ci−1(1) + Ci(0)], v

)
, 0 ≤ v ≤ 1,

for i = 1, . . . , n, with C0(u) ≡ Cn(u).) We suppose that

max{‖bi(v)− (Ci−1(1), v)‖, ‖bi(v)− (Ci(0), v)‖} ≤ τ,
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(C (u),0)3
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Side view

Cross-section

Whitney extension

Figure 12: Example extruded solid

where τ > 0, and that the pair of explicit vertices (see Section 2.1) at the corners of a patch are equal to
bi(0) and bi(1), respectively. See Figure 12.

It is important to notice, however, that many requirements must be fulfilled [7] in order for a collection of
data ∆ to be well-formed, and define a subset S of R3 such that S |= ∆ . In particular, the data illustrated
in Figure 7 would not qualify, because of the self-intersection of one of the patches, and because of extra-
neous intersections between adjacent patches, which are supposed to intersect only along their boundaries.
(Verification of these conditions is discussed in [7].)

Suppose, on the other hand, that the data satisfies the conditions necessary to guarantee that S |= ∆.
With the single-set semantics of [7], the cross-sections Ci−1 and Ci of two neighboring faces will be adjusted,
by using the Whitney Extension Theorem, so that they coincide along the explicit constant boundary curve
bi(v) (see cross-section in Figure 12). If the adjusted face is F i(u, v)+εi(u, v), it can be shown that ‖εi(u, v)‖
is smaller than τ (and also that εi satisfies a Lipschitz condition). We would therefore like to modify the
tests (5) and (6) in a way that guarantees that the algorithm will return “don’t know” if the distance from p
to the line-segment u−w is less than or equal to τ . This can be done in the subdivision step by requiring a
separation of at least τ between the convex hull of the NURBS segment and the point p. (As a consequence,
the stopping criterion σ must be at least as large as τ .) Thus, if we have the structure necessary to guarantee
that S |= ∆, we can add a fail-safe PMC algorithm to the list of methods (see the first item in the list at
the beginning of Section 3.1) that can be rigorously applied to ∆.

3.2.4 The algorithm in the context of class-of-sets semantics

Suppose now that we do not have the structure of Section 2.1, involving approximate trimmed NURBS
patches. As mentioned in Section 2.2.3, it may happen, in practice, that we have very little information
at all about the structure of the boundary elements. In this section, however, we consider a case where
a fair amount of structure is available, although not enough to guarantee that S |= ∆. Thus, this is a
simple application of class-of-sets semantics, in a very special case. But it is sufficiently general to permit
comparison between the single-set and class-of-sets approaches.

Suppose that the data is a collection of faces, as described in Section 3.2.3, but with unspecified gaps,
loops and overlaps, as illustrated in Figure 7. We suppose also that no reliable information is available
about explicit boundary curves b, or explicit vertices v. It may nonetheless be true that the user is quite
sure that the data defines an extruded solid, and that the level of precision is at least, say, δo. Finally, the
user may believe, in practice, that the NSK algorithm applied to such data will provide a reliable result, so
that it is reasonable to assume that the given data defines a ε-regular virtual interval by means of (3). The
class-of-sets semantics provides a way to formulate a theorem supporting this intuition.

In order to proceed, we must introduce a hypothesis which ensures that the user has at least provided
data that can be interpreted as a simple closed curve. As already mentioned, for practical applications we
want to deal with situations like the one illustrated in Figure 7, where imperfections in the boundary are
permitted. But if we put no limits at all on the size of gaps, loops and overlaps, then the user could provide
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data impossible to interpret as the boundary of a generalized cylinder. Where, for example, is the interior of
each of the three sequences of line segments shown in Figure 13? (In the first two sequences, which define

1 -1

(a) (b) (c)

1
1 -1

0

0

Figure 13: Three nonsense sequences

closed paths in R2, the winding numbers are also given in Figure 13.) We introduce the hypothesis imposing
the mentioned limits immediately, in order to emphasize that it is there not for the purpose of dealing with
the effects of finite-precision arithmetic, but, rather, because we need data that can be interpreted as similar
to a simple closed curve (but possibly containing imperfections).

The hypothesis is this. Given the ordered set of segments provided by the user, convert it to a closed
path by joining the endpoint of each edge to the starting point of its successor, by a straight-line segment,
unless the endpoint and starting point are already coincident. This is done in cyclic fashion for all given
segments, and the resulting closed path is assumed to have n segments, including any new ones added by
the process just described. Let the ordered set of vertices in this path be denoted v1, . . . vn, and let Ci be
the curve between v(i) and v(i+1), i = 1, . . . , n, with indices computed modulo n. We can now apply the
NSK algorithm as in Section 3.2.3 to induce the virtual interval [S−, S+] that is ε-regular by assumption.

This, however, is not enough to guarantee that the algorithm will produce results consistent with users’
expectations. The above construction is justified based on the expectation that the loops, overlaps and
added line segments will be contained within the ε-regular interval, but we have no way to guarantee that
NSK algorithm will produce the same results when applied to the boundaries of S−, S+, and the corrected
data. Thus, in addition, we assume that the user has provided an upper bound δo > 0 for the imperfections
in the boundary data, in the following sense.

We suppose first that the boundary of the set

∪i=1,...,n ∪x∈Ci
Bδo(x)

is composed of two nested simple closed curves in the plane. The resulting nested simple closed curves define
(by two applications of the Jordan curve theorem) a bounded set and an unbounded set which, together
with an intermediate annular region, cover the plane (see Figure 14). We also suppose that the winding
number for points in the interior bounded region has absolute value equal to 1, and the winding number for
points in the unbounded region is equal to 0.

It is clear that with this hypothesis, the NSK algorithm works correctly, as in Section 3.2.3, if we replace
the constant τ by δo/2. Indeed, the algorithm produces an interval [S−, S+] satisfying (2), with S− = Sin,
S+ = Sout. The interval is assumed to be ε-regular, and the points on boundaries of S− and S+ lie at most
max{σ(δo), 22.8Mηo} away from the original NURBS segments in the boundary of the curve’s cross-section,
with δo ≤ σ(δo). Thus, the intermediate annular region acts as a sort of black box, in which we can hide all
of the inconsistencies illustrated in Figure 7, and all of the low-level vagaries of finite-precision arithmetic
(as illustrated, for example, in [31, Figure 1]).

It is important, of course, that the user be aware of the implications of the hypotheses. For example,
consider the case of a split-ring for the piston of an automobile engine. The hypothesis concerning the two
nested simple closed curves, illustrated in Figure 14, may be satisfied for the split-ring, in its rest state
outside the engine cylinder, for a certain value of δo, as illustrated in Figure 15. In this case, the implied

16



Ci

Ci+1

Ci+2

Two simple closed curves

Figure 14: Two nested simple closed curves
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Figure 15: Nested curves for split-ring

interval [S−, S+] is also δo-regular. On the other hand, if δo is increased slightly, the interval could remain
δo-regular, while at the same time the hypothesis that the winding number is correctly computed using
the NURBS curves Ci fails. Similarly, if the split-ring is moved to its compressed state within the engine
cylinder, then both hypotheses about the winding number and δo-regularity fail. It remains true, however,
that if we do not have the hypotheses necessary to support the use of single-set semantics, but we can justify
the hypotheses of this section, then we can still prove a useful result, using the class-of-sets semantics.

4 Conclusion

The main goal and contribution of this paper is a thorough examination of the semantic foundations of the
so-called robustness problem in geometric modeling. The problem is very different from robustness problems
arising in other fields, such as computational geometry. In geometric modeling, the main issue is not the
magnitude and propagation of approximation and computation errors. The mere presence of any errors
in geometric data and/or algorithms undermines the assumed validity of all subsequent computations and
applications using the data. Since virtually all models and algorithms contain errors and approximations,
development and standardization of alternative semantics of such models is critical to both theoretical and
practical development of geometric modeling as a discipline.

In this paper, we analyzed and compared two possible approaches for assigning a meaning to geometric
models in the presence of such errors: the single-set semantics interprets the data as a slight adjustment
of the original data that preserves the topological form, and the class-of-sets semantics interprets the data
as a family of sets that are close to each other but may possess distinct topological structure. The two

17



approaches have been shown to be complementary. The single-set semantics assumes and enforces a stable
topological and combinatorial structure, and provides as well a strong measure of geometric similarity, under
small perturbations. This semantics requires a priori satisfaction of strong conditions (compared to the
class-of-sets approach), but it also provides the ability to prove the strongest possible statements about the
use of the given geometric data. The single-set semantics is likely to be the semantics of choice within a
single system environment. In contrast, the class-of-sets semantics puts very few restrictions on the geometric
data, tolerates a much wider class of errors and uncertainties, and supports multiple interpretations of the
same data. As such, the class-of-sets semantics may be most useful in situations involving multiple systems
and/or uses of data, such as those arising in data translation and collaborative environments. While the
class-of-sets semantics implies strong metric properties, it neither preserves nor guarantees the topological
form of the represented set, and requires additional hypotheses or assumptions about the source or the use
of data.

We have demonstrated the two approaches and their complementary properties in the context of a
particular popular PMC algorithm that underlies many other geometric computations. In the process, we
made a number of specific decisions (for example, on geometric predicates) and assumptions (for example,
on closing the gaps between the adjacent vertices). We do not claim that these choices are optimal, or
even preferable to other possibilities. Their sole purpose is to explain the similarities and differences in the
two possible methods of assigning semantics to geometric models, which we expect will persist and extend
to other types of applications and algorithms. It should be clear that two approaches are not mutually
exclusive and may be used simultaneously, provided the conditions required by each approach are satisfied.
In cases where it is appropriate to make both the assumptions of Section 2.1, and assumptions like those of
Section 2.2, then similar results will be provable in the single-set and class-of-sets semantics. That is, the
result in each semantics will have essentially the same content, and the proofs will be similar.

More generally, it may be observed that a number of choices can be made in the definition of |=. For
example, the single-set semantics requires that the set S should have exactly the combinatorial structure
given in the topological data. The class-of-sets semantics gives precedence to the geometric data, rather than
the topological data.6 The correct choice depends on which theorems are to be proved, and this may depend
on the downstream applications that are to be considered. In general, strengthening the conditions on the
set S will tend to increase the need for supplementary hypotheses in theorems, and increase the difficulty of
proving the theorems; this will, however, be justified to the extent that it provides a more useful model of the
real world. Similarly, weakening the conditions on S will tend to reduce the requirements for supplementary
hypotheses, and reduce the difficulty of proving theorems, and this will be justified to the extent that it
simplifies and clarifies.

5 Acknowledgements

The use of half pole crossings (Section 3.2.1), which has several technical advantages over including the
positive x2-axis within one of its neighboring quadrants, was suggested by J.-F. Rotgé.
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