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Abstract

The Multiscalar achitectue eecutes a single
sequential ppgram following multiple flows of comtt In
the Multiscalar hadware, a global sequencewith help
from the compilettakes lage steps though the pogram’s
contol flow gaph (CFG) speculativelystarting a nev
thread of conwl (task) at eale step. This is intetask con-
trol flow speculation. Whin a task, taditional contol
flow speculation is used tateact instruction lgel parl-
lelism. This is inta-task contol flow speculation.

This paper focuses on niemisms to implement inter
task contol flow speculation (task pdiction) in a Multi-
scalar implementation. This form of speculation has fun-
damental dierences fom traditional branch prediction.
We look in detail at the issues ofggliction automata, his-
tory genemtion and taget kuffers. W present implemen-
tations in eah of these aras that der good accuacy,
size and performancdaracteristics.

Keywords. Multiscalar Architecture, Control-flow Specu-
lation, Multi-way Branch Prediction, Target Buffer

1 Introduction

Traditional processor architectureseeute sequential
programs follving a single flas of control. D achiee
high performance, both superscalar and VLIW implemen-
tations of these architecturesiild a lage windav of
instructions and attempt to issue multiple independent
instructions per clockycle. The instruction winde is
built by the hardwre (superscalar), the compiler (VLIW)
or both by speculating a singleloof control and rear-
ranging instructions to increase parallgeeution. The
ability to huild a lage windav is limited by the require-
ment that control fl@ speculation (branch prediction) be
done sequentiallySequential program flo limits the
speed with which the win@ocan be bilt, and, incorrect
predictions limit the useful size of the winddbecause
instructions folleving an incorrect prediction are nullified.

1. This work was done while the authors were at thevigni
sity of Wisconsin.
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Multiprocessing and multi-threaded architectures
achieve high performance byxecuting may instructions
in parallel from multiple flas of control. Programs must
be written in a parallel programming style (which contin-
ues to be a ditult problem), or must he parallelism
extracted by the compiler (such as loopdor ector par-
allelism) into mostlyindependensub-programs. Depen-
dences between thesevi® of control must be handled
explicitly by the programmer or the compileihis
approach does notosk well for mary non-numeric appli-
cations because (1) the parallelism present in the program
is difficult to detect during program creation or compila-
tion, (2) the program is written in a language such as C
which males compiler analysis di€ult, or (3) the granu-
larity of communication is too small to be handled-ef
ciently by the compiler or hardwe.

The Multiscalar architecture [4][6][14kecutes a sin-
gle sequential program follng multiple flovs of con-
trol. It relies hedily on hardvare support to maintain
sequential semantics whilgexuting a program in a paral-
lel fashion. This allws the architecture tocecute &isting
codes diciently and allevs the programmer to use a natu-
ral, sequential programming model. The architecture pro-
vides a uniform memory space, single logicgister file
and sequential semantic& achiee high performance the
Multiscalar hardwre uses ta levels of control flav spec-
ulation. This multi-leel speculation model alles the
hardware to:

* build a very large effective instruction window from a
sequential program,

* build this window very quickly, and

» maintain the large window in the presence of some miss
predicted branches.

In the Multiscalar hardere, aglobal sequencemwith
help from the compilertakes lage steps through the pro-
grams control flav graph (CFG) speculagly, starting a
new thread of control at each step. Each of these steps
requires the implicit prediction of possibly nyaoranches.

We call thisinter-taskcontrol flav speculation and refer to
the group of instructions between steps sk The lage



steps in the control fle increase the &fctive windav
size, thereby increasing the chance of finding independent
instructions which may bexecuted in parallel.

Within a task, traditional control flo speculation is
used to rtract instruction leel parallelism. & call this
intra-task control flav speculation. The model alls
speculation within a task to be imperfect without necessar-
ily interfering with the higher leel intertask speculation.
The nat task may be control independent of some or all of
the control flev of preceding tasks.

The focus of this paper is thevddopment of mecha-
nisms for intettask control flav speculation in a Multisca-
lar implementation. This form of speculation has some
fundamental dferences from traditional branch predic-
tion. We look in detail at the issues of prediction automata,
history generation and get huffers. W& present imple-
mentations in each of these areas thigrafood accurag
size and performance characteristics.

2 Overview of Multiscalar Processors

2.1 Multiscalar Executable

A Multiscalar instruction set architecture (ISA) is
similar to other ISAs. Hoever, a Multiscalar ISA adds
special instructions to communicate information from the
software to the hardare to support the twevel sequenc-
ing model. A multiscalar »&cutable consists of tasks
which are encapsulated groups of instructions that may
contain arbitrary control fle. The task is bounded by task
start and task end instructions. The task start instruction
loads atask header into special state gisters. The task
header contains a bit mask indicating whiohisters may
have nev values created within the task and contains infor-
mation about tasks that may succeed it. A task must end in
a control transfer instruction which has special bits to indi-
cate that it is a taskxi point. The taget address deter-
mined by the st instruction is address of the task start
instruction for the ne task.

At a high level, program gecution may be viged as
traversing a task fle graph (TFG). Figure 1 she an
example TFG. A TFG is a directed graph with tasks at
nodes and the arcs representing contreV thietween the
tasks. A TFG is analogous to a controiMigraph (CFG)
built from a scalar xecutable. Each task is a traditional
CFG.

There is no bound on the number of potentiatse
that a task can ka. Our implementation limits the num-
ber of «its in the header to fouFor each git the header
contains three pieces of information about the control
flow.

» Exit Soecifier: The type of control instruction that exits
the task. This is one of the control flow types detailed in
Table 1. This information is encoded in 5 bits.

 Target Address: If the target address of the exit instruc-
tion is known (as it is in BRANCH and CALL exits) this
field contains the actual target address of the instruction.
Otherwise this field is left null by the compiler. In our

environment, addresses are 32 bits.

» Return Address: If the exit instruction is a CALL or
INDIRECT_CALL, the value in this field is the address
executed after the called routine returns.
pushed onto a return address stack by the hardware.

It may be

Task 2
0ad header
Cbranch if (i == 10) <exit> >
(branchif (a = TRIE) \)
----- . . . b = this
for (i=0; i<10; i++) { jump N
if (a==1) b = that
b = this;
else . ;
ump <exit>
b = that;
while (cond == 1)
loop_body
if (done == 1) Task 3
return; load head
do_some_more Coa eacer .
do_. _ hif =1
if (enough — 1) branch if (cond ) <exit>
break; 6op_body
jump <exit>
Task 4
Ioad header
branch if (done != 1)
/ do_some_more
/ branch if (enough == 1) <exit
izi+1
jump <exit>
-
Figurel Example Task Flow Graph
8 o
Corr ndin s E L ’gj 5
Control Flow Type | ~° ;S:zloar 'ng § 5 - § 5
N g = 2
Terminating Task Instruction o g_ g |§ g'g
o5 = P
& O 8
'_
BRANCH (un)conditional Yes 1 Easy
branch
CALL call (PC relatie) | Yes 1 Easy
RETURN return No unlimited | Harder
INDIRECT_BRANCH | indirect branch | No unlimited | Hard
INDIRECT_CALL call (indirect) No unlimited | Hard

Table 1 Multiscalar Inter-task Control Flow Types




The «it instructions of a task must be control transfer
instructions; conditional branches are ontitewhen thg

dicts the starting address of thexhtask to be xecuted
using information from the task header of the most

are talen. Each TFG arc is also a CFG arc of the underly- recently predicted task and dynamic prediction haréw

ing program. In our implementation, control transfer
instructions contain three bits ofieinformation. One bit
specifies that the instruction is axiteThe other tw bits
associate thexé instruction with one of the fourxé
points specified in the headerhis last information is
needed to update thexteéask predictorEach &it instruc-
tion is classified as one of éitypes, as detailed irable 1.

2.2 Multiscalar Processor Hardware

A high level view of a Multiscalar implementation is
shawvn in Figure 2. The Multiscalar hardne emplgs two
levels of sequencers taiitd a lage windav of instruc-
tions in the machine ancateact parallelism from an inher-
ently sequential program. At run-time, the Multiscalar
global sequencer traverses the prograsiTFG. Bsks are

distributed to processing units after predicting the path the

program will follov through the TFG. The processing
units are arranged in a ring. Atyatime, one unit will be
executing the non-speculad “current” task and the other
units in the ring will be xeecuting speculate tasks. The

ring operates as a circular queue with a head and a talil

pointer (pointing to the current non-speculatiask and
the most recently started speculatitask, respectely).
Tasks commit in strictly FIFO order

Hgad Global Sequencer Tail
o | Cache
Q
L’ - : | )
g . b :
Processin o || Execution rocessing
Unit 9 & || Pipeline [—" * *®7 Unit
©
Q
o
- LCocal
Register
File

— [ —*

Interconnect Network
— ‘

Data Q Data
Bank % Bank

Figure2 TheMultiscalar Hardware
Hardware prwides for the synchronization and the
forwarding of data around the ring. Bothgigter and
memory state he to be communicated to maintain

This predicted task is launched on th&trfeee processing
unit. When the task at the head of the processing unit
queue completes, it informs the global sequencer of its
actual, non-speculat taget address. If the @&t address
predicted to follav the head task &s incorrect, all tasks
behind the head amguashed (all work performed is dis-
carded) and»ecution is redirected to the correct task. The
task misprediction penaltin terms of lost potential avk,
can be lage.

Alternatively, a hardvare implementation could &
a global sequencer that predicts tasks without a header
Remaing the header auld minimize the impact to an
instruction set for supporting the Multiscalaxeeution
model. The hardare compensates for the lack of header
information by lilding up history This option will be dis-
cussed in Section 5.4.

Within a task each processing element may predict the
outcome of control fl instructions within the tas§’CFG
and redirect its pipelines using specwiatixecution. This
intra-task control flv speculation is similar to cean-
tional scalar control fle speculation. In practice, e
ever, there is a dference between intra-task speculation
and conentional scalar control-fl@ speculation. In a
Multiscalar processotthe indvidual processing elements
do not see the whole dynamic instruction stream.yThe
have a local, incomplete weof the code which led to the
currently eecuting instructions. This may hurt dynamic
intra-task prediction accuracies. The predictor used for
intra-task prediction in our current Multiscalar simulators
is a bimodal predictor which only $afs minimal accu-
ragy loss due to incomplete historwe do not look into
the matter of intra-task speculationyafurther in this
paper Ratherwe focus on the job of intéask speculation
which requires ng& mechanisms.

3 Methodology

3.1 Simulator

Our results are obtained using a multiscalar functional
simulator and compiler deloped at the Umersity of
Wisconsin. The focus of the research reported here is task
prediction accurac not overall Multiscalar gecution
time. Havever, in the conclusion we do report somen
all performance numbers, reflecting the impact of task pre-
diction. The werall performance numbers are obtained
from a detailed timing simulator which &k into account

sequential semantics across a single address spacgand re speculatie state.

ister file. The hardare to perform this has been discussed
in other publications [1][5].

The global sequencer does ngamine each instruc-
tion in a task before predicting thexheask; rather it pre-

There are a to major issues we do not &@knto
account in the functional simulator
 Update Timing: Updates of dynamic data structures for



prediction are made immediately after prediction (there
is no delay). A real implementation may make predic-
tions based on stale information while waiting for non-
speculative outcome information to return from the exe-
cution processors.

Pollution: Our functional simulator does not continue
past a mispredicted task, therefore no pollution of dy-
namic data structures for prediction occurs because of
speculative updates from mispredicted tasks. Our results
are accurate in this regard if the mispredict recovery
mechanism completely repairs data structures modified
after a misprediction.

3.2 Benchmarks

The characteristics of tasks are dependent on the com-
piler heuristics used to break a program into tasks. The
accurag of task prediction is therefore dependent upon
the compilerin our eperience though, the relati perfor-
mance of predictors isevy consistent across fiifent
benchmarks and compilations.

Benchmark | nput Static | Dynamic | Distinct Tasks
File Tasks Tasks Seen
gce stmt.i 12525 4036539 3164
compress in (IMB) | 103 5517241 39
espresso bca.in 3788 41458206 | 1260
sC loada3 3744 8353930 575
xlisp li-input.Isp | 1756 2735019 522

Table 2 Benchmarks, Inputsand Task Information

We used fie of the SPEC92 inger benchmarks to
evaluate warious task prediction schemesable 2 lists
these benchmarks, their inputs, and taslelldehaior.
Note that the number of distinct tasks is rather small for alll
benchmarks »xept gcc. This lage working set of tasks
males intertask prediction dffcult in gcc.
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80% -

70% +
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50%
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40% - W1 Target
a0 - i
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average gce compr ess espresso s xlisp

Figure 3 Number of Exitsper Task

Figure 3 and Figure 4 shothe static and dynamic
malkeup of task xts. Recall that the current Multiscalar
implementation alles up to four gits per task. W see in
Figure 3 that most tasksveafewver than four gits, mary

having only a single x@t. This is encouraging, because
tasks with only a singlexé are easy to predict. Eackie
is classified according to control+fictype in Figure 4.

100% gy % é—
90% [ | | | | T
8 branch indirect
80% 1 ] [ [ [ ] [ | mcalindirect [ | []
O branch
70% Ocall
M return

60% L — — — HH

50% — — L +— H— H

40% + —| — — — — H H

30%

20% - H
0% -
average gcc compress espr esso sc xlisp

Figure4 Typesof Exit Instructions

4 PreviousWork

There has been a wealth obrk in scalar branch pre-
diction that we will borrev from. We briefly outline this
previous work in this section.

4.1 Branch Prediction

Two-level branch predictors were proposed bghY
and Ritt [17] and Bn, et al. [12] and e been imple-
mented in commercial processors such as the Pentium Pro
[7]. A high-level view of these predictors is sha in Fig-
ure 5. The branch address irdg (through some hashing
function) into the History Rgster Table (HR') which is a
table of one or morhistory registers. The \alue from the
HRT is combined (though another hashing function) with
the branch address to form an irdeto a Rttern History
Table (PHT). The alue in this table is a prediction autom-
aton which determines the prediction made. The structures
are updated both speculatly (history rgisters) and non-
speculatiely (prediction automata).

Branclh (Basic Block) Address

l c

History Pattern -8

0 Registel 0 History —>_5
Table Table(s o
(HRT) |g ‘ » (PHT)| O

Updates

Figure5 Two-level adaptive prediction mechanism

The HRI hash function normallyxgracts bits from
the branch address to indéhe HR. The PHT hashing
function may be a simple function concatenating bits of
the address with bits from the history table, or some fold-
ing scheme withxxlusveOR may be used to reduce alias-



ing. [10]
4.1.1 Prediction Automata

Most branch prediction applicationsveaused 2-bit
saturating counters. The 2-bit counter encodespigces
of information, prediction (tadn or not takn) and bias
(strong or weak). This bias prides a form of fisteresis,
so that a prediction that has been correct for suseessi

pipelined implementations [16][3].

5 Adapting Branch Prediction to Tasks

In applying scalar dynamic branch prediction to inter

task prediction in Multiscalar processors, we equate Multi-
scalar tasks to scalar basic blocks anddethe werall
structure of the predictor mechanism unchangedy-Ho

executions of a branch will not be changed after a single ever, there are a number of issues that arise when we per-

misprediction.

4.1.2 History Generation
In two-level dynamic branch predictors, there are one

or more history rgisters that are maintained by shifting in

some representation of the predicted outcomes of

branches. W call this proceskistory generation. A num-

ber of history generation methodsvhabeen inestigated

in the literature:

 exit-based: After each prediction, the predicted branch
outcome is shifted into the low order bit of the history
register. This single bit represents taken or not taken.
Conceptually, this single bit represents the exit taken
from the branch instruction, and we call this method
exit-based. This method was used by Yeh and Patt and
Pan, et al.

« path-based: After each prediction, some bits of the tar-
get address of the branch are shifted into the low order

bits of the history register. This creates a more accurate

representation of thpath followed to reach a certain
point in the program execution. Hence, predictors that
use this method are callguth-based. This approach
was studied in [11].

4.2 Branch AddressPrediction

In addition to predicting whether a branch isatalor
not talen, it is important to be able to determine quickly
the address of the tak path. ® facilitate smooth pipelin-
ing of successe fetches in the presence of controivlo
changes, a number of mechanismeehaeen proposed and
implemented in commercial processors:

* A dedicated adder in the fetch mechanism can be used

to compute PC relative target addresses before they are

computed by the ALU(S) in the execution engine.

A branchtarget buffer (BTB) [9][13] stores addresses of
conditional branch targets. A BTB is simply a cache
memory. Typically, the BTB indexing function is simi-
lar to other cache structures, utilizing only bits from the

branch address. Indirect addresses may be cached in the

form such a straightforard application of the ideas.
5.1 Prediction Automata

The saturating counters used to macalar branch

predictions are not sfigient to predict tasks in Multiscalar
processors because there may be more thauedivs. Pre-
dicting the exit taken out of the four possible exits is a
multi-way branching problemThere are a number of
alternatves with which to replace the saturating counters
in the PHT

« voting counters (VC): At each entry in the PHT there is
a saturating counter for each exit. If the counter corre-
sponding to one exit is greater than all others, we predict
this exit. If there is a tie for the highest counter value, we
pick either (1) the most recently used (MRU) exit among
the ties, or (2) randomly among the ties. Note that the
MRU method requires additional storage and implemen-
tation complexity. We investigate each of these methods
below. When the actual exit is known, the counter corre-
sponding to this exit is increment, while the others are
decrementing. We investigate the use of both 2-bit and
3-bit counters.
last exit (LE): Each entry in the PHT records the exit tak-
en the last time this entry was accessed; we predict this
exit the next time this entry is accessed. When the actual
exit is known, it is stored in the PHT. Note that LE is re-
ally just a degenerate case of VC, with each counter be-
ing one bit. Storing a simple exit number reduces storage
costs, however.
last exit with hysteresis (LEH): The last taken approach
can be augmented by adding a small (1 or 2 bit) saturat-
ing counter that is incremented on correct predictions
and decremented on incorrect predictions. The predic-
tion is replaced when the counter is zero and the predic-
tion is wrong. This provides a mechanism for keeping a
prediction that was correct multiple times from being re-
placed too quickly.

Figure 6 compares the performance afesediferent

BTB in addition to PC-relative addresses. automata used in conjunction with ery aggresse path-

« A return address stack (RAS) [8] may be used for return ~ based predictor (discussed later). All the benchmarks had
address prediction. In Multiscalar processors, as in sca- Similar relatve performance for the automata so we only
lar processors, a reasonably deep RAS is nearly perfectpresent numbers fagcc. The seen approaches stratify
in predicting return addresses [2]. into three performance cues. for all the benchmarks the

Microarchitectural structures have been proposed that last it (LE) approach has the highest miss rate. Both 2-

combine exit and target address prediction to facilitate bit voting counters (VC MR and VC RANDOM) and the



last it with 1-bit of hysteresis (LEH 1-bit) perform

nearly identical and are indistinguishable in the graphs.

All three have comparable dgees of kisteresis; replacing

a proven prediction only after tavmiss predictions. Both
3-bit wting counters (VC MR and VC RANDOM) and
the last git with 2-bits of tysteresis (LEH 2-bit) perform
nearly identical and ka the lavest miss rates for all the
benchmarksSince LEH uses fewer bits than VC, we use

the predicted exit.

» A Per-Task Exit History Scheme (PER) where there is

one history register and one table of prediction automata
per static task. This scheme is analogous to Yeh's PAp
configuration [15]. Each history register records which
of the four exits was taken for the previous invocations
of the particular static task. In a real implementation a fi-
nite number history registers and tables would be asso-

the LEH-2 bit automaton in all following studies. ciated with tasks by some hashing function;
occ approximating but not guaranteeing a 1-to-1 relationship
17.00% — between tasks, history registers and pattern tables.
150006 1N\ - —+ 2-bit VCMRU - * A Path-based History Scheme (PATH) where there is a

—=—2-bit VC RANDOM
13.00% -\ "o —4— LEH-1-hit
—3-hit VCMRU

single history register shared by all tasks. We discuss
later how to encode the identity of a task.
There are no doubt other approaches to history generation,
but we limited our study to these three which represent the
dominant approaches in branch prediction.
To compare these history generation methods, we
I simulated ideal implementations of the three approaches.
300% ; ; ; ; ; ; ; ; We define ideal to mean there is no aliasing i @fnthe
o 1 2 3 4 5 6 7 8 9 data structures. Aliasing occurs when the predictor can not
History Depth distinguish between twdifferent cases because of limited
Figure6 Comparison of Prediction Automata information. For GLOBAL, an ideal implementation
5.2 History Generation means that the entire histonygigter is used for indéng

The history generation methods of branch prediction N0 the table of prediction automata, and the PHT gelar
have to be modified slightly to support task prediction: enough to associate a unique entry witbrg possible his-

« Exit-based history generation: Shifting one bit to encode 0¥ Value. for PER, an ideal implementation means that
branch behavior does not work because in task predic- there is a unique historygister and a unique table of pre-
tion there are up to four possible outcomes of each task diction automata forwery static task. Each PHT has the
sequencing step. The modification is very straight for- Same properties as in the ideal global scheme: it ge lar

ward: we shift two bits instead of one to encode which €n0ough so thatvery history reister \alue indees to a
of the four possible exits was predicted. unique PHT entryFor PATH, an ideal implementation can

« Path-based history generation: Similar to branch pre- uniquely identify the path that led to the current point in
diction, we shift in some of the low order bits of the tar- the TFG and can associate a unique prediction automaton

get address of the predicted task. with this path. o
There is some diérence in the information that the Figure 7 shas the prediction miss rates for the three

history in task prediction represents. In branch prediction history generation schemes. The schemes are compared
the history at the time of a prediction represents the most °V€r @ range of history depths. Note that a history depth of
recent control-flov behaior. In task prediction the history ~ 260 iS équialent to associating a single prediction autom-

is really disconnected pieces of controlflinformation aton with each static task; no correlation ipleited.

from various points in the past. The history moseljk ~ PATH alvv?ys perfor(r)ns better than GL@B. GLOBAL

does not include the control-loimmediately before the ~ has @ 30% and 50% higher miss rate goc and xlisp

point where the prediction of thexigask is made because ~ '€Spectiely for a history depth of 7.df the other three
this piece of control flw is turied inside the task. &y~ Penchmarks the dédrence is smaller: from 2% to 5%.

found that despite this betiar, there is still correlationin ~ PATH outperforms PER on 4 out of the 5 benchmarks.
paths takn through the TFG. PER has a miss rate which is 51%, 12% and 15% higher
We eamine the prediction accuracies that can be than PTH for gcc, compress andxlisp res;peCUer at a
achiwed using the arious history generation schemes history depth of 7. The dérence is only 4% foespresso,
adapted from branch prediction. The prediction schemes reflecting hev relatively easy intetask prediction is for
we compare are: this benchmark. & sc, PATH has a 35% higher miss rate
« A Global Exit History Scheme (GLOBAL) where there is ~ than PER at a history depth of 7. -
a single history register shared by all tasks. The history 't is difficult to compare RTH to PER qualitatiely
register is generated by shifting in two bits which encode P€cause theare based on fundamentally felient con-

£ 11.00% R —%—3-bit VCRANDOM | __
% —e— LEH-2-bit
s

9.00% -

7.00% -

5.00% -




cepts. RTH attempts to find correlation linking where a
program came from to wherestgoing. PER looks for
cyclical behaior patterns at particular decision points.
PATH performs better than PER suggesting that task flo

is more strongly correlated to immediately preceding task
flow than to gclical behaior. This result is to some
degree a function of the benchmarks we are using. Both
PATH and GLOB\L are trying to capture the same infor-
mation: the predecessor tasks leading up to the current
task. ATH captures this information better because it can
uniquely identify predecessors. Ixittbased histories, twv
tasks who tad their “first” &it to get to the current task
are indistinguishable unless the pattern (to the depth of the
history) of talen «its to reach each of them is unique.
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Figure7 Performancefor |deal (alias-free) Prediction
Another agument in &vor of using a path-based his-
tory scheme is thatxé-based history schemes (GL@AB
and PER) tend to ke poor utilization of the PHT address
space. Most tasks Y only one or tw exits (see Figure 3)
yet two bits are still used to encode each task step.
Ultimately, we found that for real implementations,
PATH maintained its performance ahtage wer the
other schemes, this is discussed in Section 6.3. In subse-

guent sections, we will focus oPH.

5.3 AddressPrediction

After predicting which of the founds will be talen,
the address of the predictexiteneeds to be determined.
For return gits, the address is determined using a return-
address stack (RAS).oF calls and branches the gat
address corresponding to thgiteis given in the task
header For indirect calls and indirect branches, agé&r
address must be predicted - the compiler can not currently
provide the hardare with ag help in this rgard, nor can
a simple prediction structure &ka RAS be used for this
type of taget address prediction. Of thedibenchmarks
studied, tvo had a substantial number of indirect branches
and indirect calls. & gcc andxlisp, 5% and 8% of the
exits taken are indirect branches or indirect calls respec-
tively. We concentrate our fefts on these tar bench-
marks.

A Task Taget Bufer (TTB) similar to a Branchar-

t t t
[} 1 2 3 8



get Bufer (BTB) is the olious choice for making address
predictions for indirect branches and calls. Each entry of
the TTB is a taget address and a 2-bit saturating counter
that proides tysteresis, similar to thexi prediction
automata discussed earli¢he TTB is indged with some
bits of the starting address of the task.

IDEAL TTB
60.00%

55,000 -
50.00% -
45.00% -

B 40.00% |

& A 0

%

S 35.00% |-
30.00% -
25.00% -

20.00% -

15.00%

History Depth

Figure 8 Performanceof Ideal (alias-free) CTTB

We found that the TTB performedcery poorly for
address prediction of indirect branches and calls. The TTB
has a miss prediction rate of 59% fgc and 39% for
xlisp with an infinitely lage TTB. This high miss rate has
a significant impact on the final task prediction rate.
Therefore we imesticgated more sophisticated schemes for
address prediction. Specificallye exkamined the use of a
correlating table indeng method, based on the path-
based global history approach used fit prediction. An
index into the TTB is generated using the same function of
path-history and current address that is used for path-
based it prediction. V& call this structure a Correlated
Task Target Bufer (CTTB). A CTTB using the path-based
history has substantiallywer miss rates than a TTB using
a standard inde derved only from the current task
address. Figure 8 shs the miss rates for an ideal CTTB
implementation for &rious depths of historfhese results
are for an infinite size CTTB with no aliasing.

5.4 Other usesfor a Correlated Target Buffer

It is possible to perform task prediction without
requiring control flav information in the header (from the
compiler), which ma&s up the majority of the head&he
CTTB uses the same indeg scheme as theié predic-
tor, and its prediction automaton is more generakkT
prediction could be performed solely with a CTTB. This
approach could potentially maktask predictions more
quickly.

The disadantage of the CTTB-only method is that it
offers worst performance and size characteristics. From
the size point of vie, each CTTB entry is 8 times asdar
as an git prediction table entryTo realize similar predic-
tion accuracies, a CTTB needs as ynantries as anxé
predictor When a CTTB is used only for indirect address

prediction it can be considerably smaller sinceeiesxits
compete for the table storage, causing less destucti
aliasing at small table sizes. From the performance point
of view, the major impact is that return addresses are not
predicted as well since a CTTB-only method can not use a
RAS. Although the CTTB can predict manf the return
addresses through correlation to recent histoiigs rates
in the range of 10% are not uncommon for returns. There
are a number of other issues which all lead to slightly
lower prediction accuracies. Indirect branches and indirect
calls tend to hae lower prediction accuracies in the
CTTB-only scheme. Although the CTTB is muchgiarin
this case, there is much more contention and aliasing,
because all types of intésk control flav instructions are
competing for space in theutier. The chances of con-
structive or neutral aliasing are reduced. There are some
additional compulsory misses that could otherwise be
avoided (recall that task headers includes theayetar
address of unconditional and conditional controlvflo
these are easily predictexits, kut the taget address is not
known when thg are first encountered in the CTTB-only
scheme).

In Section 6.4 we present some results for real imple-
mentations of the CTTB-only prediction method.

6 Implementations of Path-Based Predictors

The path-based history generation scheme is used for
exit prediction as well as for the CTTB. The path-based
history scheme presented up untivneas based on being
able to capture information to identify uniquely the history
of tasks leading to the current task. In this section we
present an approximation of ideal path-based history gen-
eration that can be implemented with reasonably sized
structures. The path-based history generation scheme is
implemented with a table of automata irel@ by a combi-
nation of a path-history géster and some bits indicating
the current task. When implementing a path-based predic-
tion mechanism, we seek to encode the maximum infor-
mation about the current task and the preceding path,
using a minimal number of bits. The first design decision
is hav to represent the tasks in a pathe @oose to iden-
tify a task using the least significant bits of its starting
address, because these bitgehthe highest probability of
being diferent for two different tasks. This is similar to
how Nair identified basic blocks [11].

6.1 Key Design Featuresof Path Based Predictors

Ideally, a path wuld be identified by the full starting
address of all tasks along the path. In implementing the
predictor the size of the PHT is limited; therefore the
index is not lage enough to hold the ideal amount of infor-
mation. The performance of an implementation is depen-
dent upon encoding as much information as possible about



the path onto the limited number of ixdgits. We use tw  Depth of the path history, the number of tasks preceding

design techniques to encode f&iént information about the current task that are used to represent the path
the path in the indéng bits. These are heuristics that we « the number of bits from eacBlder task address
have found to verk well; we attempt to ge some insight (Current_Task - 2 to Current_Task - D)

into why they work. « the number of bits from thieast task address (Current

The first design technique creates an intermediate  Task - 1)
index by concatenating bits of pieus and current task « the number of bits from th@urrent task address

addresses; this intermediate irdaay be longer than the The fifth parameter is the numberkdlds. The inde
PHT inde. The final ind& is constructed from the inter-  is generated by taking the intermediate inded breaking
mediate inde by folding the intermediate ingento the it into F equal sub-fields, which are then XORed together
number of bits needed to ind¢he PHT This folding is The length of the intermediate indavhich must be a
done by subdiding the intermediate indeinto subfields multiple of K is:

and &clusiveORing the subfields with each othEhere is IntLength=(D-1)*O+L+C.

an important tradebfnvolving the number of task address The number of entries in the correlating table is a
bits and the folding required to form the final irRd®n function of the fie parameters:

one hand, using more bits from the task address increases  qzOfTable = 2ntLtength— A(D-1)*O+L+C)/F
the information w@ailable for identifying indiidual paths.

On the other hand, folding andcdusiveORing can lose | Current sk Addfess| Intermediate Inde

information, and using more bits from the task address SN\ L Cb,'ti _—

requires more folding to form the final inde . g
Previously Encountered Task Addressges- L

In general, the ler order address bits of a task con-
vey more useful information because these bits are more
likely to differ for preceding tasks. That is, some address
bits tend to be more significant than others fdied#ntiat- T

| Current Bsk Address - Il
\ \ L bits
P

>

‘L’ Bits

Current Bsk Address - IZ

O bits
\L_osis

>

ing task paths. After studying this tradigafe concluded
that in most cases the indgenerated from a folded inter-
mediate inde is able to covey more information about
the path than a shortemfolded indg. And folding works ,
better when the corresponding bits of faliént task O =\, 09 tﬂti
addresses do not line up, thereby reducing the loss of the T
more significant information which tends to be in the same
address bit positions. \_\___ Obis
The second design technique usesefebits from e= 2
older tasks when constructing the intermediatexndais ¢
is intuitively reasonable because information about more Figure9 Intermediate Index and Index Generation
recent tasks in the control Watends to be more relant to Developing an optimal intermediate indeepresenta-
future control flov. Moreover, information about more  tion and folding function were not the goal of this

recent tasks in the control floimplies some information  research; there is much room forptoration. Havever,

‘O’ Bits

—
' | Current Bsk Address —|3

‘O’ Bits

| Current Bsk Address - ll)

O’ Bits

about earlier tasks. o this oganization gve us a frameork to engineer reason-
~Inthe application of path-based prediction d pre- able sized, high-performance predictors.
diction, there is an optimization for tasks with only one In later sections we will describe implementations in

exit; a single eit is alays predicted and no updates are terms of the fie parameters presented heree Wge the

made to the history table. This reduces aliasing by reduc- following corvention: D-O-L-C (F). Br example a 6-5-8-

ing the number of updates to the history table. 9 (3) implementation is ®eep, using 5 bits frondId

6.2 Parameters of the path-based predictor tasks, 8 from thé ast task, 9 bits from th€urrent task,
We specify a path-based predictor using fparame- and is probn into 3 parts téold 'togetherFor thls &am-

ters. ur of these parameters are used to specify the bits p!e the intermediate indlgs 42 b_'ts’ the actual ingés 14

which constitute the intermediate indd he fifth parame- bits and the table has 16K entries.

ter specifies the number of times the intermediatexitgle 6.3 EXit Prediction

folded to generate the inde Real implementations of the path-based predictor perform
The four parameters for specifying the reag of the close to the ideal (alias-free) implementatiigure 10

intermediate indeare: compares the relative performance of a real implementa-



tion to the ideal for arange of depths and a constant table
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50096 | In sc, we see two distinct drops in prediction accura-
cies at depths of 3 and 5. These points correspond to the
400% depths where new degrees of folding (1 to 2 and 2 to 3

0-0-0-14 (1)

1-0-7-7 (1) +

2-4-55(1) +

3-6-8-8(2) 1
456-7(2) +

DOLC (F)

5466 (2) 1

6-589(3) +

degrees of folding respectively) were introduced in the
implementations. The advantages of a longer history (in



the intermediate ind@ quickly overpaver the penalty
introduced by occasionally folding “useful” bits together;
the accurag of the predictor reapproaches the ideal after
these points.

We do not present results for implementations of
GLOBAL or PER due to space limitations. This can be
justified easily because the implementations of the path-
based history predictors tend to do better than the ideal
implementations of the other dwschemes. Our depth 7
implementation of RTH has a laver miss rate than the
ideal depth 7 PER predictor for all the benchmarxkept
for sc. Our depth 7 implementation oAPH has a lwer
miss rate than the ideal depth 7 implementation of GLO-
BAL for all the benchmarksxeeptgcc, where it is within
5%.

A path-based prediction scheme perform better than
other prediction schemes for intaisk prediction. He-
ever, path-based predictorsveanot yet preen themseles
to be competitie with «it-based schemes for traditional
branch prediction, partly due to their recent introduction.

XLISP

L —— Ideal
—a— Real Implementation

35.00%

40.00%

30.00% -

issRate

= 25.00% -

20.00%

15.00%
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5567 (3) +
7-4-45 (3)

DOLC (F)
Figure 12 Comparison of Real to Ideal Predictorsfor
Address Prediction

For xlisp these implementations perform nearly iden-

tical to the ideal. &r gcc the implementations dtrge

from the ideal by up to 15%. Thisvéigence is caused by
the table not being lge enough to capture the number of
states (unique paths) obsedvfor the benchmark. In these

Furthermore, the path-based method does not encode pathmplementations the number of entries for the CTTB is

information as diciently as &it-based histories. In branch
prediction, the ®t-based history can besgt with only a
single bit per entrywhich is not true in intetask predic-
tion or other multi-vay branching problems where avfe
bits are required per entrinother reason for the aaiv-
tage seen by path-based schemes in-tatde prediction is
that the higher concentration of calls, returns and indirect
branches mads it harder forxat-based approaches to cap-
ture the path history

6.4 CTTB AddressPrediction

6.4.1 Prediction for Indirect Branches & Indirect Calls

In this section we present results for predicting the
target addresses of indirect branches and indirect calls
with reasonably sized implementations of a CTTB. Figure
12 compares reasonable sized implementations of a CTT

one-eighth of the entries we implemented for tkie @re-
dictor. Scaling the CTTB to the number of entries of the
predictor in order to do CTTB-only predictionould be
quite costly

6.4.2 CTTB-only Task Prediction

In this section we present results for CTTB-only inter
task prediction, which predicts without using information
from the headefTable 3 compares CTTB-only prediction
accurag to an it predictor which determines gat
addresses using the headeRAS and a small CTTB. The
results here are for predicting the actual address of #ie ne
task. W& compare a CTTB-only method (14-bits of irde
to an «it predictor (14-bits of indg with a RAS and a
small CTTB (11-bits of indd. The predictors here all

ghave a history depth of 7. ®see that the CTTB-only

to ideal (infinite size) implementations for a range of Method, requiring 64kB of state, performs from 4% to

depths. All the implementations\ea table size of 8 kB
(11 bits of ind& * 4 bytes per entry).

GCC

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —o— Ideal
—a— Real Implementation

63.00%
58.00%
53.00% -
48.00% -
43.00% -
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38.00% -
33.00% -
28.00% -
23.00% -

18.00%

5567 (3) |
64-67(3) +
7-4-45(3)

1056 (1)
4455(2) +

2335(1) +
3566(2) +

0-0-0-1 (1)

DOLC (F)

54% worse than the alternaé method. The lgest deia-
tion is forgcc andxlisp, 54% and 41%, respeatiy.

Prediction Method gcc |comp | espr | sc | xlisp
CTTB-only predictor (64kB storage)10.5 19.8 |2.6 5.3 7.9
Exit predictor with RAS & CTTB | 6.8 19.1 25 4.6 5.6
(16kB storage)

Table 3 MissRatesfor CTTB-only vs. Exit Predictor
with RAS& CTTB

7 Conclusion

In this paper we studied the issuegoimed in inter
task prediction and presented a task predictor thatdrgs v
high prediction accuracies for reasonable sized structures.
The lkey design points presented were:
 The last exit with hysteresis prediction automaton offers



the best accuracy/size performance tradeoff. The authors wuld like to thank Chris Lukas and Gur-
« A path-based history scheme works best for task predic- indar Sohi for their input; Scott Breach forvatoping the

tion. multiscalar simulators and determining the IPC perfor-
« A correlated target buffer is essential for good address mance numbers; Andreas Mosbe for modifying the

prediction of indirect jumps and indirect calls. functional simulator to study task prediction; Vijayku-

« Although task prediction without a header is possible it mar for deeloping the multiscalar compiler

does not offer comparable accuracy/size performance.
Another important area covered in this paper was efficient
ways to implement path-based history schemes. There
were two important heuristics presented:
 Creating a larger intermediate index value and folding it
to form the actual index [2]
« Decreasing the number of bits older tasks contribute to [3I
the history relative to recently encountered tasks.

In this paper we used prediction accyras our met-
ric. In general higher prediction accuwydeads to better [4]
execution performance. In some cases data dependencies
limit the gains of prediction accuracies. Also, noes/
prediction is equally important to performance.

We conclude by presenting some performance num-
bers to demonstrate that in general better prediction does
increase performance.alile 4 presents instructions per
cycle (IPC) performance numbers generated with a timing
simulator We present IPC numbers for a simple predictor 7]
(using the task address to indbe PHT), GLOR\L, PER,
PATH and an upper bound of perfect intask prediction.
For all the implementations the PHT is 16KB and a history
depth of 7 is used. All implementations use a CTTB for
indirects and a RAS for return§he processor core has
four 2-wayOOO processing unitsoFgcc andxlisp where
PATH had the most substantial prediction accyraaan-

(1]

(5]

(6]

(8]

9]
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