
Abstract
We revisit memory hierarchy design viewing memory as an

inter-operation communication agent. This perspective leads to
the development of novel methods of performing inter-operation
memory communication:

(1) We use data dependence prediction to identify and link
dependent loads and stores so that they can communicate
speculatively without incurring the overhead of address
calculation, disambiguation and data cache access.

(2) We also use data dependence prediction to convert,DEF-
store-load-USE chains within the instruction window intoDEF-
USEchains prior to address calculation and disambiguation.

(3) We use true and output data dependence status
prediction to introduce and manage a small storage structure
called the Transient Value Cache (TVC). The TVC captures
memory values that are short-lived. It also captures recently
stored values that are likely to be accessed soon. Accesses that
are serviced by the TVC do not have to be serviced by other parts
of the memory hierarchy, e.g., the data cache.

The first two techniques are aimed at reducing the effective
communication latency whereas the last technique is aimed at
reducing data cache bandwidth requirements. Experimental
analysis of the proposed techniques shows that: (i) the proposed
speculative communication methods correctly handle a large
fraction of memory dependences, and (ii) a large number of the
loads and stores do not have to ever reach the data cache when
the TVC is in place.

1  Introduction
Programs execute operations which produce values for

other operations; these values must be stored while they are wait-
ing to be consumed by the later operations. This inter-operation
communication is commonly implemented by providing register
and memory name spaces coupled with an agreed upon commu-
nication convention: the producer binds its value to a name
within the name space, and the consumer(s) access the value by
using the same name. Faster processing requires faster (higher
bandwidth/lower latency) inter-operation communication.

In this paper we are concerned with inter-operation commu-
nication carried out through the memory name space, or simply
memory communication. Caches have been used extensively to
implement more efficient memory communication. Caches per-
form memory name presence speculation: a given memory name
could reside in a variety of storage structures that are typically
either fast but small or slow but large. A processor implicitly
speculates that a desired name will be present in faster storage
(cache), and attempts to access it from there going to slower stor-
age only if speculation fails. To verify the speculation, the
desired memory name and the memory names stored in the given

storage structure are compared; speculation succeeds only if a
match occurs.

In this paper we revisit memory communication by observ-
ing that the traditional, implicit form of memory communication
where the store does not directly know the identity of the con-
suming load(s) and vice versa, is not the only method for this
purpose. Explicit forms in which the stores and loads are linked
to one another are not only possible but may lead to new forms of
speculation, to new storage structures used to build memory hier-
archy components, and hopefully, to new ways of thinking about
such hierarchies. We expect a fair amount of on-chip resources in
future processors to be devoted to “non-traditional” storage
structures and a fair amount of effort devoted to “non-traditional”
methods as we attempt to solve the “memory problem”. We
describe three such methods in this paper:Speculative Memory
Cloaking (or simplycloaking), Speculative Memory Bypassing,
and Transient Value Cache (TVC). The first two methods are
aimed at reducing the effective communication latency whereas
the third method is aimed in addition at increasing the effective
memory bandwidth.

 In speculative memory cloaking we dynamically convert
implicitly specified memory communication into an explicit,
albeit speculative, form. To do so, we usedata dependence pre-
diction to explicitly link loads and stores that are likely to be
dependent. These loads and stores can then communicate via a
dynamically created name space without incurring the overhead
of address calculation, disambiguation and data cache access.
When the dependent load and store co-exist in the instruction
window, further reduction in the communication latency is possi-
ble with speculative memory bypassing. In this technique loads
and stores that are predicted as dependent are speculatively
removed from any DEF-store-load-USE chains that contain them.
Values can then flow directly from the actual producer (DEF) to
the actual consumer (USE). Since both cloaking and speculative
memory bypassing are speculative in nature, the communication
performed in this manner has to be eventually verified via the tra-
ditional memory name space.

The transient value cache is a novel memory hierarchy com-
ponent that attempts to capture that part of the memory space
through which recently stored values are accessed or where
short-lived values reside. In this technique, we use both true and
outputdata dependence status prediction (i.e., whether a load or
a store have a dependence with a recent store) to selectively redi-
rect memory accesses to the TVC. Such accesses may not have to
go to the data cache, consequently reducing the data cache band-
width demand.

We start our discussion of the problem and approach by
looking at inter-operation memory communication in more detail
in Section2. Here we describe the rationale for our proposed
approach. We continue with a brief quantitative assessment of
inter-operation memory communication in Section3. We use the
quantitative data, along with our rationale, to describe the
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requirements for cloaking in Section4. In Section5 we describe
speculative memory bypassing, and in Section6 we present the
TVC technique. We provide a quantitative assessment of the pro-
posed techniques in Section7. Finally, we comment on related
work in Section8 before we offer concluding remarks in
Section9.

2 Memory as an Inter-operation Communication
Agent
Memory communication can be viewed as a two step pro-

cess where first the dependences are established and then the
actual values are communicated. To streamline memory commu-
nication we need: (i) to establish the dependences as quickly as
possible and then, (ii) to provide storage structures that best meet
the communication requirements (e.g., low latency/high band-
width). Attempts to meet these two goals face obstacles that stem
from the way memory communication is specified and from
practical and economical restrictions on the amount and the type
of storage structures that we can provide.

The traditional implicit specification of memory communi-
cation imposes unnecessary delays on the communication since
to establish the dependence relationships we have first to carry
out an address calculation and then to perform disambiguation,
even though the desired value may be available long before these
tasks can be performed. An explicit representation in which the
identity of the producing store is known to the consuming load
and vice versa, does not impose unnecessary delays; the commu-
nication can be initiated as soon as the identities of the two
instructions become known.

Another concern with the implicit specification of memory
communication is that it results in name-centric memory hierar-
chy design approaches where the emphasis is placed upon the
attributes of the memory names. For example, caches are
designed to take advantage of empirical observations about the
temporal and spatial locality of memory names. However, as the
demands placed on memory hierarchies increase, more sophisti-
cated methods are sought (see Section8). These new methods
may be helped by information about the communication itself, in
addition to information about the names.

An explicit representation of memory communication may
open up new possibilities since it encourages a communication-
centric approach to memory hierarchy design. There are cases
where viewing memory hierarchy design in terms of the commu-
nication itself (i.e., the loads and the stores) rather than in terms
of memory names is advantageous. For example, consider a
number of dependences which during run-time, and when
viewed in isolation, exhibit predictable lifetimes. This lifetime
information may be used to decide where in the memory hierar-
chy to place the associated values. If the corresponding values
are mapped to the same name, the resulting behavior in terms of
the name may defy prediction. Another example is when a
dependence which during run-time exhibits predictable lifetimes
uses different memory names over time. In this case, the past
behavior of the dependence can be used to predict the behavior of
memory names that we may not have yet encountered.

Motivated by the aforementioned observations, in this paper
we are primarily concerned with methods of converting the tradi-
tional implicit specification of memory communication into an
explicit form. Dependence relationships could be determined and
expressed in an explicit manner statically. Nevertheless, in this
paper we do not consider a static approach since it would require
static knowledge of the dependences, and it would also involve
changing the program representation completely. Instead, we
investigate dynamic approaches.

We utilize data dependence prediction to establish and to
explicitly express dependences dynamically as follows: we use
dynamically collected dependence history information to predict
future dependences. We then use these speculative dependences
to create a dynamic name space through which the dependent
loads and stores can communicate without incurring the over-
head of address calculation, disambiguation and data cache
access. However, since the dependences are speculative the com-
munication performedeventually has to be verified via the tradi-
tional memory name space. Furthermore, the amount of history
information we can record places a bound on the fraction of the
memory communication we can convert.

Finally, we also take a first step toward annotating this rep-
resentation with dynamically collected information that can be
used to develop and manage novel memory hierarchies. We do so
by usingdata dependence status prediction to annotate memory
accesses such that stores whose values that are likely to be killed
soon and loads that are likely to access a recently stored value are
serviced from a small storage structure and without consuming
data cache resources.

3  Memory Traffic Analysis
To motivate the proposed methods we first present an

empirical study of the memory inter-operation traffic of the
SPECint951 benchmarks on a MIPS architecture (the bench-
marks, architecture and methodology are detailed in Section7).
To get an estimate (i) of the fraction of the memory operations
we can serve with a dependence based mechanism, (ii) of how
much the storage might we require for this speculative explicit
communication, and (iii) what attributes we might desire of it,
we measure: (i) the percentage of loads that read a value created
by a preceding store (true dependence), and (ii) the percentage of
stores that are killed by a later store (output dependence). We
present both characteristics as a function of thestore distance,
which is defined as the number of stores that appear between the
dependent instructions in the dynamic instruction stream. We use
store distance as our metric since it provides an upper bound on
the number of data values that have to be recorded in order to
detect and capture the particular dependence.

Part (a) of Figure1 reports the percentage of dynamic loads
that read a data value produced from a preceding store (store dis-
tance range shown is 8 to 8K) whereas part (b) reports the per-
centage of dynamic stores that are killed by a later store. It can be
seen that for almost all programs about 50% of all dynamic loads
get their value from a store that is at most at store distance 256
(marked by a continuous vertical line) and that about 60% of all
stores are killed within a store distance of 256.

These results indicate that a mechanism which can record
and detect dependences across the last 256 stores can potentially
service around 50% of all loads and cut down about 60% of the
store traffic. Motivated by the large fraction of loads that get their
value through a dependence with a recent store, in Sections 4 and
5, we propose techniques that attempt to reduce the latency of
this communication by explicitly linking the dependent instruc-
tions. Later, motivated in addition by the large fraction of store
values that are quickly overwritten, in Section6, we attempt to
also the reduce the bandwidth requirements imposed on the data
cache. To do so, we introduce a separate but small storage struc-
ture and redirect to it those memory locations through which
communication of true dependences occurs or recently stored
values are killed.

1. We have performed a similar study for the SPECfp95 programs. The
results are available via:ftp://ftp.cs.wisc.edu/sohi/micro30-memtraffic.ps



4  Speculative Memory Cloaking
The purpose of cloaking is to streamline memory communi-

cation by dynamically converting the implicit specification of
dependences into an explicit form. In cloaking, dependence pre-
diction is used to identify loads and stores that are likely depen-
dent. The dependent load and store are then explicitly linked via
a new name, asynonym which uniquely identifies the depen-
dence (e.g., the synonym can be the (load PC, store PC) pair).
One may wonder how using a different name may help in stream-
lining the actual communication. After all, data addresses and
synonyms are just names that the dependent instructions use to
link to each other. The answer lies in the nature of the association
between the name and the instructions that use it. In contrast to a
data address, the synonym uniquely identifies the dependent
instruction pair so that the load and the store can each derive the
synonym based solely on their identity (PC). We use the term
speculative memory cloaking to signify that memory is hidden
since the communication takes place speculatively through a
dynamically created name space andwithout knowledge of the
memory location used by the program; no association between
the storage used by the synonym and the memory address is built
(in contrast to what is done inmemory renaming (e.g., [5])).

The process of cloaking is illustrated in Figure2. As shown
in part (a), a detection of a load-store dependence results in an
association between the load, the store and a function that can be
used to derive preferably unique synonyms for future instances
of the dependence. When a later instance of the store instruction
is brought into the instruction window and the existence of a
dependence is predicted, this association results in the generation
of a synonym (part (b), action 1) and further, in the allocation of
physical storage for that synonym (action 2). Storage for the syn-
onym is preferably provided in theSynonym File (SF) which is a
small, low latency/high bandwidth storage structure. The storage
element is initially set to indicate that the value is not yet avail-
able and is updated with the actual value as soon as the latter
becomes available (action 3). Finally, when the store computes
its data address, the value is also written to the traditional mem-
ory system (action 4). When the appropriate instance of the load
is brought into the instruction window and the existence of a
dependence is predicted, the association is used again to derive
the synonym (part (c), action 5) and consequently, to locate the
appropriate element in the synonym file (part (c), action 6).
Instructions that use the load value may at this point execute

speculatively using this value (action 7). When the load data
address becomes available, the memory system is accessed to
read the actual value (action 8). This is compared with the value
obtained earlier via the cloaking mechanism. If the two values
are the same, cloaking was successful and no further action is
required. Otherwise, data value mis-speculation occurs, and any
instructions that used wrong data have to be re-executed. (In
Section6, we will show that this verification can be hidden from
the data cache using the TVC.)

Speculative memory cloaking has the following require-
ments: (1). predicting dependences, (2). creating synonyms,
associating them with the dependent instructions and assigning
storage for the communication, and (3). verifying the specula-
tively communicated values. We next discuss each of the require-
ments in detail.

4.1  Detection and Prediction of Dependences
If cloaking is to succeed, we have to be able to predict

dependences. In [15] we have shown that relatively few static
dependences are responsible for the majority of the true depen-
dences observed dynamically and that this set exhibits temporal
locality. (Stores with output dependences exhibit similar behav-
ior. In Section6, we make use of this observation to also cut
down on the write traffic.) This observation suggests that we may
use dependence history to predict future dependences.

The most straightforward prediction scheme is to record and
predict dependences as (load PC, store PC) pairs similarly to
what was done in [15]. However, such a scheme may have to pre-
dict among many possible dependences since, as we will demon-
strate in Section7, different instances of the same static store
often observe dependences with instances of different static loads
and vice versa. Furthermore, with such a scheme we may have to
predict multiple dependences per dynamic store when its value is
used by many loads. For these reasons, it is both conceptually
and practically convenient to treat dependence prediction as a
two step process. In the first step, a prediction is made on
whether the given load or storehas a dependence (i.e., the depen-
dence statusof the instruction), and in the second step, a predic-
tion is made to decide with which load or store the dependence is
with.

In Section7, we will demonstrate that even simple, counter
based predictors can predict the dependence status of instructions
with relatively high accuracy. Predicting the actual dependence

Figure 1. (a) Distribution of dynamic load/store (true) dependence distances, (b) Distribution of dynamic store/store (output)
dependence distances. For both graphs the X axis represents distance in stores. Samples are taken at store distances that are powers of
two starting from 8 and ending at 8K. Y axis represents percentage over all loads or all stores accordingly.
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however requires more effort. Although it is conceivable and
desirable to design a predictor that attempts to predict directly
the actual dependence, we found it sufficient for the purposes of
this work to use a scheme which assigns a common tag to all
dependences that have common producers (stores) or consumers
(loads) and use that tag to identify all these dependences collec-
tively2. The processor can then determine which of all the possi-
ble dependences is currently observed by a mere inspection of
the incoming instruction stream (this is similar to what is done
for register dependences).

Since our dependence prediction schemes are based on
dependence history, we also need a way of detecting depen-
dences. As the results of Section3 suggest, to capture a large
fraction of the dynamic dependences we need to be able to detect
dependences over several stores (e.g., 256), that is, over regions
that most likely exceed the instruction window used. This can
simply done by keeping a record of the recent stores (e.g., their
PC) along with the memory address each touched. There are
numerous ways of implementing the dependence detection func-
tionality. A relatively inexpensive and straightforward implemen-
tation is via aDependence Detection Table (DDT) which is
nothing more than a regular but very small cache that records the
PC of the store that last touched each recorded address. Note that
since the information collected by the detection mechanism is
used only for prediction purposes, relatively long detection laten-
cies and detection errors may be acceptable.

4.2  Synonym Generation and Communication
In cloaking, stores initiate the communication by generating

a synonym in reaction to the prediction of a dependence. The
synonym has a dual role: it identifies the specific instance of the
dependence (or dependences in the case of multiple consumers),
and it is also used as a handle by the dependent instructions to
locate the storage element through which the communication
will take place. The exact encoding of the synonym is not impor-
tant. However, it is desirable for the naming scheme used to pro-
vide different synonyms for unrelated communication at any
given point of time. The synonym generated has to be associated
with all the instructions that will communicate so that they can
locate the appropriate storage element using their PCs. This is
straightforward given that the dependence prediction mechanism
identifies the dependence either explicitly by the (store, load)
edge or implicitly via a tag which is associated with the store and
the load as described in the previous section. To perform the
communication, physical storage has also to be provided for syn-
onyms. The storage elements should provide space for the data

2. For example in the code:if (cond) then store1M; else store2M; load M the
dependences (store1, load) and (store2, load) will be both assigned a
common tag. The stores and the load will use this tag to link to each
other.

value and an indication on whether the value is currently avail-
able. Finally, mapping synonyms to storage elements can be done
in a variety of ways (e.g., using a direct mapped or a fully asso-
ciative SF).

4.3  Verification
Because the communication that takes place in cloaking is

based on dependence prediction, values so obtained are specula-
tive and have to be verified. This can be done by letting the
dependent instructions also communicate via the memory space.
The support required for invalidating and re-executing instruc-
tions that used incorrect data is no different than that required for
dependence or value speculation [12]. Since cloaking requires
verification through the memory space it can only reduce the
latency of the communication and does not save on bandwidth.
As we will describe in Section6, however, the verification can be
done via the TVC, in which case the bandwidth required of the
pre-existing memory hierarchy can also be reduced.

4.4  Implementation Aspects
In this section we describe an implementation of the specu-

lative memory cloaking technique and explain its operation by
means of an example. Our goal is to demonstrate the feasibility
of the required mechanisms and to provide insight about their
complexity. We partition the support structures in the following:
(a) dependence detection table (DDT), (b) dependence predic-
tion and naming table (DPNT), and (c)synonym file (SF).

As we explained earlier in this section, the DDT is used to
detect dependences. An entry of this table consists of the follow-
ing fields: (1) Data Address (ADDR), (2) Store PC (STPC) and
(3) a valid bit. This information identifies the store that last
updated the given word data address. The DPNT is used to iden-
tify, through prediction, those loads and stores that have depen-
dences. It also provides the tags that are used to create synonyms
for the dependences. An entry of this table comprises the follow-
ing fields: (1) instruction address (PC), (2) dependence status
predictor (PRED), (3) dependence tag (DTAG), and (4) a valid
bit. The instruction address identifies the load or the store this
entry corresponds to. The purpose of the dependence predictor
field is to provide an indication on whether a dependence exists.
Finally, the dependence tag field is used to identify the depen-
dences of this instruction. The SF is used to provide storage for
synonyms. SF entries have the following fields: (1) name, (2)
value, (3) full/empty bit, (4) valid bit. Based on the exact config-
uration used some of the fields may not be required (e.g., we may
not use a name field in a direct mapped SF) and some structures
can be combined (e.g., we can merge the DPNT and the SF, or
the register file and the SF).

4.5  Working Example
The exact function and use of the support structures is best

Figure 2.Streamlining the communication through memory via speculative memory cloaking: (a). a dependence detection results
in an association between the dependent load and store instructions, (b). a later instance of the store creates a synonym, (c). a
later instance of the load locates the synonym and uses the data speculatively.
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understood by means of an example. In the discussion that fol-
lows we use the working example of Figure3 to demonstrate
how an earlier detection of a dependence between a store and a
load results in the streamlining of the inter-operation communi-
cation the next time the same dependence is encountered. In the
discussion that follows we assume that the dynamic dependences
result from the execution of the loop shown in part (a). Dynami-
cally, a series of dependences will be observed between instances
of the marked load and store. Each of the dynamic dependences
will map to a different memory address (we assume that new
space is allocated for each token).

In parts (b) and (c) we show the actions that lead to the
detection of the dependence. In part (b), the first instance of the
store executes and records in the DDT its PC and the data address
it updated (action 1). Later on, in part (c), the first instance of the
load using its data address probes the DDT (action 2) and deter-
mines that a dependence exists with the recorded the store. In
reaction to this detection, two entries are allocated in the DPNT
one for the load and one for the store (action 3). In addition, a tag
is created for the dependence, and it is recorded in both entries.
(Since the operation of the DDT has been described in steps 1
through 3, it is not shown in the remaining parts of the figure.)

In parts (d) through (f) the actions that lead to the cloaking
of a later instance of the dependence recorded in part (c) are
shown. Cloaking is initiated when, as shown in part (d), a later
instance of the store enters the instruction window. The PC of the
store is used to probe the DPNT for a matching entry (action (4)),
and since one is found, its predictor is used to determine whether
cloaking should occur. Assuming that the predictor indicates so,
a synonym is generated based on the tag recorded in the DPNT
entry (for the purposes of this discussion the tag of the DPNT
and the synonym are the same), and it is used to allocate space in
the SF (action 5). The full/empty bit of the SF entry is set to
empty to indicate that the value is not yet available, whereas, the
store also records the location of the SF entry since the actual
data value, when it becomes available, will have to be written in
the SF entry (part (e), action 6). Eventually, the store also
accesses the traditional memory hierarchy (part (e), action 7).

When the next instance of the load enters the window (part
(f)), as it was done previously with the store, its PC is used to
probe the DPNT (action 8). After a match is found and a depen-
dence status prediction is made, the tag recorded in the DPNT
entry leads to the generation of the same synonym generated pre-
viously for the store. This synonym is used to access the appro-
priate SF entry (action 9) and to obtain the data left there by the

store. At this point the load may use this data to execute specula-
tively (action 10). Later on, when the data address becomes avail-
able, the load accesses the traditional memory hierarchy to obtain
the actual data value (action 11). This value is compared against
the value read previously from the SF and appropriate action is
taken if the two values differ. At this point we may also update
the predictors in the DPNT entries for both the load and the store
(to locate the DPNT entry for the store the SF entry will have to
record the store’s PC).

4.6  Other Issues
We now discuss a few issues which relate to the method and

the implementation we have described.

4.6.1  Dependences Through Different Data Types

So far we have assumed that the value obtained through a
dependence is exactly the one written by a single store. Loads
and stores, however, may operate on various data types (e.g., a
byte, half word or a full word). So, it is possible to encounter
dependences between a store and a load that operate on different
data types or, to encounter loads that read a value that is a combi-
nation of the values written by many stores. Given a load, there
are four possible cases: (1) the dependence is with a single store
that operates on the same data type, (2) the loaded value is only
part of the value written by a single store, (3) the loaded value is
a combination of the values (or, parts of them) written by more
than one stores (e.g., the load reads a word whose bytes were
each written by a different store), and (4) only part of the value
read by the load comes from recent a store (or stores).

The first case does not present a challenge for the mecha-
nisms we have described. For the other three cases we do have
the option of not providing support. However, it is desirable to
provide support for at least those cases that are relatively fre-
quent or that are critical in terms of performance. For the pur-
poses of this work we base the decision on which types to
support solely on frequency. To provide support for the second
case we need to be able to determine what part of the store value
the load reads. This information cannot be derived from the iden-
tity of load only, the actual data address is needed. However, we
may employ a simple prediction scheme in which we record
(using a 4 bit mask in the DPNT entry for the load) the location
of the bytes that the load read last time the dependence was
observed and use this information to extract the same part of the
store value the next time the dependence occurs (this also allows
us to provide support for sign-extension). However, this method

Figure 3. An implementation of Speculative Memory Cloaking.
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will f ail if over time the load reads different parts of the store
value. Even though it is possible to extend our mechanisms to
support dependences that fall in the other two categories, we do
not consider these extensions here since these cases rarely occur
in practice.

4.6.2  Multiple Instances of the Same Dependence

It is possible for multiple instances of the same static depen-
dence (i.e., (load PC, store PC) pair) to be simultaneously active.
In this case, it is desirable to create a different synonym for each
dynamic dependence. Generating a different synonym every time
a new instance of the store is encountered is straightforward and
can be done in numerous ways (e.g., using a global counter).
However, for communication to occur as planned, the same syn-
onym has to be assigned to the appropriate instance of the load.
Doing so is straightforward if, in the original program order, the
lifetimes of the dynamic dependences are distinct; all we have to
do is remember the most recent version per active dependence
(similarly to what is done for register dependences). However,
since data addresses are calculated dynamically, the lifetimes of
the dynamic dependences may overlap (as for example in the fol-
lowing loop that has a recurrence that spans 3 iterations:for i = 1
to N do a[i + 3] = a[i] + 1). In this case, remembering the most recent
synonym for the static dependence is not sufficient. Instead, the
load has to determine which of all synonyms is the appropriate
one. Even though support for regular communication patterns
can be provided, further investigation of this issue is beyond the
scope of this paper.

5  Speculative Memory Bypassing
With cloaking, values can flow quickly from stores to loads.

However, in load/store architectures, stores and loads do not
compute values3 rather they are simply used to pass the values
that some other instructions produce to some other instructions
that consume them. This occurs when either the compiler was
unable to establish the dependence statically or when storage in
the register name space was not available.Speculative memory
bypassing converts DEF-store-load-USE chains into DEF–USE

3. We ignore sign-extension and type conversion issues. The support
required is similar to that required for cloaking. However we disallow
bypassing over multiple dependences that involve different data
types.

chains whenever the load-store dependence is predicted and the
DEF and USE instructions co-exist in the instruction window. In
this case, the value can speculatively flow directly from the
actual producer (DEF) to the actual consumer (USE). This concept
we illustrate in Figure4, using theI1–store–load–I4 chain shown
in part (a). Even though speculative memory cloaking may allow
the value to be speculatively communicated between the store
and the load, the value will still have to travel through these two
instructions before it can reach I4. However, as shown in part (b)
with speculative memory bypassing, the value can be sent
directly from I1 to I4. As was the case with speculative memory
cloaking, this communication is speculative and has to be veri-
fied.

Speculative memory bypassing can be implemented as a
simple extension to speculative memory cloaking. We explain
the exact process using the working example of Figure4, part
(c). At step (1), instructionI1 is decoded and register renaming
creates a new nameTAG1 for the target registerR1. At step (2),
the store instruction is decoded and determines the current name
of its source register R1. In parallel, via the use of cloaking, a
synonym is created for the memory communication. At this
point, we also record in the synonym the current nameTAG1 of
store’s source register R1. At step (3), the load instruction is
decoded and register renaming creates a new nameTAG2 for the
destination register R2. In parallel, via the use of cloaking, the
load locates the synonym and hence determines the nameTAG1
of the store’s source registerR1. In doing so, the load has deter-
mined the storage (e.g., physical register or reservation station)
where the actual producerI1 will place or has placed the value.
This name is speculatively associated with the target of the load
R2. This way, when at step (4)I4 is decoded, it can determine
that its source registerR2 has two names: one actualTAG2 and
one speculative TAG1. By using the speculative nameTAG1, I4
can link directly toI1 and execute speculatively as soon asI4
produces its value. Later on, after the load has accessed the mem-
ory the integrity of the communication can be verified. Note that
speculative memory bypassing naturally extends for dependence
chains that include more than one memory dependence; when-
ever a store detects that its source register has a speculative
name, it can optimistically pass it via the synonym.

6  Transient Value Cache
As we have seen in Section3, a large fraction of loads get

Figure 4. Speculative Memory Bypassing: (a). Regular
communication path through a memory dependence. (b).
Communication path with Speculative Memory Bypassing. (c).
How are the load and the store taken off the communication path.
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their values from a recent store, and most of the values stored to
memory are quickly killed. Motivated by these observations we
extend the memory hierarchy by introducing a small storage
structure, theTransient Value Cache (TVC) and use both true and
output dependence status prediction to capture in the TVC that
part of the memory space through which recently stored values
are communicated or killed. As a result, the verification accesses
required by cloaking as well as store values that are quickly
killed may not have to reach the rest of the memory hierarchy.
One may wonder what are the advantages of doing so since the
data cache being much larger in size will most likely capture this
part of the memory space. However, as ILP processors attempt to
execute an ever increasing number of instructions per cycle, as
data cache sizes increase, and as wire lengths become a concern,
read and write ports to the data cache become an extremely pre-
cious and expensive resource [19, 21]. Using a separate, small
structure (with separate read/write ports) to service a significant
percentage of the loads and stores, not only may lead to reduced
data cache read/write port and bandwidth requirements, but may
also facilitate shorter access latencies.

In Figure5 we show how dependence status prediction is
used to steer loads and stores. Stores that are likely to be killed
soon are initially sent only to the TVC in hope that they will be
killed in it before they are forced to go the data cache (part (a)).
Other stores are sent to both caches to keep them coherent (part
(b)). Loads that are likely to have true dependences with recent
stores are initially sent only to the TVC. Such a load is directed
to the data cache only if we miss in the TVC (part (c)). In the lat-
ter case wedo not bring the data in the TVC since most likely the
dependence status prediction was wrong. Other loads have to
access both the TVC and the data cache in parallel (part (d))
since the most recent value may be only in the TVC. Finally, if a
dirty block in the TVC needs to be replaced, its contents will
have to be written to the data cache.

Similar to true dependence status prediction, output depen-
dence status prediction can be based on the history of previous
dependences. However, to do so it is necessary to detect output
dependences. The dependence detection table we described in
Section4.1 can provide this functionality by simply reporting the
PC of the store recorded in an entry whenever the latter is over-
written.

Finally, note that in a shared memory multiprocessor envi-
ronment and subject to the consistency model in use, we may
have to expose all memory operations to the coherence mecha-
nism. This can be done for example by allowing the TVC to be
turned off at the discretion of the operating system or of the pro-
gram.

7  Experimental Evaluation
In this section, we present experimental evidence in support

of the utility of the techniques we propose. The rest of this sec-
tion is organized as follows: in Section7.1 we describe our meth-
odology. In Section7.2, (1) we attempt to gain some insight on
the nature of the dependences that are experienced and (2) we
demonstrate that speculative memory cloaking can capture a
large fraction of the dynamic memory dependences. To do so, we
first demonstrate that simple predictors can identify the true
dependence status of loads and stores with high accuracy. Then,
we look at how complex the actual dependence determination
and communication mechanism has to be. We first measure the
distribution of the degree of use of store values (i.e., the number
of loads that use the value) to determine the number of synonyms
a store would have to generate if each dependence was treated

separately (similarly to tokens in dataflow processors). Based on
this result we continue to consider cloaking schemes in which
stores create a single synonym. In this case it is up to the loads to
determine the synonym, i.e., to predict the exact dependence. For
this reason, we continue by measuring the dependence prediction
accuracy that is possible as a function of the number of the
dependences that can be remembered per load, i.e., as a function
of thedependence history depth. We observe that a large fraction
of loads experience many different dependences during execu-
tion that have to be tracked simultaneously. Based on this obser-
vation we continue to evaluate a simple cloaking mechanism in
which all dependences that have a common store or load are
assigned a common tag as explained in Section4.1. We then
show that this cloaking scheme can communicate correctly a
large fraction of the dynamic dependences. In Section7.3, we
first evaluate an output dependence status predictor and then we
report a lower bound on the reduction in the number of data
cache accesses that can be expected by a 256-entry, fully associa-
tive TVC. We conclude the evaluation by measuring the potential
performance impact of the proposed techniques. We assume per-
fect dependence and dependence status prediction over the 256
most recent stores and we show that a cloaking mechanism cou-
pled with a 256 entry fully associative TVC not only improves
performance but may also outperform a traditional memory sys-
tem that has twice as much data cache.

7.1   Methodology
All experiments were performed using the integer programs

of the SPEC’95 benchmark suite which were compiled for the
MIPS-I architecture [11] by the 2.7.2 version of the GNU GCC
compiler (-O3 plus loop unrolling and function inlining). In order
to keep the simulation time within reasonable limits we used
either thetrain or thetest input data sets. We used the train data
set for 099.go, 132.ijpeg, 134.perl (jumble), and 147.vortex,
whereas we used the test data set for124.m88ksim, 126.gcc, and
130.li. Finally, to obtain a reasonable execution sample for
129.compress we increased the train input set from 10K charac-
ters to 50K. Table1 reports the resulting dynamic instruction
counts and the percentage of loads and stores for the programs
used. To simplify the graphs that are subsequently presented we
identify the benchmarks using only the first three digits of their
name.

To evaluate cloaking and to provide an estimate on the pro-
cessor/data cache reduction we can expect with a TVC, we first
employ trace based simulation. The memory access traces are
generated via the use of a functional simulator and include all but

Benchmark Total Loads Stores

099.go 553M 21.3 % 7.9 %

124.m88ksim 458 M 18.9 % 9.5 %

126.gcc 1.49 G 23.4 % 19.4 %

129.compress 150 M 21.7 % 13.5 %

130.li 977 M 29.6 % 17.5 %

132.ijpeg 1.48 G 17.6 % 8.4 %

134.perl 2.21 G 25.5 % 16.4 %

147.vortex 2.82 G 28.7 % 24.7 %

Table 1.   Dynamic instruction count and percentage of load
and store instructions per benchmark



system code data references. (System calls are handled by trap-
ping to the OS of the simulation host.) To investigate the poten-
tial impact of the proposed techniques, we model a realistic, 8-
way superscalar processor with a traditional 5 stage (fetch/
decode/execute/access/writeback) pipeline with out-of-order exe-
cution characteristics. Up to 64 instructions can be in-flight at
any given point of time. Functional units are fully pipelined and
have a latency of 1 cycle except for multiplication and division
which take 4 and 12 cycles respectively. For control prediction
purposes we use a GSHARE predictor [13] with 64K 2-bit satu-
rating counters. The base memory system comprises four read/
write ports, a store queue with 16 entries, a non-blocking 32 kilo-
byte/16 byte block/8-way interleaved/2-way set associative data
cache with an access latency of 2 cycles and a miss latency of
either 16 or 24 cycles (depending on the configuration simulated)
for the first word plus 1 cycle for each additional word, and
finally an instruction cache with the same characteristics (conten-
tion in the memory bus shared by the two caches is also mod-
eled). We also assume perfect memory disambiguation for all
configurations in order not to give an unfair advantage to the con-
figuration which uses cloaking (cloaking may also be used to
schedule unresolved dependences similarly to what was done in
[15]).

For the configurations that use cloaking and a TVC we
assume perfect dependence and dependence status prediction
within the 256 most recent stores4. However, a dependence is not
predicted unless it has been seen at least once. We also assume a
256 entry fully-associative TVC. Furthermore, for each bench-
mark we simulate 100 million instructions after we have skipped
the first 100 million instructions.

7.2  Accuracy of Speculative Memory Cloaking
In this section we demonstrate that: (i) relatively simple pre-

dictors can be used to identify the dependence status of loads and

4. Note that these predictors are pessimistic models of perfect predictors
which use dependence information that is collected via a 256 fully-
associative DDT since, for example, some of the 256 most recent
stores may be writing to the same memory location. In this case the
described DDT may capture dependences whose store distance is
more than 256.

stores, (ii) a significant fraction of stores would have to generate
multiple synonyms if each dynamic dependence was treated sep-
arately, (iii) predicting and tracking more that one dependence
per static load is important, and (vi) a simple cloaking scheme
can capture and communicate a large fraction of the dynamic
dependences for most programs.

7.2.1  True Dependence Status Prediction

We evaluate predictors that associate a saturating counter
with each relevant static load or store instruction via the instruc-
tion address. We experimented with various counter based pre-
dictors, and here we report the results for the those that
performed best: 2-bit counter with threshold of 1 for loads and 1-
bit counter for stores (i.e., last status seen). To isolate problems
with finite storage we first evaluate infinite structures. However,
to demonstrate the feasibility of the mechanisms we also evaluate
finite prediction structures of various sizes with LRU replace-
ment policy. In the discussion that follows we are first concerned
with predicting the dependence status of loads. Later we consider
stores also.

 In Figure6, part (a) we report the breakdown of the
dynamic predictions for a true dependence predictor with infinite
prediction entries. Since dependence prediction is a binary deci-
sion there are four possible outcomes: (a) we may correctly pre-
dict that a load has a true dependence (categoryY/Y), (b) we may
fail to predict that a load has a dependence (categoryN/Y), (c) we
may incorrectly predict that a load has a true dependence
whereas it does not (category Y/N) and finally, (d) we may cor-
rectly predict that a load has no dependence (category N/N). The
loads of category Y/Y are candidates for cloaking and speculative
memory bypassing. Loads in the second category (N/Y) could
potentially benefit from either of the proposed techniques, how-
ever in practice will fail to do so. Loads inY/N may be incor-
rectly used to perform cloaking and bypassing if a matching
synonym is found. Finally, the loads of category N/N will neither
benefit nor get penalized by any of the proposed techniques.

In parts (b) and (c) of Figure6, we show the effects of finite
prediction storage. We report results for prediction tables of entry
counts that are powers of 2 in the range of 64 to 2K. In part (b),
we report thetrue dependence prediction accuracy, which is
defined as the percentage of the correctly predicted dynamic

Figure 6.  Predicting the true dependence status of loads and stores within a store window of 256. Parts (a) through (c) are for loads
whereas part (d) is for stores.Loads: Infinite prediction resources: (a) prediction breakdown (“P/A” stands for “Predicted/Actual”).
Finite prediction resources: (b) Accuracy of prediction for loads with true dependences, (c) Percentage of loads that are incorrectly
identified as having true dependences. Results of parts (b) and (c) are as a function of table size. Samples are taken at powers of two and
the range is 64 to 2K entries (last bar is with infinite resources).Stores: (d) Prediction breakdown with infinite resources.
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loads with true dependences over the total number of the
dynamic loads that have true dependences (i.e.,Y/Yover Y/Y + N/
Y). It can be seen that for all benchmarks, there is virtually no
difference between a 2K prediction table and an infinite one (the
dark bar shows the results with infinite entries). Furthermore,
there is little or no difference between the predictors with 512
and 2K entries. In part (c), we report the percentage of the
dynamic loads that are incorrectly identified as having true
dependences (category Y/N). It can be seen that only few loads
are incorrectly identified.

Part (d) of Figure6 reports the prediction breakdown for an
infinite true dependence status predictor for stores. We omit the
results for finite prediction tables by noting that no significant
degradation in accuracy or no difference at all is observed for a
512 entry prediction table.

7.2.2  A Speculative Memory Cloaking Mechanism

The cumulative distribution of the degree of use of store val-
ues is shown in part (a) of Figure7 up to a degree of use of 7
(percentage is over all stores whose value is used). It can be seen
that a significant fraction of store values are used at least twice.
Consequently, if we were to provide a different synonym per
dependence we often would have to generate two or more syn-
onyms. Based on this result and for the purposes of this evalua-
tion we restrict our attention to cloaking schemes in which a
store instance uses a common synonym to communicate with all
loads that may be dependent on it. In part (b) or Figure7, we
report the number of dynamic dependences that can be poten-
tially predicted as a function of the number of dependences we
can remember per static load. It can be seen that a significant
fraction of dependences cannot be predicted unless we record
two or more of the most recent dependences per static load.

Based on the insight gained from the previous two experi-
ments we evaluate a cloaking mechanism that associates a com-
mon tag to all dependences that have a common store or a load as
these are detected (we also evaluated a scheme that records and
predicts the most recent store per load and found it to be infe-
rior). As explained in Section4.1, this scheme attempts to pro-
vide support for loads that experience dependences with more
than one store. For all experiments, we assume a 256, fully asso-
ciative SF (no notable difference was observed with a direct
mapped SF). In part (c) of Figure7 we report the percentage of
the dynamic true dependences whose value is correctly commu-

nicated through speculative memory cloaking (note that the num-
ber of true dependences and the number of the loads with a true
dependence is considered to be the same for the purpose of this
evaluation) when an infinite DPNT is used (dark bar) and when
the number of entries is restricted to 512, 1K, 2K and 4K (gray
bars). It can be seen that the majority of all dynamic dependences
is correctly communicated. An investigation of the relative
importance of each potential source of failures is beyond the
scope of the paper. (The percentage of all loads that get their
value from cloaking can be derived by multiplying the Y/Y pre-
diction accuracies from part (a) of Figure6 and the cloaking
accuracies reported).

7.3  Reduction of Data Cache Accesses
In Figure8, part (a) we report the breakdown of the

dynamic predictions of an output dependence predictor with infi-
nite entries. Again there are four possible outcomes based on the
predicted and the actual dependence status of a store. Overall, the
dependence status of the majority of the dynamic stores is cor-
rectly predicted. We do not present the results for finite predic-
tion tables since the trends are similar to those observed in true
dependence status prediction. However we note that virtually no
difference was observed when the number of entries was
restricted to 512. Finally, in part (b) of Figure8, we report a
lower bound on the reduction of data cache accesses that can be
expected by a 256-entry fully associative TVC given the true and
output dependence status predictors we simulated of 512 entries
each. We report a lower bound on the percentage of dynamic
loads and stores that would hit or get killed, respectively, in this
TVC (i.e., these accesses will not reach the data cache).

7.4  Potential Impact on Performance
In this section we attempt to get an estimate on the perfor-

mance impact the proposed mechanisms may have. The base
case used in these experiments is an ILP processor with a tradi-
tional memory system with a 32K data cache. In Figure9, we
report the speedups observed when our mechanisms (as
described in Section7.1) is used or when the data cache size is
doubled to 64K. We present two sets of measurement, one with
for miss latency of 16 cycles and one for miss latency of 24
cycles. It can be seen that the proposed mechanisms have the
potential to improve performance even when compared to the
system that has twice as much data cache.

Figure 7. (a). Cumulative distribution of the degree of use of store values. (b). Percentage of true dependences that can be predicted as
a function of the dependence history depth kept per static load. (c). Percentage of true dependences communicated correctly via cloaking.
Dark bar is for infinite DPNT, gray bars are for 512, 1K, 2K and 4K entries.
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Figure 8. (a) Output dependence prediction breakdown
given infinite prediction resources. (b) Lower bound on the
percentage of all load and store instructions that will either
hit or will be killed in a 256-entry, fully associative TVC. We
assume counter based true and output dependence status
prediction tables, each of 512-entries.
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Figure 9. Potential performance impact of our mechanisms.
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Section7.1.
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8  Related Work
Dependence prediction has been introduced in [15] where it

was used to improve the accuracy of dependence speculation.
However, to the best of our knowledge, no previous work exists
in attempting to dynamically establish direct links between
dependent instructions for the purposes of streamlining the inter-
operation communication; nor has there been previous work in
using dependence status prediction to manage the storage within
a traditional memory hierarchy.

Numerous techniques that attempt to predict the data
addresses of loads and stores have been proposed and used to
reduce the access latency of loads both in hardware and in soft-
ware [e.g., 1,2,3,4,6,18]. Even though no attempt is made to
establish explicit links between dependent instructions, these
techniques may, as a side effect, reduce the latency of the com-
munication of load-store dependences, provided that the data
address accessed by the load is correctly predicted and that the
store has executed (i.e., both the data address and value are avail-
able). Cloaking may streamline the communication even if the
access pattern defies prediction.

In this work we were motivated by the large fraction of
memory accesses that correspond to dependences with a recent
store and by the fraction of memory values that are killed soon
after they are created. A number of studies have also looked at
the memory referencing behavior of programs for the purpose of
optimizing the memory hierarchy. McNiven and Davidson [14]
analyzed memory referencing behavior and suggested using
compiler hints to identify values that are killed in order to reduce
traffic between adjacent levels of the memory hierarchy. Huang
and Shen studied the minimal bandwidth requirements of current
processors, as a function of instruction issue rate, memory capac-
ity and memory bandwidth. They also formalized efficient mem-

ory systems [8,9]. The TVC brings a traditional memory
hierarchy closer to the idealized efficient memory hierarchy since
many of the values that are quickly killed are handled by a small
storage without ever getting exposed to the rest of the hierarchy.

Methods for making cache management decisions based on
access characteristics have also been suggested. Tyson, Farrens,
Matthews and Pleszkunhave used the miss behavior of loads to
selectively bypass the data cache [20]. Rivers and Davidson [17],
and Johnson and Hwu [10] used the reuse behavior of memory
addresses to make cache management decisions. González, Alia-
gas and Valero use a dynamic scheme to determine the spatial
and temporal locality characteristics of memory addresses and
use it to manage two separate caches [7]. Finally, Pomerene,
Puzak, Rechtschaffen and Sparacio [16] propose the shadow
cache as an improvement over LRU replacement. The TVC
approach is orthogonal to all aforementioned cache management
methods and differs in that dependence status prediction is used
to redirect accesses and not the characteristics of the actual data
address or the miss behavior of the instruction.

Wilson, Olukotun and Rosenblum suggested the use of a
Line Buffer to cache recently accessed data in order to reduce the
processor–data cache bandwidth and read/port requirements
[21]. The Line Buffer is placed in front of the data cache, and all
accesses have to go through it (for this reason its size is limited
by timing considerations). Furthermore, in contrast to the TVC,
all loads accesses cause the corresponding data to be cached into
the Line Buffer.

Finally, value speculation may effectively reduce the latency
of memory communication independently of whether the load
has a true dependence or not [12]. The success of this approach
relies on the ability to track and predict the actual values. In
cloaking we do not directly predict the load value, rather we pre-
dict its producer.

9  Summary and Conclusions
We revisit memory communication and consider techniques

that use dynamically collected information to alleviate the draw-
backs associated with the traditional way of expressing and per-
forming memory communication. In doing so, we make the
following contributions:

(1) We show that the data dependence status of most mem-
ory operations can be predicted with high accuracy on a per
instruction basis and based solely on the history of previous data
dependences.



(2) We show that the traditional implicit specification of
memory communication can be dynamically converted into a
explicit, albeit speculative form.

(3) We propose speculative memory cloaking and its exten-
sion speculative memory bypassing, which utilize the explicit
specification of memory communication to take the address cal-
culation, the disambiguation, the data cache access and whenever
possible, the load and store instructions themselves off the com-
munication path.

(4) We propose the Transient Value Cache a dependence
status prediction managed storage structure that can reduce the
contention for data cache resources.

We demonstrated that a large percentage of the inter-opera-
tion memory communication can be streamlined via cloaking
and hidden via the TVC. Furthermore, we showed that a large
percentage of the store values that are quickly killed can also be
hidden by a TVC.

Several directions for further research exist. Although effec-
tive, the implementations we proposed are preliminary. Accord-
ingly, further investigation may help in: (i) improving accuracy
and performance of the proposed mechanisms, (ii) developing
better implementations and (ii) determining the relative impor-
tance of each of the mechanisms. To improve the accuracy of the
dependence prediction more sophisticated predictors may be
sought. The relative importance of the mechanisms is expected to
vary as the assumptions about the processor and the memory sys-
tem change. Further investigation is required to determine how
the proposed mechanisms perform as instruction windows and
memory latencies increase or as other speculation methods are
incorporated.

A more exciting research direction however is to study the
impact a communication centric approach may have on memory
hierarchy design and management. The methods we propose
make a first step toward this direction. More general schemes
may be possible. For example we may attempt to collect and pre-
dict various kinds of communication attributes and to associate
this information with the corresponding loads and stores. This
information may be useful in making memory hierarchy manage-
ment decisions. It may also be utilized to develop novel storage
structures that are optimized toward different communication
patterns. What kinds of information might be useful in this con-
text, whether they can be collected and predicted dynamically or
statically, whether it is best to associate them with dependences
rather than names, and how they might be used, are open ques-
tions. As a starting point we may consider a number of communi-
cation characteristics (e.g. lifetime, inter-reference times, how
important a value is in terms of performance) and study how
these characteristics vary from the point of view of the depen-
dences and of the memory names.
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