
Control Flow Speculation in Multiscalar Processors

Copyright 1997 IEEE. Published in the Proceedings of the Third
International Symposium on High Performance Computer
Architecture, February 1-5, 1997 in San Antonio, Texas, USA.
Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works, must be
obtained from the IEEE. Contact: Manager, Copyrights and
Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box
1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl.
908-562-3966.

Quinn Jacobson
Electrical & Computer

Engineering Department
University of Wisconsin
qjacobso@ece.wisc.edu

Steve Bennett1

Measurement, Architecture
and Planning

Intel Corp., Hillsboro, OR
sbennett@ichips.intel.com

Nikhil Sharma1

Design Verification Unit
Synopsys Inc.

Mountain View, CA
nikhil@synopsys.com

James E. Smith
Electrical & Computer

Engineering Department
University of Wisconsin

jes@ece.wisc.edu

Control Flow Speculation in Multiscalar Processors

Abstract
The Multiscalar architecture executes a single

sequential program following multiple flows of control. In
the Multiscalar hardware, a global sequencer, with help
from the compiler, takes large steps through the program’s
control flow graph (CFG) speculatively, starting a new
thread of control (task) at each step. This is inter-task con-
trol flow speculation. Within a task, traditional control
flow speculation is used to extract instruction level paral-
lelism. This is intra-task control flow speculation.

This paper focuses on mechanisms to implement inter-
task control flow speculation (task prediction) in a Multi-
scalar implementation. This form of speculation has fun-
damental differences from traditional branch prediction.
We look in detail at the issues of prediction automata, his-
tory generation and target buffers. We present implemen-
tations in each of these areas that offer good accuracy,
size and performance characteristics.

Keywords: Multiscalar Architecture, Control-flow Specu-
lation, Multi-way Branch Prediction, Target Buffer

1 Introduction

Traditional processor architectures execute sequential
programs following a single flow of control. To achieve
high performance, both superscalar and VLIW implemen-
tations of these architectures build a large window of
instructions and attempt to issue multiple independent
instructions per clock cycle. The instruction window is
built by the hardware (superscalar), the compiler (VLIW)
or both by speculating a single flow of control and rear-
ranging instructions to increase parallel execution. The
ability to build a large window is limited by the require-
ment that control flow speculation (branch prediction) be
done sequentially. Sequential program flow limits the
speed with which the window can be built, and, incorrect
predictions limit the useful size of the window because
instructions following an incorrect prediction are nullified.

1. This work was done while the authors were at the Univer-
sity of Wisconsin.

Multiprocessing and multi-threaded architectures
achieve high performance by executing many instructions
in parallel from multiple flows of control. Programs must
be written in a parallel programming style (which contin-
ues to be a difficult problem), or must have parallelism
extracted by the compiler (such as loop level or vector par-
allelism) into mostlyindependent sub-programs. Depen-
dences between these flows of control must be handled
explicitly by the programmer or the compiler. This
approach does not work well for many non-numeric appli-
cations because (1) the parallelism present in the program
is difficult to detect during program creation or compila-
tion, (2) the program is written in a language such as C
which makes compiler analysis difficult, or (3) the granu-
larity of communication is too small to be handled effi-
ciently by the compiler or hardware.

The Multiscalar architecture [4][6][14] executes a sin-
gle sequential program following multiple flows of con-
trol. It relies heavily on hardware support to maintain
sequential semantics while executing a program in a paral-
lel fashion. This allows the architecture to execute existing
codes efficiently and allows the programmer to use a natu-
ral, sequential programming model. The architecture pro-
vides a uniform memory space, single logical register file
and sequential semantics. To achieve high performance the
Multiscalar hardware uses two levels of control flow spec-
ulation. This multi-level speculation model allows the
hardware to:
• build a very large effective instruction window from a

sequential program,
• build this window very quickly, and
• maintain the large window in the presence of some miss

predicted branches.
In the Multiscalar hardware, aglobal sequencer, with

help from the compiler, takes large steps through the pro-
gram’s control flow graph (CFG) speculatively, starting a
new thread of control at each step. Each of these steps
requires the implicit prediction of possibly many branches.
We call thisinter-task control flow speculation and refer to
the group of instructions between steps as atask. The large

Quinn Jacobson
Electrical & Computer

Engineering Department
University of Wisconsin
qjacobso@ece.wisc.edu

Steve Bennett1

Measurement, Architecture
and Planning

Intel Corp., Hillsboro, OR
sbennett@ichips.intel.com

Nikhil Sharma1

Design Verification Unit
Synopsys Inc.

Mountain View, CA
nikhil@synopsys.com

James E. Smith
Electrical & Computer

Engineering Department
University of Wisconsin

jes@ece.wisc.edu

steps in the control flow increase the effective window
size, thereby increasing the chance of finding independent
instructions which may be executed in parallel.

Within a task, traditional control flow speculation is
used to extract instruction level parallelism. We call this
intra-task control flow speculation. The model allows
speculation within a task to be imperfect without necessar-
ily interfering with the higher level inter-task speculation.
The next task may be control independent of some or all of
the control flow of preceding tasks.

The focus of this paper is the development of mecha-
nisms for inter-task control flow speculation in a Multisca-
lar implementation. This form of speculation has some
fundamental differences from traditional branch predic-
tion. We look in detail at the issues of prediction automata,
history generation and target buffers. We present imple-
mentations in each of these areas that offer good accuracy,
size and performance characteristics.

2 Overview of Multiscalar Processors

2.1 Multiscalar Executable
A Multiscalar instruction set architecture (ISA) is

similar to other ISAs. However, a Multiscalar ISA adds
special instructions to communicate information from the
software to the hardware to support the two level sequenc-
ing model. A multiscalar executable consists of tasks
which are encapsulated groups of instructions that may
contain arbitrary control flow. The task is bounded by task
start and task end instructions. The task start instruction
loads atask header into special state registers. The task
header contains a bit mask indicating which registers may
have new values created within the task and contains infor-
mation about tasks that may succeed it. A task must end in
a control transfer instruction which has special bits to indi-
cate that it is a task exit point. The target address deter-
mined by the exit instruction is address of the task start
instruction for the next task.

At a high level, program execution may be viewed as
traversing a task flow graph (TFG). Figure 1 shows an
example TFG. A TFG is a directed graph with tasks at
nodes and the arcs representing control flow between the
tasks. A TFG is analogous to a control flow graph (CFG)
built from a scalar executable. Each task is a traditional
CFG.

There is no bound on the number of potential exits
that a task can have. Our implementation limits the num-
ber of exits in the header to four. For each exit the header
contains three pieces of information about the control
flow.
• Exit Specifier: The type of control instruction that exits

the task. This is one of the control flow types detailed in
Table 1. This information is encoded in 5 bits.

• Target Address: If the target address of the exit instruc-
tion is known (as it is in BRANCH and CALL exits) this
field contains the actual target address of the instruction.
Otherwise this field is left null by the compiler. In our
environment, addresses are 32 bits.

• Return Address: If the exit instruction is a CALL or
INDIRECT_CALL, the value in this field is the address
executed after the called routine returns. It may be
pushed onto a return address stack by the hardware.

Figure 1 Example Task Flow Graph

Control Flow Type
Terminating Task

Corresponding
 Scalar

Instruction

Ta
rg

et
 K

no
w

n
at

C
om

pi
le

 T
im

e

N
um

be
r

of
Ta

rg
et

s

Ta
rg

et
 A

dd
re

ss
P

re
di

ct
io

n

BRANCH (un)conditional
branch

Yes 1 Easy

CALL call (PC relative) Yes 1 Easy

RETURN return No unlimited Harder

INDIRECT_BRANCH indirect branch No unlimited Hard

INDIRECT_CALL call (indirect) No unlimited Hard

Table 1 Multiscalar Inter-task Control Flow Types

load header
branch if (i == 10) <exit>

branch if (a != TRUE)

b = this
jump

b = that

jump <exit>

loop_body
jump <exit>

load header

return <exit>

do_some_more
branch if (enough == 1) <exit>

i = i + 1

load header
branch if (cond != 1) <exit>

branch if (done != 1)

Task 2

Task 3

Task 4

for (i=0; i<10; i++) {

jump <exit>

 if (a == 1)
 b = this;
 else
 b = that;
 while (cond == 1)
 loop_body
 if (done == 1)
 return;
 do_some_more
 if (enough == 1)
 break;
}
....

.....

The exit instructions of a task must be control transfer
instructions; conditional branches are only exits when they
are taken. Each TFG arc is also a CFG arc of the underly-
ing program. In our implementation, control transfer
instructions contain three bits of exit information. One bit
specifies that the instruction is an exit. The other two bits
associate the exit instruction with one of the four exit
points specified in the header. This last information is
needed to update the next task predictor. Each exit instruc-
tion is classified as one of five types, as detailed in Table 1.

2.2 Multiscalar Processor Hardware
A high level view of a Multiscalar implementation is

shown in Figure 2. The Multiscalar hardware employs two
levels of sequencers to build a large window of instruc-
tions in the machine and extract parallelism from an inher-
ently sequential program. At run-time, the Multiscalar
global sequencer traverses the program’s TFG. Tasks are
distributed to processing units after predicting the path the
program will follow through the TFG. The processing
units are arranged in a ring. At any time, one unit will be
executing the non-speculative “current” task and the other
units in the ring will be executing speculative tasks. The
ring operates as a circular queue with a head and a tail
pointer (pointing to the current non-speculative task and
the most recently started speculative task, respectively).
Tasks commit in strictly FIFO order.

Figure 2 The Multiscalar Hardware

Hardware provides for the synchronization and the
forwarding of data around the ring. Both register and
memory state have to be communicated to maintain
sequential semantics across a single address space and reg-
ister file. The hardware to perform this has been discussed
in other publications [1][5].

The global sequencer does not examine each instruc-
tion in a task before predicting the next task; rather it pre-

dicts the starting address of the next task to be executed
using information from the task header of the most
recently predicted task and dynamic prediction hardware.
This predicted task is launched on the next free processing
unit. When the task at the head of the processing unit
queue completes, it informs the global sequencer of its
actual, non-speculative target address. If the target address
predicted to follow the head task was incorrect, all tasks
behind the head aresquashed (all work performed is dis-
carded) and execution is redirected to the correct task. The
task misprediction penalty, in terms of lost potential work,
can be large.

Alternatively, a hardware implementation could have
a global sequencer that predicts tasks without a header.
Removing the header would minimize the impact to an
instruction set for supporting the Multiscalar execution
model. The hardware compensates for the lack of header
information by building up history. This option will be dis-
cussed in Section 5.4.

Within a task each processing element may predict the
outcome of control flow instructions within the task’s CFG
and redirect its pipelines using speculative execution. This
intra-task control flow speculation is similar to conven-
tional scalar control flow speculation. In practice, how-
ever, there is a difference between intra-task speculation
and conventional scalar control-flow speculation. In a
Multiscalar processor, the individual processing elements
do not see the whole dynamic instruction stream. They
have a local, incomplete view of the code which led to the
currently executing instructions. This may hurt dynamic
intra-task prediction accuracies. The predictor used for
intra-task prediction in our current Multiscalar simulators
is a bimodal predictor which only suffers minimal accu-
racy loss due to incomplete history. We do not look into
the matter of intra-task speculation any further in this
paper. Rather, we focus on the job of inter-task speculation
which requires new mechanisms.

3 Methodology

3.1 Simulator
Our results are obtained using a multiscalar functional

simulator and compiler developed at the University of
Wisconsin. The focus of the research reported here is task
prediction accuracy, not overall Multiscalar execution
time. However, in the conclusion we do report some over-
all performance numbers, reflecting the impact of task pre-
diction. The overall performance numbers are obtained
from a detailed timing simulator which takes into account
speculative state.

There are a two major issues we do not take into
account in the functional simulator.
• Update Timing: Updates of dynamic data structures for

Processing
Unit

Data
Bank

Global Sequencer

Interconnect Network

Processing
Unit

Data
BankA

R
B

D
 C

ac
he . . .

. . .

I Cache

Execution
Pipeline

Local
Register

File

Head Tail

Lo
ca

l S
eq

ue
nc

er

prediction are made immediately after prediction (there
is no delay). A real implementation may make predic-
tions based on stale information while waiting for non-
speculative outcome information to return from the exe-
cution processors.

• Pollution: Our functional simulator does not continue
past a mispredicted task, therefore no pollution of dy-
namic data structures for prediction occurs because of
speculative updates from mispredicted tasks. Our results
are accurate in this regard if the mispredict recovery
mechanism completely repairs data structures modified
after a misprediction.

3.2 Benchmarks
The characteristics of tasks are dependent on the com-

piler heuristics used to break a program into tasks. The
accuracy of task prediction is therefore dependent upon
the compiler. In our experience though, the relative perfor-
mance of predictors is very consistent across different
benchmarks and compilations.

We used five of the SPEC92 integer benchmarks to
evaluate various task prediction schemes. Table 2 lists
these benchmarks, their inputs, and task level behavior.
Note that the number of distinct tasks is rather small for all
benchmarks except gcc. This large working set of tasks
makes inter-task prediction difficult in gcc.

Figure 3 Number of Exits per Task

Figure 3 and Figure 4 show the static and dynamic
makeup of task exits. Recall that the current Multiscalar
implementation allows up to four exits per task. We see in
Figure 3 that most tasks have fewer than four exits, many

having only a single exit. This is encouraging, because
tasks with only a single exit are easy to predict. Each exit
is classified according to control-flow type in Figure 4.

Figure 4 Types of Exit Instructions

4 Previous Work

There has been a wealth of work in scalar branch pre-
diction that we will borrow from. We briefly outline this
previous work in this section.

4.1 Branch Prediction
Two-level branch predictors were proposed by Yeh

and Patt [17] and Pan, et al. [12] and have been imple-
mented in commercial processors such as the Pentium Pro
[7]. A high-level view of these predictors is shown in Fig-
ure 5. The branch address indexes (through some hashing
function) into the History Register Table (HRT) which is a
table of one or morehistory registers. The value from the
HRT is combined (though another hashing function) with
the branch address to form an index into a Pattern History
Table (PHT). The value in this table is a prediction autom-
aton which determines the prediction made. The structures
are updated both speculatively (history registers) and non-
speculatively (prediction automata).

Figure 5 Two-level adaptive prediction mechanism

The HRT hash function normally extracts bits from
the branch address to index the HRT. The PHT hashing
function may be a simple function concatenating bits of
the address with bits from the history table, or some fold-
ing scheme with exclusiveOR may be used to reduce alias-

Benchmark
Input
File

Static
Tasks

Dynamic
Tasks

Distinct Tasks
Seen

gcc stmt.i 12525 4036539 3164

compress in (1MB) 103 5517241 39

espresso bca.in 3788 41458206 1260

sc loada3 3744 8353930 575

xlisp li-input.lsp 1756 2735019 522

Table 2 Benchmarks, Inputs and Task Information

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

st
at

ic

dy
na

m
ic

st
at

ic

dy
na

m
ic

st
at

ic

dy
na

m
ic

st
at

ic

dy
na

m
ic

st
at

ic

dy
na

m
ic

st
at

ic

dy
na

m
ic

� �
� �
� �

4 Targets
� � �
� � �
� � �

3 Targets

2 Targets

1 Target

compress espresso sc xlispgccaverage

� � � � � � � � � � �

� � � �� � � �

� � � � � � �� � �

! ! !! ! !! ! !! ! !! ! ! " " " " # # # # $ $ $ $ % % % % & & & &

' ' ' '' ' ' '' ' ' '' ' ' '' ' ' '' ' ' '

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

st
at

ic

ta
ke

n

st
at

ic

ta
ke

n

st
at

ic

ta
ke

n

st
at

ic

ta
ke

n

st
at

ic

ta
ke

n

st
at

ic

ta
ke

n

(((((((((
branch indirect

)))))))))

call indirect
branch
call
return

average g c c espres so xlisps ccompress

Pattern
History
Table(s)

History
Register
Table

Branch (Basic Block) Address

HRT

P
re

di
ct

io
n

(HRT) (PHT)

PHT
Hash FunctionHash Function

Updates

ing. [10]

4.1.1 Prediction Automata
Most branch prediction applications have used 2-bit

saturating counters. The 2-bit counter encodes two pieces
of information, prediction (taken or not taken) and bias
(strong or weak). This bias provides a form of hysteresis,
so that a prediction that has been correct for successive
executions of a branch will not be changed after a single
misprediction.

4.1.2 History Generation
In two-level dynamic branch predictors, there are one

or more history registers that are maintained by shifting in
some representation of the predicted outcomes of
branches. We call this processhistory generation. A num-
ber of history generation methods have been investigated
in the literature:
• exit-based: After each prediction, the predicted branch

outcome is shifted into the low order bit of the history
register. This single bit represents taken or not taken.
Conceptually, this single bit represents the exit taken
from the branch instruction, and we call this method
exit-based. This method was used by Yeh and Patt and
Pan, et al.

• path-based: After each prediction, some bits of the tar-
get address of the branch are shifted into the low order
bits of the history register. This creates a more accurate
representation of thepath followed to reach a certain
point in the program execution. Hence, predictors that
use this method are calledpath-based. This approach
was studied in [11].

4.2 Branch Address Prediction
In addition to predicting whether a branch is taken or

not taken, it is important to be able to determine quickly
the address of the taken path. To facilitate smooth pipelin-
ing of successive fetches in the presence of control flow
changes, a number of mechanisms have been proposed and
implemented in commercial processors:
• A dedicated adder in the fetch mechanism can be used

to compute PC relative target addresses before they are
computed by the ALU(s) in the execution engine.

• A branch target buffer (BTB) [9][13] stores addresses of
conditional branch targets. A BTB is simply a cache
memory. Typically, the BTB indexing function is simi-
lar to other cache structures, utilizing only bits from the
branch address. Indirect addresses may be cached in the
BTB in addition to PC-relative addresses.

• A return address stack (RAS) [8] may be used for return
address prediction. In Multiscalar processors, as in sca-
lar processors, a reasonably deep RAS is nearly perfect
in predicting return addresses [2].

Microarchitectural structures have been proposed that
combine exit and target address prediction to facilitate

pipelined implementations [16][3].

5 Adapting Branch Prediction to Tasks

In applying scalar dynamic branch prediction to inter-
task prediction in Multiscalar processors, we equate Multi-
scalar tasks to scalar basic blocks and leave the overall
structure of the predictor mechanism unchanged. How-
ever, there are a number of issues that arise when we per-
form such a straightforward application of the ideas.

5.1 Prediction Automata
The saturating counters used to make scalar branch

predictions are not sufficient to predict tasks in Multiscalar
processors because there may be more than two exits. Pre-
dicting the exit taken out of the four possible exits is a
multi-way branching problem. There are a number of
alternatives with which to replace the saturating counters
in the PHT:
• voting counters (VC): At each entry in the PHT there is

a saturating counter for each exit. If the counter corre-
sponding to one exit is greater than all others, we predict
this exit. If there is a tie for the highest counter value, we
pick either (1) the most recently used (MRU) exit among
the ties, or (2) randomly among the ties. Note that the
MRU method requires additional storage and implemen-
tation complexity. We investigate each of these methods
below. When the actual exit is known, the counter corre-
sponding to this exit is increment, while the others are
decrementing. We investigate the use of both 2-bit and
3-bit counters.

• last exit (LE): Each entry in the PHT records the exit tak-
en the last time this entry was accessed; we predict this
exit the next time this entry is accessed. When the actual
exit is known, it is stored in the PHT. Note that LE is re-
ally just a degenerate case of VC, with each counter be-
ing one bit. Storing a simple exit number reduces storage
costs, however.

• last exit with hysteresis (LEH): The last taken approach
can be augmented by adding a small (1 or 2 bit) saturat-
ing counter that is incremented on correct predictions
and decremented on incorrect predictions. The predic-
tion is replaced when the counter is zero and the predic-
tion is wrong. This provides a mechanism for keeping a
prediction that was correct multiple times from being re-
placed too quickly.

Figure 6 compares the performance of seven different
automata used in conjunction with a very aggressive path-
based predictor (discussed later). All the benchmarks had
similar relative performance for the automata so we only
present numbers forgcc. The seven approaches stratify
into three performance curves. For all the benchmarks the
last exit (LE) approach has the highest miss rate. Both 2-
bit voting counters (VC MRU and VC RANDOM) and the

last exit with 1-bit of hysteresis (LEH 1-bit) perform
nearly identical and are indistinguishable in the graphs.
All three have comparable degrees of hysteresis; replacing
a proven prediction only after two miss predictions. Both
3-bit voting counters (VC MRU and VC RANDOM) and
the last exit with 2-bits of hysteresis (LEH 2-bit) perform
nearly identical and have the lowest miss rates for all the
benchmarks.Since LEH uses fewer bits than VC, we use
the LEH-2 bit automaton in all following studies.

Figure 6 Comparison of Prediction Automata

5.2 History Generation
The history generation methods of branch prediction

have to be modified slightly to support task prediction:
• Exit-based history generation: Shifting one bit to encode

branch behavior does not work because in task predic-
tion there are up to four possible outcomes of each task
sequencing step. The modification is very straight for-
ward: we shift two bits instead of one to encode which
of the four possible exits was predicted.

• Path-based history generation: Similar to branch pre-
diction, we shift in some of the low order bits of the tar-
get address of the predicted task.

There is some difference in the information that the
history in task prediction represents. In branch prediction
the history at the time of a prediction represents the most
recent control-flow behavior. In task prediction the history
is really disconnected pieces of control-flow information
from various points in the past. The history most likely
does not include the control-flow immediately before the
point where the prediction of the next task is made because
this piece of control flow is buried inside the task. We
found that despite this behavior, there is still correlation in
paths taken through the TFG.

We examine the prediction accuracies that can be
achieved using the various history generation schemes
adapted from branch prediction. The prediction schemes
we compare are:
• A Global Exit History Scheme (GLOBAL) where there is

a single history register shared by all tasks. The history
register is generated by shifting in two bits which encode

the predicted exit.
• A Per-Task Exit History Scheme (PER) where there is

one history register and one table of prediction automata
per static task. This scheme is analogous to Yeh’s PAp
configuration [15]. Each history register records which
of the four exits was taken for the previous invocations
of the particular static task. In a real implementation a fi-
nite number history registers and tables would be asso-
ciated with tasks by some hashing function;
approximating but not guaranteeing a 1-to-1 relationship
between tasks, history registers and pattern tables.

• A Path-based History Scheme (PATH) where there is a
single history register shared by all tasks. We discuss
later how to encode the identity of a task.

There are no doubt other approaches to history generation,
but we limited our study to these three which represent the
dominant approaches in branch prediction.

To compare these history generation methods, we
simulated ideal implementations of the three approaches.
We define ideal to mean there is no aliasing in any of the
data structures. Aliasing occurs when the predictor can not
distinguish between two different cases because of limited
information. For GLOBAL, an ideal implementation
means that the entire history register is used for indexing
into the table of prediction automata, and the PHT is large
enough to associate a unique entry with every possible his-
tory value. For PER, an ideal implementation means that
there is a unique history register and a unique table of pre-
diction automata for every static task. Each PHT has the
same properties as in the ideal global scheme: it is large
enough so that every history register value indexes to a
unique PHT entry. For PATH, an ideal implementation can
uniquely identify the path that led to the current point in
the TFG and can associate a unique prediction automaton
with this path.

Figure 7 shows the prediction miss rates for the three
history generation schemes. The schemes are compared
over a range of history depths. Note that a history depth of
zero is equivalent to associating a single prediction autom-
aton with each static task; no correlation is exploited.
PATH always performs better than GLOBAL. GLOBAL
has a 30% and 50% higher miss rate forgcc and xlisp
respectively for a history depth of 7. For the other three
benchmarks the difference is smaller: from 2% to 5%.
PATH outperforms PER on 4 out of the 5 benchmarks.
PER has a miss rate which is 51%, 12% and 15% higher
than PATH for gcc, compress andxlisp respectively at a
history depth of 7. The difference is only 4% forespresso,
reflecting how relatively easy inter-task prediction is for
this benchmark. For sc, PATH has a 35% higher miss rate
than PER at a history depth of 7.

It is difficult to compare PATH to PER qualitatively
because they are based on fundamentally different con-

3.00%

5.00%

7.00%

9.00%

11.00%

13.00%

15.00%

17.00%

0 1 2 3 4 5 6 7 8 9

History Depth

M
is

s
R

at
e

LE
2-bit VC MRU
2-bit VC RANDOM
LEH-1-bit
3-bit VC MRU
3-bit VC RANDOM
LEH-2-bit

GCC

cepts. PATH attempts to find correlation linking where a
program came from to where it’s going. PER looks for
cyclical behavior patterns at particular decision points.
PATH performs better than PER suggesting that task flow
is more strongly correlated to immediately preceding task
flow than to cyclical behavior. This result is to some
degree a function of the benchmarks we are using. Both
PATH and GLOBAL are trying to capture the same infor-
mation: the predecessor tasks leading up to the current
task. PATH captures this information better because it can
uniquely identify predecessors. In exit-based histories, two
tasks who take their “first” exit to get to the current task
are indistinguishable unless the pattern (to the depth of the
history) of taken exits to reach each of them is unique.

Figure 7 Performance for Ideal (alias-free) Prediction

Another argument in favor of using a path-based his-
tory scheme is that exit-based history schemes (GLOBAL
and PER) tend to have poor utilization of the PHT address
space. Most tasks have only one or two exits (see Figure 3)
yet two bits are still used to encode each task step.

Ultimately, we found that for real implementations,
PATH maintained its performance advantage over the
other schemes, this is discussed in Section 6.3. In subse-
quent sections, we will focus on PATH.

5.3 Address Prediction
After predicting which of the four exits will be taken,

the address of the predicted exit needs to be determined.
For return exits, the address is determined using a return-
address stack (RAS). For calls and branches the target
address corresponding to the exit is given in the task
header. For indirect calls and indirect branches, a target
address must be predicted - the compiler can not currently
provide the hardware with any help in this regard, nor can
a simple prediction structure like a RAS be used for this
type of target address prediction. Of the five benchmarks
studied, two had a substantial number of indirect branches
and indirect calls. For gcc and xlisp, 5% and 8% of the
exits taken are indirect branches or indirect calls respec-
tively. We concentrate our efforts on these two bench-
marks.

A Task Target Buffer (TTB) similar to a Branch Tar-

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

11.00%

12.00%

0 1 2 3 4 5 6 7

History Depth

M
is

s
R

at
e

Global

Path

Per

GCC

18.00%

19.00%

20.00%

21.00%

22.00%

23.00%

24.00%

25.00%

26.00%

0 1 2 3 4 5 6 7 8

History Depth

M
is

s
R

at
e

global

path

per

COMPRESS

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

0 1 2 3 4 5 6 7

History Depth

M
is

s
R

at
e

global

path

per

ESPRESSO

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

0 1 2 3 4 5 6 7 8

History Depth

M
is

s
R

at
e

global

path

per

SC

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

0 1 2 3 4 5 6 7 8

History Depth

M
is

s
R

at
e

global

path

per

XLISP

get Buffer (BTB) is the obvious choice for making address
predictions for indirect branches and calls. Each entry of
the TTB is a target address and a 2-bit saturating counter
that provides hysteresis, similar to the exit prediction
automata discussed earlier. The TTB is indexed with some
bits of the starting address of the task.

Figure 8 Performance of Ideal (alias-free) CTTB

We found that the TTB performed very poorly for
address prediction of indirect branches and calls. The TTB
has a miss prediction rate of 59% forgcc and 39% for
xlisp with an infinitely large TTB. This high miss rate has
a significant impact on the final task prediction rate.
Therefore we investigated more sophisticated schemes for
address prediction. Specifically, we examined the use of a
correlating table indexing method, based on the path-
based global history approach used for exit prediction. An
index into the TTB is generated using the same function of
path-history and current address that is used for path-
based exit prediction. We call this structure a Correlated
Task Target Buffer (CTTB). A CTTB using the path-based
history has substantially lower miss rates than a TTB using
a standard index derived only from the current task
address. Figure 8 shows the miss rates for an ideal CTTB
implementation for various depths of history. These results
are for an infinite size CTTB with no aliasing.

5.4 Other uses for a Correlated Target Buffer
It is possible to perform task prediction without

requiring control flow information in the header (from the
compiler), which makes up the majority of the header. The
CTTB uses the same indexing scheme as the exit predic-
tor, and its prediction automaton is more general. Task
prediction could be performed solely with a CTTB. This
approach could potentially make task predictions more
quickly.

The disadvantage of the CTTB-only method is that it
offers worst performance and size characteristics. From
the size point of view, each CTTB entry is 8 times as large
as an exit prediction table entry. To realize similar predic-
tion accuracies, a CTTB needs as many entries as an exit
predictor. When a CTTB is used only for indirect address

prediction it can be considerably smaller since fewer exits
compete for the table storage, causing less destructive
aliasing at small table sizes. From the performance point
of view, the major impact is that return addresses are not
predicted as well since a CTTB-only method can not use a
RAS. Although the CTTB can predict many of the return
addresses through correlation to recent history, miss rates
in the range of 10% are not uncommon for returns. There
are a number of other issues which all lead to slightly
lower prediction accuracies. Indirect branches and indirect
calls tend to have lower prediction accuracies in the
CTTB-only scheme. Although the CTTB is much larger in
this case, there is much more contention and aliasing,
because all types of inter-task control flow instructions are
competing for space in the buffer. The chances of con-
structive or neutral aliasing are reduced. There are some
additional compulsory misses that could otherwise be
avoided (recall that task headers includes the target
address of unconditional and conditional control flow;
these are easily predicted exits, but the target address is not
known when they are first encountered in the CTTB-only
scheme).

In Section 6.4 we present some results for real imple-
mentations of the CTTB-only prediction method.

6 Implementations of Path-Based Predictors

The path-based history generation scheme is used for
exit prediction as well as for the CTTB. The path-based
history scheme presented up until now was based on being
able to capture information to identify uniquely the history
of tasks leading to the current task. In this section we
present an approximation of ideal path-based history gen-
eration that can be implemented with reasonably sized
structures. The path-based history generation scheme is
implemented with a table of automata indexed by a combi-
nation of a path-history register and some bits indicating
the current task. When implementing a path-based predic-
tion mechanism, we seek to encode the maximum infor-
mation about the current task and the preceding path,
using a minimal number of bits. The first design decision
is how to represent the tasks in a path. We choose to iden-
tify a task using the least significant bits of its starting
address, because these bits have the highest probability of
being different for two different tasks. This is similar to
how Nair identified basic blocks [11].

6.1 Key Design Features of Path Based Predictors
Ideally, a path would be identified by the full starting

address of all tasks along the path. In implementing the
predictor, the size of the PHT is limited; therefore the
index is not large enough to hold the ideal amount of infor-
mation. The performance of an implementation is depen-
dent upon encoding as much information as possible about

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

60.00%

0 1 2 3 4 5 6 7 8

History Depth

M
is

s
R

at
e

cc1

xlisp

IDEAL TTB

the path onto the limited number of index bits. We use two
design techniques to encode sufficient information about
the path in the indexing bits. These are heuristics that we
have found to work well; we attempt to give some insight
into why they work.

The first design technique creates an intermediate
index by concatenating bits of previous and current task
addresses; this intermediate index may be longer than the
PHT index. The final index is constructed from the inter-
mediate index by folding the intermediate index into the
number of bits needed to index the PHT. This folding is
done by subdividing the intermediate index into subfields
and exclusiveORing the subfields with each other. There is
an important tradeoff involving the number of task address
bits and the folding required to form the final index. On
one hand, using more bits from the task address increases
the information available for identifying individual paths.
On the other hand, folding and exclusiveORing can lose
information, and using more bits from the task address
requires more folding to form the final index.

In general, the lower order address bits of a task con-
vey more useful information because these bits are more
likely to differ for preceding tasks. That is, some address
bits tend to be more significant than others for differentiat-
ing task paths. After studying this tradeoff, we concluded
that in most cases the index generated from a folded inter-
mediate index is able to convey more information about
the path than a shorter, unfolded index. And folding works
better when the corresponding bits of different task
addresses do not line up, thereby reducing the loss of the
more significant information which tends to be in the same
address bit positions.

The second design technique uses fewer bits from
older tasks when constructing the intermediate index. This
is intuitively reasonable because information about more
recent tasks in the control flow tends to be more relevant to
future control flow. Moreover, information about more
recent tasks in the control flow implies some information
about earlier tasks.

In the application of path-based prediction to exit pre-
diction, there is an optimization for tasks with only one
exit; a single exit is always predicted and no updates are
made to the history table. This reduces aliasing by reduc-
ing the number of updates to the history table.

6.2 Parameters of the path-based predictor
We specify a path-based predictor using five parame-

ters. Four of these parameters are used to specify the bits
which constitute the intermediate index. The fifth parame-
ter specifies the number of times the intermediate index is
folded to generate the index.

The four parameters for specifying the makeup of the
intermediate index are:

• Depth of the path history, the number of tasks preceding
the current task that are used to represent the path

• the number of bits from eachOlder task address
(Current_Task - 2 to Current_Task - D)

• the number of bits from theLast task address (Current
Task - 1)

• the number of bits from theCurrent task address
The fifth parameter is the number ofFolds. The index

is generated by taking the intermediate index and breaking
it into F equal sub-fields, which are then XORed together.

The length of the intermediate index, which must be a
multiple of F, is:

IntLength = (D - 1) * O + L + C.
The number of entries in the correlating table is a

function of the five parameters:

SizeOfTable = 2IntLength = 2((D - 1) * O + L + C) / F

Figure 9 Intermediate Index and Index Generation

Developing an optimal intermediate index representa-
tion and folding function were not the goal of this
research; there is much room for exploration. However,
this organization gave us a framework to engineer reason-
able sized, high-performance predictors.

In later sections we will describe implementations in
terms of the five parameters presented here. We use the
following convention: D-O-L-C (F). For example a 6-5-8-
9 (3) implementation is 6Deep, using 5 bits fromOld
tasks, 8 from theLast task, 9 bits from theCurrent task,
and is broken into 3 parts toFold together. For this exam-
ple the intermediate index is 42 bits, the actual index is 14
bits and the table has 16K entries.

6.3 Exit Prediction
Real implementations of the path-based predictor perform
close to the ideal (alias-free) implementation.Figure 10
compares the relative performance of a real implementa-

‘L
’ B

its

...
D

 -
 1

xor
INDEXF parts

Intermediate Index

Previously Encountered Task Addresses

Current Task Address
C bits...

Current Task Address - 1
L bits...

Current Task Address - 2
O bits...

Current Task Address - 3
O bits...

Current Task Address - D
O bits...

...
‘C

’ B
its

...
‘O

’ B
its...

‘O
’ B

its...
‘O

’ B
its

...
..

tion to the ideal for a range of depths and a constant table
size of 8 kB (14 bits of index * 4 bits per entry). These con-
figurations were determined through experimentation to be
good configurations, but are not known to be optimal.

Figure 10 Comparison of Ideal Predictors to Real
Implementations

gcc shows the largest deviation from the ideal because
the index and table are not large enough to capture all pos-
sible states. Figure 11 shows the number of different states
the predictor sees in the ideal and real implementations for
gcc and espresso. Espresso is representative of the other
benchmarks. A larger implementation would help increase
the prediction accuracy for gcc considerably.

Figure 11 States touched in the PHT

In sc, we see two distinct drops in prediction accura-
cies at depths of 3 and 5. These points correspond to the
depths where new degrees of folding (1 to 2 and 2 to 3
degrees of folding respectively) were introduced in the
implementations. The advantages of a longer history (in

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

11.00%

12.00%

0-
0-

0-
14

 (1
)

1-
0-

7-
7

(1
)

2-
4-

5-
5

(1
)

3-
6-

8-
8

(2
)

4-
5-

6-
7

(2
)

5-
4-

6-
6

(2
)

6-
5-

8-
9

(3
)

7-
4-

9-
9

(3
)

DOLC (F)

M
is

s
R

at
e

Ideal

Real

GCC

18.00%

19.00%

20.00%

21.00%

22.00%

23.00%

24.00%

25.00%

26.00%

0-
0-

0-
14

 (
1)

1-
0-

7-
7

(1
)

2-
4-

5-
5

(1
)

3-
6-

8-
8

(2
)

4-
5-

6-
7

(2
)

5-
4-

6-
6

(2
)

6-
5-

8-
9

(3
)

7-
4-

9-
9

(3
)

DOLC (F)

M
is

s
R

at
e

Ideal

Real

COMPRESS

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

0-
0-

0-
14

 (
1)

1-
0-

7-
7

(1
)

2-
4-

5-
5

(1
)

3-
6-

8-
8

(2
)

4-
5-

6-
7

(2
)

5-
4-

6-
6

(2
)

6-
5-

8-
9

(3
)

7-
4-

9-
9

(3
)

DOLC (F)

M
is

s
R

at
e

Ideal

Real

ESPRESSO

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

0-
0-

0-
14

 (
1)

1-
0-

7-
7

(1
)

2-
4-

5-
5

(1
)

3-
6-

8-
8

(2
)

4-
5-

6-
7

(2
)

5-
4-

6-
6

(2
)

6-
5-

8-
9

(3
)

7-
4-

9-
9

(3
)

DOLC (F)

M
is

s
R

at
e

Ideal

Real

SC

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

0-
0-

0-
14

 (
1)

1-
0-

7-
7

(1
)

2-
4-

5-
5

(1
)

3-
6-

8-
8

(2
)

4-
5-

6-
7

(2
)

5-
4-

6-
6

(2
)

6-
5-

8-
9

(3
)

7-
4-

9-
9

(3
)

DOLC (F)

M
is

s
R

at
e

Ideal

Real

XLISP

0

5000

10000

15000

20000

25000

30000

0 1 2 3 4 5 6 7
History Depth

P
H

T
 E

n
tr

ie
s

T
o

u
ch

ed

Ideal Implementation

Real Implementation

GCC

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7
History Depth

P
H

T
 E

n
tr

ie
s

T
o

u
ch

ed

Ideal Implementation

Real Implementation

ESPRESSO

the intermediate index) quickly overpower the penalty
introduced by occasionally folding “useful” bits together;
the accuracy of the predictor reapproaches the ideal after
these points.

We do not present results for implementations of
GLOBAL or PER due to space limitations. This can be
justified easily because the implementations of the path-
based history predictors tend to do better than the ideal
implementations of the other two schemes. Our depth 7
implementation of PATH has a lower miss rate than the
ideal depth 7 PER predictor for all the benchmarks except
for sc. Our depth 7 implementation of PATH has a lower
miss rate than the ideal depth 7 implementation of GLO-
BAL for all the benchmarks exceptgcc, where it is within
5%.

A path-based prediction scheme perform better than
other prediction schemes for inter-task prediction. How-
ever, path-based predictors have not yet proven themselves
to be competitive with exit-based schemes for traditional
branch prediction, partly due to their recent introduction.
Furthermore, the path-based method does not encode path
information as efficiently as exit-based histories. In branch
prediction, the exit-based history can be kept with only a
single bit per entry, which is not true in inter-task predic-
tion or other multi-way branching problems where a few
bits are required per entry. Another reason for the advan-
tage seen by path-based schemes in inter-task prediction is
that the higher concentration of calls, returns and indirect
branches makes it harder for exit-based approaches to cap-
ture the path history.

6.4 CTTB Address Prediction
6.4.1 Prediction for Indirect Branches & Indirect Calls

In this section we present results for predicting the
target addresses of indirect branches and indirect calls
with reasonably sized implementations of a CTTB. Figure
12 compares reasonable sized implementations of a CTTB
to ideal (infinite size) implementations for a range of
depths. All the implementations have a table size of 8 kB
(11 bits of index * 4 bytes per entry).

Figure 12 Comparison of Real to Ideal Predictors for
Address Prediction

For xlisp these implementations perform nearly iden-
tical to the ideal. For gcc the implementations diverge
from the ideal by up to 15%. This divergence is caused by
the table not being large enough to capture the number of
states (unique paths) observed for the benchmark. In these
implementations the number of entries for the CTTB is
one-eighth of the entries we implemented for the exit pre-
dictor. Scaling the CTTB to the number of entries of the
predictor in order to do CTTB-only prediction would be
quite costly.

6.4.2 CTTB-only Task Prediction
In this section we present results for CTTB-only inter-

task prediction, which predicts without using information
from the header. Table 3 compares CTTB-only prediction
accuracy to an exit predictor which determines target
addresses using the header, a RAS and a small CTTB. The
results here are for predicting the actual address of the next
task. We compare a CTTB-only method (14-bits of index)
to an exit predictor (14-bits of index) with a RAS and a
small CTTB (11-bits of index). The predictors here all
have a history depth of 7. We see that the CTTB-only
method, requiring 64kB of state, performs from 4% to
54% worse than the alternative method. The largest devia-
tion is forgcc andxlisp, 54% and 41%, respectively.

7 Conclusion

In this paper we studied the issues involved in inter-
task prediction and presented a task predictor that has very
high prediction accuracies for reasonable sized structures.
The key design points presented were:
• The last exit with hysteresis prediction automaton offers

18.00%

23.00%

28.00%

33.00%

38.00%

43.00%

48.00%

53.00%

58.00%

63.00%

0-
0-

0-
1

(1
)

1-
0-

5-
6

(1
)

2-
3-

3-
5

(1
)

3-
5-

6-
6

(2
)

4-
4-

5-
5

(2
)

5-
5-

6-
7

(3
)

6-
4-

6-
7

(3
)

7-
4-

4-
5

(3
)

DOLC (F)

M
is

s
R

at
e

Ideal

Real Implementation

GCC
Prediction Method gcc comp espr sc xlisp

CTTB-only predictor (64kB storage)10.5 19.8 2.6 5.3 7.9

Exit predictor with RAS & CTTB
(16kB storage)

6.8 19.1 2.5 4.6 5.6

Table 3 Miss Rates for CTTB-only vs. Exit Predictor
with RAS & CTTB

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

0-
0-

0-
11

 (1
)

1-
0-

5-
6

(1
)

2-
3-

3-
5

(1
)

3-
5-

6-
6

(2
)

4-
4-

5-
5

(2
)

5-
5-

6-
7

(3
)

6-
4-

6-
7

(3
)

7-
4-

4-
5

(3
)

DOLC (F)

M
is

s
R

at
e

Ideal

Real Implementation

XLISP

the best accuracy/size performance tradeoff.
• A path-based history scheme works best for task predic-

tion.
• A correlated target buffer is essential for good address

prediction of indirect jumps and indirect calls.
• Although task prediction without a header is possible it

does not offer comparable accuracy/size performance.
Another important area covered in this paper was efficient
ways to implement path-based history schemes. There
were two important heuristics presented:
• Creating a larger intermediate index value and folding it

to form the actual index
• Decreasing the number of bits older tasks contribute to

the history relative to recently encountered tasks.
In this paper we used prediction accuracy as our met-

ric. In general higher prediction accuracy leads to better
execution performance. In some cases data dependencies
limit the gains of prediction accuracies. Also, not every
prediction is equally important to performance.

We conclude by presenting some performance num-
bers to demonstrate that in general better prediction does
increase performance. Table 4 presents instructions per
cycle (IPC) performance numbers generated with a timing
simulator. We present IPC numbers for a simple predictor
(using the task address to index the PHT), GLOBAL, PER,
PATH and an upper bound of perfect inter-task prediction.
For all the implementations the PHT is 16KB and a history
depth of 7 is used. All implementations use a CTTB for
indirects and a RAS for returns.The processor core has
four 2-wayOOO processing units. For gcc andxlisp where
PATH had the most substantial prediction accuracy advan-
tages, the better task prediction increases the IPC by 5% to
12% over the next best prediction scheme. PATH performs
at least as well as other predictors for all the benchmarks.

Acknowledgments
This work was supported in part by NSF Grant MIP-

9505853 and by the U.S. Army Intelligence Center and
Fort Huachuca under Contract DABT63-95-C-0127 and
ARPA order no. D346. The views and conclusions con-
tained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the U.S.
Army Intelligence Center and Fort Huachuca, or the U.S.
Government.

The authors would like to thank Chris Lukas and Gur-
indar Sohi for their input; Scott Breach for developing the
multiscalar simulators and determining the IPC perfor-
mance numbers; Andreas Moshovos for modifying the
functional simulator to study task prediction; T. Vijayku-
mar for developing the multiscalar compiler.

References
[1] S.E. Breach, T.N. Vijaykumar, and G.S.Sohi. The anato-

my of the register file in a multiscalar processor. InPro-
ceedings of the 27th Annual International Symposium on
Microarchitecture, December 1994.

[2] S.E. Breach. Personal Communication, November 1995.
[3] T. Conte, et al., Optimization of instruction fetch mecha-

nisms for high issue rates.Proceedings of the 22nd Annual
International Symposium on Computer Architecture, June
1995.

[4] M. Franklin and G.S.Sohi. The expandable split window
paradigm for exploiting fine-grain parallelism. InProceed-
ings of the 19th Annual International Symposium on Com-
puter Architecture, May 1992.

[5] M. Franklin and G.S. Sohi. ARB: A Hardware Mechanism
for Dynamic Reordering of Memory References.IEEE
Transactions on Computers volume 45, no 5, May 1996.

[6] M. Franklin. The Multiscalar Architecture. Ph.D. thesis,
Computer Sciences Department, University of Wisconsin-
Madison, November 1993.

[7] L. Gwennap. Intel’s p6 uses decoupled superscalar design.
Microprocessor Report, pages 9–15, February 16 1995.

[8] D. R. Kaeli and P.G. Emma. Branch history table prediction
of moving target branches due to subroutine returns. InPro-
ceedings of the 18th Annual International Symposium on
Computer Architecture, May 1991.

[9] J.K. F. Lee and A.J.Smith. Branch prediction strategies
and branch target buffer design.IEEE Computer, 17(1):6–
22, January 1984.

[10]S.McFarling, Combining Branch Predictors, DEC WRL
TN-36, June 1993.

[11]R. Nair. Dynamic path-based branch correlation. InPro-
ceedings of the 28th Annual International Symposium on Mi-
croarchitecture, December 1995.

[12]S.-T.Pan, et al., Improving the accuracy of dynamic branch
prediction using branch correlation, InProceedings of the
5th International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct 1992.

[13]J.E. Smith. A study of branch prediction strategies. InPro-
ceedings of the 8th International Symposium on Computer
Architecture, May 1981.

[14]G. S.Sohi, S.E. Breach, and T.N. Vijaykumar. Multiscalar
processors. InProceedings of the 22nd Annual International
Symposium on Computer Architecture, June 1995.

[15]T.-Y. Yeh and Y.Patt. Alternative implementations of two-
level adaptive training branch prediction. InProceedings of
the 19th Annual International Symposium on Computer Ar-
chitecture, May 1992.

[16]T.-Y. Yeh. Two Level Adaptive Branch Prediction and In-
struction Fetch Mechanism for High Performance Supersca-
lar Processors. Ph.D. thesis, Dept. of Electrical Engineering
& Computer Science, University of Michigan, 1993.

[17]T.-Y. Yeh and Y.Patt. Two level Adaptive Branch Predic-
tion. In Proceedings of the 24th Annual International Sym-
posium on Microarchitecture, November 1991.

gcc comp espr sc xlisp

Simple 1.55 1.44 2.61 2.13 1.59

GLOBAL 1.59 1.47 2.67 2.21 1.77

PER 1.48 1.44 2.68 2.22 1.76

PATH 1.68 1.47 2.70 2.22 1.89

Perfect 1.83 1.85 2.75 2.26 2.03

Table 4 IPC from detailed timing simulator

