
Decoupling Integer Execution in Superscalar Processors

Subbarao Palacharla

Computer Sciences Department
University of Wisconsin-Madison

Madison, WI 53706
subbarao@cs.wisc.edu

J. E. Smith

Department of Electrical and Computer Engineering
University of Wisconsin-Madison

Madison, WI 53706
jes@ece.wisc.edu

Abstract
We propose that processor hardware can be used more

effectively if floating-point units are augmented to perform
simple integer operations. Existing floating-point registers
and datapaths are used to support these integer operations.
Some integer instructions, those not used for computing ad-
dresses and accessing memory, can then be off-loaded to the
floating-point units. Consequently, these integer instruc-
tions are decoupled from memory accessing, and additional
instruction bandwidth is available for integer programs.

This paper reports the results of a preliminary study of
integer benchmark programs compiled for the SPARC ar-
chitecture. The results indicate that between 10% and 39%
of the instructions in the integer benchmarks can be exe-
cuted in the augmented floating-point units. Furthermore,
these instructions are all simple add, subtract and logical
instructions.

1 Introduction
Over the past few years processor microarchitectures have

converged to a decoupled implementation style. Figure 1
shows the microarchitecture of a typical superscalar pro-
cessor [1, 5, 2] using this decoupled style. It comprises
a fetch unit that feeds instructions to integer and floating-
point subsystems. The integer subsystem is made up of a
number of load/store, branch and ALU units operating out
of the integer register file. The floating-point subsystem is
similar to the integer subsystem except that it does not con-
tain any load/store units, and it operates on floating-point
operands in the floating-point registers. Buffers, in the form
of reservation stations or queues, are used to decouple the
instruction streams going to the functional units.

This implementation style was identified and discussed in
the Decoupled Access/Execute work described in [7, 3, 6].
At least in part, this work had its roots in the early Control
Data Corporation and Cray Research style of architectures
where one set of functional units and registers is used for
addressing and another set is used for scalar computation,
both integer and floating point. For example, the CRAY-1

D-CacheTLB

Integer
instructions

Loads/
Stores

load/
store

Rename,Dispatch
Decode

Fetch

I-Cache

Integer Regs FP Regs

Floating-point
instructions

branch
outcomes

branch
outcomes

Buffer
Write

Buffer
Writebranch

ALU1 ALU2 FP * FP +

Figure 1: Conventional microarchitecture

This figure presents the typical microarchitecture employed by most current
microprocessors. The floating-point (FP) units are idle while the processor
is executing integer-intensive portions of a program.

[4] uses A registers for address computation and S registers
for scalar computation, both integer and floating point.

Although many modern microprocessors have these gen-
eral characteristics, their evolution has been slightly differ-
ent. Early microprocessors were typically implemented as
an integer processor with an attached floating-point sub-
system in the form of a co-processor. The floating-point
subsystem was later absorbed on-chip, resulting in a decou-
pled implementation. This style of decoupling uses one set
of units and registers for addressing and integer computa-
tion and the other set for floating-point computation. The
drawback of this style is that when an integer program or
integer-intensive portion of a floating-point program is ex-
ecuting, the floating-point registers, units, datapaths, and
instruction issue logic are idle.

However, if we employ the more general decoupled style,
both floating point and some integer operations are executed
in a computation unit. Then, some of the resources that
would otherwise be dedicated to floating point can be uti-
lized in non-floating point applications. This may lead to
a duplication of some of the functional units, e.g. integer
add/subtract and logical. However, these units are relatively
inexpensive. Their only potential significant cost is in the
datapaths, rather than in the gates themselves. The datapath
cost can be eliminated by sharing paths with the floating-
point units; i.e. by embedding the integer functions in the
floating-point units.

Our primary motivation is to study the feasibility of
the proposed microarchitecture consisting of a Load/Store
(LdSt) subsystem and a Computation (Comp) subsystem.
The LdSt subsystem executes instructions that are involved
in effective address calculation and memory access. The
Comp subsystem consists of floating-point functional units
that are augmented to operate on integer operands as well.
When running integer programs, the Comp unit supports
some of the integer computation. To avoid adding datapaths,
all data communication between the two subsystems takes
place through loads and stores that already exist in the orig-
inal integer program.

In this paper we analyze integer benchmark programs
to determine the fraction of dynamic instructions that can
be executed in integer-augmented floating-point units under
the constraint that no additional datapaths are added. This
is done by first studying dynamic instruction traces to find
the instructions that are

� used to generate addresses and access memory

� used to evaluate branch conditions and perform
branches

� used purely for computation, i.e. that fall into neither
of the first two categories.

This information is then used to mark the static instructions
as to whether they should be executed in the LdSt unit or
the Comp unit. Finally, execution statistics from the static
instructions are used to produce the fractions of dynamic
instructions executed in the LdSt and Comp units.

The rest of the paper is divided into five sections. Section
2 defines some terminology and presents our methodology.
Section 3 discusses the fundamental division of program ex-
ecution into memory access, control and computation func-
tions. Section 4 describes the way the proposed microarchi-
tecture uses idle floating-point units while executing integer
code and presents results. Section 5 discusses future work.
Finally, we draw conclusions in Section 6.

12

13

14

15

18

16

17

9

10

11

7

8

5

6

3

4

1

22 or %o3,%lo(a),%o3 ;load addr(a[0])
1 sethi %hi(a),%o3

3 sethi %hi(b),%o0
4 or %o0,%lo(b),%o2 ;load addr(b[0])
5 sethi %hi(c),%o0
6 or %o0,%lo(c),%o1 ;load addr(c[0])
7 sethi %hi(ck),%o0
8 ldd [%o0+%lo(ck)],%f6 ;load ck

for (i=0; i < 100; i++)
 a[i] = b[i] + ck * c[i]

9 mov 0,%o0 ;i=0
10 ldd [%o0+%o1],%f2 ;load c[i]

12 ldd [%o0+%o2],%f4 ;load b[i]
13 faddd %f2,%f4,%f2 ;b[i]+ck*c[i]
14 std %f2,[%o0+%o3] ;assign to a[i]
15 add %o0,8,%o0 ;i++
16 subcc %o0,792,%g0 ;i < 100?
17 ble,a L0
18 ldd[%o0,%o1],%f2 ;load c[i]

L0: 11 fmuld %f6,%f2,%f2 ;ck*c[i]

Figure 2: Static dependence graph

This figure shows the static dependence graph for the simple C loop shown
at the top left. The corresponding assembly code is shown below the loop.
There is an edge from instruction

�
to instruction � if instruction

�
produces

a value that is used by instruction � . Memory and store value dependencies
are depicted using special (dotted) edges.

2 Methodology
The analysis performed in this paper involves construct-

ing various slices of a program. A slice [10] of a program
with respect to a value v, denoted by Slice(P,v), is defined
to be the subset of the program that computes the value v.
This is illustrated by the simple example shown below.

a = b + c; a = b + c;
e = b + g;
d = a * g; d = a * g;
f = d + a; f = d + a;

Program P Slice(P,f)

To efficiently determine slices of a program we construct
a data structure that we call the static dependence graph for
the program. The static dependence graph for a program
consists of � vertices, where � is the number of static
instructions in the program binary. The graph has an edge
from vertex ��� to vertex ��� if instruction 	 produces a value
that is consumed by instruction
 . In other words, there is an
edge from vertex ��� to vertex ��� if there is a true dependence
between instructions 	 and
 . Register dependencies are
shown using solid edges. Memory dependencies and store
value
 dependencies are shown using dotted edges. Figure 2
shows the static dependence graph for a simple loop.

We build the static dependence graph by scanning a dy-
namic instruction trace. If a data dependence is found in
the dynamic trace, an edge connecting the corresponding
instructions is added to the graph.

�
value being stored

While this method is expedient, there are two caveats.
First, the resulting program slices are only valid for the
given input data. Different input data sets could result in
different program slices. This could happen if the distinct
data sets cause different dependencies to occur at run-time.
However, we believe that in most cases dependences will not
change appreciably if the data set is changed. Second, in a
real implementation, the compiler would be responsible for
forming the static dependence graph based on compile-time
information. Hence, it would likely be more conservative
than the method we use which takes advantage of run-time
information. Here, we believe that most of the information
the compiler needs will be available within individual basic
blocks. However, only additional study of compiler methods
(which we plan to carry out) will resolve this important issue.

Once we have constructed the static dependence graph, a
slice is extracted by traversing the static dependence graph.
To find the slice of the program with respect to a value
v, we start at the node that created v and find the set of
nodes from which v can be reached by traversing one or
more edges. This set of predecessor nodes is the slice with
respect to v. For example, in Figure 2, the slice of the
program with respect to %f2 (floating-point register 2) pro-
duced by instruction 11 is

�
11,8,7,10,6,5,9 � . The number

of instructions executed by the slice is computed by adding
the dynamic count of all the instructions in the slice.

We used Shade to generate dynamic instruction traces.
Shade [9] is an evaluation tool developed at Sun Microsys-
tems that aids instruction set simulation. We used five in-
teger benchmarks from the SPEC suite [8]. All the bench-
marks were compiled using gcc (version 2.5.8) with the
-O3 option. We analyzed complete program runs. Columns
2 through 4 of Table 1 give the total number of instructions,
the number of load and store instructions, and the number
of branch instructions executed by each of the benchmark
programs.

3 Program slices
For a given program there are three functions that we

would like to separate: memory access, control and execu-
tion. To achieve this separation, we decompose each bench-
mark program into three slices called the load/store, branch
and compute slices. These slices are defined as follows:

� Load/store slice: The load/store slice consists of all
the instructions of the program that are involved in
the calculation of the base registers of all the load and
store instructions in the program and the load and store
instructions themselves. The load/store program does
not include control flow (branch) instructions. Note
that we are assuming a load/store architecture here.

� Branch slice: The branch slice contains all the in-
structions of the original program that are required to

1 0 0 2 or %o3,%lo(a),%o3 ;load addr(a[0])
1 0 0 1 sethi %hi(a),%o3

1 0 0 3 sethi %hi(b),%o0
1 0 0 4 or %o0,%lo(b),%o2 ;load addr(b[0])
1 0 0 5 sethi %hi(c),%o0
1 0 0 6 or %o0,%lo(c),%o1 ;load addr(c[0])
1 0 0 7 sethi %hi(ck),%o0
1 0 0 8 ldd [%o0+%lo(ck)],%f6 ;load ck
1 1 0 9 mov 0,%o0 ;i=0

L B C

for (i=0; i < 100; i++)
 a[i] = b[i] + ck * c[i]

1 0 0 10 ldd [%o0+%o1],%f2 ;load c[i]

1 0 0 12 ldd [%o0+%o2],%f4 ;load b[i]

1 0 0 14 std %f2,[%o0+%o3] ;assign to a[i]
0 0 1 13 faddd %f2,%f4,%f2 ;b[i]+ck*c[i]

0 1 0 16 subcc %o0,792,%g0 ;i < 100?
1 1 0 15 add %o0,8,%o0 ;i++

1 0 0 18 ldd[%o0,%o1],%f2 ;load c[i]
0 1 0 17 ble,a L1

0 0 1 L1: 11 fmuld %f6,%f2,%f2 ;ck*c[i]

Figure 3: Example slices

This figure presents the load/store, branch and compute slices for the loop
shown at the top. The L, B and C columns stand for load/store, branch and
compute slice respectively. An instruction belongs to a particular slice if
the bit in the corresponding column is set.

compute the predicates of conditional branches and all
the control instructions themselves. In an architecture
with condition codes, e.g. the SPARC, the branch slice
includes all instructions that are involved in computing
the condition codes and all the control instructions.

� Compute slice: The compute slice consists of instruc-
tions used purely for computing data values that will
be stored to memory; i.e. they do not contribute to the
determination of control flow or memory access. The
compute slice can be most easily be defined to be what-
ever remains of the original program after the load/store
and branch slices have been extracted. Strictly speak-
ing, the compute slice does not adhere to our definition
of slice presented earlier. However, we use the term
for the sake of maintaining uniformity.

Each of the load/store, branch and compute slices is,
by definition, a subset of the original program. Figure 3
presents the SPARC assembly code for a small loop and
the associated load/store, branch and compute slices. Note
that there might be some instructions that are common to
the load/store and the branch slice. For example, for the
loop in Figure 3, the instructions manipulating the loop
counter (maintained in register %o0) are present in both the
load/store and branch slices.

Even though generating the load/store, branch and com-
pute slices is an intermediate step for extracting computation
that can be off-loaded to the floating-point subsystem, we
believe that these slices are fundamental to a program and
deserve further study. Hence, we quantified the relative sizes

of these slices by measuring the number of dynamic instruc-
tions executed by each of them. The last three columns of
Table 1 presents these statistics. For example, in the case of
compress, the load/store slice executes 36.7M instructions
or 51.1% of the total instructions executed by the bench-
mark. From the table we see that, for most benchmarks,
the number of instructions executed by the load/store slice
is less than or close to two times the number of load and
store instructions executed. This implies that on an aver-
age each dynamic load/store instruction depends on at most
one other instruction that aids in computing the effective
address. Another observation that can be made from the
table is the large size of the branch slice. For four of the
benchmarks the branch slice size is well over 90% of the
total instruction count. Here, we are not certain if this is
a characteristic of our benchmarks (integer programs with
frequent branches) or if this is an artifact of our definition
of the branch slice. With our definition of the branch slice,
a branch at the end of the program that tests the result of the
entire computation, say in the printf routine that actu-
ally prints the result, can easily result in the whole program
being included in the branch slice.

4 Harnessing idle floating-point units
In order to utilize the idle floating-point units while exe-

cuting integer programs, we must assign some of the compu-
tation in the program to the Comp subsystem in the proposed
microarchitecture. This requires partitioning the static pro-
gram into two sets of instructions: the LdSt program that
executes in the LdSt subsystem and the Comp program that
executes in the Comp subsystem. Since the proposed mi-
croarchitecture supports load/store instructions only in the
LdSt subsystem and there is no support for copying be-
tween the register files, the load/store instructions and the
instructions involved in the effective address computation
are assigned to the LdSt program. In other words, the LdSt
program is initialized to be the load/store slice.

The rest of the instructions are assigned as follows. First,
we consider that part of the branch slice that is not included
in the load/store slice and identify computation in it that
can be assigned to the Comp program. Specific eligibility
conditions for assigning instructions to the Comp program
are discussed below. Next, any remaining instructions in
the branch slice are added to the LdSt program. Finally, we
do a similar analysis on the compute slice; first finding any
constituent computation that is eligible for assignment to
the Comp program and adding the remaining compute slice
instructions to the LdSt program.

Recall that the branch slice and compute slice produce
branch outcomes and store values, respectively. The results
of the branch computations are sent to the fetch unit where
they are used to validate the predicted outcomes. The store
values from the store value computations are deposited in the
write buffer where they merge with the store addresses gen-

7
add

1
ld

2
ld

3
ld

4
add

5
subcc

6
bg

8
subcc

9
bl

5 subcc %l0,%l3,%g0 ;a[i]+b[i]>c[i]?

1 ld [%i2 + %i4],%l0 ;load a[i]

4 add %l0,%l1,%l0 ;a[i]+b[i]
3 ld [%i3 + %i4],%l3 ;load c[i]
2 ld [%i5 + %i4],%l1 ;load b[i]

L1:

6 bg L2 ;break
7 add %i4,1,%i4 ;i++
8 subcc %i4,%l4,%g0 ;i < N?
9 bl L1

 L2:

for(i=0; i < N; i++)
 if (a[i] + b[i] > c[i])
 break;

add

1
ld

2
ld

add

subcc

bl

3

st
4

8

9

7

5
add

6
st

{
 c[i] = a[i] + b[i] ;
 d[i] = i + 2;
}

4 st %l3, [%i3 + %i4] ;c[i]=a[i]+b[i]
3 add %l0,%l1,%l0 ;a[i]+b[i]
2 ld [%i5 + %i4],%l1 ;load b[i]
1 ld [%i2 + %i4],%l0 ;load a[i]

5 add %i4,2,%l1 ;i+2
6 st %l1,[%i1+%i4] ;d[i]=i+2
7 add %i4,1,%i4 ;i++
8 subcc %i4,%l4,%g0 ;i < N ?
9 bg L1

for(i=0; i < N; i++)

L1:

Figure 4: Branch and store value computations

The top graph shows two different kinds of branch computations. The
one enclosed in the solid ellipse can be executed in the Comp subsystem.
However, the slice of the branch represented by node 9 in the graph,
demarcated by the dashed line, cannot be assigned to the Comp subsystem
since it includes node 7 (part of the load/store slice) which is assigned to
the LdSt subsystem. The bottom graph presents two different kinds of store
value computations. The one enclosed in the solid ellipse can be assigned
to the Comp subsystem. However, the one demarcated by the dashed curve
cannot be assigned to the Comp subsystem as it includes node 7 (part of
the load/store slice) which is assigned to the LdSt subsystem.

erated by the LdSt subsystem. Note that these two functions
(sending branch outcomes to the fetch unit and depositing
store values in the write buffer) are already implemented
in the floating-point subsystems of existing microarchitec-
tures.

A particular instruction I can be assigned to the Comp
program if it satisfies the following requirements:

� I should not read any register that is written by a non-

Benchmark Total Memory Control Load/Store Branch Compute
Ops Ops slice slice slice

compress 71.8 19.8(27.6%) 14.4(20.0%) 36.7(51.1%) 62.2(86.6%) 2.4(3.4%)
espresso 683.3 188.8(27.6%) 142.9(20.9%) 323.8(47.4%) 656.8(96.1%) 15.9(2.3%)
eqntott 1705.6 590.5(34.6%) 342.3(20.1%) 793.5(46.5%) 1682.4(98.6%) 9.6(0.6%)
gcc 40.2 10.4(26.0%) 7.6(18.9%) 20.8(51.8%) 38.0(94.6%) 1.5(3.8%)
sc 89.2 23.2(26.0%) 18.1(20.3%) 40.9(45.8%) 83.8(93.9%) 3.7(4.2%)

Table 1: Benchmark slice statistics
This table presents the various slice statistics for the benchmarks used in this paper. All the benchmarks are from the SPEC integer suite. The Memory Ops
and Control Ops columns show the number of load/store instructions and control instructions (branches, calls, etc.) executed. The number of instructions
executed by the various slices are shown in the last three columns. All counts are in millions. The percentages are with respect to the total number of
instructions executed by a benchmark.

load instruction already assigned to the LdSt program.
This is enforced to avoid the need to communicate the
register value from the LdSt register file to the Comp
register file.

� Any load instructions that supply data to I must not
supply data to an instruction assigned to the LdSt pro-
gram. Once again, this restriction is placed to avoid
the need to copy between the register files.

� Register values produced by I must not be used by an
instruction assigned to the LdSt subsystem.

Figure 4 presents examples to clarify the assignment cri-
teria. For example, in Figure 4, consider the computation
enclosed in the solid ellipse (instructions 4, 5 and 6) in the
top graph. This computation uses the results of load instruc-
tions 1, 2 and 3 as input and calculates a branch outcome
(result of instruction 6). The values produced by instruc-
tions 4 and 5 are not used by any instruction external to the
ellipse. Also, the load instructions do not feed any instruc-
tion that is not part of the enclosed computation. Hence, the
computation enclosed in the solid ellipse can be executed in
the Comp subsystem. Conversely, the computation demar-
cated by the dashed line (instructions 7, 8 and 9) cannot be
assigned to the Comp subsystem since the result of the add
instruction (instruction 7) is used by the load instructions
1, 2 and 3 which are part of the LdSt program. Similarly,
the bottom graph of Figure 4 shows two types of store value
computations - one that can be part of the Comp program
and one that cannot be assigned to the Comp subsystem.

Using the above rules we identified the fraction of in-
structions that can potentially be assigned to the Comp
subsystem. Table 2 presents this data. The second and
third columns give the dynamic counts of Comp instruc-
tions extracted from branch and store value computation
respectively. The last column shows the total fraction of
dynamic instructions that can be supported in the Comp
subsystem. From the table we can see that in the case of
eqntott, compress and sc as much as 39%, 25% and 19%
respectively of the total computation can be executed in the
Comp subsystem. For the other two programs, espresso and

Name branch store value Total Comp
computation computation computation

compress 14.3(20.0%) 3.4(4.8%) 17.7(24.8%)
espresso 50.2(7.4%) 24.7(3.6%) 74.9(11.0%)
eqntott 655.9(38.5%) 6.4(0.4%) 662.3(38.9%)
gcc 3.7(9.2%) 0.4(1.0%) 4.1(10.2%)
sc 15.2(17.0%) 1.7(2.0%) 16.9(19.0%)

Table 2: Comp program statistics

This table presents statistics for the fraction of instructions that can be
supported in the Comp subsystem for each of the integer benchmarks. This
computation is divided into branch computation (shown in first column)
and store value computation (shown in second column) that is eligible
for execution in the Comp subsystem. All counts are in millions. The
percentages are calculated with respect to the total number of instructions
executed by the benchmark.

gcc, a small yet significant fraction of the total execution
can be supported in the Comp units. Also, the data in the
table shows that the majority of instructions assigned to the
Comp subsystem come from branch computation. Over-
all, the data shows that even under a restricted model that
does not require major modifications to existing datapaths,
a modest to significant amount of computation can be ex-
ecuted in the augmented floating-point units resulting in
higher utilization of hardware resources. Hence, we feel
that the proposed microarchitecture has promise.

Mix of the Comp instructions

In order to study the extra functionality that has to be
incorporated into the floating-point execution units for sup-
porting integer computation, we analyzed the instruction
mix of the computation that can be assigned to the Comp
subsystem. Table 3 shows the breakup of the computation
into arithmetic, logical and control operations. We found
that the extra functionality required is the ability to perform
integer add, subtract and logical operations. The integer
multiply instruction was completely absent from the Comp
subsystem computation for our benchmarks. This suggests
that the integer multiplier, whose implementation is usually
gate-intensive, need not be duplicated and can be located in
its usual place in the integer subsystem.

Benchmark Arithmetic Logical Control
compress 56% 1% 43%
espresso 28% 31% 41%
eqntott 39% 20% 41%
gcc 17% 29% 54%
sc 23% 23% 54%

Table 3: Instruction mix of Comp slice

This table presents the instruction mix of the integer instructions that can
be supported in the Comp subsystem. The percentages are calculated with
respect to the total number of dynamic instructions that can be assigned to
the Comp subsystem.

5 Future work
We plan to extend this study in a number of ways. In this

preliminary study we did not measure the performance gains
that are possible (or the hardware savings) or the relationship
between the performance and the hardware. There are a
number of issues we plan to study.

First, can the traditional benefits of decoupling be tapped
by the proposed microarchitecture? Can the load/store pro-
gram in the LdSt subsystem naturally run out ahead or does
the computation in the Comp subsystem hold it back? It
is possible that with good branch prediction the load/store
program can run ahead of the rest of the computation.

Second, is it possible to obtain a better balance between
the LdSt and Comp subsystems by assigning instructions
that are almost pure computation to the Comp subsystem,
and provide additional instructions for copying between the
register files and/or copying through memory?

Finally, we sidestepped the compiler issues by making
use of run-time information. For the proposed microarchi-
tecture to be useful, the compiler has to detect and mark
computation that can be executed in the Comp subsystem.
We plan to study this and other related compiler issues.

6 Summary and Conclusions
In this paper, we address the issue of how computation

is partitioned in conventional microarchitectures. Exist-
ing microarchitectures suffer from idle floating-point units
when executing integer codes. We use slicing analysis to de-
compose program execution into broad classes of memory
access, control and pure computation. Using the resulting
data, we propose an alternative microarchitecture that fa-
cilitates better utilization of hardware resources by using
an augmented floating-point subsystem to perform some of
the computation in integer programs. The set of instruc-
tions executing in the integer subsystem primarily consists
of instructions involved in address computation and memory
access. The set of instructions executing in the augmented
floating-point subsystem mainly includes branch-related in-
structions that do not use register values computed by in-
structions executing in the integer subsystem. Our results
show that between 10% and 39% of the total computation in

our integer benchmarks can be supported in the augmented
floating-point subsystem. Furthermore, the only extra func-
tionality that has to be added to existing floating-point units
is the ability to perform simple integer operations. Our con-
clusion is that the proposed microarchitecture has promise
and deserves further study.

Acknowledgements
Thanks to the anonymous reviewers for informative

comments. Doug Burger, Shamik Das Sharma and
T.N.Vijaykumar read a draft of the paper and provided in-
put that helped improve the presentation. This work was
supported by grants from the National Science Foundation
(grant MIP-9505853) and the University of Wisconsin Grad-
uate School.

References
[1] Linley Gwennap. MIPS R10000 Uses Decoupled Architec-

ture. Microprocessor Report, 8(14), October 1994.

[2] Linley Gwennap. Ultrasparc Unleashes SPARC Perfor-
mance. Microprocessor Report, 8(13), October 1994.

[3] A.R. Pleszkun and E.S. Davidson. Structured Memory Ac-
cess Architecture. In International Conference on Parallel
Processing, pages 461–471, 1983.

[4] Richard. M. Russell. The CRAY-1 Computer System. Com-
munications of the ACM, 21(1):63–72, January 1978.

[5] Michael Slater. AMD’s K5 Designed to Outrun Pentium.
Microprocessor Report, 8(14), October 1994.

[6] J.E. Smith. Decoupled Access/Execute Computer Architec-
ture. In The 9th Annual International Symposium on Com-
puter Architecture, pages 112–119, April 1982.

[7] J.E. Smith and et. al. The ZS-1 Central Processor. In The 2nd
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 199–
204, October 1987.

[8] SPEC. (entire issue). SPEC Newsletter, 3(4), December
1991.

[9] Sun Microsystems Laboratories, Inc. Introduction to Shade,
April 1993.

[10] Mark Weiser. Program Slicing. IEEE Transactions on Soft-
ware Engineering, 10(4):352–357, July 1984.

