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Abstract

We evaluate the effects of guarded (or conditional,
or predicated) execution on the performance of an instruc-
tion level parallel processor employing dynamic branch
prediction. First, we assess the utility of guarded execu-
tion, both qualitatively and quantitatively, using a variety
of application programs. Our assessment shows that
guarded execution significantly increases the opportuni-
ties, for both compiler and dynamic hardware, to extract
and exploit parallelism. However, existing methods of
specifying guarded execution have several drawbacks that
limit its use. Second, we study the interaction of guarded
execution and dynamic branch prediction and show that
the use of guarded execution significantly increases the
number of instructions between mispredicted branches.
Third, we propose a new method of specifying guarded
execution. The proposed method uses special GUARD

instructions, which can be used to incorporate guarded
execution into existing instruction sets. GUARD instruc-
tions realize the full power of guarded execution, without
the drawbacks of existing methods of specifying guarded
execution.

1. Introduction

Many recent microprocessors rely heavily on instruction-
level parallelism (ILP) to achieve high performance levels.
Most of these processors employ dynamic parallelism
detection and extraction techniques, in which the hardware
has to examine a (small) number of instructions, determine
if their operands are available, and when they are avail-
able, issue the instructions to the available execution units.

Many studies have shown that the parallelism avail-
able within basic blocks is limited, and it is clear that one
has to look beyond basic block boundaries for more paral-
lelism. The larger the number of instructions that can be
examined, the greater the parallelism that can be extracted.

To get past branch instructions, processor designers
have two options. The first option is the use of speculative
execution. In this approach, the outcome of a branch
instruction is predicted and instructions from the predicted
path are examined for execution. This technique requires
a branch prediction mechanism (either static or dynamic),
and the ability to undo the effects of instructions executed
after an incorrectly predicted branch. The second option is

the use of guarded execution [8] (also called conditional
execution or predicated execution). By eliminating some
branch instructions, the effective block size (the number of
instructions between branches) is increased, thereby
increasing the opportunities for parallelism extraction.

Traditionally, guarded execution and speculative
execution (especially speculative execution with dynamic
branch prediction), have been treated mutually
exclusively. Furthermore, there have been very few stu-
dies of the utility of guarded execution for general-purpose
programs. Recent architectures, such as the DEC Alpha
and the SPARC V9, have combined the two, offering sim-
ple guarded instructions such as the conditional move
instruction, while allowing for dynamic branch prediction.
The presence of both guarded and speculative execution
creates many opportunities (both static and dynamic) to
exploit ILP. It also raises several questions regarding the
interactions of the two techniques.

This paper has three purposes. The first is to assess
the pros and cons of guarded execution, both qualitatively
and quantitatively, for a variety of application programs.
One result of this assessment is that while guarded execu-
tion has a lot of potential, existing methods of specifying
guarded execution have major drawbacks that limit the use
of guarded execution. The second purpose is to examine
the interaction of guarded execution and dynamic branch
prediction. The third purpose is to propose a new way of
specifying guarded execution which eliminates almost all
the drawbacks of existing methods.

We present a qualitative discussion of guarded exe-
cution in section 2. In section 3 we present the evaluation
methodology, the benchmarks, and the metrics that we use
to quantitatively assess guarded execution. Section 4
presents quantitative results assessing the ability of
guarded execution to enhance opportunities for parallelism
extraction, the potential overhead of guarded execution,
and the interplay between guarded execution and dynamic
branch prediction. In section 5 we present a new method
of specifying guarded execution. Our proposed technique
allows guarded execution, in its full form, to be integrated
easily (with a few additional instructions) into existing
instruction sets. We discuss how the proposed technique
overcomes the drawbacks of existing methods of specify-
ing guarded execution, and also evaluate it quantitatively.
Finally, section 6 presents concluding remarks.



2. Guarded Execution

A guarded instruction is a normal instruction augmented
with a guard condition specifier. The semantics of a
guarded instruction are as follows: evaluate the guard con-
dition; if it is met, then execute the instruction, otherwise
treat the instruction as a NOP. Introducing guarded execu-
tion into scalar processors can be a very powerful concept;
Figure 1 presents a small example. Figure 1(a) shows the
C-code for the inner loop of the Cmppt function of the
SPEC92 benchmark Eqntott. Figure 1(b) shows the
corresponding MIPS-like assembly code. Figure 1(c)
shows the same code using guarded instructions (if-
conversion [1] is used to transform the code). In Figure
1(c), c_move is a conditional move, and c_li is a condi-
tional load immediate. The last operand of a conditional
instruction is the condition register. Comparing Figures
1(b) and 1(c) we can see that 4 static branches were elim-
inated (corresponding to the first, the second and the fourth
if-statements and one of the return statements in the C-
code), and that the basic blocks are considerably larger:
the MIPS-like assembly contains 10 non-branch and 7
branch instructions, while the guarded version contains 13
non-branch and 3 branch instructions.

Guarded execution (or simply guarding), for scalar
processors was proposed by Hsu and Davidson [8, 9] to
allow better scheduling of decision trees. In the context of
a decision tree, the conditional branches are essential
because they steer the flow of control to the correct branch
of the decision tree. These diverging control structures are
not amenable to if-conversion, and guarding is used as a
general technique to fill multiple branch delay slots. Hsu
and Davidson assume that the instruction set supports
guarded stores and guarded jumps and allows for guard
conditions that are the conjunction or disjunction of two
operands in true or complementary form. Computation
instructions are not needed in a guarded form because a
single assignment property is maintained in the code gen-
erated for the decision tree.

for (i = 0; i < ninputs; i++) {
   aa = a[0]−>ptand[i];
   bb = b[0]−>ptand[i];
   if (aa == 2)
      aa = 0;
   if (bb == 2)
      bb = 0;
   if (aa != bb) {
      if (aa < bb)
         return −1;
      else
         return 1;
   }
} /* rof */

L0 lh      a0,0(a1)
   lh      a2,0(a3)
   bne     a0,t0,L1
   move    a0,zero
L1 bne     a2,t0,L2
   move    a2,zero 
L2 slt     at,a0,a2
   beq     a0,a2,L4
   beq     at,zero,L3
   li      v0,−1
   jr      ra
L3 li      v0, 1
   jr      ra
L4 addiu   v0,v0,1
   addiu   a1,a1,2
   addiu   a3,a3,2
   bne     v0,v1,L0

(a) (b) (c)

L0 lh      a0,0(a1)
   lh      a2,0(a3)
   set_eq  c0,a0,t0
   c_move  a0,zero,c0
   set_eq  c1,a2,t0
   c_move  a2,zero,c1
   slt     at,a0,a2
   beq     a0,a2,L4
   set_ne  c3,at,zero
   c_li    v0,−1, c3
   c_li    v0, 1, ! c3
   jr      ra
L4 addiu   v0,v0,1
   addiu   a1,a1,2
   addiu   a3,a3,2
   bne     v0,v1,L0

Figure 1. The Cmppt inner loop: Part (a) shows the C-code, part (b) shows the corresponding
MIPS-like assembly, and part (c) shows the same assembly using guarded instructions.

The control structures of many common programs,
however, are better represented by DAGs. For these struc-
tures, if-conversion is more appropriate. If-conversion
converts control dependencies to data dependencies: a
branch instruction and the instructions that are control
dependent on it are replaced with an instruction that sets a
condition (if it is not already available in a register) and a
sequence of instructions guarded by this condition.

Vector processors have long benefited from guarded
execution. Here, vector masks are used to express (multi-
ple) guard conditions [14]. Using these vector masks,
loops with if-statements can be vectorized. Recently pro-
posed VLIW machines, for example the Cydra-5 [3, 13],
and the IBM VLIW machine [4], have also used guarded
execution to facilitate the software pipelining of loops with
conditional branch instructions.

To incorporate guarded execution into a scalar
instruction set, we need to be able to specify a guard con-
dition for each (guarded) instruction. Proposed methods
for specifying guarded execution suggest the use of an
additional operand field for each instruction [11-13]. This
operand field is used to specify a register that holds the
guard condition; the register could either be a general-
purpose register, or part of a special predicate register file.

With guarded execution, code for a scalar processor
has fewer branches, larger basic blocks, and fewer control
dependencies. This results in several important advan-
tages. First, the compiler has a larger (static) basic block,
with more instructions to extract parallelism from. This
allows the compiler to produce a better (and more parallel)
schedule. Second, since the number of branches (static
and dynamic) is reduced, the number of instructions
between mispredicted branches (or the window size) can
increase. A larger window size provides more opportuni-
ties for parallelism extraction.

Existing proposals for guarding, however, have
several problems that inhibit its (widespread) use in scalar
processors. The first problem is that guarded execution is



not easy to integrate into existing instruction sets. Since
each (guarded) instruction needs a guard operand, existing
techniques for specifying guarding require each (guarded)
instruction to have an additional source operand specifier.
With existing instruction sets, it is generally not possible to
find a sufficient number of bits to explicitly specify an
additional source operand for all instructions. (An addi-
tional source operand specifier also implies an additional
read port on the register file.) This problem has forced
instruction set designers to allow only a small number of
guarded instructions. The DEC Alpha and the SPARC V9
architectures are prime examples, offering a conditional
move (CMOVE) instruction.

The second problem is that guarding increases the
total number of instructions executed dynamically. In gen-
eral, instructions from both paths (traversed and not
traversed) of a branch instruction are transformed into
guarded instructions; the processor has to fetch and decode
all these instructions because it has no prior knowledge of
which instruction is guarded until the instruction is fetched
and examined, and the corresponding condition (if any) is
evaluated. After the condition evaluation, instructions
from the not-traversed path are transformed into NOPs (in
the earlier stages of the pipeline). These extra instructions,
from the not-traversed path, could be scheduled to execute
in parallel with other useful computation, if the processor
has a sufficient number of resources. If sufficient
resources do not exist, these additional instructions can
actually increase the overall execution time. Execution
time can also increase if the paths are of unequal lengths:
when the longer path cannot be scheduled in parallel with
other useful computation, the shorter path might have to be
lengthened and performance along that path will suffer.

A third concern is that guarding uses additional
architecturally visible registers to hold the (guard) condi-
tions for the subsequent guarded instructions. Without
guarding, the register that holds the condition is used once
to decide the branch outcome and set the correct PC value.
With guarding, the condition register is used as a source
operand in all the instructions it covers. Therefore, the
lifetime of this register must extend to the last guarded
instruction, thus increasing the register pressure. The
problem is exacerbated by the instruction scheduler which,
by rearranging the instructions, can increase the register
lifetime. A possible solution to this problem is to add a
separate predicate register file [12, 13], to relieve the pres-
sure on the architectural registers. This solution, however,
may result in extra instructions to transfer values between
the two register files and clearly cannot be easily incor-
porated into existing architectures.

Guarding also complicates the register renaming
logic. When a guarded instruction is squashed, it does not
generate its renamed result, and the squashing must be fol-
lowed by a repair action to keep the mapping table(s) con-
sistent. To simplify the control logic, one solution is for a
guarded instruction to always generate a result (either the

old or the new value of the destination register). However,
this solution requires an additional read port in the register
file, to read the old value of the destination operand.

Because of these drawbacks, instruction set support
for guarding is expected to be limited (unless one has the
luxury of designing a new instruction set) and guarding
can be profitably applied only in certain cases. Mahlke et
al [12] addressed some of these issues for statically
scheduled machines (such as VLIW), taking in account
mainly the basic block size and the execution frequency.
In their scheme, a Hyperblock of instructions is formed,
using trace selection based on branch frequencies, such
that the Hyperblock has a single entry point and one or
more exit points. Branches that are not amenable to static
prediction are eliminated using if-conversion. Finally,
after the Hyperblock formation, the instructions are
scheduled using conventional parallelism enhancing tech-
niques.

The problem of wasted computation resulting from
if-conversion was addressed by Warter et al [15]. They
propose the use of if-conversion before the instruction
scheduling phase of the compiler, to eliminate the control
dependencies and expose parallelism to the optimizer.
After the optimization phase, a reverse if-conversion
transformation is proposed, in which guarded computation
is transformed back into normal instructions covered by
conditional branches. This technique improves the static
schedule without increasing the execution time of any of
the paths. However, reverse if-conversion can increase the
static size of the program significantly and can cause high
instruction cache miss ratios. Reverse if-conversion can
also increase the number of executed branches, although,
in general, given sufficient resources, these branches will
be executed in parallel with other useful computation.

We believe that guarded execution is very useful to
ILP processors (and will confirm our beliefs in the follow-
ing sections), as it allows the compiler and the hardware to
exploit more of the available instruction level parallelism.
The potential drawbacks of guarding, however, are bother-
some. We believe that the disadvantages of guarded exe-
cution, which we have outlined above, are not fundamen-
tal disadvantages of the guarding approach. Rather, we
believe that they are a problem caused by existing methods
of specifying guarded computation. In section 6, we will
present and evaluate a different scheme for specifying
guarded computation, one that does not have the draw-
backs mentioned above. Before doing that, however, a
performance assessment of the guarding concept is in
order.

3. Evaluation of Guarded Execution

In this section we describe the experimental framework
that we used to quantitatively assess the guarding concept.
We used a trace-driven simulator that simulates the user-
level execution of programs, with and without guarded



instructions, and collects the necessary statistics.

3.1. Benchmarks

For benchmark programs, we used the entire integer
SPEC92 benchmark suite, namely the programs Compress,
Eqntott, Espresso, Gcc, Sc and Xlisp. We also used three
architecture simulators, Tycho, a cache simulator [7],
Supermips, a superscalar processor simulator based on the
MIPS instruction set, and Thissim, a trace driven simulator
similar to the one we used for this study. Finally, we used
the TeX text formatter and the Yacc parser generator, as
well as two object oriented database benchmarks, Sun-
bench and Tektronix.

Our benchmark programs were compiled for a MIPS
based DECstation 3100, using the version 2.1 of the MIPS
compiler. Table 1 shows our 13 benchmark programs and
their basic statistics, including the number of instructions
(excluding NOPs) that we allowed for execution, and the
ratio of conditional and unconditional branches in the
dynamic instruction stream.

� ���������������������������������������������������������������������������������������������������
Dynamic Branch Ratio� ���������������������������������������������������

Program Instructions
(Millions)

Conditional Unconditional
� ���������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������

Compress 78.59 0.149 0.040
Eqntott 300.00 0.306 0.012
Espresso 300.00 0.176 0.014
Gcc 128.78 0.156 0.042
Sc 300.00 0.207 0.037
Sunbench 300.00 0.148 0.067
Supermips 300.00 0.111 0.056
Tektronix 300.00 0.136 0.082
TeX 214.69 0.143 0.055
Thissim 300.00 0.105 0.046
Tycho 300.00 0.123 0.061
Xlisp 300.00 0.157 0.091
Yacc 26.37 0.237 0.020� ���������������������������������������������������������������������������������������������������
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Table 1. Benchmark Program Characteristics

3.2. Metrics

The best metric for evaluating any concept in pro-
cessing is the total execution time. However, this metric
requires many implementation assumptions, including the
exact hardware configuration, functional unit latencies,
etc. Other direct metrics, such as CPU time and speedup
also require implementation assumptions that limit the util-
ity of results (for example, an ideal memory system is
assumed in many studies). To avoid making implementa-
tion assumptions, which introduce another set of parame-
ters into the performance equation, we use indirect meas-
ures of performance. While these measures may not
translate easily into a direct metric for an implementation,
they do provide insight into the utility of the concept.

Our first metric is the basic block expansion. This is
the increase in the number of useful instructions between

branches, due to guarding. In the basic block expansion
we do not count any guarded instructions that are dynami-
cally transformed into NOPs. The basic block expansion
plus the basic block size gives the effective guarded block
size, i.e. the number of useful instructions between
branches after the if-conversion. The advantages of this
metric are (i) it is highly correlated with parallelism that
can be extracted [2, 6, 12] and (ii) it is dependent only on
the program and the compiler and not on the underlying
hardware implementation.

Our second metric is the path expansion. This is the
number of instructions in a block that do not contribute to
useful computation, because they are dynamically
transformed into NOPS. This metric gives an indication of
the additional instruction fetch bandwidth required during
the program execution.

When guarding is combined with dynamic branch
prediction and speculative execution, two more metrics are
of interest. These are (i) the accuracy of the branch pred-
iction scheme, and (ii) the number of useful instructions
between mispredicted branches. We refer to the latter as
the dynamic window size.

3.3. Guarded Instruction Use

To decide which instructions can be guarded, and
what the guard condition should be, we apply the follow-
ing algorithm. Starting at a node in the control flow graph
(CFG) of a program, we traverse the CFG collecting nodes
from all the possible paths in an attempt to create a single
large block (of non-branch instructions) containing
guarded instructions. This guarded block is terminated by
a (possibly conditional) branch instruction. We also res-
trict the construction of guarded blocks so that they con-
tain no more than 15 basic blocks of the original code1.

In our guarded block formation we do not perform
any loop unrolling, or function inlining. Should loop unrol-
ling and function inlining be performed, the potential of
guarded execution would be enhanced. The guarded
blocks constructed by our algorithm differ from the ones
constructed in the Hyperblock formation of [12] in two
ways. First, we require that all branches internal to the
block (except the last one) be eliminated by the if-
conversion; a Hyperblock is allowed to contain multiple
branches and exit points. We treat what would be a
Hyperblock as a sequence of basic blocks and guarded
blocks. Our metrics, namely the basic block expansion
and the path expansion, are not affected by these differ-
ences, as the useful computation remains the same and the
number of branches and the non-useful guarded computa-
tion depend solely on the if-conversion transformations.
�����������������������������������������������������������������������

1 This limit was set to ensure that the size of the guarded blocks
will be reasonable, in that they do not contain too much unused computa-
tion. The effects of this limitation on our metrics were negligible.



Second, the Hyperblock’s heuristic basic block selection
function may decide to apply if-conversion in different
parts of the control flow graph than our simpler algorithm.

Another input to the guarding process is the nature
of the guarded instructions available in the instruction set.
We distinguish between two types of guarding: full guard-
ing and restricted guarding.

3.3.1. Full Guarding

In full guarding, we assume that all instructions are
available in guarded form, and that the guard conditions
can be set by the normal computation without any over-
head. Under these two assumptions, if-conversion is only
limited by the structure of the CFG; any sub-graph meet-
ing our restrictions can be transformed into a guarded
block. The results obtained under these assumptions are
an indicator of the best performance (according to our
metrics) that one can expect from guarding.

3.3.2. Restricted Guarding

Because of opcode space limitation many instruction
set architectures cannot be extended to include guarded
versions of all instructions. For partial guarding support,
an important subset of instructions are the ALU instruc-
tions, because they usually require fewer bits to encode2;
the unused bits can be used to specify that the instruction
is guarded and encode the condition register. Load and
Store instructions usually contain an immediate field and
two register specifiers, and do not leave any space to
specify the condition register. In restricted guarding, only
blocks with ALU operations can be guarded; memory
accessing instructions can only appear in an unconditional
part of the guarded block. Guarded blocks constructed
with restricted guarding are therefore a subset of the
blocks constructed with full guarding.

One way to provide support for all instructions in a
guarded version is to synthesize them using normal
instructions that store their results into temporary registers,
and then using the supported conditional instructions (such
as conditional moves) to commit these results. In this
method, the compiler must guarantee that none of the
unconditional instructions used in the synthesis will ever
generate an exception. However, synthesis of guarded
instructions entails additional overhead, and it is not clear
if this overhead will be more than compensated for. A
compact and efficient way to specify guarded instructions,
that does not suffer from these limitations, will be
described in section 5.

�����������������������������������������������������������������������
2 In the MIPS instruction set, an ALU instruction is specified with

the 6-bit opcode SPECIAL, a 6-bit function field and three 5-bit register
specifiers. That leaves 5 bits unused, exactly as many as we need for the
guard register specifier.

4. Evaluation of Guarding

4.1. Branch Elimination Potential and Overhead of
Guarding

We first consider the branch elimination potential of
guarding. Table 2 presents the percentage of conditional
and unconditional branches that are eliminated from the
(dynamic) instruction stream when full and restricted
instruction set support for guarding is available. Table 2
also shows the percentage of conditional backward
branches in each program. These branches correspond to
loop back-arcs and are important, because if-conversion
cannot eliminate any of them, unless the loops are
unrolled. From Table 2 we see that full guarding is able to
eliminate an average of about 31% of all (dynamic) condi-
tional branches, and 35% of the (dynamic) unconditional
branches. To obtain the overall percentage of eliminated
branches, the individual percentages can be combined
using a weighted average, using the conditional to uncon-
ditional branch ratio for weight (this ratio can be computed
from Table 1; across all programs it is about 3.46 to 1).
Across all programs, the overall percentage of eliminated
branches is about 32% for full guarding. Restricted guard-
ing is not as powerful as full guarding, for obvious rea-
sons; on the average, it is able to eliminate only 14.76% of
all conditional and only 2.34% of the unconditional
branches. An exception is Eqntott, which spends most of
its time in an inner loop that is amenable to restricted
guarding.
� �������������������������������������������������������������������������������������������������������

Loop Full Restricted� ���������������������������������������������������������������Program
Branch. Cond. Uncon. Cond. Uncon.� �������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������

Compress 26.48 24.86 84.29 18.24 0.00
Eqntott 29.07 40.55 54.98 40.04 1.02
Espresso 38.08 16.76 29.03 10.17 1.17
Gcc-cc1 24.84 31.92 17.04 9.64 0.37
Sc 24.63 43.07 17.74 9.83 0.18
Sunbench 15.79 35.65 47.10 11.35 0.03
Supermips 5.03 50.69 19.36 17.15 0.60
Tektronix 16.83 37.53 41.60 17.08 7.48
Tex 25.09 12.80 24.03 5.99 1.00
Thissim 11.52 62.31 33.70 23.26 1.43
Tycho 18.28 15.64 33.84 7.10 1.31
Xlisp 27.03 13.64 14.33 13.87 14.14
Yacc 38.64 19.53 38.95 8.18 1.71� �������������������������������������������������������������������������������������������������������
Arithmetic
Mean

23.17 31.15 35.07 14.76 2.34
� �������������������������������������������������������������������������������������������������������
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Table 2. Percent of dynamic branches eliminated
by full and restricted guarding.

Figure 2 presents the basic block size (labeled ‘‘BB
size’’), the basic block expansion (labeled ‘‘BB expan-
sion’’), and the path expansion, for each of the benchmark
programs when full guarding is used; Figure 3 presents the
same when restricted guarding is used. From Figure 2 we
can see that full guarding is quite effective. The average



basic block size is 4.82 instructions and the average basic
block expansion is 2.51 instructions, corresponding to a
52% increase in the effective guarded block size. In most
cases the basic block expansion is at least 25% of the basic
block size; in one case (Thissim), the basic block expan-
sion is larger than the basic block size (7.55 versus 6.55
instructions respectively). The basic block expansion,
however, comes with a price — the path expansion. From
Figure 2 we see that 33% of all instructions that would be
executed (or at least fetched and decoded), with full guard-
ing, do not contribute to useful computation. For most
programs, 20-50% of the instructions executed are non-
useful instructions. We feel that this overhead is
significant, and needs to be dealt with, for full guarding to
become widely used.
�����������������������������������������������������������������������������������������������
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Figure 2. Basic block size, basic block expansion and path
expansion with full instruction set support for guarding.
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Figure 3. Basic block size, basic block expansion and path
expansion with restricted instruction set support for guarding.
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The magnitude of the path expansion is not as large
with restricted guarding: on the average, only 8% of the
instructions do not represent useful computation. How-
ever, restricted guarding also does not give a significant
basic block expansion (an average increase of 8% over the
basic block size).

From Table 2 and Figures 2 and 3 we can conclude
that full guarding is a powerful technique able to eliminate
a significant fraction of the branches of a program and
achieve a significant increase in the (guarded) block size,
assuming that its drawbacks can be dealt with. These
results suggest that instruction set support for guarding is
desirable, and that a limited support for guarded execution
in the instruction set may not be sufficient.

4.2. Interaction of Guarding and Dynamic Branch
Prediction

We now consider the interplay between guarding
and dynamic branch prediction. Guarding can impact the
prediction mechanism in two (not entirely unrelated) ways.
One, it can reduce the number of branches that are
predicted. If the branches that guarding eliminates are
‘‘bad’’ branches, i.e. branches with poor predictability,
guarding can improve prediction performance (as meas-
ured by the branch prediction accuracy); if they are
‘‘good’’ branches, guarding can degrade prediction perfor-
mance. Two, since the number of (static and dynamic)
branches that need to be predicted is changed, the mechan-
ics of the prediction mechanism could change completely.

We use two different prediction mechanisms: a 2-bit
counter-based mechanism, and a GAp(8) pattern-based
mechanism [16]. In either case, the predictor has 4K
entries (which corresponds to 8K bits of storage). The two
configurations were chosen to be reasonable in hardware
complexity while achieving respectable performance.

We first address the issue of the branch prediction
accuracy. Table 3 presents the branch prediction accura-
cies without guarding, with restricted guarding, and with
full guarding, for the two predictors. The prediction accu-
racies do not include any unconditional branches, since
these do not require dynamic prediction. Unfortunately,
there are no (monotonic) trends in the table. In some cases
guarding improves the prediction accuracy, in other cases
it does not. It appears that both pattern-based and
counter-based prediction mechanisms will continue to be
beneficial even in the presence of guarding.

Next, we address the issue of dynamic window size.
This size is influenced both by the prediction mechanism,
as well as the number of useful instructions between
branch predictions3. Figure 4 presents the dynamic
�����������������������������������������������������������������������

3It is interesting to compare these dynamic window sizes with the
window sizes that can be established with trace scheduling, which uses
static branch prediction [5].



window sizes without guarding (basic blocks), with res-
tricted guarding, and with full guarding, for each of the
benchmark programs using the above pattern-based pred-
ictor.

The pattern-based predictor can establish a respect-
able window size (about 156 instructions, on average),
even without guard instructions. With restricted guarding,
the average window size increases to about 184 instruc-
tions, and with full guarding, it further increases to about
258 instructions; for almost all programs the (average)
window size is greater than 150 useful instructions.
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Counter based Pattern Based���������������������������������������������������������������������������������������������Program
BB Full Restr. BB Full Restr.������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Compress 87.20 88.57 89.00 88.71 90.38 90.76
Eqntott 83.76 97.54 97.54 93.15 98.09 98.09
Espresso 90.30 92.11 89.55 96.56 96.84 96.20
Gcc-cc1 87.65 87.15 87.75 88.76 89.13 88.96
Sc 94.91 94.43 94.87 95.90 95.64 95.87
Sunbench 91.35 89.34 91.39 98.03 96.84 97.35
Supermips 96.53 97.77 95.81 96.00 96.35 95.58
Tektronix 91.15 89.28 90.24 96.01 95.95 96.25
TeX 94.72 95.20 94.50 94.80 95.12 94.76
Thissim 96.03 93.59 95.24 96.87 96.06 96.09
Tycho 93.41 94.30 93.24 95.16 96.34 95.24
Xlisp 88.16 87.20 87.40 95.21 95.37 95.33
Yacc 93.68 94.78 93.69 95.60 96.36 95.64���������������������������������������������������������������������������������������������������������������������
Arithmetic
Mean

91.45 92.40 92.32 94.67 95.26 95.08
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Table 3. Branch prediction accuracies for counter-
and pattern-based predictors with 4K entries.
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No guarding Full guarding Restricted guarding
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Figure 4. Effects of guarding on the window size
for a pattern-based predictor with 4K entries.
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One program, Sunbench, has an anomalous
behavior: the window size with guarding is (slightly)
smaller than the window size without guarding! The rea-
son for this is that guarding changes the patterns of taken
and not-taken branches. In the case of Sunbench, the new
patterns are less predictable, resulting in the reduction of

the window size.

5. An Alternate Specification of Guarded Execution

The previous sections suggested that guarded execution is
a very useful concept, especially when coupled with a
good dynamic branch prediction scheme, both in increas-
ing the block size available for software optimizations, as
well as in increasing the (dynamic) window size from
which parallelism can be extracted. However, guarded
execution, as specified using explicit guard condition
operands with each (guarded) instruction, has several
drawbacks. First, the specification of a guarded instruction
requires valuable instruction space that may not be avail-
able without a complete rehaul of the instruction set.
Second, the implementation of guarding requires an addi-
tional read port in the register file. Third, the number of
instructions that have to be executed is increased, thereby
increasing the required instruction fetch and decode (and
possibly execute) bandwidth. Fourth, there could be
increased pressure on the architectural register file, if it is
used to hold guard conditions.

As we had alluded to earlier, many of these draw-
backs are an artifact of how guarding is specified. The
performance problems, in particular, are due to the fact
that the processor has no knowledge of the type of instruc-
tions it is going to encounter (soon) in the dynamic instruc-
tion stream. Without this information, the processor has to
fetch and decode all the instructions in a block to deter-
mine their guarding status.

The solution that we propose below allows the
guarding concept, in its full form, to be integrated easily
into existing instruction sets (it requires the addition of a
very small number of instructions, and no modifications to
existing instructions), and also overcomes the performance
problems mentioned above. The solution makes use of
two observations. First, instructions guarded by the same
condition are likely to be in close proximity in the static
and dynamic instruction stream. Second, most instructions
in close proximity are likely to be guarded by the same
guard condition (in true or complement form), or by a very
few number of guard conditions; many are likely to have
the same guard condition.

Given the close proximity of guarded instructions
and the low information content of the guard condition
specification, we propose the use of a ‘‘GUARD’’ instruc-
tion to specify a block of guarded instructions directly. A
GUARD instruction has two operands, a register that
specifies the guard condition, and a mask that specifies
which of the following instructions (in the static and also
dynamic code) are guarded by the specified condition. A
GUARD instruction, therefore, provides a specification of
the guard operands of each guarded instruction.

Figure 5 presents a small example illustrating the
use of the GUARD instruction. The simple control flow
graph in Figure 5 consists of four basic blocks forming two



i1:  ld    r6,  0(r2)
i2:  add   r1,  r2,  #2
     beq   r7,  zero, Label

i3:  ld    r3,  0(r1)
i4:  or    r17, r17, r3
i5:  sw    r17, 0(r1)
     beq   r5,  zero, Label

i6:  mov   r1,  r3
i7:  sub   r6,  r6,  #1

Label:

i8:  add   r7,  r7,  1
i9:  add   r5,  r5,  1

Assembly Code Assembly Code Using GUARDs

     and   r3,  r7, r5
     GUARD r7,  0001110000
     GUARD r3,   000001100

i1:  ld    r6,  0(r2)
i2:  add   r1,  r2,  #2
  

i3:  ld    r3,  0(r1)
i4:  or    r17, r17, r3
i5:  sw    r17, 0(r1)
 

i6:  mov   r1,  r3
i7:  sub   r6,  r6,  #1

i8:  add   r7,  r7,  1
i9:  add   r5,  r5,  1

PREDICATE

 A

 A &  B

always

always

GUARD A GUARD A & B

A

D

C

B

T

F

T

F

1

1

0

0

0

0

0

0

0

0

0

1 0

0

0

0

0

0

1

1

0

0

Figure 5. Example of the Use of the GUARD Instruction

nested if structures. The column labeled ‘‘PREDICATE’’
indicates the condition that has to hold for a basic block to
execute. To specify the guarded execution of basic blocks
B and C we need two GUARD instructions for each of the
conditions A and A & B. The corresponding guard masks
are shown vertically in Figure 5. In these masks, a 1 indi-
cates that the corresponding instruction is guarded by the
condition register, and a 0 indicates that the instruction is
not dependent on that condition. The figure also shows the
assembly code without guarding, and with guarding
specified using the GUARD instruction. Notice that the
non-branch instructions in both cases are identical in every
respect; the only difference between the two codes is the
elimination of the branch instructions, the use of the AND
instruction to set a guard condition in r3, and the use of
GUARD instructions to specify guarding. The key advan-
tage of the GUARD instruction is that it specifies the guard
condition for many (subsequent) instructions. The benefits
of this specification are twofold. First, since the condition
is evaluated only once, instructions guarded by the condi-
tion do not need to specify and read the condition register,
eliminating the additional read port in the register file.
Second, the processor is informed in advance that some of
the instructions will be squashed, and can avoid even
fetching them, proceeding with the fetching of instructions
that will be useful. This early-out capability is very
important, because it allows the compiler to use guarding
aggressively, relying on the hardware to ensure that exten-
sive use of guarding does not result in too much dynamic
overhead. (For example, in the (guarded) code of Figure
5, if the condition in r7 evaluates to false, then the proces-
sor could jump to i8 after it is done with i2, since i3-i7 will
dynamically be transformed into NOPs.)

To support GUARD instructions, the processor has to
maintain a mask of active and inactive instructions. This
mask, called the scalar mask, is just a shift register: if the
i-th bit in the shift register is 1, the i-th instruction is to be
executed; if the i-th bit is 0, the i-th instruction must be
treated as a NOP. For the execution of a GUARD instruc-
tion with mask mask evaluating condition cond, the bits in

the scalar mask are updated as follows:

scalar_maski = scalar_maski & ((maski & cond) | ( ! maski))

The intuition behind this equation is that for every GUARD

instruction, a set bit in the guard mask indicates that the
instruction is to be executed only if the condition holds. A
reset bit in the guard mask indicates that the state of the
instruction is unaffected by this GUARD instruction. After
an instruction is completed, the scalar mask is shifted by
one position, with a one being shifted in.

An aggressive ILP processor, will need the ability to
execute multiple GUARD instructions per cycle. Although
the scalar mask is a centralized resource, the operations
performed on it are very simple (three, 2-input gate lev-
els). The generalization of the scalar mask update equation
for 4 simultaneous GUARD instructions takes five, 2-input
gate levels (using an AND-tree to combine all the results).

The scalar mask is key in permitting the processor to
effectively squash unnecessary computation. The proces-
sor can identify the unnecessary computation by perform-
ing counting the leading zeros of the scalar mask, and can
execute a short branch, changing the fetch address to
PC + count * 4 (count gives the offset from the current PC
to the the next useful instruction). Therefore, instructions
that will dynamically be transformed into NOPs are not
even fetched into the pipeline.

The GUARD instruction allows for two additional
optimizations. First, when multiple GUARD instructions
cover the same instruction, the conditions are implicitly
AND-ed in the scalar mask. This ability can reduce the
amount of logic manipulation instructions required to set
all the necessary conditions. Second, since the condition
register is evaluated exactly once when the GUARD

instruction is executed, the register holding the condition
can be reused immediately after the GUARD instruction.
This ability, coupled with the implicit AND ability of the
GUARD instruction, could alleviate the register pressure
problem. In our example of Figure 5, the conjunction of
conditions A and B that guards basic block C is achieved



by setting the corresponding mask bits in both GUARD

instructions. This is achieved by changing the first GUARD

instruction to ‘‘GUARD r7, 0001111100’’. This sim-
ple change obviates the need for the AND instruction that
was required to compute the condition A & B.

The scalar mask is part of the processor state, and
has to be saved and restored on interrupts and context
switches. The saved scalar mask, together with the saved
program counter value provide sufficient information to
restart the process correctly. It is fairly straightforward to
introduce user-level instructions to save and restore the
scalar mask. An alternative to exposing the scalar mask to
the processor state is to require that interrupts will be
accepted only on PC values that correspond to a ‘‘clear’’
state (i.e. to an scalar mask with all the bits set), in which
case the PC value is sufficient to fully describe the state of
the processor and to restart the process. In this approach,
handling of traps (which cannot be deferred until the state
of the processor becomes clean) requires that processor
reverts to the last PC for which the state was clean, in a
manner similar to the checkpoint repair of [10].

The exact number of GUARD instructions that need
to be added to an instruction set and the nature of encoding
of the mask field are something that need more study. In
this paper, we evaluate the utility of two flavors of GUARD

instructions. The first flavor uses a unary encoding of the
mask: bit i specifies whether the ith instruction following
the GUARD instruction is guarded by the specified condi-
tion. Opcodes GUARD_TRUE and GUARD_FALSE are
needed to specify true and false guard conditions for a
guarded code block (since a guarded block will contain
instructions from both the taken and the not-taken path).
(The GUARD instructions in Figures 5 and 6 are
GUARD_TRUE instructions.) The second flavor uses a sin-
gle opcode, GUARD_BOTH, but encodes the mask so that
the guard conditions (true, false, and unconditional) of 3
instructions can be specified in 5 bits. For a MIPS-like
instruction format, up to 21 bits can be comfortably used
for a mask. With this mask size, a GUARD_TRUE (or
GUARD_FALSE) instruction can guard up to 21 instructions
(but both guard instructions will be required to guard
instructions from the taken and not taken paths of a branch
in general). A single GUARD_BOTH instruction can guard
up to 12 instructions (4 sets of 5 bits each) from both paths
of a single branch.

Table 4 presents the overhead of GUARD instructions
to achieve full guarding (labeled ‘‘Ovrhd’’), and the aver-
age number of instructions guarded per GUARD instruction
(labeled ‘‘Instr per Guard’’). Guarding using
GUARD_TRUE and GUARD_FALSE instructions increases the
dynamic instruction count by 13.9%, on average, guarding
5.1 instructions with every GUARD_TRUE and
GUARD_FALSE instruction. When a GUARD_BOTH instruc-
tion is available, the dynamic instruction count is increased
by 10% and each GUARD_BOTH instruction guards 7

instruction on the average. When all three types of
instructions are available (labeled ‘‘Combination’’), the
instruction count overhead is 8.6%, and on the average
each GUARD instruction guards 7.9 instructions. In the
results of Table 4 we did not attempt to optimize the use of
GUARD instructions in our experiments. In particular, we
did not evaluate use of the implicit AND property to
reduce the number of condition setting instructions; we are
experimenting with this optimization, and we expect that it
will decrease the overhead of guarded execution even
further.
���������������������������������������������������������������������������������������������������������������������

GUARD_TRUE/ Combination
GUARD_FALSE

GUARD_BOTH
of all three� ���������������������������������������������������������������������������������������������

Instrs Instrs Instrs
Ovrhd

per
Ovrhd

per
Ovrhd

per
Program

(%) Guard (%) Guard (%) Guard������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Compress 12.3 4.7 10.8 5.4 9.0 6.5
Eqntott 39.2 2.3 29.5 3.1 22.5 4.1
Espresso 7.2 6.7 6.9 7.0 6.3 7.6
Gcc-cc1 11.3 6.0 7.9 8.6 7.0 9.6
Sc 17.4 4.2 14.9 4.9 12.9 5.7
Sunbench 18.8 4.0 9.7 7.8 8.8 8.6
Supermips 7.8 8.8 6.0 11.6 5.7 12.2
Tektronix 17.9 4.1 8.4 8.8 7.2 10.3
TeX 7.8 4.7 5.5 6.7 5.0 7.4
Thissim 11.4 8.9 9.1 11.2 7.4 13.7
Tycho 11.0 4.3 6.3 7.4 5.9 7.9
Xlisp 7.9 3.9 6.8 4.6 6.3 4.9
Yacc 10.7 3.8 8.7 4.7 7.8 5.3���������������������������������������������������������������������������������������������������������������������
Arithmetic
Mean

13.9 5.1 10.0 7.0 8.6 7.9
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Table 4. Overhead of the GUARD Instructions

6. Conclusions

We studied the use of guarded execution, or guarding, in
dynamic ILP processors in this paper. We had three goals
in mind. One, a qualitative and quantitative assessment of
the guarding concept using a variety of application pro-
grams with complex control structures. Two, a quantita-
tive assessment of the interaction between guarding and
dynamic branch prediction. Three, proposing a new way
of specifying guarded computation that alleviates (or even
eliminates) many of the drawbacks of existing methods of
specifying guarded execution.

Our evaluation suggests that guarding is a very
powerful concept, and can be of great use to dynamic ILP
processors. Specifically, the use of an arbitrary set of
guarded instructions (or full guarding) can increase the
effective block size, measured as the number of instruc-
tions between branches that actually contribute to useful
computation, by about 52% on average, for our benchmark
programs. This increased size provides more flexibility for
software optimizations. Using full guarding also allows a
dynamic ILP processor to establish dynamic windows (or
useful instructions between mispredicted branches) of
about 258 instructions on average, using a pattern-based
predictor with 4K entries. Without any form of guarding,



a pattern-based predictor could establish windows of only
156 instructions. However, with full guarding, the proces-
sor has to fetch and decode 33% more instructions, on
average; these instructions do not contribute to useful
computation. Restricted guarding, in which only blocks
with no memory instructions are guarded, results in only
8% additional instructions, but it also does not allow us to
reap the benefits of guarding fully: the effective block size
is increased by only 8%, and the dynamic window sizes
are increased to 184 instructions on average, with a
pattern-based predictor.

Finally, we proposed a new way of specifying
guarded execution using GUARD instructions. GUARD

instructions can easily be added to existing instruction set
architectures and allow the full power of guarding to be
realized with a smaller overhead than existing methods of
specifying guarded execution. (It is possible to realize the
full power of guarding with as few as three additional
instructions: a GUARD_BOTH, and move instructions to
save and restore the active_mask, as compared to tens of
instructions to incorporate guarding using a traditional
specification [12]). For our benchmark programs, two
flavors of GUARD instructions allowed the full power of
guarding to be realized (large effective block sizes and
large dynamic windows), with an overhead of about 13.9%
and 10%, respectively and 8.6% when they are combined.
We are carrying out more studies to reduce this overhead
even further.
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