
ARB: A Hardware Mechanism for Dynamic Reordering of Memory References*

Manoj Franklin Gurindar S. Sohi

Department of Electrical and Computer Engineering Computer Sciences Department
Clemson University University of Wisconsin-Madison
221-C Riggs Hall 1210 West Dayton Street

Clemson, SC 29634-0915, USA Madison, WI 53706, USA
mfrankl@blessing.eng.clemson.edu sohi@cs.wisc.edu

���

* This work was supported by National Science Foundation grants CCR-8919635 and CCR-9410706 and by an IBM Graduate Fel-
lowship.

2

Abstract
To exploit instruction level parallelism, it is important not only to execute multiple memory references

per cycle, but also to reorder memory references, especially to execute loads before stores that precede them in
the sequential instruction stream. To guarantee correctness of execution in such situations, memory reference
addresses have to be disambiguated. This paper presents a novel hardware mechanism, called an Address Reso-
lution Buffer (ARB), for performing dynamic reordering of memory references. The ARB supports the follow-
ing features: (i) dynamic memory disambiguation in a decentralized manner, (ii) multiple memory references
per cycle, (iii) out-of-order execution of memory references, (iv) unresolved loads and stores, (v) speculative
loads and stores, and (vi) memory renaming. The paper presents the results of a simulation study that we con-
ducted to verify the efficacy of the ARB for a superscalar processor. The paper also shows the ARB’s applica-
tion in a multiscalar processor.

3

1. INTRODUCTION
Instruction-level parallel (ILP) processors boost performance by forming an instruction execution

schedule, either statically or dynamically, in which the instructions are executed in an order that is different
from the order in which they occur in the (sequential) program. This is called instruction reordering. Because
memory referencing instructions account for a large fraction of the instructions in most programs, the ability to
reorder memory referencing instructions is very important. A load instruction can be reordered to execute
before another load instruction that precedes it in the program order without violating any memory dependen-
cies. However, if a load is reordered to execute before a preceding store, a store reordered to execute before a
preceding store, or a store reordered to execute before a preceding load, then read-after-write, write-after-write,
or write-after-read dependencies, respectively, could be violated if the two instructions access the same
memory location. The instruction scheduler must ensure that the reordering does not violate dependencies; this
is done by determining if the reordered pair of references access the same memory location. The process of
determining if two memory referencing instructions access the same memory location is called memory disam-
biguation or memory antialiasing [4], and is a fundamental step in any scheme to reorder memory operations.

1.1. Need for Good Dynamic Disambiguation
Developing an execution schedule, and therefore reordering of memory references, can be done statically

by the compiler or dynamically by the hardware. Memory disambiguation can also be performed statically,
dynamically, or at both times, in an orthogonal manner. Static disambiguation techniques, however, have limi-
tations which makes dynamic disambiguation attractive, either to complement static disambiguation or to work
all by itself [7, 11, 14]. In statically scheduled processors, dynamic disambiguation is used to complement static
disambiguation, and involves disambiguating only those ambiguous references that have been reordered at
compile time. By contrast, in dynamically scheduled processors, dynamic disambiguation is used to disambigu-
ate all loads and stores in the active instruction window, that is, the window of instructions being considered for
scheduling.

As ILP processors become more aggressive, the size of the active instruction window, and consequently
the number of memory operations in the instruction window, becomes larger. This implies that a larger number
of memory operations have to be considered in the disambiguation process. Moreover, multiple memory refer-
ences might have to be executed in a given cycle, calling for multiple disambiguations in a cycle. This double-
barreled impact of more aggressive ILP exploitation calls for disambiguation mechanisms that can perform both
functions effectively and efficiently.

1.2. Support for Speculative Execution
To increase the opportunities for parallelism extraction, and the consequent reordering of code, ILP pro-

cessors use speculative execution. A path of execution is predicted to be taken, and instructions from this
predicted path are executed in a speculative manner. The execution is speculative because there is no assurance
that these instructions have to be executed.

With speculative execution, the lifetime of an instruction can be divided into four distinct phases: issue,
execute, complete, and commit (or retire). In the issue phase, an instruction is decoded and decisions are made
as to how this instruction is to be handled. At some point after issue, an instruction enters its execute phase and
the operation specified by the instruction is initiated on the specified operands. Once the operation is finished,
and the result is available, the instruction completes execution. These three phases happen regardless of
whether the instruction is executed speculatively or not. For speculatively executed instructions, however,
there is an additional phase, the commit phase. When it is known that an instruction that was executed specula-
tively was indeed meant to be executed, its effects can be committed, and the state of the machine updated
[8, 9, 15, 17].

With speculative execution, memory operations need special treatment. A store operation can be allowed
to proceed to the memory system only when it is guaranteed to commit, otherwise the old memory value will be
lost, complicating the recovery procedures in case of an incorrect speculation. Nevertheless, succeeding loads
(from speculatively executed code) to the same memory location require the new uncommitted value, and not
the old value. Thus, the memory operation reordering mechanism has to provide some means of forwarding
uncommitted memory values to subsequent loads, and values have to be written to memory locations in the
order given by the sequential semantics of the program.

1.3. Support for Dynamically Unresolved Memory References

4

Another issue that needs to be addressed when reordering memory operations is that of dynamically
unresolved memory references. Ordinarily, before a memory operation can be executed, the disambiguation
mechanism needs to check the addresses of all preceding memory operations in the active window to see if
there is a conflict. This check is not possible if the addresses of preceding memory operations are not known.
Thus, a load operation waits until the addresses of all preceding stores are known, and a store operation waits
until the addresses of all preceding loads and stores are known, even though the load (or store) may be ready to
execute. For example, in a program in which a linked structure is being traversed, the addresses of the memory
references to the linked structure are not known until the links have been traversed. This late resolution of
addresses detains all later memory operations, including those to other data structures, even though those opera-
tions are ready to execute. Detaining memory operations could also prevent non-memory operations from
entering the active window and being considered for execution, further limiting the opportunities for ILP
extraction.

We feel that a good memory reordering mechanism should overcome this restriction by permitting
memory references to be executed before proper address disambiguation can be carried out, as dynamically
unresolved memory references. That is, the reordering mechanism should allow the execution of loads before
disambiguating them against preceding stores, or even before the addresses of the preceding stores are known1.
Similarly, it should allow the execution of stores before disambiguating them against preceding loads and
stores. (Note that compilers for statically scheduled processors that rely on run-time disambiguation allow stat-
ically unresolved memory references by reordering ambiguous memory references [7, 11, 14].)

1.4. Paper Objective and Organization
The objective of this paper is to propose a new hardware mechanism for supporting memory operation

reordering in an aggressive ILP processor. The proposed mechanism, called an Address Resolution Buffer
(ARB), is very general, and is applicable to different execution models. Our emphasis in this paper, however, is
on dynamically scheduled ILP processors. The ARB assists the dynamic memory operation reordering process
by supporting the following features:

(1) dynamic memory disambiguation in a decentralized manner,

(2) multiple memory references per cycle,

(3) out-of-order execution of loads and stores with respect to both loads and stores,

(4) dynamically unresolved loads and stores,

(5) speculative loads and stores, and

(6) memory renaming.

The rest of this paper is organized as follows. Section 2 discusses the background and previous work.
Section 3 describes the ARB and its working for dynamically scheduled processors such as a superscalar pro-
cessor. Section 4 describes extensions for handling variable data sizes, and extensions (two-level hierarchical
ARB) for increasing the number of references the ARB can keep track of at any time. Section 5 presents the
results of a simulation study that evaluates the performance of the ARB in a superscalar processor. Section 6
describes application of the two-level hierarchical ARB in the multiscalar processor [6, 18], the erstwhile
Expandable Split Window (ESW) processor [5]. Section 7 provides a summary and draws the conclusions of
this research.

2. BACKGROUND AND PREVIOUS WORK
The first step in the process of dynamically reordering memory operations is the disambiguation step.

Techniques for dynamic disambiguation use the following basic principle. Memory operations are arranged
based on the order in which they are dynamically encountered, by giving each operation a dynamic sequence
number. (These sequence numbers are assigned by the Instruction Decode Unit or some other stage in the
instruction pipeline, with the help of a counter that keeps track of the current sequence number. The counter is
incremented each time a memory reference is encountered, and it wraps around when the count becomes n,
���

1 If and when an unresolved load is detected to have fetched an incorrect value, the processor must recover from the incorrect execu-
tion. This can be done by using the recovery facility already provided for speculative execution of code.

5

where n is the maximum number of memory reference instructions allowed to be present in the active instruc-
tion window at any one time.) To reorder memory operations without violating dependencies, a memory opera-
tion should not be scheduled to execute before a conflicting store that precedes the memory operation (as indi-
cated by its sequence number). The two parameters for the disambiguation process are therefore the address
and the sequence number of the references.

Existing methods implement the above principle as follows. All memory references are arranged in a
queue, or some other hardware structure that functions like a queue, in the order of their sequence numbers.
When a memory operation is to be scheduled for execution, this structure is searched to see if there is a
conflicting operation with an earlier sequence number to the same address. This search is typically imple-
mented by comparing the address of the memory operation to be scheduled against the addresses of all previous
memory operations in the structure. That is, the dynamic disambiguation mechanism does an associative search
of the addresses of all earlier, still active, memory references. This associative search can be quite complex if
the number of entries to be searched is quite large. Moreover, if multiple memory references are to be executed
in a clock cycle, multiple such searches need to be done in a cycle. As ILP processors become more aggres-
sive, both the number of entries to be searched (corresponding to the number of active memory references), as
well as the number of searches per cycle (corresponding to the number of memory operations to be executed
per cycle) increase.

The store queue of the IBM 360/91 and its variants [1, 3, 12, 16] are examples of the above basic imple-
mentation. A tacit assumption in these techniques is that the ability to reorder store instructions to execute
before preceding loads is not important2. If stores are not reordered to execute before preceding loads, or loads
are always executed before succeeding stores, then the disambiguation hardware structure only needs to keep
track of store instructions to ensure that dependencies are not violated by the dynamic scheduling.

In the store queue method, the addresses of pending store instructions are kept in a queue until the stores
are ready to execute. When a load is considered for execution, its address is disambiguated by comparing it
against the addresses of pending stores. The load is allowed to proceed if there is no conflict. (The compare
can be done after fetching the data from memory too, as in the IBM System/370 Model 168.) If the load
address matches a previous store address, the load is not issued to memory. Rather, it is serviced when the
pending store to that address completes.

A few observations about the memory reordering capabilities of the basic store queue, as described
above, are in order. First, whereas the store queue was originally described for machines that did not carry out
speculative execution, incorporating speculative memory operations into the store queue is straightforward. All
that has to be done is to commit memory operations from the store queue in program order, and enhance the
abilities of the queue to pass a value from a complete, but not yet committed, store operation to later, pending,
load operations.

Second, an address is not entered into the queue until it is known. That is, there is no support for dynami-
cally unresolved references. A store operation whose address is unknown is stalled, likely in the issue stage of
the processor. Stalling an operation typically implies that no operations, including non-memory operations,
which succeed the stalled operation in program order, enter the window of execution, and therefore they can not
be considered for execution. This reduces the amount of ILP that can be exploited.

The dependency matrix of HPS partially addresses the unresolved references problem [12]. Here, an
unknown address store operation does not stall issue; rather it is made to step aside (into the memory-
dependency handling mechanism), allowing succeeding instructions to enter the active instruction window.
Memory dependencies are handled by two structures: a memory write buffer, which is very similar to the store
queue described above, and a dependency matrix. Overall operation is as follows. If there are no preceding
store operations with unknown addresses, memory operations proceed as they would with the store queue
method. If there is a store operation with an unknown address, then succeeding memory operations are not
allowed to proceed; the bits of the dependency matrix are used to determine when a memory operation can
proceed. Memory operations are assigned a unique row in the dependency matrix; the rows are managed as a
���

2This assumption was then justified because the hardware instruction windows considered in those times were small, and in a typical
code sequence that carries out an operation on a memory location, the load is executed first, followed by the computation instructions, fol-
lowed by the store. That is, the load is ready to execute as soon as its address is known, which could be as soon as it is encountered. (It is
an unresolved load if the register(s) needed to calculate the address of the load are busy when the load is encountered.) However, the store is
not ready to execute (even though the store address may be known) until the computation instructions that produce the value for the store
have completed.

6

circular queue. When an unknown address store is encountered, and it corresponds to row i of the dependency
matrix, bits in column i are set to 1, When the address becomes known, the bits are cleared to 0. A memory
operation, corresponding to row j of the dependency matrix, is allowed to proceed only when no preceding
store operation has unknown address, and this fact is established by checking to see that there are no 1’s in row
j of the dependency matrix (actually only in parts of the row that correspond to preceding memory operations).

By allowing the dynamic ILP machine to move the instruction window past store instructions whose
addresses are unknown, the dependency matrix opens up more opportunities for parallelism exploitation. How-
ever, the dependency matrix does not completely address the dynamically unresolved references problem that
we outlined previously, where we stated the importance of allowing loads and stores (and instructions that
depend upon them) to proceed, even though the address of an earlier store instruction is unknown, with the
expectation that the addresses will not conflict.

To summarize, existing solutions for dynamic memory reordering have two drawbacks. First, they do not
provide full speculative flexibility to the reordering process by not providing sufficient support for dynamically
unresolved memory references. Second, and perhaps more important, they require (very) wide associative
searches in the disambiguation step. This need for wide associativity restricts both the size of the instruction
window from which ILP can be extracted, as well as the number of disambiguations that could be carried out in
a cycle.

3. ADDRESS RESOLUTION BUFFER
3.1. Basic Idea

The reason why existing solutions for dynamic memory reordering require a wide associative search is
that the hardware structure used to perform the disambiguation step orders references by time (or sequence
number), and then searches for addresses in this temporal order. Our proposed Address Resolution Buffer
(ARB) uses the complementary approach. Memory references are directed to bins based on their address, and
the bins are used to enforce a temporal order amongst references to the same address. Unlike existing solutions,
in the ARB the primary parameter used to initiate the disambiguation process is the address, and the secondary
parameter, used to complete the disambiguation process, is the sequence number. As we shall see in the fol-
lowing sections, this has two important advantages. First, because different addresses map to different bins, by
having several such bins, or ARB banks, the disambiguation process can be distributed (or decentralized), and
multiple disambiguation requests can be dispatched in a single cycle. Second, because there are fewer refer-
ences to handle in each bin, the associativity of the search is reduced. Furthermore, as we elaborate below, the
basic ARB structure is easily enhanced to perform a variety of functions that are useful to the overall task of
dynamic memory operation reordering, in addition to the basic disambiguation function.

3.2. ARB Hardware Structure
The ARB is divided into banks, and the banks are interleaved based on memory addresses. Each ARB

bank has a few (for example 4 or 8) row entries, and each row entry has an address field for storing a memory
address. The rest of a row entry is divided into n stages, numbered {0 .. n −1}, corresponding to sequence
numbers {0 .. n −1}. The stages are logically configured as a circular queue (with a head pointer and a tail
pointer) and correspond to the circular queue nature of a sliding (or continuous) instruction window. The active
ARB stages, the ones from the head pointer to the tail pointer, together constitute the active ARB window, and
correspond to the active instruction window. The active ARB stages can be thought of as ‘‘progressing in
sequential order’’. Each stage has a load bit, a store bit, and a value field. The load bit of stage i is used for
indicating if a load with sequence number i has been executed to the address in the row’s address field, and the
store bit is for indicating if a store with sequence number i has been executed to the address in the row’s
address field. The value field is used to record the value written by that store.

Figure 1 shows the block diagram of a 4-way interleaved 6-stage ARB. In this figure, the head and tail
pointers point to stages 1 and 5 respectively, and the active ARB window comprises stages 1 through 4,
corresponding to four memory references with sequence numbers 1 through 4. The oldest and youngest
memory references in the active instruction window have sequence numbers 1 and 4 respectively, and have not
been executed yet (this can be gathered from the absence of load marks and store marks in stages 1 and 4 of all
ARB banks). (Note that here, the interpretation of ‘‘oldest’’ and ‘‘youngest’’ is based on sequential program
semantics, and not on the order in which the references are executed.) A load with sequence number 2 has been
executed to address 2000, and its ARB entry is in bank 0. Similarly, a store with sequence number 3 has been
executed to address 2001 (ARB bank 1), and the store value is 10.

7

3.3. Execution of Loads
When the processor executes a load with sequence number i, the following actions are taken. First, the

ARB bank is determined based on the load address. The address fields of the entries in this ARB bank are then
checked3 to see if the load address is already present in the ARB bank. If the address is present, then a check is
made in its row entry to see if an earlier store has been executed to the same address from a preceding instruc-
tion in the active window. If so, the store with the closest sequence number is determined, and the value stored
in its value field is forwarded to the load’s destination register. If no preceding store has been executed or if the
address is not present in the ARB bank, the load request is sent to the data cache (or main memory, if data
cache is not present). If the address is not present, a free ARB row entry is also allotted to the new address; if
no free entry is available, then special recovery action (c.f. Section 3.5) is taken. The load bit of stage i of the
ARB entry is set to 1 to reflect the fact that the load with sequence number i has been executed to this address.
When multiple memory requests need to access the same ARB bank in a cycle, priority is given to the one
closest to the ARB head pointer.

Note that a load request does not proceed to the data cache if a preceding store has already been executed
from the active instruction window. In order for the ARB to be not in the critical path in the case where a
preceding store has not been executed, load requests can be sent to both the ARB and the data cache simultane-
ously; if a value is obtained from the ARB, the value obtained from the data cache can be discarded. The for-
mal algorithm for executing a load is given below. Note that this algorithm gives the semantics for the correct
working; an ARB implementation can change the order of the algorithm statements or do multiple statements in
parallel so long as correctness is maintained.
���

Execute_Load(Addr, Sequence)
{

Determine ARB Bank corresponding to Addr
Associatively check address fields of Bank to find Row | Row’s address field = Addr
if (Addr not present)
{

if (Bank full)
{

Freed_Up = Recovery_Bank_Full(Bank, Sequence)
if (Freed_Up == 0)

return(0)
}
Allocate new Row entry in Bank
Enter Addr in address field of Row
Send load request to data cache

}
else
{

Check in Row to determine closest preceding store executed to Addr
if (no preceding store found)

Send load request to data cache
else

Forward the value from its value field to the processor
}
Set Row’s load bit of stage Sequence to 1
return(1);

}
���

Figure 2 gives the logic diagram for carrying out the execution of loads in an implementation of a 4-stage
ARB. The figure shows the logic associated with a single ARB bank only. The load address is supplied to the
bank, and once the appropriate ARB row entry is selected, there is only a 4-gate delay to send the value to the
processor if a value is present in the ARB. (This delay can be reduced to 3 if the complementary values of the
���

3 It deserves emphasis that this associative search is only within a single ARB bank and not within the entire ARB, and that the search
is for a single key, analogous to the tag match function in a cache.

8

store marks are also kept in the ARB row entries.) Note that in this design, an ARB bank can service multiple
loads in the same cycle, if they are all to the same address. Furthermore, a load request is sent to the ARB and
the data cache simultaneously.

3.4. Execution of Stores
When the processor performs the execute phase of a store, the ARB bank is determined, and the bank is

searched to see if the store address is already present in the ARB. If not, an ARB row entry is allotted to the
new address. The store bit of stage i of the ARB row entry is set to 1 to reflect the fact that the store with
sequence number i has been executed. The value to be stored is deposited in the row entry’s value field for
stage i. If the memory address was already present in the ARB bank, then a check is also performed in the
active ARB window to see if any load has already been performed to the same address from a succeeding
instruction, with no intervening stores in between. If so, the ARB informs the processor control unit to initiate
recovery action so that all instructions (in the processor hardware window) including and beyond the closest
incorrect load are squashed4. On its part, the ARB moves the tail pointer backwards so as to point to the
sequence number of the closest incorrect load; furthermore, the load bit and store bit columns corresponding to
the sequence numbers stepped over by the tail pointer are also cleared immediately. The formal algorithm for
performing the execute phase of a store is given below.
���

Execute_Store(Addr, Value, Sequence)
{

Determine ARB Bank corresponding to Addr
Associatively check address fields of Bank to find Row | Row’s address field = Addr
if (Addr not present)
{

if (Bank full)
{

Freed_Up = Recovery_Bank_Full(Bank, Sequence)
if (Freed_Up == 0)

return(0);
}
Allocate new Row entry in Bank
Enter Addr in address field of Row

}
else
{

Check in Row to determine sequence number SL of closest succeeding load
executed to Addr, with no intervening stores

if (succeeding load with no intervening stores found)
Squash(SL)

}
Enter Value in the value field of stage Sequence of Row
Set Row’s store bit of stage Sequence to 1
return(1);

}
���

Squash(Sequence)
{

for each ARB Bank do
{

for each Stage from Sequence to ARB Tail do
Clear all load marks and store marks in Stage

���

4 This recovery is very similar to what happens when an incorrect branch prediction is detected by the processor.

9

for each Row in Bank do
{

if (there is no load mark or store mark in Row)
Clear Addr field of Row

}
}
Set ARB Tail = Sequence

}
���

Figure 3 gives the logic diagram and the logic equations for generating the squash signals in a 4-stage
ARB. This figure also shows only a single ARB bank. Once the appropriate ARB row entry is selected, only 2
gate delays (if the complementary values of the load marks are also stored in the ARB row entries) are required
to generate the squash signals. Multiple stores can be performed to the same ARB bank, so long as they are all
to the same address. Only one squash signal is generated from an ARB bank. If multiple squash signals are
generated from different ARB banks, the one closest to the ARB head pointer is selected.

3.5. Reclaiming the ARB Row Entries
The last part of the lifetime of a memory reference is the commit phase. The processor commits memory

references as per the sequence number ordering, as and when the references can be committed. When the pro-
cessor commits a memory reference with sequence number i, the ARB bank is determined, and the row entry
corresponding to that address is determined. If the committed reference is a store, then the corresponding store
value in the ARB is sent to the data cache. For both loads and stores, the corresponding load mark or store
mark in the ARB is erased. An ARB row is reclaimed for reuse when all the load and store bits associated with
the row are cleared. Every cycle, it is possible to commit any number of loads and as many stores as the
number of write ports to the data cache. The ARB head pointer is moved forward by one stage for every com-
mitted memory reference. The formal algorithm for committing a memory reference is given below.
���

Commit_Memory_Reference(Addr)
{

Determine ARB Bank corresponding to Addr
Associatively check address fields of Bank to find Row | Row’s address field = Addr
if (Row has a store mark in stage ARB Head)

Send value in stage ARB Head of Row to Data Cache
Clear load/store mark of stage ARB Head in Row
if (there is no load/store mark in Row)

Clear Addr field of Row
Advance ARB Head by one stage

}
���

When a memory reference with sequence number i is executed and no row entry is obtained because the
relevant ARB bank is full (with other addresses), then special recovery actions are taken. The ARB bank is
checked to find addresses to which loads and stores have been executed only from stages succeeding to stage i
in the active ARB window. If such addresses are found, one of them (preferably the one whose oldest executed
reference is closest to the ARB tail) is selected, and the instructions including and beyond the reference
corresponding to the sequentially oldest load mark or store mark in that entry are squashed. This action will
enable that row entry to be reclaimed, and be subsequently allotted to the memory reference occurring in stage
i. If no ARB row entry is found in which the oldest executed reference is from a succeeding stage, then the
memory reference at stage i is stalled until (i) a row entry becomes free in that bank, or (ii) this reference is able
to evict from that bank a row entry corresponding to another memory address. One of these two events is
guaranteed to occur, because references only wait (if at all) for previous references to be committed. Thus, by
honoring the sequential program order in evicting ARB row entries, deadlocks are prevented. The formal algo-
rithm for handling the situation when an ARB bank is full is given below.

10

���

Recovery_Bank_Full(Bank, Sequence)
{

Check in Bank for rows with no load/store marks before stage Sequence
if (there is any such row)
{

Determine row whose earliest load/store mark is closest to ARB tail
Squash(sequence number of earliest load/store mark) /* c.f. Sec. 3.4 */
return(1)

}
return(0)

}
���

3.6. ARB Working Example
The concepts of ARB can be best understood by going through an example. Consider the sequence of

loads and stores in Table 1, which form a part of a sequential piece of code (this example code does not contain
instructions other than memory references, for the purpose of clarity). The ‘‘Sequence Number’’ column in the
table gives the sequence number assigned by a dynamically scheduled processor to these memory references.
The ‘‘Correct Address’’ column gives the addresses of the memory references in a correct execution of the pro-
gram. The ‘‘Store Value’’ column gives the values stored by the two store instructions. The ‘‘Exec. Order’’
column shows the order in which the loads and stores are executed by the processor. For simplicity of presenta-
tion, the example does not consider the execution of multiple references in the same cycle. Figure 4 shows the
progression of the instruction window contents and the ARB contents as the memory references are executed.
There are 7 sets of figures in Figure 4, one below the other, each set representing a distinct clock cycle. The
maximum size of the instruction window and the number of ARB stages in this example are both 4, and the
ARB has a single bank. The active instructions in the instruction window are shown in darker shade. The head
and tail units are marked by H and T, respectively. Blank entries in the ARB indicate irrelevant data.

Assume that all 4 instructions have been fetched into the instruction window, as shown by the shaded
slots in the first set of figures. The 4 references have been allotted their sequence numbers from 0 to 3. The
first set of figures in Figure 4 depicts the execution of the load with sequence number 2. This load is to address
100, and because there is no ARB row entry for address 100, a new ARB row entry is allotted for address 100.
The load bit of stage 2 of this row entry is set to 1. The load request is sent to the data cache. Notice that an
earlier store (with sequence number 0) is pending to the same address; so the value returned from the data cache
(say 140) is incorrect. This causes the second load (the one with sequence number 3) to be issued to the
incorrect address 140 instead of the correct address 120 (c.f. third set of figures in Figure 4). Notice that pro-
cessors allowing speculative memory references will have some provision to prevent traps due to accesses to
illegal addresses. The execution of the remaining memory references is depicted in the remaining sets of
figures in Figure 4.

3.7. Novel Features of the ARB
The ARB performs dynamic memory disambiguation, and allows loads and stores to be executed out-of-

order with respect to preceding references. Furthermore, it allows multiple memory references to be issued per
cycle. It uses interleaving to decentralize the disambiguation hardware, and thereby reduce the associative
search involved in the disambiguation process. Besides these features, the ARB efficiently supports the follow-
ing features that are useful in dynamically reordering memory operations in an aggressive ILP processor.

Speculative Loads and Stores
The ARB supports speculative execution of loads and stores. It provides a good hardware platform for

storing speculative store values, and correctly forwards them to subsequent speculative loads. Moreover, the
speculative store values are not forwarded to the memory system until the stores are guaranteed to commit.
Recovery operations are straightforward, because they involve only a movement of the tail pointer and the
clearing of the appropriate load bit and store bit columns; the incorrect speculative values are automatically dis-
carded.

Dynamically Unresolved Loads and Stores

11

The ARB supports dynamically unresolved loads and stores in processors that have provision for
recovery (which may have been provided to support speculative execution of code or for fault-tolerant pur-
poses). Thus, the ARB allows a load to be executed the moment its address is known, and even before the
addresses of its preceding stores are known. Similarly, it allows a store to be executed the moment its address
and store value are both known. Allowing dynamically unresolved loads could be important, because loads
often reside in the critical path of programs, and undue detainment of loads could inhibit parallelism.

Memory Renaming
The ARB also supports memory renaming. Because it has the provision to store up to n values per

address entry (where n is the number of ARB stages), it allows the processor to have up to n dynamic names for
a memory location. Memory renaming is analogous to register renaming; providing more physical storage
allows more parallelism to be exploited [2]. However, if not used with caution, the memory renaming feature
of the ARB could lead to untoward recovery actions because of loads inadvertently fetching incorrect values
from the ARB when multiple stores to the same address are present in the active instruction window. The full
potential offered by the memory renaming capability of the ARB is a research area that needs further investiga-
tion.

12

4. ARB EXTENSIONS
4.1. Handling Variable Data Sizes

Many instruction set architectures allow memory references to have byte addressability and variable data
sizes, such as bytes, half-words (16 bits), and full-words (32 bits). If a machine supports partial-word stores,
and the ARB keeps information on a full word-basis (to reduce overheads, because most of the memory refer-
ences are to full words), then a minor extension is needed to handle partial-word stores. This is because subse-
quent loads to the same word may require the full-word value. The extension that we adopt for this is as fol-
lows: when a partial-word store is executed, the value corresponding to the full-word is stored in the ARB.
This is accomplished by treating a partial-word store as the combination of a full-word load followed by a full-
word store. Thus, when a partial-word store with sequence number i is executed, both the load bit and the store
bit of stage i in the ARB entry are set to 1.

4.2. Increasing the Effective Number of ARB Stages—Two-Level Hierarchical ARB
The number of stages in the ARB is a restricting factor on the size of the instruction window in which

memory references can be reordered. The average size of the instruction window is upper bound by n/ fm,
where n is the number of ARB stages and fm is the fraction of instructions that are memory references. For
instance, if n = 8 and fm = 1/4, the average window size is limited to 32 instructions. The number of ARB
stages cannot be increased arbitrarily, because the complexity of the logic that checks for out-of-order accesses
(c.f. section 3.4) increases super-linearly with the number of ARB stages. However, there is an easy way to
solve this problem—map multiple memory references to the same ARB stage. One way to map multiple refer-
ences to an ARB stage is to divide the stream of memory references into groups (with the memory references in
each group having consecutive sequence numbers). Dividing the memory reference stream into groups divides
the memory disambiguation job into two subjobs: (i) intra-group memory disambiguation and (ii) inter-group
memory disambiguation. The first guarantees that memory dependency violations do not occur from a group.
The second guarantees that memory dependency violations do not occur from multiple groups, given that there
are no memory dependency violations within each group.

The hardware structure that we propose to use for performing the intra-group and inter-group memory
disambiguations is a two-level hierarchical ARB. The bottom level of the hierarchy consists of several local
ARBs, and the top level consists of a single global ARB. There are as many local ARBs as the maximum
number of memory reference groups allowed in the instruction window, and each local ARB is responsible for
carrying out the intra-group disambiguation of its group.

The global ARB has as many stages as the number of local ARBs; each stage corresponds to a group of
memory references, as opposed to a single memory reference or sequence number. The load bits for a stage
indicate the loads that have been executed from the corresponding group, and the store bits indicate the stores
that have been executed from the corresponding group. The value fields associated with each stage are used to
store the values of the stores that have been executed from that group. If multiple stores are executed from a
group to the same address, the sequentially latest value is stored in the value field of the global ARB.

Figure 5 shows the block diagram of a two-level hierarchical ARB. In the figure, the global ARB is inter-
leaved into 4 banks as before. Each ARB bank can hold up to 4 address entries, and has 6 stages, correspond-
ing to 6 memory reference groups. Each group has an 8-stage local ARB, which is not interleaved, and can
store up to 4 address entries. The active instruction window encompasses memory reference groups 1 through
4. Hierarchical ARBs help to amplify the number of memory references in the active instruction window.
Specifically, a two-level hierarchical ARB allows as many memory references in an instruction window as the
sum of the number of stages in all the local ARBs. Thus, if there are 6 local ARBs and each of them has 8
stages, then altogether 6 × 8 = 48 memory references can be present in the instruction window at the same time.
Consequently, the upper limit to the instruction window size increases to approximately 200 instructions
(assuming fm to be 1/4).

To execute a load or a store from memory reference group G, the request is first sent to the G th local
ARB. The local ARB handles the reference much the same way as the ARB of Section 3, with the exception
that (i) when a load ‘‘misses’’ in the local ARB, instead of forwarding it to the data cache, it is forwarded to the
global ARB, and (ii) when a store is executed to address A, if it is found that the store is the sequentially latest
store encountered so far from group G to address A, then the store request is also sent to the global ARB. The
global ARB processes the requests it receives in the same way as the ARB described in Section 3. The formal
algorithms for executing loads and stores in a two-level hierarchical ARB are given in the appendix. It is
important to note that the reason for using a hierarchical ARB structure is not to minimize the traffic to the (glo-
bal) ARB, but to reduce the number of ARB stages over which checking for the closest preceding store (or

13

closest succeeding load) has to be done when a load (or store) request is sent to the ARB.

5. PERFORMANCE EVALUATION
The previous sections introduced the ARB and described its working. This section studies its effective-

ness, and presents the results of an empirical study that evaluates the ARB’s performance in a superscalar pro-
cessor. Because the emphasis in this paper is on the presentation of a new technique for memory operation
reordering, we limit ourselves to a basic evaluation of its effectiveness. Very detailed evaluation studies of the
ARB, assessing the impact of the number of banks, bank size, their variations with the issue strategy, etc., are
not the thrust of this paper. Accordingly, our evaluation is limited to a comparison of one ARB organization
with equivalent organizations of existing solutions.

5.1. Experimental Framework
Our methodology of experimentation is simulation. We have developed a superscalar simulator that uses

the MIPS R2000 - R2010 instruction set and functional unit latencies [10]. This simulator accepts executable
images of sequential programs (compiled for MIPS R2000-based machines), and simulates their execution,
keeping track of relevant information on a cycle-by-cycle basis. It models speculative execution, and is not
trace driven. The simulator also incorporates a mini-operating system to handle the system calls made by the
simulated program. Because of the detail at which the simulation is carried out, and because the entire memory
system is modeled, the simulator is slow. This speed restricts our ability to explore the design space in great
detail using substantial runs of large benchmark programs. In order to do a reasonable study, we fixed several
parameters. The parameters that were fixed for this study are listed below.

� The benchmarks are run for 100 million instructions each (less for compress, as it finishes earlier).
� The processing paradigm used for the studies is a superscalar processor that performs speculative execution.

It constructs a dynamic sliding instruction window of up to 64 instructions by using a two-level branch
prediction scheme [19]. The degree of superscalar execution is 8, i.e., up to 8 instructions can be fetched in
a cycle, and up to 8 instructions can be issued in a cycle.

� The data cache is 64Kbytes, 4-way set-associative, non-blocking, and has an access latency of 1 cycle. The
interleaving factor of the data cache is 32. The data cache miss latency to get the first word is 4 cycles
(assuming the presence of a second level data cache with 100% hit ratio).

� The instruction cache is 64Kbytes, 4-way set-associative, and has an access latency of 1 cycle.
� The ARB used is a two-level hierarchical ARB. The global ARB has 8 stages and each local ARB also has

8 stages. The global ARB and the local ARBs are interleaved into 32 banks and 4 banks, respectively.
Each ARB bank has 8 row entries, and is fully associative.

We have simulated 3 hardware structures for reordering memory references—the store queue, the depen-
dency matrix, and the ARB. The store queue described in Section 2 is augmented with capabilities for specula-
tive execution. All 3 structures allow up to 8 memory references to be executed per cycle. Both the store
queue and the dependency matrix do a 64 × 63 associative compare in the worst case. In that sense, the store
queue and dependency matrix configurations used in this study are hypothetical at best, based on current tech-
nology.

For the ARB, we have simulated two different schemes. The first scheme is same as the two-level
hierarchical ARB described in the previous section. In the second scheme, the ARB state information is
slightly expanded to keep track of pending stores that have not yet been executed, but whose addresses are
known. When a store address becomes known, it is pre-entered into the ARB and the state information is
updated to reflect the fact that a store with a particular sequence number is pending to that address. When a
load is executed, if the closest preceding store to the same address in the ARB is a pre-entered store, then the
load instruction waits until the relevant store value becomes available. If the store information were not pre-
entered, then the load would have fetched an incorrect value from the data cache, only to result in a squashing
of itself and other (useful) instructions. The pre-entering of store information thus helps to reduce the number
of recovery actions due to incorrect dynamically unresolved references. Notice that for the dependency matrix,
pre-entering of store addresses is effectively done, if dependency bits are cleared when the store addresses are
first known.

5.2. Benchmarks and Performance Metrics
For benchmarks, we use a subset of the SPEC ’92 benchmarks. Benchmark programs are compiled to

MIPS R2000 - R2010 executables using the MIPS compiler.

14

Execution time is the sole metric that can accurately measure the performance of an integrated software-
hardware computer system. Metrics such as instruction issue rate and instruction completion rate, are not very
accurate in general because the compiler may have introduced many redundant operations. However, to use
execution time as the metric, the programs have to be run to completion, which further taxes our already time-
consuming simulations. Furthermore, we use the same executable for all the simulations, with no changes insti-
tuted by a compiler. Due to these reasons, we use instruction completion rate as the primary metric. Note that
speculatively executed instructions whose execution was not required are not counted while calculating the
instruction completion rate. We also use another metric—percentage incorrect references—to throw more light
on the performance of the ARB. This metric indicates the fraction of memory references that were incorrect
(because of executing them as dynamically unresolved references), and resulted in recovery actions.

5.3. Performance Results
Table 2 presents the instruction completion rates that we obtained in our simulation experiments for the

four schemes. It can be seen that both ARB schemes perform very favorably compared to the hypothetical 64-
entry store queue and dependency matrix. The ability to support dynamically unresolved references even gives
the ARB (with no pre-entering of store information) a small performance advantage over the 64-entry depen-
dency matrix for some of the benchmarks. When store information is pre-entered in the ARB, its performance
results are better than the other schemes for all the benchmarks. The results show that decentralizing the
memory disambiguation mechanism by interleaving has great potential for use in future ILP processors.

It is worthwhile to study how many of the (dynamically unresolved) references resulted in incorrect exe-
cution for the ARB schemes. Table 3 presents the percentage of incorrect references for the two ARB schemes.
It can be seen that supporting dynamically unresolved references causes only a negligible percentage of the
references to be incorrect. The fundamental reason for this phenomenon is that compilers tend to keep fre-
quently accessed variables in registers, and if register spilling is less, then it is rare that a value is written to a
memory location, and then immediately (i.e. within the span of an instruction window) read to a CPU register.

With improvements in the instruction issue strategies in the future, the dynamic instruction window size
and the number of memory references in the dynamic window will also increase. In this scenario, the tradi-
tional memory reordering schemes such as the store queue and the dependency matrix will become less feasible
because of their wide associative compares. The 2-level hierarchical ARB, on the other hand, can easily sup-
port window sizes to the tune of 200 instructions, and can be extended to even more levels of hierarchy.

15

6. APPLICATION TO MULTISCALAR PROCESSOR
The discussion of ARB in section 3 was based primarily on the superscalar processor as the underlying

execution model. In this section, we demonstrate how the ARB can be used in a different execution model,
namely the multiscalar model [5, 6, 18].

6.1. Multiscalar Processor
The multiscalar processor was earlier known as the ESW (Expandable Split Window) processor [5].

True to its name at inception, the multiscalar processor splits a large window of instructions into multiple tasks,
and exploits parallelism by overlapping the execution of these tasks. The processor consists of several indepen-
dent, identical execution units, each of which is equivalent to a typical datapath found in modern processors.
The execution units conceptually form a circular queue, with hardware pointers to the head and tail of the
queue. These pointers are managed by a control unit, which also performs the function of assigning tasks to the
execution units. Every cycle, the control unit assigns a new task to the tail unit (using control flow prediction
[13] if required) unless the circular unit queue is full. The active units, the ones from the head to the tail,
together constitute the large dynamic window of instructions, and they contain tasks in the sequential order in
which the tasks appear in the dynamic instruction stream. In any given cycle, up to a fixed number of ready-
to-execute instructions begin execution in each of the active execution units. It is possible to have out-of-order
execution in a unit, if desired. When all the instructions in the unit at the head have completed execution, the
unit is committed, and the head pointer is moved forward to the next unit. Further details of the multiscalar pro-
cessor can be had from [5, 6, 18].

6.2. The Problem of Memory Reference Reordering in the Multiscalar Processor
In a multiscalar processor, at any given time, many sequential tasks may have been initiated and executed

in parallel, but not all instructions of these tasks may have been fetched at that time. This is illustrated in Figure
6. Figure 6(i) shows 4 multiscalar tasks, which as per sequential program semantics, follow one after the other.
Memory reference instructions in these tasks are specifically identified. Figure 6(ii) illustrates the scenario
when these tasks are executed in a 4-unit multiscalar processor. In the figure, the vertical axis indicates time in
cycles; unshaded rectangular blocks indicate instructions that have been fetched in the corresponding cycles.
Each cycle, a new task is allocated to a free execution unit. In cycle 0, execution unit 0 starts fetching instruc-
tions from task 0; in cycle 1, execution unit 1 starts fetching instructions from task 1; and so on. At the end of
cycle 4, the load instructions in tasks 1, 2, and 3 have been fetched, but the store instruction in task 0 has not
been fetched (as indicated by the shaded rectangular block in Figure 6(ii)). Furthermore, the multiscalar execu-
tion mechanism is unaware of the presence of the store instruction in task 0 until the store is fetched. In gen-
eral, a load instruction cannot therefore be guaranteed to be free of conflicts until all instructions of all preced-
ing tasks have been fetched. If a memory operation reordering structure such as a store queue or a dependency
matrix is used, then much of the execution in a multiscalar processor is serialized because the loads have to wait
until all preceding instructions are fetched. This is in contrast to the case with an ARB, which allows the loads
to be executed as dynamically unresolved loads.

6.3. Two-Level Hierarchical ARB for a Multiscalar Processor
The memory disambiguation job for a multiscalar processor can be divided into two subjobs: (i) intra-task

memory disambiguation, and (ii) inter-task memory disambiguation. This division falls naturally to that
adopted by the two-level hierarchical ARB—the set of memory references in a multiscalar task can be con-
sidered as a single group for memory disambiguation purposes.

The global ARB of the two-level hierarchical ARB in a multiscalar processor has as many stages as the
number of execution units in the processor. The load bits for a stage indicate the loads (possibly unresolved
within the execution unit) that have been executed from the corresponding unit of the multiscalar processor, and
the store bits indicate the stores (possibly unresolved within its execution unit) that have been executed from
that unit. The value fields associated with each stage have the same function as before, namely, to store the
values of the stores that have been executed from that unit.

When the execution unit at the head is committed, all load and store marks in its local ARB and the head
stage of the global ARB are erased immediately. Also, all store values stored in that stage are forwarded to the
data cache. If there are multiple store values in a stage, this forwarding could cause a traffic burst, preventing
that ARB stage from being reused until all the store values have been forwarded. One simple solution to allevi-
ate this problem is to use a write buffer to store all the values that have to be forwarded from a stage. Another
solution is to have more physical ARB stages than the number of multiscalar stages.

16

7. SUMMARY AND CONCLUSIONS
We have proposed a hardware structure called an Address Resolution Buffer (ARB) for dynamically

reordering memory references. This structure reduces the width of the associative search involved in memory
address disambiguation by using the concept of interleaving, and by altering the order of operations (sequence
number checking and address comparison) needed to carry out the disambiguation process. It has the full
power of a hypothetical scheme that reorders memory references by means of associative compares of the
memory addresses of all loads and stores in the entire instruction window. It allows speculative loads and
speculative stores by keeping the uncommitted store values in the structure and forwarding them to subsequent
loads that require the value. Furthermore, it allows memory references to be executed before they are disambi-
guated from the preceding stores and even before the addresses of the preceding stores are known. The ARB
also allows memory renaming; it allows as many distinct values for a memory location as the number of stages
in the ARB. The ARB is, to the best of our knowledge, the first decentralized design for performing dynamic
disambiguation in a large window of instructions.

We have also proposed several extensions to the ARB, such as hierarchical ARBs, and extensions for
handling variable data sizes. We also presented the results of a simulation study that evaluates the potential of
ARB for the superscalar processing model. The ARB was found to perform better than (hypothetical) schemes
using store queue and dependency matrix that do associative compares of all addresses within the instruction
window. The ARB has a less associative search (because of interleaving), yet better performance (because of
supporting dynamically unresolved references). The results show that ARB has great potential to meet the
memory reordering demands of future ILP processors, which perform speculative execution and reordering of
code within a large instruction window.

Finally, we demonstrated the application of the ARB for the multiscalar processing model, for which
traditional reordering structures such as the store queue and the dependency matrix are unsuitable, because the
processor advances past blocks of code that have not yet been fetched (and the store addresses in those blocks
not known until later). The two-level hierarchical ARB uses the concept of splitting a large job (memory
disambiguation within a large window) into smaller subjobs, and it was shown to tie well with the multiscalar
execution model.

17

REFERENCES
[1] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, ‘‘The IBM System/360 Model 91: Machine Philo-

sophy and Instruction-Handling,’’ IBM Journal of Research and Development, pp. 8-24, January 1967.

[2] T. M. Austin and G. S. Sohi, ‘‘Dynamic Dependency Analysis of Ordinary Programs,’’ Proc. 19th An-
nual International Symposium on Computer Architecture, 1992.

[3] L. J. Boland, G. D. Granito, A. U. Marcotte, B. U. Messina, and J. W. Smith, ‘‘The IBM System/360
Model 91: Storage System,’’ IBM Journal, pp. 54-68, January 1967.

[4] J. R. Ellis, Bulldog: A Compiler for VLIW Architectures. The MIT Press, 1986.

[5] M. Franklin and G. S. Sohi, ‘‘The Expandable Split Window Paradigm for Exploiting Fine-Grain Paral-
lelism,’’ Proc. 19th Annual International Symposium on Computer Architecture, pp. 58-67, 1992.

[6] M. Franklin, ‘‘The Multiscalar Architecture,’’ Ph.D. Thesis, Computer Sciences Department, University
of Wisconsin-Madison, 1993. Also Technical Report TR 1196, Computer Sciences Department,
University of Wisconsin-Madison, 1993.

[7] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W. Hwu, B. Heggy, and M. L.
Soffa, ‘‘Architectural Support for Register Allocation in the Presence of Aliasing,’’ Proc. Supercomput-
ing ’90, pp. 730-739, November 1990.

[8] W. W. Hwu, ‘‘Exploiting Concurrency to Achieve High Performance in a Single-chip Microarchitec-
ture,’’ Ph.D. Thesis, Report No. UCB/CSD 88/398, Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, 1988.

[9] M. Johnson, Superscalar Design. Englewood Cliffs, New Jersey: Prentice Hall, 1990.

[10] G. Kane, MIPS R2000 RISC Architecture. Englewood Cliffs, New Jersey: Prentice Hall, 1987.

[11] A. Nicolau, ‘‘Run-Time Disambiguation: Coping With Statically Unpredictable Dependencies,’’ IEEE
Transactions on Computers, vol. 38, pp. 663-678, May 1989.

[12] Y. N. Patt, S. W. Melvin, W. W. Hwu, and M. Shebanow, ‘‘Critical Issues Regarding HPS, A High Per-
formance Microarchitecture,’’ in Proc. 18th Annual Workshop on Microprogramming, Pacific Grove,
CA, pp. 109-116, December 1985.

[13] D. N. Pnevmatikatos, M. Franklin, and G. S. Sohi, ‘‘Control Flow Prediction for Dynamic ILP Proces-
sors,’’ Proc. The 26th Annual International Symposium on Microarchitecture (MICRO-26), pp. 153-
163, 1993.

[14] G. M. Silberman and K. Ebcioglu, ‘‘An Architectural Framework for Migration from CISC to Higher
Performance Platforms,’’ Proc. International Conference on Supercomputing, pp. 198-215, 1992.

[15] J. E. Smith and A. R. Pleszkun, ‘‘Implementing Precise Interrupts in Pipelined Processors,’’ IEEE Tran-
sactions on Computers, vol. 37, pp. 562-573, May 1988.

[16] J. E. Smith, ‘‘Dynamic Instruction Scheduling and the Astronautics ZS-1,’’ IEEE Computer, pp. 21-35,
July 1989.

[17] G. S. Sohi, ‘‘Instruction Issue Logic for High-Performance, Interruptible, Multiple Functional Unit,
Pipelined Computers,’’ IEEE Trans. on Computers, vol. 39, pp. 349-359, March 1990.

[18] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, ‘‘Multiscalar Processors,’’ Proceedings of 22nd Annual
International Symposium on Computer Architecture, 1995.

[19] T. Y. Yeh and Y. N. Patt, ‘‘Alternative Implementations of Two-Level Adaptive Training Branch Pred-
iction,’’ Proceedings of 19th Annual International Symposium on Computer Architecture, pp. 124-134,
1992.

18

APPENDIX

The appendix gives the formal algorithms for performing the execute phase of loads and stores. Execu-
tion of a load starts with Execute_Load_Local_ARB(), and execution of a store starts with
Execute_Store_Local_ARB(). A memory reference is committed only after it is known that all references in its
group are guaranteed to be committed. The algorithms given below are meant to depict the semantics for the
correct working of the two-level hierarchical ARB; an implementation can change the order of algorithm state-
ments or do multiple statements in parallel so long as it preserves correctness.
���

Execute_Load_Local_ARB(ARBnum, Addr, Sequence)
{

Determine local ARBnum’s Bank corresponding to Addr
Associatively check address fields of Bank to find Row | Row’s address field = Addr
if (Addr not present)
{

if (Bank full)
{

Freed_Up = Recovery_Bank_Full(Bank, Sequence mod Num_Local_Stages)
if (Freed_Up == 0)

return(0)
}
Allocate new Row entry in Bank
Enter Addr in address field of Row
if (Execute_Load_Global_ARB(Addr, Sequence) == 0)

return(0)
}
else
{

Check in Row to determine closest preceding store executed to Addr
if (no preceding store found)
if (Execute_Load_Global_ARB(Addr, Sequence) == 0)

return(0)
else

Forward the value from its value field to the processor
}
Set Row’s load bit of stage (Sequence mod Num_Local_Stages) to 1
return(1);

}
���

Execute_Load_Global_ARB(Addr, Sequence)
{

Determine global ARB’s Bank corresponding to Addr
Associatively check address fields of Bank to find Row | Row’s address field = Addr
if (Addr not present)
{

if (Bank full)
{

Freed_Up = Recovery_Bank_Full(Bank, Sequence / Num_Global_Stages)
if (Freed_Up == 0)

return(0)
}
Allocate new Row entry in Bank
Enter Addr in address field of Row
Send load request to data cache

}
else
{

Check in Row to determine closest preceding store mark in Row
if (no preceding store found)

Send load request to data cache
else

19

Forward the value from its value field to the processor
}
Set Row’s load bit of stage (Sequence / Num_Global_Stages) to 1
return(1);

}
���

Execute_Store_Local_ARB(ARBnum, Addr, Value, Sequence)
{

Determine local ARBnum’s Bank corresponding to Addr
Associatively check address fields of Bank to find Row | Row’s address field = Addr
if (Addr not present)
{

if (Bank full)
{

Freed_Up = Recovery_Bank_Full(Bank, Sequence mod Num_Local_Stages)
if (Freed_Up == 0)

return(0)
}
Allocate new Row entry in Bank
Enter Addr in address field of Row
if (Execute_Store_Global_ARB(Addr, Value, Sequence) == 0)

return(0)
}
else
{

Check in Row to determine stage number SL of closest succeeding load mark,
with no intervening store marks

if (succeeding load with no intervening stores found)
{

Squash_Global_ARB((ARBnum + 1) mod Num_Local_Stages)
Squash_Local_ARB(ARBnum, SL)

if (Execute_Store_Global_ARB(Addr, Value, Sequence) == 0)
return(0)

}
else
{

Check in Row for succeeding stores executed to Addr
if (no succeeding stores found)

Execute_Store_Global_ARB(Addr, Value, Sequence)
}

}
Enter Value in the value field of stage (Sequence mod Num_Local_stages) of Row
Set Row’s store bit of stage (Sequence mod Num_Local_stages) to 1
return(1);

}
���

Execute_Store_Global_ARB(Addr, Value, Sequence)
{

Determine global ARB’s Bank corresponding to Addr
Associatively check address fields of Bank to find Row | Row’s address field = Addr
if (Addr not present)
{

if (Bank full)
{

Freed_Up = Recovery_Bank_Full(Bank, Sequence / Num_Global_Stages)
if (Freed_Up == 0)

return(0)
}
Allocate new Row entry in Bank
Enter Addr in address field of Row

}
else
{

20

Check in Row to determine stage number SL of closest succeeding load mark,
with no intervening store marks

if (succeeding load mark with no intervening store marks found)
Squash_Global_ARB(SL)

}
Enter Value in the value field of stage (Sequence / Num_Global_Stages) of Row
Set Row’s store bit of stage (Sequence / Num_Global_Stages) to 1
return(1);

}
���

Commit_Memory_Reference_Local_ARB(Addr)
{

Determine local ARB Bank corresponding to Addr
Associatively check address fields of Bank to find Row | Row’s address field = Addr
if (there is no store mark in any other stage of Row)
{

Commit_Memory_Reference_Global_ARB(Addr)
if (ARB Head + 1 == ARB Tail)

Advance Global ARB Head by 1 stage
}
Clear load/store mark of stage ARB Head of Row
if (there is no load mark or store mark in Row)

Clear Addr field of Row
Advance local ARB Head by 1 stage

}
���

Commit_Memory_Reference_Global_ARB(Addr)
{

Determine global ARB Bank corresponding to Addr
Associatively check address fields of Bank to find Row | Row’s address field = Addr

if (Addr present)
{

if (there is a store mark in stage Global ARB Head of Row)
Send value in stage ARB Head of Row to Data Cache

Clear load mark and store mark of stage Global ARB Head of Row
if (there is no load mark or store mark in Row)

Clear Addr field of Row
}

}
���

Squash_Local_ARB(ARBnum, Starting_Stage)
{

for local ARBnum’s each Bank do
{

for each Row in Bank do
{

for each Stage from ARB Tail (not including) to Starting_stage do
{

if (there is a store mark in Stage)
{

Check in Row to find stage Store_Stage with
closest preceding store mark

Addr = Addr field of Row
if (preceding store mark found)
{

Store Value = Value field of Store_Stage
Sequence = ARBnum * Num_Global_Stages + Store_Stage
Execute_Store_Global_ARB(Addr, Value, Sequence)

}
else

Delete_from_Global_ARB(Addr, Stage)

21

}
else if (there is a there is a load mark in Stage)
{

if (there is no previous load mark or store mark)
Delete_from_Global_ARB(Addr field of Row, Stage)

}
Clear load/store marks of Stage
if (there is no load mark or store mark in Row)

Clear Addr field of Row
}

}
}
Set ARB Tail = Starting_Stage

}
���

Squash_Global_ARB(Starting_Stage)
{

for each Stage from Starting_Stage to ARB Tail (not including) do
Clear_Local_ARB(Stage)

for global ARB’s each Bank do
{

for each Stage from Starting_Stage to ARB Tail do
Clear all load marks and store marks in Stage

for each Row in Bank do
{

if (there is no load mark or store mark in Row)
Clear Addr field of Row

}
}
Set ARB Tail = Starting_Stage

}
���

Delete_from_Global_ARB(Addr, Stage)
{

Determine global ARB’s Bank corresponding to Addr
Associatively check address fields of Bank to find Row | Row’s address field = Addr
if (Addr present)
{

Clear load/store marks of Stage in Row
if (there is no load mark or store mark in Row)

Clear Addr field of Row
}

}
���

Clear_Local_ARB(ARBnum)
{

for local ARBnum’s each Bank do
{

for each Stage do
Clear all load marks and store marks in Stage

for each Row in Bank do
Clear Addr field of Row

}
Set ARB Tail = 0

}

22

Bank 0

Ba Address Value

Stage 1 Stage 2

Active ARB Window

2001

2000 1

1

Stage 0 Stage 3 Stage 4 Stage 5

L S

10

TailHead

Figure 1: A 4-Way Interleaved, 6-stage ARB

23

Ld0 Ld1 Ld2 Ld3

Li − Load Mark for stage i

Si − Store Mark for stage i

Ldi − Load to stage i

L0S0 L3S3 V3V0Addr
An ARB Bank

Vi − Value field for stage i

L1S1 V1 L2S2 V2

h0 h1

32
Load Value0

Value Valid0

32
Load Value1

Value Valid1

32
Load Value2

Value Valid2

32
Load Value3

Value Valid3

32

h0 − LSB of head pointer

h1 − MSB of head pointer

32

Load Address

Load Valuei − Value returned by ARB for Ldi

Value Validi − Load Valuei is valid or not

Selected ARB Row Send Ld to Data Cache

Figure 2: Logic Diagram for Executing Loads in a 4-stage ARB

24

St0 St1 St2 St3

Li − Load Mark for stage i

Si − Store Mark for stage i

Sti − Store to stage i

Vi − Value field for stage i

h0 h1

h0 − LSB of head pointer

h1 − MSB of head pointer

Squash2

Squash3

Squash1

Squash0

Store Address

V2S2L2V1S1L1

An ARB Bank
Addr V0 V3S3L3S0L0

Squashi − Squash instructions from sequence number i onwards

Selected ARB Row

Squashi = Li ∧ (∨
j = head

j = i −1

(Stj ∧
k = j +1

k = i −1

L
� �

k S
�

k))
j varies as

�
� �

head ≤ j ≤ n −1, 0 ≤ j < i

head ≤ j < i

if head > i

if head ≤ i
k varies as�

� �
j < k ≤ n −1, 0 ≤ k < i

j < k < i

if j > i

if j < i

Figure 3: Logic Diagram for Detecting Out-of-Order Load-Stores in a 4-stage ARB

25

Table 1: Example Sequence of Loads and Stores
���

Sequence Correct Store Exec.
Code

Number Address Value Order
Remarks

���
STORE R2, 0(R1) 0 100 120 4 Execution got delayed as R1 was unavailable
STORE R4, 0(R2) 1 120 50 2
LOAD R3,−20(R2) 2 100 1 Unresolved load fetched incorrect value 140
LOAD R5, 0(R3) 3 120 3

���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Address Stage 0

0 0
0 0
0 0
0 0

0 0
0 0
0 0

0 0
0 0
0 0

0 0
0 0
0 0

0 0 0 0 0

Stage 1 Stage 2 Stage 3

100 1

0
0
0 0
0 0

0
0 0
0 0

0 0
0 0
0 0

0 0
0 0
0 0

0 0 0 0 0100 1
120

0

0
0
0 0
0 0

0
0 0
0 0

0 0
0 0
0 0

0
0

0 0

0 0 0 0 0100 1
120

0

1

Executed Load to Address 100 in Stage 2;

0
0
0 0
0 0

0
0 0
0 0

0 0
0 0
0 0

0
0

0 0

0 0 0 0100 1
120

1

0
0

0 0
0 0

0 0
0 0

0 0

0 0
0 0
0 0

0
0 0
0 0

0 0 0 0
120 1 50

0 0
0

TH

H
T

H
T

H
T

H
T

Request Sent to Data Cache;

0
0
0 0
0 0

0 0
0 0
0 0

0 0
0 0
0 0

0
0 0
0 0

0 0 0 0100 10
T H

0

0
0
0 0
0 0

0 0
0 0
0 0

0 0
0 0
0 0

0
0 0
0 0

0 0
0

0120 0
T H

0

0
0 1

1 500

5010

1
500

120
1
0

Executed Store to Address 120 in Stage 1

Executed Store to Address 100 in Stage 0;

140
0

Executed Load to (Incorrect) Address 140 in Stage 3;

0
140

0 Re-executed Load to Address 100 in Stage 2;
Request Sent to Data Cache;

0

Value 120 from Stage 0 Sent to Address 100 in Data Cache;

Value 50 from Stage 1 Sent to Address 120 in Data Cache;

0 Re-executed Load to Address 120 in Stage 3;
Request Sent to Data Cache;

Committed Stage 2; Reclaimed Row 0 for reuse

ARB

Request Sent to Data Cache

Squashed Stage 2 onwards; Reclaimed Row 2 for reuse

Committed Stage 0; Reclaimed Row 0 for reuse

Committed Stage 1; Reclaimed Row 1 for reuse

Found Earlier Load at Stage 2 to be Incorrect

10 2 3

Obtained (incorrect) Value 140 from Data Cache

Obtained Correct Value 120 from Data Cache

Obtained Correct Value 50 from Data Cache

T
H

T
H

T
H

T
H

TH

T H

T H

INSTRUCTION
WINDOW

Figure 4: Contents of the Instruction Window and the ARB
After the Execution of Each Memory Reference in Table 1

26

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0 0

Global ARB

Local ARBs

Group 0 Group 5

Bank 0

Ba Address Value

Stage 1 Stage 2

Active ARB Window

Stage 0 Stage 3 Stage 4 Stage 5

L S

TailHead

Figure 5: A Two-Level Hierarchical ARB

27

LOAD
LOAD

Instr 0

2
3
4

LOAD
Cycles

STORE

LOAD

(i) (ii)

STORE

LOAD

1
2
3
4

0

Has not been fetched by cycle 4

5
6

1

Exec. Exec. Exec. Exec.
Unit 0 Unit 1 Unit 2 Unit 3

Task 0 Task 1 Task 2 Task 3 Task 0
Task 1

Task 2
Task 3

LOAD

− Instructions that have been fetched

Figure 6: (i) 4 Multiscalar Tasks; (ii) Execution of the Tasks by 4 Multiscalar Execution Units

28

Table 2: Instruction Completion Rates

���
Instruction Completion Rates with� ���

ARB� ���
No pre-entering of Pre-entering of

Benchmark
Store Queue Dependency Matrix

Store Information Store Information���
compress 2.08 2.47 2.59 2.69
dnasa7 3.13 3.30 3.32 3.34
doduc 2.84 2.84 2.81 2.93
espresso 2.46 2.56 2.56 2.59
fpppp 3.39 3.57 3.47 3.69
sc 2.38 2.50 2.63 2.67
xlisp 2.25 2.49 2.53 2.57���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 3: Percentage Incorrect References with ARB

� ���
Percentage Incorrect References� ���

No pre-entering of Pre-entering ofBenchmark
Store Information Store Information� ���

compress 0.69% 0.00%
dnasa7 0.04% 0.00%
doduc 0.96% 0.00%
espresso 0.36% 0.00%
fpppp 0.95% 0.00%
sc 0.23% 0.02%
xlisp 0.42% 0.00%� ���

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

