High-Bandwidth Address Trandlation
for Multiple-1ssue Processors

Todd M. Austin

Gurindar S. Sohi

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton Street

Madison, WI

53706

{aust i n, sohi }@s. wi sc. edu

Abstract

In an effort to push the envelope of system performance, mi-
croprocessor designs are continually exploiting higher levels of
instruction-level parallelism, resulting in increasing bandwidth de-
mands on the address trandation mechanism. Most current micro-
processor designs meet this demand with amulti-ported TLB. While
this design provides an excellent hit rate at each port, its access la
tency and areagrow very quickly asthe number of portsisincreased.
As bandwidth demands continue to increase, multi-ported designs
will soon impact memory access latency.

We present four high-bandwidth address trand ation mechanisms
with latency and area characteristics that scale better than a multi-
ported TLB design. We extend traditional high-bandwidth memory
design techniques to address trand ation, devel oping interleaved and
multi-level TLB designs. In addition, weintroduce two new designs
crafted specifically for high-bandwidth address trandation. Piggy-
back ports are introduced as atechnique to exploit spatial locality in
simultaneous trandl ation requests, allowing accessesto the samevir-
tual memory page to combine their requests at the TLB access port.
Pretrand ation isintroduced as a technique for attaching trand ations
to base register values, making it possible to reuse a single tranda-
tion many times.

We perform extensive simulation-based studies to evaluate our
designs. We vary key system parameters, such as processor model,
page size, and number of architected registers, to see what effects
these changes have on the relative merits of each approach. A num-
ber of designs show particular promise. Multi-level TLBs with as
few as eight entries in the upper-level TLB nearly achieve the per-
formance of a TLB with unlimited bandwidth. Piggyback ports
combined with alesser-ported TLB structure, e.g., an interleaved or
multi-ported TLB, also perform well. Pretrandation over asingle-
ported TLB performs almost as well as a same-sized multi-level
TLB with the added benefit of decreased access latency for physi-
cally indexed caches.

1 Introduction

Addresstrandationisavital mechanism in modern computer sys-
tems. The process provides the operating system with the mapping
and protection mechanisms necessary to manage multiple large and
private address spaces in a single, limited size physical memory
[HPOQ]. In practice, most microprocessors implement low-latency

addresstrand ation with atranslation lookaside buffer (TLB). A TLB
is a cache, typically highly-associative, containing virtual memory
page table entries which describe the physical address of a virtual
memory page as well as its access permissions and reference status
(i.e., reference and dirty bits). Thevirtual page address of amemory
accessisused to index the TLB; if the virtual page address hitsinthe
TLB, atrandation is quickly returned. On a TLB miss, a hardware-
or software-based miss handler isinvoked which “walks’ the virtual
memory page tables to determine the correct trandation to load into
the TLB.

The primary goal of TLB design isto keep address trandation la-
tency off the critical path of memory access. In the past, this goal
has been met by building low-latency TLBs. Thistask wasrelatively
easy to perform because most TLB designs were single-ported and
small, containing on the order of 32 entries.

Today, however, architectural and workload trends are placing in-
creasing demands on TLB designs. Processor designs are continu-
aly exploiting higher levels of instruction-level parallelism (ILP),
which increases the bandwidth demand on TLB designs. The na-
ture of workloads is also changing. Thereis a strong shift towards
codes with large data sets and less locality, resulting in poor TLB
hit rates. Notable examples of this trend include environments that
support multitasking, threaded programming, and multimedia appli-
cations.

Together, architectural and workload trends are pushing archi-
tects to look for TLB designs that possess low-latency and high-
bandwidth access characteristics while being capable of mapping a
large portion of the address space. The current approach used in
most multiple-issue processorsisalarge multi-ported TLB, typically
dual-ported with 64-128 entries. A multi-ported TLB provides mul-
tiple access paths to al cells of the TLB, alowing multiple trans-
lationsin asingle cycle. The relatively small size of current TLBs
along with the layout of the highly-associative storage lends itself
well to multi-porting at the cells [WESS].

Although a multi-ported TLB design provides an excellent hit
rate at each access port, its latency and area increase sharply as the
number of ports or entries is increased. While this design meets
the latency and bandwidth requirements of many current designs,
continued demands may soon render it impractical, forcing tomor-
row’s designs to find aternative translation mechanisms. Already,
some processor designs have turned to alternative TLB organiza-
tions with better latency and bandwidth characteristics; for exam-
ple, Hal’'s SPARC64 [Gwed5] and IBM’s AS/400 64-bit PowerPC
[BHIL94] processor both implement multi-level TLBs.

Our god inthis paper isto extend the work on high-bandwidth ad-
dresstrangd ation intwo ways. First, we propose anumber of designs
for high-bandwidth address trandation with latency and area costs
that scale better with the number of ports than a multi-ported TLB.
Second, we perform extensive simulation-based studies to evaluate

Appearsin: “ Proceedings of the 23rd Annual International Symposium on Computer Architecture”

the relative merits of the proposed address trandation designs.

Using detailed cycle-timing simulators, we benchmark the perfor-
mance of the high-bandwidth designs against the performance of a
TLB with unlimited bandwidth. A number of designs are clear win-
ners — their use results in amost no impact on overall system per-
formance. Any latency and area benefits these designs may afford
will serve to improve system performance through increased clock
speeds and/or better die space utilization.

We limit the scope of thiswork to trandation of data memory ac-
cessesfor physically tagged caches. Instruction fetch trandationisa
markedly easier problem, since fetch mechanisms typically restrict
all instructions fetched in a single cycle to be within the same vir-
tual memory page, requiring at most one translation per cycle. In-
struction fetch trandlation is well served by a single-ported instruc-
tion TLB or by a small micro-TLB implemented over a unified in-
struction and data TLB [CBJ92].

Therest of this paper isorganized asfollows. Section 2 describes
our framework for address trandation and qualitatively explores the
impact that address transation latency and bandwidth have on sys-
tem performance. Section 3 details the mechanisms proposed for
high-bandwidth address translation, and Section 4 presents exten-
sive simulation-based performance studies of a number of address
trandation designs. Section 5 presents a summary and conclusions.

2 Impact of Address Tranglation on System

Perfor mance

Before delving into the details of our high-bandwidth designs or
their evaluation, it is prudent to first develop a performance model
for address trandation. The model we present in this section is
strictly qualitative in nature. We do not use it to derive the perfor-
mance of aparticular address trangl ation mechanism; we do thisem-
pirically with detailed timing simulations in Section 4. Instead, the
model serves as aframework for addresstrandation. By casting our
designs into this framework, we can readily see which features af-
fect addresstrand ation performance, and consequently, how address
trand ation performance affects system performance.

Figure 1 illustrates our framework for address trandation. At the
highest level, a processor core executes a program in which a frac-
tion fareas Of dl instructions access memory. Each cycle, the pro-
cessor core makes as many as M address trandation requests. A
fraction fsnieideq Of these requests are serviced by ashielding mech-
anism. A shielding mechanism is a high-bandwidth and low-latency
trandation device that can satisfy a trandation request without: 1)
impacting the latency of memory access, or 2) forwarding the re-
quest to the base TL B mechanism. Hence, the shielding mechanism
acts as ashield for the base TLB mechanism, filtering out fsnieided
of al trandation requests. An effective shielding mechanism can
significantly reduce the bandwidth demands on the base TLB mech-
anism; we examine three shielding mechanismsin detail: L1 TLBs,
piggyback ports, and pretranslation.

Requests not handled by the shielding mechanism are directed to
the base TLB mechanism which can service up to N requests per
trandation cycle. The base TLB mechanism functionsidentically to
atraditional TLB, providing fast access to page table entries using
alow-latency caching structure. However, the organization used in
this paper may be non-traditional, e.g., interleaved, for the purpose
of providing increased bandwidth. If abase TLB port is immedi-
ately available, the trandlation proceeds immediately. If aport isnot
available, the request is queued until a port becomes available, at
which time it may proceed. The queuing mechanism employed is
dependent on the processor model, e.g., an out-of-order issue proces-
Sor queues requests in a memory re-order buffer, while an in-order
issue processor queues requests by stalling the pipeline. Requests
are queued waiting for a port for an average latency of tsiqi1cq- The
magnitude of ¢s:411.4 1S determined by the bandwidth of the address
trandation mechanism — with unlimited bandwidth ¢ s;4i1.4 Will be

Processor Core
Request #1 Request #M]t—-lMoEl\A '
VPN Hit PPN VPN Hit PPN -
2
@]
=
7 | Shielding Mechanism f_shielded >
1
£ =X
] —
E Request Queue(s), t_stalled §
I Q
2
S
VPN Hit VPN HtP gzg
Port #1 Port #N t_TLBhit =
M_TLB, 3
Base TLB Mechanism t_TLBmiss g

Figure 1: A System Model of Address Trandation Performance.
VPN isthe virtual page number, PPN is the physical page number.

zero, with limited bandwidth it may be non-zero. How bandwidth
affectsqueueing latency inthe processor isvery complex, sinceit de-
pends on the frequency and distribution of requeststo the trandlation
device. Wedon't attempt to derive thisrelationship analyticaly. In-
stead, we measure precisely itsimpact through detailed timing sim-
ulations in Section 4. Once a request is serviced by the base TLB
mechanism, (1 — Mrrg) requests will hit in the TLB and be ser-
viced with latency trr.Br::. Theremaining Mrrp of al requests
will missinthe TLB and be serviced with latency trzBmiss -
Under this model of address trandlation, the average latency of a
translation request (as seen by the processor core), tar, is:

tar = (1 — fshietded) * (tstatted +tTLBRit + MTLB *tTLBmiss)

The effect of the latency of address trandation seen by the pro-
cessor core istempered by two factors: 1) the processor’s ability to
tolerate latency, and 2) the relative impact of memory access |latency
compared to other latencies. Therefore, the system impact of address
trandation latency, measured as the average time per instruction due
to address trandation latency, TPIar, is:.

TPIar = fmem * (1 — fror) *tar

fror isthe fraction of address trandation latency that is toler-
ated by the processor core. The workload and processor model both
affect the degree to which the processor core can tolerate latency. If
the workload exhibits sufficient parallelism and the execution model
provides latency tolerating support, the impact of address tranda-
tion latency on overal performance will decrease. Processor mod-
elswith high levelsof latency tolerating capability include those that
support out-of-order issue, non-blocking memory access, and spec-
ulative execution.

Finaly, farea isthe dynamic fraction of al instructions that ac-
cess memory. This factor is affected by the workload, the number
of architected registers, and the compiler’s ahility to effectively uti-
lize registers. Programs that access memory often will need better
address trand ation performance for good system performance.

In summary, the performance of the address translation mecha
nism is affected: 1) by its ability to shield requests from the base

Port #1 Port #N Port #1 Port #N Port #1 Port #N
VPN Hit PPN VPN F,Tt TN VPN Hit PPN VPN Hit PPN VPN I-/Ift PTDN VPN I-/Ift PPN
INTERCONNECT L1TLB small (4-16 entries
Multi—ported PN Hit PPN VPN Hit PPN VPN Hit PPN
TLB
LARGE VPN Hit PPN
(64+ entries) Bank #1 Bank #M
Mid-sized Mid-sized L2TLB
(<64 entrieg) (<64 entrieg)
LARGE
(64+ entries)
a) b) 0)

Figure 2: Traditiona High-Bandwidth Memory Designs: &) multi-ported, b) interleaved, and ¢) multi-level.

trandation mechanism, and 2) by the latency and bandwidth of the
base trandlation device. The system impact of address trandation
performance is, however, affected by a program’s reliance on mem-
ory access and the processor’s ahility to tolerate latency.

3 High-Bandwidth Address Trandlation

In this section, we present new mechanisms for high-bandwidth
address trandlation. For each mechanism, we describe how it maps
to our framework for address trandation (shown in Figure 1) and
highlight the strengths and weaknesses of the particular approach.

Our designs fall into two categories: 1) designs that extend tra-
ditiona high-bandwidth memory design to the domain of address
trandation, and 2) designs crafted specifically for high-bandwidth
address trandl ation.

Techniques for dedlivering high-bandwidth memory access are
well developed, both in the literature and in practice. The common
approaches are multi-ported [SF91], interleaved [Rau91], and multi-
level [JW94] memory structures. We can easily extend these ap-
proaches to the address trans ation domain.

Piggyback ports are introduced as a technique to exploit the high
level of spatia locality in simultaneous trandation requests. This
approach allows simultaneous accesses to the same virtual memory
page to combine their requests at the TLB access port. Pretransla-
tion is introduced as a technique for attaching trandations to base
register values, making it possible to reuse a single trand ation many
times.

All of our high-bandwidth address trandation designs are tar-
geted towards systems that use physically tagged caches, i.e., those
which require a trandation for each memory access. Virtua ad-
dress caches, however, do not require a trandation for each mem-
ory access; address trandation is pushed off until data is fetched
from physica storage, e.g., when a physically addressed second-
level cache or main memory is accessed. Such a design eliminates
both bandwidth and latency concerns. Virtual address caches have,
however, two significant drawbacks which discourage their use in
real systems: 1) synonyms, and 2) lack of support for protection.

Synonyms can occur in virtually indexed caches when storage
is manipulated under multiple virtual addresses. In a multipro-
grammed environment, shared physical storage can end up in multi-
plelines of avirtually indexed cache, creating a potential coherence
problem. In amultiprocessing environment, cache coherence opera-
tions must first be reverse-translated to remote virtual addresses be-
fore remote data can be located in the remote cache. Many solutions
have been devised to eliminate synonyms, including alignment re-
strictions on shared data [Che87], selective invaidation [WBL89],
and single address space operating systems [KCE92]. However,
these approaches have yet to come into widespread use due to per-

formance and/or implementation impacts on application and system
software. Moreover, these solutions do not solve the second prob-
lem that arises with virtual address caches, efficient implementation
of protection.

Traditionally, protection information has been logically attached
to virtual memory pages. Asaresult, their implementation has been
naturally integrated into the TLB. If the TLB is eliminated through
use of avirtual address cache, the problem of implementing protec-
tion still remains. One solutionisto integrate protection information
into cache blocks [Hea86]. However, the page-granularity of pro-
tection information makes managing these fields both complicated
and expensive. Another solution is to implement a TLB minus the
physical page address information [KCE92] — this TLB-like struc-
ture, however, still requires high-bandwidth and low-latency access
(although, latency requirements are somewhat relaxed).

In light of these drawbacks, virtual address caches have seen lit-
tle use in red systems. In addition, it is likely that if virtual ad-
dress caches are adopted they may till employ TLB-like structures
to implement protection, which requires a high-bandwidth mecha-
nism like the ones we describe here. Consequently, we don’t con-
sider virtual address caches any further; instead, we concentrate on
address trandlation designs for physically tagged caches.

3.1 Multi-ported TLB

A multi-ported TLB, illustrated in Figure 2a, uses a brute force
approach to providing high-bandwidth. Each port is provided its
own data path to every entry in the TLB, implemented by either
replicating the entire TL B structure (one single-ported TLB for each
port) or multi-porting theindividual TLB cells. Since every entry of
the TLB is accessible from each port of the device, this design pro-
vides a good hit rate for each port (low Mrrg). However, the ca
pacitance and resistance |oad on each access path increases with the
number of ports on the device [WE88], resulting in longer accessla-
tency (trrzBrit) 8the number of portsor entriesincreases. In addi-
tion, this design incurs a large area overhead due to the many extra
wires and comparators needed to implement each port. (In CMOS
technology, the area of a multi-ported device is proportiona to the
sguare of the number of ports [Jol91].)

Independent of access latency and implementation area consid-
erations, this design provides the best bandwidth and hit rate of all
the designs, hence, it provides a convenient standard for gauging the
performance of the other approaches that we propose.

3.2 Interleaved TLB

An interleaved TLB, shown in Figure 2b, employs an intercon-
nect to distribute the address stream among multiple TLB banks.
Each TLB bank can independently service one request per transla-

EX MEM

/
A
/
A
/

N <]
Port #1 Port #1 g Al S
VPN Hit PPN VPN Hit PPN = G U <
ZN =l < »T0 D-Cache
- o NS
’g : PaN
ol
Request
= | 2 ?
B | IG)—’TLB.
s Pretrandlation | Pretranslation|
< I <||H
VPN Hit PPN 2 | 2
TLB Pre- 3 | 3 To Tag Check
Let Xlation
LARGE] Cache] il
(64+ entries) & & | m.ToProt Check
[[
PZaN LN
Translations
fromTLB

b)

Figure 3: Address Translation Specific Designs: a) piggyback port, and b) pretrandation.

tion cycle. This design provides high-bandwidth access as long as
simultaneous accesses map to different banks.

The mapping between virtual page addresses and the TLB banks
is defined by the bank selection function. This function influences
the distribution of the accesses to the banks, and hence, the band-
width delivered by the device. In our evaluations, we consider both
bit selection, which uses a portion of the virtual page address to se-
lect the bank, as well as an XOR-folding scheme, which random-
izesthe bank assignment by X OR’ing together portions of the virtual
page address. (XOR-folding functions have been shown to provide
better bank distribution [KIJLH89].)

By its construction, an interleaved TLB may not be fully-
associative, since any particular page may only reside in one bank.
Itsassociativity must be limited to the associativity of theindividual
banks. Asaresult, Mrr, g for thisdesign may be higher than asame-
size design with a more associative organization, possibly resulting
inlonger averagetrand ation latency. Theimpact should be minimal,
however, if the interleaved TLB remains highly-associative.

This design will likely have better latency and area characteris-
tics than a multi-ported TLB, especially for large TLBs. While the
interconnect, typically afull crossbar, adds some latency to the ac-
cess path, thislatency ismitigated by the shorter accesslatency of the
smaller, single-ported banks. The area overhead is concentrated in
the interconnect; for afull crossbar, the implementation areais pro-
portional to the square of number of access ports. For small numbers
of ports, sizes should not be prohibitively large.

3.3 Multi-level TLB

A multi-level TLB, shownin Figure 2c, provides high-bandwidth
and low-latency address trandation by exploiting locality in pro-
gram references. When an entry from the base TLB mechanism (L2
TLB) isreferenced, it is placed into in asmall upper-level TLB (L1
TLB). An L1 TLB actsasa shielding mechanism; if it offersagood
hit rate, it will shieldthe L2 TLB from all accessesthat hitinthe L1
TLB, significantly reducing the bandwidth demand on the L2 TLB.

When an access missesinthe L1 TLB, it must forward the request
totheL2TLB, whereL2 TLB accessport contention, L2 TL B access
latency, and L2 TLB miss latency may increase overal the latency
of the access. SincetheL1 TLB issmall, it may be possibleto use a
more effective replacement policy (e.g., LRU replacement inthe L1
TLB vs. random replacement inthe L2 TLB), which should improve
the hit rate of the L1 TLB.

If the processor supports hardware-based TL B consistency opera-

tions[BRG™89], multi-level inclusion should be enforced inthe L1
TLB during L2 TLB replacements or invalidations, i.e., the entries
inthe L1 TLB should be asubset of the entriesin the L2 TLB. This
implementation strategy will eliminate the need for consistency op-
erationsto probethe L1 TLB, which may be expensiveif itistightly
integrated into the processor pipeline.

TheL1TLB isamulti-ported TLB with enough portsto handleall
simultaneous requests from the processor core. By keeping the L1
TLB small, it is possible to provide both high-bandwidth and low-
latency accessto all its entries. The additional area overhead of this
design is concentrated in the implementation of the L1 TLB, which
for small sizes and few ports should be much smaller than the L2
TLB.

At least two commercia processors have explored the use of
multi-level TLBs;, Hal’'s SPARC64 [Gwed5] and IBM’'s AS/400
64-hit PowerPC [BHIL94] processors both implement multi-level
TLBs to meet the latency and bandwidth needs of their respective
designs. Multi-level TLB designs have long been used for reducing
the latency of instruction fetch translations [CBJ92].

3.4 Piggyback Ports

Piggyback ports, shown in Figure 3a, exploit spatial locality in
simultaneous address trandation requests. When simultaneous re-
quests arrive at a TLB port, requests with identical virtua page ad-
dresses may be satisfied by the same TLB access.

To implement piggybacking, the virtual page addresses of
blocked requests are compared to thevirtual page address of requests
in progress. A blocked request may use the result of atrandation in
progressif their virtual page addresses match. For asingle port, the
hit detection signal from the TLB port can be gated with the result
of the virtual page address comparison. The approach is similar to
read combining in multiprocessor interconnection networks [L S94].
Assuming both requests are executing under the same protection do-
main, the other fields of the trandation request, i.e., protection and
page status information, may aso be forwarded to other requesters
with matching virtual page addresses.

Piggyback ports have minimal impact on trandation latency.
Oncearequest issubmitted tothe TL B, all other requesters can com-
pare virtual addresses in parallel with TLB access. As aresult, the
impact on trandlation latency is limited to the gating of the TLB hit
signal. Areacostsare aso very small, being limited to asingle com-
parator and hit signal gate per piggyback port.

3.5 Pretrandation

Pretrand ation isashielding mechanism that allowsasingletrans-
lation request to be used for multiple memory accesses. Figure 4 il-
lustrates the basis for this approach. Loads and stores access mem-
ory through register pointers: globa accesses through the global
pointer [CCHT87], stack accesses through the stack pointer, and all
other references through general purpose register pointers. Pointers
are created whenever avariableisreferenced, its addressistaken, or
when dynamic storageis alocated. During thelifetime of a pointer,
it is dereferenced at loads and stores, and manipulated using integer
arithmetic. Over the lifetime of the pointer, it may be dereferenced
and manipulated many times.

Studies have shown, e.g. [EV 93], that when pointers are manip-
ulated, it is often the case that small constant values are added to or
subtracted from the pointer. The end result, which we exploit in this
design, isthat trandlations between successive uses of apointer often
yield accesses to the same virtual memory page.

In traditional TLB-based address trand ation mechanisms, an ad-
dress trandation request is made to the TLB each time a pointer is
dereferenced, often requesting the same trandation on subsequent
requests. With pretranglation, we attach a trandation to a register
value at the first dereference of the value, i.e., at the first load or
storeto usetheregister asabaseregister value. On subsequent deref-
erences, loads and stores may use the trandation (or as we term it,
pretrandation) attached to the register value provided that the vir-
tual page address of the memory access matches the virtual page
address of the attached translation. When pointers are manipul ated
with arithmetic operations, any attached tranglation is propagated to
the destination register value. Pretrandation yields high bandwidth
aslong asregister pointersare reused often and point to the samevir-
tual memory page. Thus, a single trandlation request from the base
TLB mechanism may be used multiple times.

Our pretrandation design is shown integrated into a processor
pipeline in Figure 3b. Pretranslations are accessed in parallel with
register file access in the decode stage of the pipeline, making the
pretranslation available by the start of instruction execution. If the
instruction is an arithmetic operation, the pretrandation is attached
to the result register value. For loads and stores, the pretrandation,
if available, isused to elide TLB accessif the virtual page addresses
match. If the virtual page addresses do not match, atrandation re-
quest is forwarded to the base trandlation mechanism. The result of
the trandation is attached to the base register value.

Two important considerations affect the design of the mecha-
nism used to attach pretranslations to register values. First, asingle
pointer value may reference multiple pages. A suitable mechanism
to attach multiple translations to a single register may improve per-
formance, e.g., a few bits from the offset could be combined with
the base register identifier to form the identifier of a pretrandation.
Second, only afraction of all registers will be pointer values at any
onetime, thus, storage need not be allocated for each register. It suf-
ficesto use asmall cache (which we term a pretranslation cache) to
hold pretrandations. If thiscacheiskept small, it will facilitate high-
bandwidth and low-latency access to pretrandations.

Any changesinvirtual memory state, e.g., address mapping, page
size, or access permission, must be reflected in the pretranglation
cache, otherwise, invalid accesses may go undetected. If virtual
memory state changes are infrequent, it may be sufficient to simply
flush the pretrandlation cache whenever changes occur.

The VAX IPA register used a similar technique to reuse a trans-
lation for instruction fetching [LE89]. The current PC physical ad-
dress trandation is stored in the Instruction Physical Address (IPA)
register, and thistranslation is used to access the cache until: 1) the
PC crosses a page boundary, or 2) a branch is taken. On either of
these events, the previous translation is invalidated and another ad-
dress trandation of the PC isinitiated. Bray's trandation hit buffer
(THB) [BF92] further extends thisideato include a prediction of the

Creation Use/Manipulation Death
for (p=start; p<end; p++) p=start > p=. ..
if (p->tag) p->tag
break;
p=..
p++
) b)

Figure 4: The Life of a (Register) Pointer. Figure a) shows a C code
fragment in which pointer p strides through an array. Figure b) illustrates
the operations that occur over the lifetime of pointer p.

next translation as well.

Pretrand ation can beviewed asan extension of Chiuehand Katz's
branch address cache (BAC) [CK 92], which was applied asamech-
anismto reduce accesslatency of physically indexed caches. (A sim-
ilar mechanism was proposed in [HHL*90].) Our design extends
the BAC technique to provide high-bandwidth trandation. By at-
taching the virtual page address to a register vaue, the base TLB
mechanism does not have to be accessed to validate use of an at-
tached physical page address. Like the BAC, our design provides
the physical page address by the end of instruction decode. Thus, it
may be used to access a physically indexed cache without an added
latency for address trandation.

Our design includestwo modificationsto the original BAC mech-
anism. First, our design tracksinstructionsthat create pointer val ues,
and propagates the pretrandation of any operand to the result reg-
ister. This optimization is important for good performance on op-
timized code where register copies occur often, for example, during
instruction scheduling or loop unrolling. Second, we employ asmall
cacheto store pretrandations, instead of the larger BAC. Since only
afraction of al registers contain pointer values at any one time, our
small pretrandation cache provides an excellent hit rate.

4 Experimental Evaluation

We evaluated the relative merits of our high-bandwidth address
trandation designs by extending a detailed timing simulator to sup-
port the proposed translation mechanisms and by examining the
performance of programs running on the extended simulator. We
varied the page size, processor issue model, and number of archi-
tected registers to see what affect these system parameters had on
the trandation mechanisms. All the results presented in this sec-
tion are run-time weighted averages across all the benchmarks. In-
dividual resultsfor all experiments are available viaFTP in thefile
“ftp://ftp.cs.wsc.edu/sohi/isca96-results.ps.Z".

4.1 Methodology

All programs were compiled with GNU GCC (version 2.6.2),
GNU GAS (version 2.5), and GNU GLD (version 2.5) with max-
imum optimization (-O3) and loop unrolling enabled (-funroll-
loops). The Fortran codes were first converted to C using AT& T
F2C version 1994.09.27. All experiments were performed on an
extended (virtual) MIPS-like architecture. The architecture imple-
ments a superset of the MIPS-| instruction set [KH92], with the fol-
lowing modifications:

e extended addressing modes: r egi st er +r egi st er and post-
increment and decrement are included

e no architected delay slots

Our baseline smulator isdetailed in Table 1. The simulator exe-
cutes only user-level instructions, performing adetailed timing sim-
ulation of an 8-way superscalar microprocessor and the first level
of instruction and data cache memory. The simulator supports both

Fetch Interface

fetches any 8 instructions in same cache block per cycle, separated by at most one branch

Instruction Cache

32k 2-way set-associative, 32 byte blocks, 6 cycle misslatency

Branch Predictor

8 bit global history indexing a 4096 entry pattern history table (GAp [Y P93]) with 2-bit
saturating counters, 3 cycle misprediction penalty

In-Order Issue Mechanism

in-order issue of up to 8 operations per cycle, allows out-of-order completion

Out-of-Order Issue
Mechanism

out-of-order issue of up to 8 operations per cycle, 64 entry re-order buffer, 32 entry
load/store queue, loads may execute when all prior store addresses are known

Architected Registers

32 integer, 32 floating point

Functional Units

8-integer ALU, 4-load/store units, 4-FP adders, 1-integer MULT/DIV, 1-FP MULT/DIV

Functional Unit Latency

integer ALU-1/1, load/store-2/1, integer MULT-3/1, integer DIV-12/12, FP adder-2/1,

(total/issue) FP MULT-4/1, FP DIV-12/12

Data Cache 32k 2-way set-associative, write-back, write-allocate, 32 byte blocks, 6 cycle miss latency,
four-ported, non-blocking interface, supporting one outstanding miss per physical register

Virtua Memory 4K byte pages, 30 cycle fixed TLB miss latency after earlier-issued instructions complete

Table 1. Baseline Simulation Model.

Mnemonic | Description

T4 4-ported TLB, 128 entries, fully-associative, random replacement

T2 2-ported TLB, 128 entries, fully-associative, random replacement

T1 1-ported TLB, 128 entries, fully-associative, random replacement

18 8-way hit-select interleaved TLB, 128 entries (16 entry fully-associative bank), random replacement in bank

14 4-way bit-select interleaved TLB, 128 entries (32 entry fully-associative bank), random replacement in bank

X4 4-way XOR-select interleaved TLB, 128 entries (32 entry fully-associative bank), random replacement in bank
M16 4-ported 16-entry L1 TLB w/LRU replacement, 128-entry L2 TLB, fully-associative, random replacement

M8 4-ported 8-entry L1 TLB w/LRU replacement, 128-entry L2 TLB, fully-associative, random replacement

M4 4-ported 4-entry L1 TLB w/LRU replacement, 128-entry L2 TLB, fully-associative, random replacement

P8 4-ported 8-entry pretranslation cache w/LRU replacement, 128-entry L2 TLB, fully-associative, random replacement
PB2 2-ported TLB w/ 2 piggyback ports, 128 entries, fully-associative, random replacement

PB1 1-ported TLB w/ 3 piggyback ports, 128 entries, fully-associative, random replacement

14/PB 4-way bit-select interleaved TLB w/piggybacked banks, 128 entries (32 entries/bank), random replacement in bank

Table 2: Analyzed Address Trandation Designs.

in-order and out-of-order issue execution models. Simulation is
execution-driven, including execution down any speculative path
until the detection of afault, TLB miss, or misprediction. Thein-
order issue model provides no renaming and stalls whenever any
data hazard occurs on registers. The out-of-order issue model em-
ploys a 64 entry re-order buffer that implements renamed register
storage and holds results of pending instructions. Loads and stores
are placed into a 32 entry load/store queue. Stores execute when all
operands are ready; their values, if speculative, are placed into the
load/store queue. Loads may execute when all prior store addresses
have been computed; their values come from amatching earlier store
in the store queue or from the data cache. Speculativeloads may ini-
tiate cache missesif the address hitsinthe TLB. If theload is subse-
quently squashed, the cache misswill still complete. However, spec-
ulative TLB missesare not permitted. That is, if a speculative cache
access missesin the TLB, instruction dispatch is stalled until thein-
struction that detected the TL B mississquashed or committed. Each
cycle the re-order buffer commits up to 8 results in-order to the ar-
chitected register file. When stores are committed, the store valueis
written into the data cache. The data cache modeled isafour-ported
32k two-way set-associative non-blocking cache.

We found early on that instruction fetch bandwidth was a critical
performance bottleneck. To mitigate this problem, we implemented
alimited variant of the collapsing buffer described in [CMMP95].
Our implementation supports two predictions per cycle within the
same instruction cache block, which provides significantly morein-
struction fetch bandwidth and better pipeline resource utilization.

A number of changes were made to the simulator to support our
high-bandwidth address trandation mechanisms. The designs we

examine, with their mnemonic designations, are listed in Table 2.

For al configurations, TLB access is assumed to be fully over-
lapped with data cache access. Thus, address trandation does not
create avisible latency unless the trand ation mechanism cannot im-
mediately service atrandation request, i.e., due to insufficient TLB
bandwidth or a TLB miss. When multiple requests meet at asingle
TLB port, the port is alocated first to the earliest issued instruction.
Theinterleaved schemes, i.e., I8 and 14, use bit selection to select the
TLB bank; the three or two address bitsimmediately above the page
offset portion of thevirtual address are used to select the proper TLB
bank. The configuration X4 uses an XOR-folding of the three least
significant groups of two address bits immediately above the page
offset portion of the virtual address. In the two-level designs, i.e.,
M16, M8, and M4, the L1 TLB can service up to four hits per cycle.
L1 TLB missesare sent in thefollowing cycletothe L2 TLB, where
they may queue if other requests are being serviced by the L2 TLB.
Theminimum latency for an L1 TLB missis 2 cycles. Thepretrans-
|ation cache design (P8) has ahit latency of one cycle; missesare not
detected until the cycle immediately following address generation,
resulting in at least one more cycle latency for access to the single-
ported base TLB. Like the multi-level TLB designs, requests to the
single-ported base TLB may haveto queue waiting for the port. The
pretranglation cache tags are composed of the register identifier (5
hits) concatenated with the upper 4 bits of the offset of aload or zero
for any other instruction. In the piggybacked designs, i.e., PB2 and
PB1, requests that do not receive a transation port may piggyback
off any other translation performed in the same cycle. For the 14/PB
configuration, piggyback portsare provided at each bank of the TLB,
thus, simultaneous requests that meet at the same bank may be ser-

Insts | Loads | Stores Inst/Cycle (Ld+St)/Cycle Br Pred

| Program | Inputs/Options (Mil) | (Mil) | (Mil.) [Tssue | C'mit | Issue | C'mit | Rate (%)
Compress in 62.0 15.8 6.1 3.65 1.96 1.30 0.69 89.7
Doduc doducin 1,375.1 3304 130.2 2.16 1.76 0.71 0.59 86.6
Espresso -t cpsin 5175 116.5 327 4.48 2.90 1.32 0.84 90.2
GCC -0 1stmt.i 110.6 26.4 16.5 3.56 1.87 1.32 0.72 80.2
Ghostscript | -dNOPAUSE -sDEVICE=ppm fast-addr.ps -c quit 625.2 | 109.1 533 | 276 218 | 0.73 0.55 93.3
MPEG._play | coil.mpg 5206 | 1149 | 479 | 410 | 282 | 119 | 087 85.9
Perl tests.pl 2315 57.7 37.2 2.85 143 1.10 0.57 81.2
TFFT MEXPONENT=20, ITER=1 950.8 | 136.6 89.4 2.69 1.79 0.62 0.42 79.9
Tomcatv N=129 359.7 90.9 18.3 3.64 272 1.00 0.83 86.6
Xlisp li-input.Isp 962.7 289.2 171.6 4.17 2.52 1.86 121 87.9

Table 3: Program Execution Performance. Instruction, load, and store counts include only non-speculative operations. The columns labeled Issue and
C’'mit indicate the average number of operations issued and committed per cycle, respectively, on the baseline 8-way out-of-order issue processor simulator.

viced at the same timeif their virtual page addresses match.

In the multi-level TLBsand pretrandation design, i.e., M16, M8,
M4, and P8, page statusinformation (i.e., reference and dirty bits) is
propagated into the upper-level caching structures. However, when
achange must be madeto the page status (e.g., first reference or write
toapage), the changeisimmediately sent to thebase TL B, where the
access may be queued if a port is not available immediately. This
write-through strategy for page status information simplifies flush-
ing of the upper-level TLB structure, since any status in the upper-
level cachestructureisfully replicated inthebase TLB. Immediately
propagating page status changes to the base TL B haslittleimpact on
performance, because page status changes require little bandwidth.
Multi-level inclusionisenforcedintheL1 TLBs, i.e,, M16, M8, and
M4, by loading TLB missesinto boththe L1 TLB and the L2 TLB,
and by selectively invalidating from the L1 TLB any entry replaced
intheL2 TLB. Coherence isenforced in the pretransl ation cache by
flushing it whenever an entry in the base TLB is replaced.

4.2 Analyzed Programs

When selecting benchmarks, we looked for programs with vary-
ing memory system performance, i.e., programswith large and small
data sets as well as high and low reference locality. Table 3 details
the programs we analyzed (giving their inputs, and instruction and
reference counts) and the corresponding performance on the base-
line simulator. Compress, Doduc, Espresso, Tomcatv, and Xlisp are
from the SPEC '92 benchmark suite. Ghostscript is a postscript
viewer rendering a page with text and graphics to a PPM-format
graphics file. MPEG_play is an MPEG video decoder displaying
a 79 frame compressed video file. Perl is a script language inter-
preter running itstest suite. TFFT performs real and complex FFTs
on arandomly generated data set. Ghostscript and TFFT have the
largest data sets, roughly 10 and 40 Mbytes, respectively. Compress,
MPEG_play, and TFFT have notably littlelocality in their reference
streams; small data caches and TLBs perform very poorly for these
three programs.

4.3 Basdline Performance

Figure 5 shows the performance of al the designs running on
the baseline processor model, an aggressive 8-way out-of-order is-
sue processor with 32 registers and 4k virtual memory pages. The
run-time weighted average |PC (weighted by the run-time of T4 in
cycles) is shown for each design. The IPCs are normalized to the
IPC of the four-ported TLB design (T4). The T4 design provides a
convenient benchmark, since it can service up to four translation re-
quests per cycle, thus no latency is introduced into the results due
to insufficient trandation bandwidth. (The baseline simulator has a
four-ported data cache, so cache bandwidth is never a bottleneck.)
Since the timing simulations only count cycles, any clock cycle ef-
fects that a poorly scalable design (such as T4) might introduce are

1

0.95 N i Rt (N R

09 - RO -l

0.8 N o o - 1

Relative RTW Avg IPC

T T T T L —T T T T T T T
T4 T2 T1 M16 M8 M4 P8 18 14 X4 PB2PB1 14/PB

Figure5: Relative Performance on Baseline Simulator. All resultsare
run-time weighted average | PCs normalized to the performance of design T4.

ignored. On this common ground, the relative performance of a
particular design indicates the cycle time improvement required to
make the design worth implementing. For example, the average |IPC
of the 2-ported TLB design (T2) is 94.1% of the 4-ported design
(T4), asaresult, for a T2-based design to be awin, the average time
per instruction must be at least 0.941 times that of the T4 design.

The leftmost group of barsin Figure 5 are the multi-ported TLB
designs, i.e, T4, T2, and T1, with 4, 2, and 1 port(s), respectively.
These results demonstrate how sensitive the simulated system is to
address trandation bandwidth. Since the four-ported TLB design
(T4) provides all the trandlation bandwidth the processor needs, its
performance is always the best. With half as much trand ation band-
width, i.e., the dual-ported TLB (T2), the average IPC drops by
6%. With asingle-ported TLB (T1), performance drops off sharply
to 76% of the performance of the four-ported TLB (T4) design.
Clearly, to not impact system performance, atrandation device will
have to provide at least two trandations per cycle.

The second group of bars in Figure 5 are the multi-level (e.g.,
M16, M8, and M4) and pretrandation (P8) designs. The perfor-
mance of multi-level TLBsis quite good. An L1 TLB with as few
as four entries over asingle-ported L2 TLB suffers less than a 4%
degradation in average | PC. Figure 6 indicates why the multi-level
designs perform so well. This figure shows the run-time weighted
average miss rates (labeled RTW Avg) for fully-associative TLBs
from4to 128 entries. The4, 8, and 16 entry TLBsuse LRU replace-
ment (as done for the 4, 8, and 16 entry L1 TLBs), while the 32, 64,
and 128 entry TLBs employ random replacement (as done for the

= RTWAvg -#- Compress ->- MPEG Play -&~ TFFT

Miss rate (% of all refs)
N
o

= -) —
4 8 16 32 64 128
Fully-associative TLB size

Figure6: TLB MissRates. All values shown indicate percent of all refer-
ences that missin afully-associative TLB. Theline labeled RTW Avgisthe
run-time weighted average missrate over all the benchmarks.

128 entry base TLB mechanisms). A four entry L1 TLB with LRU
replacement shields all but 13.8% of the trandlation requests from
reaching the L2 TLB. This shielding effect significantly reduces the
bandwidth demand onthe L2 TLB. Thefew referencesthat do reach
theL2TLB haveonly slightly longer latency whichiseffectively tol-
erated by the out-of-order issue processor. A few of the programs,
most notably Compress, MPEG_play, and TFFT, have poor perfor-
mance on the multi-level designs. These programs have very low
locality in the data reference stream, as can be seen by their large
TLB missratesin Figure 6.

Whilethe pretrand ation design (P8) performswell, i.e., lessthan
a 3% degradation in average IPC, its overall performance is worse
than asame-sized L1 TLB. The reason for this difference liesin the
mechanism by which each design reuses trandations. The pretrans-
lation design is only able to reuse a trandation whenever aregister
pointer is reused. The multi-level TLB design, on the other hand,
isable to reuse atrandation in the L1 TLB whenever an addressis
reused. The latter case is more common, since when anew register
pointer is first used on the pretranslation designs it must be trans-
lated, while on the multi-level designs, the address the new register
pointer creates may be in the L1 TLB. It is interesting to note that
reference locality and register reuse are sometimes orthogonal. In a
few specific instances, e.g., Compress and GCC, the pretrandation
designs performed better than asame-sized L1 TLB. Thiscontradic-
tory behavior islikely due to better cache management for the pre-
trandation design. When new pointer values are created, they arere-
inserted into the pretranslation cache, which places the entry on the
tail of the LRU queue. Other benefits of the pretrandation cache,
such as early presentation of the physical page address should fur-
ther motivate the use of this design. (Our simulations do not take
advantage of early presentation of the physical page address.)

Theinterleaved designs did not perform aswell asthe multi-level
designs, providing on the average less bandwidth than a dual-ported
TLB (T2). This rather lackluster performance was not due to the
set-associative organization required by the interleaved configura
tions. All of the configurations analyzed were at least 16-way set-
associative and possessed excellent hit rates. Poor performance was
dueto bank conflictswhich delayed requests. Increasing the number
of banks (18) or use of an XOR-folding bank selection function (X4)
provided only marginal benefit, suggesting that many simultaneous
accesses were to the same page, thus no increase in interleaving or
change in bank selection function could eliminate conflicts.

The piggybacked designs, i.e.,, PB2 and PB1, performed better
than the interleaved designs. Piggybacking a single-ported TLB

0.95 o 1 I il I R - 1

09 - RO .-

0.8 N o o - 1

Relative RTW Avg IPC

0.757 N o o - 1 - B

T T T T L— —T T T T T T T
T4 T2 T1 M16 M8 M4 P8 18 14 X4 PB2PB1 14/PB

Figure 7: Relative Performance with In-order Issue.

(PB1) resulted in only a 6% worse average | PC than the four-ported
TLB design (T4). Clearly, many simultaneous accesses are to the
same virtual page. However, not al concurrent accesses reference
the same page as seen in the improved performance of the piggy-
backed dual-ported TLB design (PB2). Thisdesign can perform two
independent tranglations per cycle, al other requests may usethe re-
sult of either trandation. The piggybacked dual-ported TLB design
(PB2) performs nearly as well as the four-ported TLB design (T4).

Design 14/PB isan interleaved TLB with piggyback ports at each
bank. This design leverages off the complementary benefits of the
interleaved and piggybacked approaches. For an address stream
with little spatial locality, requests will be steered to different banks
and be serviced in paralel. For an address stream with good spatial
locality, requests to the same page will be steered to the same bank
and can share the trandation result using the piggyback ports. This
design should account for only aminimal increase in trandation la
tency, since the addition of the piggyback ports only adds a single
gatetothehit detection signal. (Thevirtual page address comparison
to determineif the trandation may be piggybacked occursin parallel
with bank access.) Asshown in the Figure 5, this design performs
very well, resulting in only a 1% degradation in average I PC.

4.4 Impact of In-Order Issue Modéel

Figure 7 shows the performance of the designs under the same
conditions as Figure 5 except the processor is constrained to use an
in-order issue model. This modification has two competing effects
on the results. First, the average IPC of the in-order issue proces-
sor is markedly lower than that of the out-of-order issue processor,
i.e., 1.156 vs. 2.094, respectively. Consequently, the bandwidth de-
mand on the address trand ation mechanism isreduced. Second, the
in-order issue processor model cannot tolerate latency as effectively
as the out-of-order issue processor. Thus, it is much more sensitive
to address trandlation latency introduced by insufficient bandwidth.

Figure 7 shows the results of the experiments running on the 8-
way in-order issue processor. The multi-ported TLB designs, i.e.,
T4, T2, and T1, demonstrate the reduced bandwidth demand on the
address trandation. With only a single-ported TLB (T1), perfor-
mance only degrades 6% bel ow performance with afour-ported TLB
(T4). The multi-level designs still perform well, although the per-
formance of the 4 entry L1 TLB (M4) was affected more by thein-
order issue model than the 8 (M8) and 16 (M16) entry designs. This
result is likely due to the reduced latency tolerating capabilities of
the in-order issue model, which cannot tolerate the 2 or more cycle
latency incurred for the 13.8% of all memory accesses that must be
serviced by the L2 TLB. The out-of-order issue model toleratesthis
latency much better than thein-order model, resulting in better over-
all performance. Theinterleaved designs perform much better onthe

0.95 - RS —

09 - -

0.8] T N - oY

Relative RTW Avg IPC

T T T T L T T T T T
T4 T2 T1 M16 M8 M4 P8 18 14 X4 PB2PBL1 14/PB

Figure 8: Relative Performance with 8k Pages.

in-order issue model. The degradation in IPC dropped from 10% to
about 5% for these experiments. The reduced bandwidth demands
on theinterleaved designs reduces the number of bank conflicts. The
piggybacked designs all perform better, with the PB2 and 14/PB de-
signs experiencing virtually no degradation in average |PC.

45 Impact of Increased Page Size

A recent trend in TLB design has been to increase page sizes
[TH94]. Thistrend is prompted by workloads with large data sets
and/or little locality. Increased page size has a number of effectson
the performance of the designs. With the same number of TLB en-
tries, morememory may be mapped, which can reduce the number of
TLB missesfor both thebase and L1 TLBs. Increased page sizewill
increase the lifetime of pretrandations, allowing a pointer to stride
further before leaving apage. Larger pages will also affect bank se-
lectionin theinterleaved TLB designs, address bitsformerly used to
select the bank will become part of the page offset of the larger page.
Changing the bank selection function will affect the distribution of
accesses to the TLB banks.

Figure 8 shows the performance of the trand ation mechanisms
running on the baseline 8-way out-of-order issue processor, except
with 8k pages instead of 4k pages. The performance of the multi-
ported designs is mostly unchanged, because the TLB miss rates
wereunchanged. The missrateswith a128 entry TLB with 4k pages
arealready very low. Themulti-level and pretranslation designs ben-
efited from the larger page size. The L1 TLBs can map more mem-
ory and hence have better hit ratios, while the pretrandlation cache
benefited from longer pretranslation lifetimes. The interleaved de-
signs performed roughly the same as with 4k pages, although there
were some large variations in individual program performance due
to changesin the bit selection function. Asexpected, thelarger page
sizeimproved the performance of the piggybacked designs, i.e., PB2
and PB1 and 14/PB, since the larger page size provides more oppor-
tunity to piggyback requests.

4.6 Impact of Fewer Registers

A number of architectures in wide-spread use today have few
architected registers, e.g., the x86 or System/370 architectures. To
evaluate the efficacy of our high-bandwidth translation mechanisms
for these architectures, we measured the performance of the bench-
marks recompiled to use only 8 integer and 8 floating point registers
(one-quarter the normal supply). The primary effect of fewer reg-
istersisan increased number of loads and stores, as many as 346%
more for Tomcatv. Most of these references are directed to the stack
and global regions of the datamemory address space with ahigh de-
gree of spatial and temporal locality. The results of the experiments

0.95 O Y et N R

09 - B B f RRER Rt

0.8 N o o - 1

Relative RTW Avg IPC
|

0.7 - A I S

T T T T L— —T T T T T T T
T4 T2 T1 M16 M8 M4 P8 18 14 X4 PB2PB1 14/PB

Figure 9: Relative Performance with Fewer Registers (8 int/8 fp).

are shown in Figure 9. All simulations were performed on the base-
line 8-way out-of-order issue processor with 4k pages.

Even with the many extra memory accesses, the multi-level de-
signs perform well. However, the pretrandation design (P8) suf-
fered because (with few registers) pointer register value lifetimes
were severely shortened due to many extra spills. When a pointer
is spilled to the stack its pretranglation is lost, thus, another tranda-
tion request must be made to the single-ported base TLB when it is
reloaded. The performance of the interleaved designs was impacted
significantly, dropping nearly 10% overall. Comparing the multi-
level performance to theinterleaved designs supportsthe conclusion
that the many extra references have a high degree of locality. How-
ever, as shown by the poor performance of the piggybacked single-
ported TLB designs (PB1), thelocality isnot alwaysto the samevir-
tual memory page. Theinterleaved and piggybacked design (14/PB)
performs dlightly worse, suggesting that the extraaccesses may have
spatia locality spanning a page, which could occur for very large
stack frames or many extraaccesses directed to alarge global region.

5 Summary and Conclusions

Four alternative mechanisms for high-bandwidth address trans-
lation were presented: interleaved TLBs, multi-level TLBs, piggy-
back ports, and pretrandation. These trandation mechanisms all
have latency and area characteristics that scale better than a smple
multi-ported TLB, providing architects with better design choices as
architectural and workload trends make it increasingly difficult to
rely on amulti-ported TLB for good performance.

We performed extensive evaluations of a number of desighs em-
ploying these basic high-bandwidth mechanisms. We examined
their performancein anumber of contexts: with out-of-order and in-
order issue processors, with large and small pages, and on architec-
tures with many and few registers.

Overall, we found severa designs performed on par with a four-
ported TLB. Themulti-level TLB designs performed well except for
programs with poor reference locality. The interleaved and piggy-
backed designs complement each other; an interleaved TLB with
piggybacking at each bank performed well for al programs. Alone,
theinterleaved designs performed poorly due to many simultaneous
accesses to the same bank, which without support for piggybacking
areserialized at the bank. Piggybacking aloneal so performed poorly
over asingle-ported TLB due to many accesses occurring simulta-
neously to different pages. A piggybacked dual-ported TLB appears
to be an adequate substitute for a four-ported TLB.

The pretrandation design also performed well, athough its per-
formance was dightly worse than a same-sized multi-level TLB de-
sign. Other benefits of this design should motivate its use. Pre-
trandations are available early in the pipeline, facilitating the use

of upper-level physically indexed caches. In addition, attaching ad-
dress information to physical registers prior to reception of their re-
sults could have other benefits, e.g., classifying computation as ac-
cess and execute, or using the address information to disambiguate
memory references.

With in-order issue, bandwidth demand on the translation mech-
anismisreduced, but it still must perform well to provide good sys-
tem performance due to the reduced latency tolerating capability of
the in-order issue processor. The reduced bandwidth appears to be
the stronger force, resulting in better overall performance for al the
trandation designs.

With larger pages (i.e., 8k vs. 4k), the multi-level, pretrand ation,
and piggybacked designs performed well. Larger pagesallow thelL 1
TLBsto map more address space and benefit pretrand ation because
pointers may stride further before a pretrandation is invalidated.

Withfew registers(i.e., 8int/8 fpvs. 32int/32fp), bandwidth de-
mands on the trandl ation mechanism rose sharply. All but the multi-
level designs suffered worse performance. The high degree of refer-
ence locality in the extra references generated allowed a small L1
TLB to service most of the load. Pretrandation performed worse
with fewer registers due to shorter register lifetimes.

Clearly, there exist many effective alternatives to the brute force
approach of multi-porting the TLB. The designs presented in thispa-
per should give architects plenty of choices when multi-ported TLB
designs become impractical.

Acknowledgements

We thank Scott Breach, Dionisios Pnevmatikatos, and the ref-
erees for their comments on drafts of this paper. This work was
supported in part by NSF Grants CCR-9303030 and M| P-9505853,
ONR Grant N0O0014-93-1-0465, adonation from Intel Corp., and by
U.S. Army Intelligence Center and Fort Huachuca under Contract
DABT63-95-C-0127 and ARPA order no. D346. The views and
conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the U. S. Army Intelli-
gence Center and Fort Huachuca, or the U.S. Government.

References

[BF92] B. K. Bray and M. J. Flynn. Trandation hint buffers to reduce
access time of physicaly-addressed instruction caches. Proc.
of the 25th Annual International Symposium on Microarchitec-
ture, 23(1):206-209, December 1992.

J. Borkenhagen, G. Handlogten, J. Irish, and S. Levenstein.
AS/400 64-bit PowerPC-compatible processor implementa
tion. ICCD, 1994.

[BRG+89] D. Black, R. Rashid, D. Golub, C. Hill, and R. Baron. Transla-
tion lookaside buffer consistency: A software approach. Proc.
of the 3rd International Conference on Architectural Support
for Programming Languages Operating Systems, pages 113—
122, 1989.

J. B. Chen, A. Borg, and N. P. Jouppi. A simulation based
study of TLB performance. Proc. of the 19th Annual Interna-
tional Symposium on Computer Architecture, 19(2):114-123,
May 1992.

[CCH*87] F. Chow, S. Correl, M. Himelstein, E. Killian, and L. Weber.
How many addressing modes are enough. Proc. of the 2nd In-
ternational Symposium on Architectural Support for Program-
ming Languages and Operating Systems, pages 117121, Oc-
tober 1987.

[BHIL94]

[CBJ9Z]

[CheB7] R. Cheng. Virtua address cachesin UNIX. Proc. of the Summer
1987 USENIX Technical Conference, pages 217-224, 1987.
[CK92] T. Chiueh and R. H. Katz. Eliminating the address transla-

tion bottleneck for physical address cache. Proc. of the 5th In-
ternational Symposium on Architectural Support for Program-
ming Languages and Operating Systems, 27(9):137-148, Oc-
tober 1992.

[CMMP95] T. Conte, K. Menezes, P. Mills, and B. Patel. Optimization of
instruction fetch mechanisms for high issue rates. Proc. of the
22nd Annual International Symposium on Computer Architec-
ture, 23(2):333-344, June 1995.

[EV93] R. J. Eickemeyer and S. Vassiliadis. A load-instruction unit
for pipelined processors. IBM J. Res. Develop., 37(4):547-564,
July 1993.

[Gweds] L. Gwennap. Hal reveals multichip SPARC processor. Micro-
processor Report, 9(3):1-11, March 1995.

[Hea86] M. Hill and et a. Design decisions in SPUR. |EEE Computer,

19(11):8-22, November 1986.

[HHL*90] K. Hua, A. Hunt, L. Liu, JK. Peir, D. Pruett, and J. Temple.
Early resolution of address trandlation in cache design. Proc. of
the 1990 | EEE International Conference on Computer Design,
pages 408-412, September 1990.

J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
San Mateo, CA, 1990.

R. Jolly. A 9-ns 1.4 gigabyte/s, 17-ported CMOS register file.
IEEE J. of Solid-Sate Circuits, 25:1407-1412, October 1991.

N. P. Jouppi and S. J.E. Wilton. Tradeoffs in two-level on-chip
caching. Proc. of the 21st Annual International Symposium on
Computer Architecture, 22(2):34-45, April 1994.

E. J. Koldinger, J. S. Chase, and S. J. Eggers. Architectural sup-
port for single address space operating systems. Proc. of the
5th International Symposium on Architectural Support for Pro-
gramming Languages and Operating Systems, 27(9):175-186,
October 1992.

G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice
Hall, Englewood Cliffs, NJ, 1992.

R. E. Kessler, R. Jooss, A. Lebeck, and M. D. Hill. Inexpen-
sive implementations of set-associativity. Proc. of the 16th
Annual International Symposium on Computer Architecture,
17(3):131-139, 1989.

H. Levy and R. Eckhouse. Computer Programming and Archi-
tecture, The VAX. Digital Press, 1989.

[HP9O]

[J0l91]

[weg]

[KCE92]

[KH92]

[KJLH89]

[LES9]

[LS94] A. Lebeck and G. Sohi. Request combining in multiprocessors
with arbitrary interconnection networks. IEEE TPDS, Novem-

ber 1994.

[Rau91] B. R. Rau. Pseudo-randomly interleaved memory. Proc. of the
18th Annual International Symposium on Computer Architec-

ture, 19(3):74-83, May 1991.

[SFO1] G. S. Sohi and M. Franklin. High-bandwidth data memory
systems for superscalar processors. Proc. of the 4th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pages 53-62, April 1991.

[TH94] M. Tdluri and M. D. Hill. Surpassing the TLB performance
of superpages with less operating system support. Proc. of
the 6th International Conference on Architectural Support for
Programming Languages and Operating Systems, 29(11):171—
182, November 1994.

W.-H. Wang, J.-L. Baer, and H. M. Levy. Organization and per-
formance of atwo-level virtual-real cache hierarchy. Proc. of
the 16th Annual International Symposium on Computer Archi-
tecture, 17(3):140-148, May 1989.

N. Weste and K. Eshraghian. Principles of CMOSVLS Design:
A Systems Perspective. Addison-Wesley Publishing, 1988.

T.-Y. Yeh and Y. N. Patt. A comparison of dynamic branch
predictors that use two levels of branch history. Proc. of the
20th Annual International Symposium on Computer Architec-
ture, pages 257-266, May 1993. Computer Architecture News,
21(2), May 1993.

[WBL89]

[WESS]

[YP93]

