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Abstract
Several techniques have been proposed to allow parallel access to a shared memory location by combining requests;
they have one or more of the following attributes: requirement for a priori knowledge of the requests to combine,
restrictions on the routing of messages in the network, or the use of sophisticated interconnection network nodes.
We present a new method of combining requests that does not have the above requirements. We obtain this new
method for request combining by developing a classification scheme for the existing methods of request combining.
This classification scheme is facilitated by separating the request combining process into a two part operation: (i)
determining the combining set which is the set of requests that participate in a combined access, and (ii) distributing
the results of the combined access to the members of the combining set. The classification of combining strategies
is based upon which system component, processor elements or interconnection network, performs each of these
tasks. Our approach, which uses the interconnection network to establish the combining set, and the processor ele-
ments to distribute the results, lies in an unexplored area of the design space. We also present simulation results to
assess the benefits of the proposed approach.

1. Introduction

Arvind and Iannucci state that the design of a large-scale, shared memory multiprocessor must address two

basic issues [2]:

(1) it must tolerate long latencies for memory requests,

(2) it must achieve unconstrained, yet synchronized, access to shared data.

While several techniques, for example caches and prefetching [24], and low level context switching [25], have been

proposed to tolerate the latency of memory requests, heretofore the only known methods of allowing unconstrained,

yet synchronized, access to shared data are implementations of request combining. The earliest published proposal

for request combining was in the CHoPP system [28], where several read requests to a common memory location

are combined in the interconnection network and are satisfied with only a single access of the memory location.



When two read requests destined for the same memory location meet at a node of the network, the source of one of

the requests is saved and only one read request is forwarded to memory. When the response of the read request

arrives at the node where combining took place, two responses are sent back toward the processors.

The idea of combining read requests, or read combining in CHoPP was extended in the NYU Ultracomputer

to allow several types of requests to combine [6]. The Ultracomputer uses the Fetch&Φ primitive, where Φ is any

associative and commutative operator. An enhanced interconnection network with the topology of an Omega net-

work is proposed to perform combining on the Fetch&Φ primitive.

The Ultracomputer style of request combining is illustrated in Figure 1. When a Fetch&Φ(X, e) request

meets a Fetch&Φ(X, j) request at a network node, combining takes place: e is saved in a wait buffer, an ALU in the

node computes eΦj, and the request Fetch&Φ(X, eΦj) is forwarded to memory. When a response V is received

from memory for the Fetch&Φ(X, eΦj) request, decombining takes place: V is forwarded as a response to the

Fetch&Φ(X, e) request, eΦV is forwarded as a response to the Fetch&Φ(X, j) request, and e is removed from the

wait buffer. Correct operation is guaranteed if the combining of requests satisfies the serialization principle: the

final state of the system must be consistent with the servicing of all requests in some (unspecified) serial order [6].

There are three distinct features of the Ultracomputer style of request combining:

(1) Requests are combined on the forward trip through the network.

(2) State is saved in the network when requests are combined.

(3) Requests are decombined on the return trip through the network.

Combining in a network node first requires a comparison to determine if two requests are combinable: the two

requests must be Fetch&Φ requests to the same memory location. This requires the use of comparators in the net-

work nodes. When two requests are combined, each request is removed from the queue, the value of e is saved in

the wait buffer, the operation eΦj is carried out in the ALU, and the request Fetch&Φ(X, eΦj) is placed in the

queue to forward to memory. The wait buffer must be large enough to hold as many values as there are requests

that can be combined at this node, else combining will not take place. On the return trip, each returning request

searches the wait buffer and, if decombining must take place, appropriate actions are initiated. This implies that the

return path must be identical to the forward path for decombining to take place, or the return path must have at least

one node in common with the forward path—the node where the combining state is stored. Almasi and Gottlieb [1]
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give several examples of how such hardware combining can eliminate serial bottlenecks.

Several alternative proposals for request combining have appeared in the literature [8, 11, 19, 21, 29, 32]. The

primary focus of these efforts is on reducing the cost of the combining network. This is accomplished either by

altering the topology of the combining network or by requiring the system software to reduce the amount of conten-

tion for shared data.

This paper has two purposes. The first is to develop a taxonomy that can be used to categorize combining

methods proposed to date. This allows us to enumerate the issues involved, and to make a comparison of known

techniques for combining requests. The second is to propose a new approach to request combining, one which can

be used with arbitrary interconnection topologies.

We develop a taxonomy in section 2, and classify existing methods using this taxonomy. We observe that one

area of the design space, which we call Interconnect-Processor combining, has not been explored for arbitrary inter-

connection networks. We explore this in section 3, where we present a new scheme for request combining. The

potential of the new combining scheme is evaluated in section 4. Section 5 summarizes the paper and suggests

directions for further research.

2. A Taxonomy for Request Combining

2.1. Parallel Prefix Computation and Request Combining

Kruskal, Rudolph, and Snir [14] observed that request combining is very similar to the problem of parallel

prefix computation [15]. Given the elements x 1,x 2,...,xn a prefix computation produces the results:

�� �
rn =
r 1 =

rn −1 Φ xn

x 1 � ��
where Φ is any associative operator. Computing the results in parallel is termed a parallel prefix computation [15].

To examine the similarity between request combining and parallel prefix consider an example in which four

processors add a constant, C, to a shared variable X and receive the previous value of X. Assume the processors

simultaneously execute the atomic operation Fetch&Add (X,C). The values returned to the processors are X, X +C,

X +2C, and X +3C. Regardless of the order that requests are serviced, memory has the final value of X+4C. This is

simply the set of results {r 1, r 2, r 3, r 4, r 5} produced by a prefix computation on the set of elements {X,C,C,C,C} with
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the addition operator (+).

Based on this observation, we see that arbitrary request combining is a two part operation. The first part, or

task of the combining method, is to determine the set of requests that are destined for the same memory location and

need to be combined. We call this set of requests the combining set. The second task is to distribute the results of

the combined access to the appropriate processors by performing a prefix computation on the combining set.

A prefix computation network, such as the one proposed for scan primitives by Blelloch [3], can be used to

distribute the results of the combined access. In such a network, state is saved on the forward trip through the prefix

computation network, and the results are distributed on the return trip, very similar to the Ultracomputer approach

towards combining. However, the use of a prefix computation network requires a priori knowledge of the combin-

ing set. Blelloch proposed the scan primitives for a Single Instruction Multiple Data (SIMD) paradigm where the

elements on which to perform the prefix computation, in our case the combining set, are stored in an array. The

array is distributed across the processors and participation in the prefix computation is based on the processors’

activation status. Therefore, to use a prefix computation network to distribute the results of a combined access, the

combining set must be established prior to insertion in the prefix computation network. Alternatively, in the Ultra-

computer approach towards combining, the combining set is determined dynamically in the interconnect by compar-

ing the addresses of requests on the forward trip through the network. The results are then distributed to the

appropriate processors on the return trip through the network.

The two techniques use different system components to establish the combining set: the Ultracomputer uses

the interconnect, whereas Blelloch uses a priori knowledge in the processor elements. We can therefore obtain a

taxonomy for request combining by specifying which system component, processor elements or interconnect, per-

forms each of the tasks involved in combining requests.

2.2. Classification of Existing Request Combining Strategies

Based upon how the combining set is determined, and how the results of the prefix computation are computed

and distributed, the design space for request combining can be divided into four regions (Figure 2). Interconnect-

Interconnect Combining (IIC) covers schemes in which the interconnection network determines the combining set

and distributes the results. In Processor-Interconnect Combining (PIC) the processors establish the combining set,

and the interconnection network distributes the results. Schemes in which the processors perform both tasks are
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classified as Processor-Processor Combining (PPC). Finally, Interconnect-Processor Combining (IPC) indicates that

the interconnection network determines the combining set, while the processors distribute the results. In the follow-

ing subsections we discuss existing methods of request combining according to which region of the design space

they belong to.

2.2.1. Interconnect-Interconnect Combining (IIC)

The CHoPP [28] and the NYU Ultracomputer [6] methods of request combining are instances of IIC: the

interconnection network determines the combining set and distributes the results. The IBM RP3 [21] researchers

proposed the basic ideas of the Ultracomputer method of combining for their implementation. However, the RP3

has two interconnection networks, one network which combines requests and one that services non-combining

requests. A distinction is made between non-combinable and potentially combinable requests (typically synchroni-

zation requests), and the interconnect dynamically determines the combining set of the potentially combinable

requests.

Two alternative techniques for IIC are presented by Tzeng [29] and Hsu and Yew [11]. Tzeng separates the

interconnect into a routing section and a combining section. It is assumed that requests which may combine are dis-

tinguished from non-combining requests by examination of the opcode. Such requests are directed to the combining

section of the network. The combining section of the network then determines the combining set. Hsu and Yew

propose a single stage shuffle-exchange combining network in addition to a non-combining network. These two

proposals are similar to the IBM RP3 method of combining, but the difference in topology of the combining net-

work reduces the hardware cost of the networks. However, the basic technique of request combining in all three

schemes, the IBM RP3, Hsu and Yew, and Tzeng, is the same as the technique used in the Ultracomputer.

An interesting example of IIC read combining can be found in schemes with hierarchical cache/memory

structures, such as Cache-Only Memory Architecture (COMA) machines [7, 27], or Non-Uniform Memory Access

(NUMA) machines with hierarchical caches [18, 23, 30]. Here read combining can be implemented by using a tech-

nique similar to the CHoPP method of read combining. A read miss of a cache block at one level of the hierarchy

causes a request to be propagated to the next higher level in the hierarchy. Subsequent read misses of the same

cache block at the same level in the hierarchy cause state to be saved; this state allows the data to be forwarded to

the appropriate requesting processors when the response arrives from the higher level of the hierarchy.
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2.2.2. Processor-Interconnect Combining (PIC)

An alternative approach to reducing the cost of the combining network is to determine the combining set prior

to inserting the elements into the network. This is the approach taken by schemes that fall under the classification of

PIC in the design space.

As with schemes that perform IIC, schemes performing PIC use the interconnection network to distribute the

results of combined requests. However, the processor elements, and not the interconnection network, determine the

combining set. Blelloch’s prefix computation network [3], discussed in Section 2.1, and the control network of the

Thinking Machines CM-5 [17] fall into this category.

Another form of PIC in a SIMD paradigm is proposed by Lipovski and Vaughan [19]. This implementation

uses a modified carry-lookahead circuit to implement a prefix computation network which distributes the results.

The combining set is determined by which processing elements are currently active. The prefix computation net-

work may be extended for operation in a Multiple Instruction Multiple Data (MIMD) paradigm, though the authors

do not explicitly state how this might be done.

An alternative technique for combining requests in a MIMD paradigm, proposed by Harrison [8], uses a syn-

chronous prefix computation network. All requests at the same stage in the network combine. Therefore, the entire

combining set must be inserted into the network in the same time slot. This is accomplished by broadcasting infor-

mation about the combinable locations to the processors. Based on this information each processor determines the

correct time slot for its request.

In addition to being restricted to use a priori knowledge of the combining set, the methods discussed in this

section make use of a (parallel) prefix computation network to distribute results. Such networks are conceptually

very similar to the Ultracomputer combining network: state must be saved on the forward trip through the network

and requests are decombined on the return trip. Recall that this requires sophisticated interconnect nodes and res-

tricts the routes of the return messages. These potentially undesirable features (associated with the result distribu-

tion) can be eliminated if we use the processor elements, to perform the (parallel) prefix operation and distribute the

results.
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2.2.3. Processor-Processor Combining (PPC)

In schemes classified as IIC or PIC, the interconnect, as viewed from a shared memory location, forms a tree.

The memory module is the root of the tree and the processors are the leaves of the tree. The nodes of a combining

tree are realized by the implicit storage in the interconnect nodes, i.e., wait buffers. Another alternative is to use

explicit storage in memory to construct the combining tree. This method of request combining called software com-

bining in the literature [5, 31, 32], is classified as PPC since the processors bear full responsibility for the combining

of requests: the processors establish the combining set and distribute the results and there are no demands of the net-

work at all.

In software combining, one shared location is divided into L locations which constitute the storage for the

nodes of the combining tree. Requests are combined as the processors traverse the combining tree. The result is

that
L
S
��� processors access each of the L locations, rather than S processors accessing the single location. However,

the L locations (nodes of the combining tree) must be distributed across the memory modules in order to alleviate

excessive contention for a single memory module.

Yew, Tzeng, and Lawrie show how software combining can be used for barrier operations [32]. Goodman,

Vernon and Woest [5] and Johnson [12] extend the work of Yew, Tzeng, and Lawrie to carry out arbitrary

Fetch&Φ operations with a software combining tree. Tang and Yew also provide several algorithms for traversing

a combining tree where the type of memory access determines which algorithm is chosen (e.g., barrier synchroniza-

tion, semaphore, read combining) [31].

A consequence of implementing the combining tree with explicit memory locations is flexibility in the type of

memory access. In addition to variable types of memory accesses, software combining permits the use of networks

with arbitrary topologies and relatively unsophisticated nodes.

A requirement of implementing a software combining tree for access to a shared location is that the shared

location must be known prior to program execution. Furthermore, if the latency of the combined access is to be

minimized, the combining tree must be balanced; this requires a priori knowledge of the number of requests that

may combine [31]. Moreover, since the combining tree is created based on the maximum number of requests that

may combine, the latency to complete the combining operation is influenced by this maximum number: if only one

request is accessing the shared location, it must traverse the entire combining tree. For example, in a balanced

- 7 -



(software combining) tree of height H, the single request must perform H memory accesses, each of which must

traverse the interconnection network.

If the processors are responsible for establishing the combining set, they require a priori knowledge. If the

burden of determining the combining set is placed back on the interconnect, the need for a priori knowledge is elim-

inated.

2.2.4. Interconnect-Processor Combining (IPC)

Heretofore, there are no proposed methods (with the exception of some special cases which we discuss in sec-

tion 3) of request combining that use an arbitrary interconnection network to determine the combining set and the

processor elements to distribute the results. In order to decide if such a scheme is worthy of investigation, the next

section compares the issues of implementing combining under each of the classifications.

2.3. Issues in Combining Requests

There are several aspects to request combining that we have touched upon in the previous discussion that we

reiterate to motivate IPC. They are:

� A priori knowledge of the combining set.

� Restrictions placed on the routes of messages.

� Sophistication of the interconnection network.

� Latency of the combining operation.

The need for a priori knowledge of the combining set requires the programmer to specify this information.

Restrictions placed on the routing of messages limits the choices for the interconnection network topology. Sophis-

tication of the interconnection network impacts both the cost and performance of the system: a high degree of

sophistication might increase the design time and may either increase the latency for non-combining requests or

require the addition of a second network. The latency of the combining operation is the time from when a processor

generates a combinable request to the time when the result of the request is received.

In the next two sections we look at how each of these issues is affected by which system component estab-

lishes the combining set and which component distributes the results. Table 1 summarizes the following discussion.
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2.3.1. Determining the Combining Set

The processor elements require a priori knowledge of the combinable locations in order to establish the com-

bining set. For example, the nodes of a software combining tree [31] are defined during algorithm design. In con-

trast the interconnect determines the combining set dynamically by comparing destination addresses of messages.

The consequence of introducing comparators is a small increase in the sophistication of the nodes of the intercon-

nect, which may result in a slight increase in the latency to complete the combining operation.

2.3.2. Result Computation and Distribution

Placing the responsibility of result distribution on the interconnect has two disadvantages. The first is an

increase in the sophistication of the interconnect as a result of wait buffers, and decombining logic in each intercon-

nect node. The second, and perhaps more important disadvantage, is that the route which a return message may

travel is restricted because it must visit the nodes where state was saved on the forward trip through the network.

The primary advantage of using the processor elements to distribute the results of the combining operation is

that no restrictions are placed on the routes that messages may travel (no requirement to visit a particular node).

Another advantage is that the sophistication of the interconnect nodes is not increased (no need for wait buffers).

However, the sophistication of the processor elements (more accurately the processor-network interface) may

increase somewhat to handle the protocol needed to distribute results.

The latency of the combining operation, measured in the number of steps needed to carry out the operation, is

a disadvantage of using the processors to distribute results. In Section 3 we show that the latency of distributing the

results is logarithmic with respect to the number of requests in the combining set, assuming the system does not

have broadcast capability.

Based on the above discussion we feel further investigation of IPC, the as yet unexplored area of the design

space, is worthwhile. Such schemes would use the interconnect to determine the combining set and use the proces-

sor elements to distribute the results. The above discussion also points out the following potential advantages of

IPC combining: (i) no a priori knowledge of the combining set is required since the interconnect dynamically deter-

mines the combining set, (ii) no restrictions on the routes of messages since the processor elements distribute the

results, and (iii) the nodes of the interconnection network require only a small amount of sophistication. The poten-

tial drawback of such a scheme, as compared to IIC, is the latency of the combining operation.
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3. Interconnect-Processor Combining

We now consider implementations of request combining that fall into the unexplored region of the design

space, Interconnect-Processor Combining (IPC). We initially consider two flavors of combinable operations: a res-

tricted form of Fetch&Add (F&A), or Fetch&Increment [9, 26], and the general F&A operation. In

Fetch&Increment, or simply F&I, all participants add the same, constant value. In the general F&A, each partici-

pant could be adding a different value.

The rationale for the simpler F&I operation is the following: if, in the process of determining the combining

set, it is also possible for a participant to determine its overall position in the combining set, i.e., its position in the

serial order, then each participant can compute its value without further interactions with other participants. The

following example illustrates this point.

Figure 3 shows a system with six processors (P 0−P 5) connected to a shared (synchronization) bus. Each

processor is assigned one channel in the ‘‘bus’’ (the channel could be a wire in an electronic bus [26] or a specific

frequency in an optical bus [9] ). A given processor can read all channels, but can write to only its channel.

A processor generates a combinable request and broadcasts its intentions on the bus, by putting a "1" on its

channel. All other processors that wish to participate in the access write a "1" on their respective channels. At this

point all processors can, by monitoring all the channels on the bus, determine the number and the identity of the pro-

cessors which are going to participate in the combined access. The combining set is established by determining the

participating processors; the ordering in the combining set is statically defined by priorities assigned to the channels.

Suppose four processors {P 0,P 1,P 3,P 5} would like to perform a F&I operation (increment by a constant C)

on memory location X. At the point that the four processors have indicated their intentions to access X, the priority

chain {S 0,S 1,S 2,S 3,S 4,S 5} is: {110101}. Each of the four processors then determines how many processors

ahead of it in the priority chain are also participating in the combining operation. For example, P 5 determines that

there are three processors ahead of it in the priority chain. P 3 sees two, P 1 sees one, and P 0 sees zero since it is

the highest priority processor participating in the combined access. P 0 takes responsibility for accessing X from

memory. When P 0 accesses X the other processors also read the value from the memory bus. Each processor is

restricted to adding the same constant, C, to the shared location, and therefore each processor may compute its value

locally based on the number of participants preceding it in the priority chain. P 0 receives X, P 1 computes X +C,

P 3 computes X +2C, P 5 computes X +3C, and memory receives X +4C. One processor (or the memory controller
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who could also be monitoring the bus) takes responsibility for computing X+4C and updating memory.

The method described above was proposed independently for an electrical bus by Sohi, Smith, and Goodman

[26] and for an optical bus by Hiedelberger, Rathi, and Stone [9]. The ease with which combining can be carried

out (in special cases), prompted Freudenthal and Gottlieb to investigate the use of the Fetch&Increment operation in

place of the more general F&A operation [4].

When broadcast is not an option, some other method must be used to determine the combining set and to carry

out the prefix operation on the combining set. Unlike networks with broadcast, there is no easy way to merge the

creation of the combining set and its ordering in an arbitrary interconnection network. Here, we must continue to

separate the creation of the combining set, and the implementation of the prefix operation. Since a prefix operation

has to be carried out on the combining set, regardless of whether it is to order the elements (as would be necessary

in case of F&I operations), or to distribute the results (as would be necessary in case of F&A operation), we see no

potential implementation advantage of a F&I operation over a F&A operation in an arbitrary network. Therefore we

can continue our further discussion with F&A operations.

Our proposal for IPC in an arbitrary network uses the network to create the combining set; we choose to

represent the combining set as a linked list, though it is conceivable that other structures could also be used. The

processors then use this structure to interact with each other and to carry out the prefix operation. We expand on

each of the two functions, setting up the list and distributing results, below.

When a processor submits a Fetch&Φ(X, Vi) request, it generates a message that is sent over the interconnect

to a destination containing X. The message consists of at least four fields: an address (X), a value field (V), and two

pointers, as shown in Figure 4. The pointers indicate the head and the tail of a list of processors, i.e., a combining

set, accessing the memory location specified in the message. Initially the processor generating the request is the

only member of the combining set.

When two messages destined for the same memory location meet at a node of the interconnect, the two mes-

sages are combined, as illustrated in Figure 5. As a result of the combining, a forward message is sent on to the des-

tination location X, and the head and tail fields are updated to indicate the head and tail of the new combining set.

The new combining set is the union of the combining sets of the two combined messages. (If ALUs are present,

then the value field of the forward message is updated to reflect the Φ operation on the value fields of the combined

messages.) A link message is sent to the processor at the tail of the combining set of the first message, with
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instructions to create a link to the processor at the head of the combining set of the second message. (The route

taken by the link message depends upon the topology of the network. For example, in an Omega network with uni-

directional links, the link message would travel in the forward direction to some arbitrary destination, and reflect off

that destination to go back to the appropriate processor). Details of the combining operation at each node are shown

in Figure 5. It is important to note that no state is saved in the network at the point where messages are combined.

Figure 6 illustrates the above with an example. Assume that processors A and B generate F&A requests to

location X, as shown in Figure 6. When the two requests are merged, a message is sent to processor A indicating

that processor B is the head of a list of processors that are also participating in the F&A operation. At this point pro-

cessor B is the only member of the list being added. Processor A now has a pointer to processor B; this forms the

new linked list representing a combining set for location X. The fields of the forward message are the memory loca-

tion (X), the head of the list (A), and the tail of the list (B). (The values fields have not been shown in the figure to

prevent a clutter.)

If we assume that processors C and D also formed a combining set for location X, then we have two lists with

two members each and two messages en-route to memory. When these two messages merge, a message is sent to

processor B indicating that processor C is the head of a linked list of processors also participating in the F&A opera-

tion. This creates a single combining set which is the union of the two original combining sets. The message that is

forwarded to memory has its fields set to the head of the first list (A) and the tail of the second list (D). We now

have a single combining set represented by one message going to memory. When memory receives the request, it

returns the value stored at location X to the head of the list (A) and also sends a message to the tail of the list, (D),

indicating it is responsible for providing the final result to memory. This allows the results of the F&A operations to

be distributed to the processors, as we shall discuss shortly.

When a F&A request reaches the destination X, the head and tail fields of the request point to the head and the

tail of the combining set. We have several options on how to proceed. If ALUs were present in the network nodes

where combining took place, and had been used to update the value field of the forward message (as shown in Fig-

ure 5), then the value field of the message reaching X contains the (final) result of the prefix operation applied to all

the value fields of the members of the combining set (determined by the head and tail pointers), even though the

individual processor (or intermediate) results of the prefix operation are not yet known. The old value of memory

location X can be returned to the head, and used by the prefix operation (described later) to determine the results for
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the members of the combining set; memory location X could be updated with the final value (old value of X plus the

value field of the message reaching X). Further accesses to the same location, X, can proceed while the results of the

prefix operation on the (first) combining set are being carried out.

If ALUs were not present in the network nodes where combining took place, then the final value of the prefix

operation on the combining set can not be determined when the (combined) message reaches memory location X.

We must wait until the prefix operation on the combining set is complete before memory can receive the up-to-date

value. What happens to further requests to location X during that time? There are two options. The first option is to

simply lock the memory location X until the final result of the prefix operation is known (the tail of the combining

set is responsible for unlocking X). This makes further requests to X wait, building a second combining set while

waiting for the prefix operation on the first to complete. Locking X is fairly easy to do but, as we shall see in section

4, has implications on performance.

The second option is to append the ‘‘new’’ combining set onto the ‘‘old’’ combining set (on which a prefix

operation is in progress), thereby creating one combining set, and make the prefix operation robust enough so that it

can operate an variable-size combining sets. When appending a ‘‘new’’ combining set onto an ‘‘old’’ combining

set, care must be taken to avoid potential race conditions. In particular, the message from the memory to the tail of

the old combining set (telling it to create a pointer to the head of the new combining set, thereby continuing the

prefix operation) could arrive after the prefix operation on the old combining set has been completed, and the (final)

result is on its way to memory. The message must be reflected back to memory, which can then supply the up-to-

date value to the new combining set, and allow it to start its prefix operation. The message handling protocol must

take the possibility of such race conditions into account, and take appropriate action to prevent incorrect operation.

While at first glance appending onto a combining set on which a prefix operation is in progress appears to be a good

idea, it also has implications on performance as we shall see in section 4.

From the above discussion we can discern the amount of sophistication required in each of the interconnect

nodes. The use of comparators is necessary to determine if two messages are destined for the same memory loca-

tion. A small amount of additional logic is required to construct the new message that is sent back to the processors

and to update the tail of the message forwarded to memory. ALUs are needed if we expect to update memory with

the final value immediately.
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Now we consider how a prefix operation could be carried out on the combining set, which is represented as a

linked list. For the purposes of our discussion on result distribution, assume that processors can only use point-to-

point messages, reflected off the memory modules if necessary, for communication. The naive method of distribut-

ing the results is to start at the head of the list and sequentially move from one node to the next in the list. Although

there is no hot-spot when using the naive method to distribute results, the messages are unnecessarily serialized. To

eliminate this serialization for the distribution of results we turn to the literature on parallel applications to see how

the prefix operation on the combining set can be carried out in parallel.

Several algorithms for performing a parallel prefix computation on a linked list exist in the literature

[10, 13, 15, 20]. Most of the algorithms are concerned with the case of having more nodes in the linked list than pro-

cessors available. In our case the number of nodes in the linked list is equivalent to the number of processors that

are participating in the combined access. Therefore, we use the all partial sums algorithm given by Hillis and Steele

[10] and shown in Figure 7. The algorithm uses recursive doubling: each iteration of the loop performs half as

many operations as the previous iteration until the entire computation is complete. This algorithm has the advantage

that the result is computed in O(logS) steps, where S is the number of nodes in the list, i.e., the cardinality of the

combining set. An example of a partial prefix sum computation for a list with eight nodes is shown in Figure 8. The

array initial[] is indexed by processor number and contains the number of the next processor in the initial linked list,

while the array forward[] indicates the processor that is communicated with during the current iteration of the algo-

rithm.

It is important to note that the recursive doubling algorithm is defined for a SIMD machine, and therefore

appropriate synchronization must be added for MIMD operation. Figure 9 shows the MIMD version for result dis-

tribution in IPC, the reader is referred to[16] for further discussion of the transformation from SIMD to MIMD.

Processors also require a limited amount of memory (O(log S)) for storing the pointers to neighboring processors in

the combining set.

We have not tried to exhaust the methods of IPC, nor have we addressed all of the issues involved in IPC.

There are undoubtedly alternative data structures for maintaining the combining set and associated algorithms for

distributing the results. However, we do provide a viable solution that deserves further investigation.
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4. Evaluation of IPC

To investigate the overall system performance using IPC, we developed a simulator of a multiprocessor sys-

tem that performs IPC. An enhanced Omega network establishes the combining sets as described in Section 3, and

the processors use the MIMD version of the recursive doubling parallel prefix algorithm to distribute the results of

the combined access.

The simulator consists of three distinct parts: processor elements, interconnection network, and memory

modules. Table 2 summarizes the parameters of our system. The processor elements are memory reference genera-

tors with the additional code required to distribute the results of the combined access. Processors generate a

memory reference each cycle with probability r, providing the network can accept the request. Of these memory

references, h percent are directed at a single hot memory location [22, 32]. Each processor may have only one out-

standing F&A request, but unlimited outstanding uniform requests. However, a processor does not generate any

requests when there is an outstanding F&A. Yew et. al. [32] call this the limited-variable access pattern.

The interconnection network used in our simulations is an enhanced Omega network. Each node has bidirec-

tional links1, and a queue exists between the forward network and the reverse network. Therefore, each switch in

the forward network has two inputs and three outputs, whereas each switch in the reverse network has three inputs

and two outputs. We assume that each message is a single packet and that no buffering occurs if there is no conten-

tion in the network. Two messages combine only if one is buffered and we assume a full comparator is used to

determine if an arriving message is combinable with any buffered message. Only pairwise combining is carried out

at each node.

We simulated a system with 256 processors connected to 256 memory modules. In all of our simulations we

vary h from 0-32 percent and r from 20-100 percent. Figure 10 shows the average latency and the maximum

bandwidth when no combining is performed. As previously shown in [22] and [32], there is a point of saturation

after which bandwidth ceases to increase and latency increases.

In our first experiment, we implemented IPC, without ALUs in the network nodes, and with locking the

memory until the prefix operation on the current combining set is complete. Figure 11a presents the latencies of all
�����������������������������������������������������������������������

1 The use of bidirectional links is a design choice we made, it is still possible to use IPC on networks with separate forward and reverse net-
works. The messages that link the combining sets together would have to be reflected off the memory modules. However, under these conditions
IPC still allows the use of adaptive routing techniques.
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requests, and saturation bandwidths, for varying hot rates. In comparing Figs 10 and 11 (note the different scales),

we see that the latencies have decreased for small values of h, but increased for large values, and that the saturation

bandwidth has also decreased for all values of h. The reason for this is twofold. Since we lock the memory loca-

tion, we prevent the second combining set from starting its prefix operation. Consequently, the hot requests in the

second combining set are stalled for a long time waiting for the prefix operation on the first combining set to com-

plete. This is illustrated in Figure 12. Fig 11b presents the latency of hot requests, while Fig 12 presents the aver-

age amount of time a hot request spends waiting for the lock on memory to be released. Comparing Figs 11b and

12, we can see that the time waiting for the lock to be released can be a significant portion of the overall hot request

latency.

The next experiment that we carried out involved appending requests, as they arrive at memory, onto the end

of a combining set on which a prefix operation is already in progress. In this case, requests do not have to wait for

the prefix operation on the previous combining set to complete, rather they join in to form a larger combining set,

and join in the existing prefix operation. Our expectation was that by reducing the waiting time, we would decrease

the hot request latency. Unfortunately, our experimental results, presented in Figure 13, indicate otherwise. Fig 13a

shows the saturation bandwidth and latency of all requests, and Fig 13b shows the latency of hot requests, for vary-

ing hot rates. The reason for the disappointing results for this experiment is that while appending requests to a com-

bining set decreases the time spent by the requests waiting at memory, it actually increases the time to carry out the

prefix operation, since the hot requests can get appended one by one, and the prefix operation can’t complete as long

as the requests are being appended (no participant has its value ready until the entire prefix operation is complete).

An extreme case is when the hot requests are appended one by one, and the parallel prefix degenerates to serial

prefix, but one in which no processor can use its value until the entire prefix operation is complete. Moreover, since

there is no deterministic pattern with which the requests are appended, there is no uniform trend in the results.

Based upon the results of this experiment, we feel that appending new arrivals onto an existing combining set, on

which a prefix operation is already in progress, is something that should be done with caution. More study is needed

in this area.

Our final experiment with IPC uses ALUs in the network nodes. In this case, since the final result of the

prefix operation is available before its intermediate results are, there is no need to make succeeding hot requests

wait while a prefix operation is in progress on a previous combining set. Prefix operations could be in operation on
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multiple combining sets simultaneously. Figure 14a presents the latencies and saturation bandwidths of all requests,

and Figure 14b presents the same for hot requests, for varying hot rates. When we compare figures 10 and 14 we

see that IPC is quite effective in reducing the degradation due to hot spots. IPC has reduced the latency for all

requests, improved overall network bandwidth, as well as reduced the latency for hot requests. Interesting, the

latency for hot requests is lower the higher the hot rate (Figure 14b). This is because with a higher hot rate a larger

combining set is established, and therefore more of the hot requests can be serviced in parallel. Overall, the pro-

posed method for IPC is not as effective as the Ultracomputer style of combining (equivalent results for the

Ultracomputer-style of combining can be found in the paper by Pfister and Norton [22] ), however our results sug-

gest that it is an option worth considering.

5. Summary and Conclusions

Unconstrained yet synchronized access to shared memory locations is achieved by combining requests. We

formulated a taxonomy for the various techniques of request combining by separating the combining operation into

two parts: establishing a combining set and distributing the results. This taxonomy divides the request combining

design space into four regions defined by which system component (processor elements or interconnection network)

performs each of the tasks of request combining. The classification of the existing implementations of request com-

bining has enabled us to obtain four primary issues that an implementation of request combining must address: the

need for a priori knowledge of the requests to combine, the complexity of the interconnect nodes, restrictions placed

on the routing of messages in the interconnect, and the latency to complete the combined access. We have shown

that the current methods of request combining occupy only three of the four regions of the design space and do not

address the first three issues satisfactorily. We presented an implementation that lies in the as yet unexplored region,

known as Interconnect-Processor Combining (IPC), in which the interconnect establishes the combining set and the

processor elements distribute the results. We show that implementations in this area of the design space have the

following advantages:

� No need for a priori knowledge of the combinable location.

� No restrictions on the routing of messages.

� Low sophistication of interconnect nodes.
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We also carried out several experiments to assess the benefits of IPC, and observed that IPC is an effective

technique to alleviate the degradation caused by serial access of memory, but it must be used with care. Some

implementations of IPC could degrade the latency of hot requests intolerably, thereby reducing network bandwidth,

even though they reduce the latency of uniform requests.

While we feel that the flexibility and the performance benefits of IPC make it an attractive design choice,

more research is needed in this area before a definitive answer can be obtained. Many more alternatives for IPC

need to be investigated, including the choice of the data structure used to maintain the combining set, as well as the

algorithm used to carry out the prefix operation on the combining set. (One step in this direction is a recent thesis

by Johnson where he investigates the use of IPC to build a tree to implement a scalable cache coherence scheme

[12]. ) More direct comparisons between the different forms of combining, using real application workloads, and

different network topologies, also need to be done so that we can get a better picture of the cost-performance

benefits of the various techniques for request combining.
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Table 1: Request Combining Comparison
The existing techniques of request combining do not cover the entire design space and require
either a priori knowledge or restrict the routes of messages. Techniques that use the intercon-
nection network to distribute results require a high degree of sophistication in the network nodes.
Although there are currently no implementations, IPC does not have the above limitations, but
has the potential drawback of increased latency to complete the combining operation.
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Fig. 1: Request Combining in the Ultracomputer

This figure is adapted from [6]. When two Fetch&Φ requests combine, state is saved in a wait
buffer until the response returns. This type of combining requires comparators, wait buffers, and
an ALU in each network node.
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Fig. 2: Request Combining Design Space

Request combining is a two part operation; establishing a combining set and distributing the
results by performing a prefix computation. The techniques for combining requests are classified
based on which system component, processors or interconnect, performs each of the tasks.
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Fig. 4: Fetch&Φ Message Format
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if (m1.address == m2.address && m1.type == Fetch&Φ
&& m2.type == Fetch&Φ)
link_msg.dest := m1.tail
link_msg.head := m2.head
link_msg.type := LINK
m1.tail := m2.tail
m1.value := m1.value Φ m2.value /* if ALUs in nodes */
SEND_FORWARD(m1);
SEND_REVERSE(link_msg);
DELETE(m2)

fi

Fig. 5: Merging two messages at an interconnect node

When two combinable requests arrive at a node of the interconnect, the messages are merged
together and the respective combining sets linked together.
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Fig. 6: Establishing the Combining Set as a Linked List

Combining requests involves merging the two messages into one message, which is forwarded to
memory. Also, the two lists are linked together by sending a message back to the processors.
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for all k in parallel do
forward[k] := initial[k]
while (forward[k] != null) do
val[forward[k]] := val[k] + val[forward[k]]
forward[k] := forward[forward[k]]

endwhile
endfor

Fig. 7: All Partial Sums of a Linked List

This algorithm, adapted from [10], can be used to distribute the results to the members of the
combining set.
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Fig. 8: Partial Prefix Sum Computation

This figure is adapted from Figure 5 in [10] and shows parallel partial prefix sum computation
for a list with eight members. The values E and N indicate End and NULL respectively.
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while chum ≠ null do
send(chum,myinc_val)
receive(rev,Φ_val)
value := Φ_val + value
myinc_val := Φ_val + myinc_val
send(rev,chum)
receive(chum,newchum)
chum := newchum

endwhile

Fig 9: MIMD Distribution of Results

The SIMD version for computing the all partial sums of a linked list can be written in a MIMD
fashion that uses only point-to-point synchronization [16].
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Fig. 10(a): All Requests
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Fig. 10(b): Hot Requests

Fig. 10: Average Latency vs Maximum Bandwidth: No Combining
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Fig 11(a): All Requests
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Fig 11(b): Hot Requests

Fig 11: Average Latency vs Maximum Bandwidth: Lock Memory

Average latency and maximum bandwidth when combining is enabled and the memory location
is locked while the results are distributed.
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Fig. 12: Waiting Time at Memory
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Fig 13(a): All Requests
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Fig 13(b): Hot Requests

Fig 13: Average Latency when Combining Sets are Appended

Figure 13(a) shows the average latency vs maximum bandwidth when the subsequent combining
sets are appended to the existing set. As shown in figure 13(b), the average delay of hot requests
is quite large, hence the average latency of all requests increases.
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Fig. 14(a): All Requests
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Fig. 14(b): Hot Requests

Fig. 14: Average Latency with ALU’s in Interconnect Nodes

Figure 14(a) shows the average latency vs maximum bandwidth when the nodes of the network
have ALU’s. The ALU’s eliminate the need to lock memory for result distribution, greatly
reducing the average latency of hot requests, as shown in figure 14(b).
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