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Abstract

The trace cache has been proposed as a mechanism
for providing increased fetch bandwidth by allowing the
processor to fetch across multiple branches in a single
cycle. But to date predicting multiple branches per cycle
has meant paying a penalty in prediction accuracy. We
propose a next trace predictor that treats the traces as
basic units and explicitly predicts sequences of traces.
The predictor collects histories of trace sequences (paths)
and makes predictions based on these histories. The
basic predictor is enhanced to a hybrid configuration that
reduces performance losses due to cold starts and
aliasing in the prediction table. The Return History Stack
isintroduced to increase predictor performance by saving
path history information across procedure call/returns.
Overall, the predictor yields about a 26% reduction in
misprediction rates when compared with the most
aggressive  previousy proposed, multiple-branch-
prediction methods.

1. Introduction

Current superscdar procesors fetch and isaue four to
six instructions per cycle -- about the same number as in
an average basic block for integer programs. It is obvious
that as designers read for higher levels of instruction
level parallelism, it will becme necessary to fetch more
than one basic block per cycle. Inrecent yeas, there have
been several proposals put forward for doing so [3,4,12].
One of the more promising is the trace cabe [9,10],
where dynamic sequences of instructions, containing
embedded predicted branches, are as®mbled as a
sequential “trace” ad are saved in a speda cadie to be
fetched as a unit.

Trace cabe operation can best be understood via an
example. Figure 1 shows a program’s control flow graph
(CFG), where eab node is a basic block, and the acs
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represent potential transfers of control. In the figure, arcs
corresponding to branches are labeled to indicate taken
(T) and not taken (N) paths. The sequence ABD
represents one possble tracewhich holds the instructions
from the basic blocks A, B, and D. This would be the
sequence of instructions beginning with basic block A
where the next two branches are not taken and taken,
respedively. These basic blocks are not contiguous in the
original program, but would be stored as a cntiguous
block in the trace cabe. A number of traces can extraded
from the CFG -- four possible traces are:

1: ABD

2: ACD

3: EFG

4: EG
Of course, many other traces could also be chosen for the
same CFG, and, in fad, a tracedoes not necessarily have
to begin or end at a basic block boundary, which further
increases the posghilities.  Also, note that in a trace
cade, the same instructions may appea in more than one
trace For example, the blocks A, D, E, and G eadh
appea twice in the dove list of traces. However, the
medhanism that builds traces $ould use some heuristic to
reduce the amount of redundancy in the trace cahe;
beginning and ending on basic block boundaries is a good
heuristic for doing this.

Figure 1 Example CFG



Assciated with the trace cabe is a tracefetch urit,
which fetches atracefrom the catie eab cycle. To do
thisin atimely fashion, it is necessary to predict what the
next tracewill be. A straightforward method, and the one
used in [9,10], is to predict ssimultaneously the multiple
branches within atrace Then, armed with the last PC of
the preceading trace ad the multi ple predictions, the fetch
unit can accessthe next trace In our example, if tracel --
ABD -- is the most recently fetched trace and a multiple
branch predictor predicts that the next three branch
outcomes will be T,T,N, then the next tracewill i mplicitly
be ACD.

In this paper, we take adifferent approach to next
trace prediction -- we tred the traces as basic units and
explicitly predict sequences of traces. For example,
referring to the ebove list of traces, if the most recent trace
is trace 1, then a next trace predictor might explicitly
output “trace 2.” The individual branch predictions
T,T,N, are implicit.

We propose and study next trace predictors that
colled histories of tracesequences and make predictions
based on these histories. This is $milar to conditional
branch prediction where predictions are made using
histories of branch outcomes. However, eah trace
typicdly has more than two succesors, and dften has
many more. Conseguently, the next tracepredictor keeps
track of sequences of trace identifiers, ead identifier
containing multiple bits.  We propcse abasic predictor
and then add enhancements to reduce performance losses
due to cold starts, procedure cdl/ returns, and interference
due to diasing in the prediction table. The proposed
predictor yields substantial performance improvement
over the previously proposed, multi ple-branch-prediction
methods. For the six benchmarks that we studied the
average misprediction rate is 26% lower for the proposed
predictor than for the most aggressve previousy
proposed multiple-branch predictor.

2. Previouswork

A number of methods for fetching multiple basic
blocks per cycle have been propcsed. Yeh et a. [12]
proposed a Branch Address Cacdhe that predicted multiple
branch target addresss every cycle. Conte @ a. [3]
proposed an interleaved branch target buffer to predict
multi ple branch targets and deted short forward branches
that stay within the same cade line. Both these methods
use @nventiona ingruction cades, and bah fetch
multiple lines based on multiple branch predictions.
Then, after fetching, blocks of instructions from different
lines have to be seleaed, aligned and combined -- this can
lead to considerable delay following instruction fetch. It
is this complex logic and delay in the primary pipeline
that the trace cabe is intended to remove. Trace cabes

[9,20] combine blocks of instructions prior to storing
them in the catie. Then, they can be read as a block and
fed up the pipeline without having to pass through
complex steering logic.

Branch prediction in some form is a fundamental part
of next trace prediction (either implicitly or explicitly).
Hardware branch predictors predict the outcome of
branches based on previous branch behavior. At the heat
of most branch predictors is a Pattern History Table
(PHT), typicdly containing two-bit saturating counters
[11]. The simplest way to asciate a ounter with a
branch instruction is to use some bits from the PC address
of the branch, typicdly the least significant bits, to index
into the PHT [11]. If the munter’s value is two or three
the branch is predicted to be taken, otherwise the branch
is predicted to be not taken.

Correlated predictors can incresse the acaracy of
branch prediction because the outcome of a branch tends
to be correlated with the outcome of previous branches
[8,13]. The crrelated predictor uses a Branch History
Register (BHR). The BHR is a shift register that is
usualy updated by shifting in the outcome of branch
instructions -- a one for taken and a zeo for not taken. In
a global correlated predictor there is asingle BHR that is
updated by all branches. The BHR is combined with
some bits (possbly zero) from a branch's PC address
either by concaenating or using an exclusive-or function,
to form an index into the PHT. With a orrelated
predictor a PHT entry is asociated not only with a branch
instruction, but with a branch instruction in the context of
a spedfic BHR vaue. When the BHR aone is used to
index into the PHT, the predictor is a GAg predictor [13].
When an exclusive-or function is used to combine an
equal number of bits from the BHR and the branch PC
address the predictor is a GSHARE predictor [6].
GSHARE has been shown to dffer consistently good
prediction accuracy.

The mapping of ingructions to PHT entries is
esentially implemented by a simple hashing function that
does not deted or avoid colli sions. Aliasing occurs when
two urnrelated branch instructions hash to the same PHT
entry. Aliasing is espedally a problem with correlated
predictors becaise asingle branch may use many PHT
entries depending on the value of the BHR, thus
increasing contention.

In order to suppat simultaneous fetching of multiple
basic blocks, multiple branches must be predicted in a
single g/cle. A number of modificaions to the crrelated
predictor discussed above have been proposed to suppart
predicting multiple branches at once. Franklin and Dutta
[4] proposed subgraph oriented branch prediction
mechanisms that uses locd history to form a prediction
that encodes multi ple branches. Yeh, et a. [13] proposed
modifications to a GAg predictor to multiport the



predictor and produce multiple branch predictions per
cycle. Rotenberg et al. [10] also used the modified GAg
for their trace cache study.

Recantly, Patel et al. [9] proposed a multiple branch
predictor tailored to work with a trace cabe. The
predictor attempts to adieve the alvantages of a
GSHARE predictor while providing multiple predictions.
The predictor uses a BHR and the aldress of the first
instruction of a trace exclusive-ored together, to index
into the PHT. The entries of the PHT have been modified
to contain multiple two-bit saturating counters to allow
simultaneous prediction of multiple branches. The
predictor offers superior acaracy compared with the
multi ported GAg predictor, but does not quite atieve the

overall accuracy of a single branch GSHARE predictor.

Nair [7] proposed “path-based” prediction, a form of
correlated branch prediction that has a singe branch
history register and prediction history table.  The
innovation is that the information stored in the branch
history register is not the outcome of previous branches,
but their truncated PC addresses. To make aprediction, a
few bits from ead addressin the history register as well
as afew bits from the aurrent PC addressare mncaenated
to form an index into the PHT. Hence a branch is
predicted using krowledge of the sequence or path, of
instructions that led up to it. This gives the predictor
more spedfic information about prior control flow than
the taken/not taken history of branch outcomes. Jacobson
et a. [5] refined the path-based scheme and applied it to
next task prediction for multiscdar procesors. It is an
adaptation of the multiscaar predictor that forms the awre

of the path-based next trace predictor presented here.

3. Path-based next trace predictors

We nsider predictors designed spedficdly to work
with trace cabes. They predict traces explicitly, and in
doing so implicitly predict the cntrol instructions within
the trace Next tracepredictors replacethe conventional
branch predictor, branch target buffer (BTB) and return
address sadk (RAS). They have low latency, and are
cgpable of making a trace prediction every cycle. We
show they also dffer better acaragy than conventional
correlated branch predictors.

3.1. Naming of traces

In theory, atrace ca be identified by all the PCs in
the trace but this would obviously be epensive. A
chegper and more pradicd method is to use the PC value
for the first instruction in the trace ombined with the
outcomes of conditional branches embedded in the trace
This means that indired jumps can not be internal to a

trace We use traces with a maximum length of 16
instructions. For accessng the trace cabe we use the
following method. We asaume a36 kit identifier, 30 hts
to identify the starting PC and six bits to encode up to six
conditional branches. The limit of six branches is
somewhat arbitrary and is chosen becaise we observed
that length 16 traces amost never have more than six
branches. It is important to note that this limit on
branches is not required to simplify simultaneous multiple
branch prediction, as is the cae with trace predictors
using explicit branch prediction.

3.2. Correlated predictor

The oore of the next trace predictor uses correlation
based on the history of the previous traces. The
identifiers of the previous few traces represent a path
history that is used to form an index into a prediction
table; seeFigure 2. Each entry in the table consists of the
identifier of the predicted trace (PC + branch outcomes),
and a two-bit saturating counter. When a prediction is
corred the cunter is incremented by one. When a
prediction is incorred and the wunter is zero, the
predicted trace will be replacal with the adua trace
Otherwise, the munter is deaemented by two and the
predicted trace @try is unchanged. We found that the
increment-by-1, deaement-by-2 counter gives dightly
better performance than either a one bit or a conventional
two-bit counter.

HISTORY REGISTER
[Hashed ID | [Hashed 1D | [Hashed 1D | [Hashed ID

TABLE

Trace 1D cnt

Figure2 Correlated predi%r

Path history is maintained as a shift register that
contains 16 bt hashed traceidentifiers (Figure 2). The
hashing function uses the outcome of the first two
conditional branches in the trace identifier as the least
significant two hits, the two least significant bits of the
starting PC as the next two hits, the upper bits are formed
by taking the outcomes of additional conditional branch
outcomes and exclusive-oring them with the next least
significant bits of the starting PC. Beyond the last
conditional branch a value of zero is used for any
remaining branch outcome bits.



The history register is updated speaulatively with
eahh new prediction. In the cae of an incorred
prediction the history is badked up to the state before the
bad prediction. The prediction table is updated only after
the last instruction of a trace is retired -- it is not
speculatively updated.
< D P
D back ID |0u|3 badk ID |2 badk ID |1 badk ID CurrentID|

O bits itd L bit C bits

Width hbits

Width hbits

INDEX

Figure 3 Index generation mechanism

Idedly the index generation mechanism would simply
concaenate the hashed identifiers from the history register
to form the index. Unfortunately this is sometimes not
pradicd becaise the prediction table is relatively small so
the index must be restricted to a limited number of bits.

The index generation mechanism is based on the
method developed to do inter-task prediction for
multiscdar procesors [5].  The index generation
medanism uses a few bits from ead of the hashed trace
identifiers to form an index. The low order bits of the
hashed traceidentifiers are used. More bits are used from
more recent traces. The mlledion of seleded hits from
al the traces may be longer than the dlowable index, in
which case the mlledion of bits is folded over onto itself
using an exclusive-or function to form the index. In [5],
the “DOLC” naming convention was developed for
spedfying the spedfic parameters of the index generation
medhanism. The first variable ‘D’ epth is the number of
traces besides the last tracethat are used for forming the
index. The other threevariables are: number of bits from
‘O’lder traces, number of bits from the ‘L’ast trace ad
the number of bits from the ‘C'urrent. In the example
shown in Figure 3 the lledion of bits from the trace
identifiers is twice & long as the index so it is folded in
half and the two halves are mmbined with an exclusive-
or. In other cases the bits may be folded into three parts,
or may not need to be folded at all.

3.3. Hybrid predictor

If the index into the prediction table reads an entry
that is unrelated to the aurrent path history the prediction
will almost certainly be incorred. This can occur when
the particular path hes never occurred before, or becaise

the table entry has been overwritten by unrelated path
history due to aliasing. We have observed that bath are
significant, but for redisticdly sized tables aliasing is
usually more important. In branch prediction, even a
randomly seleded table entry typicdly has about a 50%
chance of being corred, but in the cae of next trace
prediction the cances of being corred with a random
table entry is very low.

To address this isale we operate a second, smaller
predictor in parallel with the first (Figure 4). The
secondary predictor requires a shorter leaning time and
suffers less aliasing presaure.  The secondary predictor
uses only the hashed identifier of the last traceto index its
table. The prediction table entry is Smilar to the one for
the correlated predictor except a4 hit saturating counter is
used that deaements by 8 on a misprediction. The reason
for the larger counter will be discussd at the end of this
section.

HISTORY REGISTER
[Hashed ID | [Hashed 1D | [Hashed 1D | [Hashed ID

SECONDARY TABLE

=P Trace ID ||cnt

Prediction

CORRELATING TABLE

\ 4

Index I
Generation TraceID |[cnt || Tag

Figure4 Hybrid predictor

To dedde which predictor to use for any given
prediction, a tag is added to the table entry in the
correlated predictor. Thetagis st with the low 10 hts of
the hashed identifier of the immediately precading trace &
the time the entry is updated. A ten bit tag is sofficient to
eliminate pradicdly al unintended aliasing When a
prediction is being made, the tag is chedked against the
hashed identifier of the precaling trace if they match the
correlated predictor is used; otherwise the secondary
predictor is used. This method increases the likelihood
that the crrelated predictor corresponds to the mrred
context when it is used. This method also allows the
semndary table to make aprediction when the mntext is
very limited, i.e. under startup conditions.



The hybrid predictor naturally reduces aliasing
pressure somewhat, and by modifying it slightly, aliasing
pressure can be further reduced. |If the 4-bit counter of the
secondary predictor is saturated, its prediction is used, and
more importantly, when it is correct the correlated
predictor is not updated. This means if a trace is always
followed by the same successor the secondary predictor
captures this behavior and the correlated predictor is not
polluted. This reduces the number of updates to the
correlated predictor and therefore the chances of aliasing.
The relatively large counter, 4-bits, is used to avoid giving
up the opportunity to use the correlated predictor unless
there is high probability that atrace has a single successor.

3.4. Return history stack (RHS)

The accuracy of the predictor is further increased by a
new mechanism, the return history stack (RHS). A fieldis
added to each trace indicating the number of cals it
contains. If the trace ends in areturn, the number of calls
is decremented by one. After the path history is updated,
if there are any calls in the new trace, a copy of the most
recent history is made for each call and these copies are
pushed onto a specia hardware stack. When there is a
trace that ends in a return and contains no calls, the top of
the stack is popped and is substituted for part of the
history. One or two of the most recent entries from the
current history within the subroutine are preserved, and
the entries from the stack replace the remaining older
entries of the history. When there are five or fewer entries
in the history, only the most recent hashed identifier is
kept. When there are more than five entries the two most
recent hashed identifiers are kept.

HISTORY REGISTER
hashed ID | [hashed ID | |[hashed ID | [hashed ID |

POP PUSH
¥

[ ]
HISTORY STACK
[ ]

Figure 5 Return history stack implementation

With the RHS, after a subroutine is called and has
returned, the history contains information about what
happened before the call, as well as knowledge of the last
one or two traces of the subroutine. We found that the
RHS can significantly increase overall predictor accuracy.
The reason for the increased accuracy is that control flow
in a program after a subroutine is often tightly correlated
to behavior before the call. Without the RHS the
information before the call is often overflowed by the

control flow within a subroutine. We are trying to achieve
a careful balance of history information before the call
versus history information within the call. For different
benchmarks the optimal point varies. We found that
configurations using one or two entries from the
subroutine provide consistently good behavior.

The predictor does not use a return address stack
(RAS), because it requires information on an instruction
level granularity, which the trace predictor is trying to
avoid. The RHS can partly compensate for the absence of
the RAS by helping in the initial prediction after a return.
If a subroutine is significantly long it will force any pre-
cal information out of the history register, hence
determining the caling routine, and therefor where to
return, would be much harder without the RHS.

4. Simulation methodology

4.1. Simulator

To study predictor performance, trace driven
simulation with the Simplescalar tool set is used [1].
Simplescalar uses an instruction set largely based on
MIPS, with the major deviation being that delayed
branches have been replaced with conventional branches.
We use the Gnu C compiler that targets Simplescalar.
The functional ssimulator of the Simplescalar instruction
set is used to produce a dynamic stream of instructions
that is fed to the prediction simulator.

For most of this work we considered the predictor in
isolation, using immediate updates. A prediction of the
next trace is made and the predictor is updated with the
actual outcome before the next prediction is made. We
also did simulations with an execution engine. This
allows updates to be performed taking execution latency
into account. We modeled an 8-way out-of-order issue
superscalar processor with a 64 instruction window. The
processor had a 128KB trace cache, a 64KB instruction
cache, and a 4-ported 64KB data cache. The processor
has 8 symmetric functional units and supports speculative
memory operations.

4.2. Trace sdection

For our study, we used traces that are a maximum of
16 ingtructions in length and can contain up to six
branches. The limit on the number of branchesisimposed
only by the naming convention of traces. Any control
instruction that has an indirect target can not be embedded
into atrace, and must be at the end of atrace. This means
that some traces will be shorter than the maximum length.
As mentioned earlier, instructions with indirect targets are
not embedded to allow traces to be uniquely identified by



their starting addressand the outcomes of any conditional
branches.

We used very simple traceseledion heuristics. More
sophisticaed trace seledion heuristics are possble and
would significantly impad the behavior of the trace
predictor. A study of the relation of trace seledion and
trace predictability is beyond the scope of this paper.

4.3. Benchmarks

We present results from six Spednt95 kenchmarks:
compress gcc, go, jpeg, m88ksim and xlisp. All results
are based on runs of at least 100 million instructions.

Table 1 Benchmark summary
Benchmark  Input number avg. Static

ofinstr.  trace traces
length
compress 400000e 104*1CF 14.5 992
2231

gcc genrecog.i 117*1¢ 13.9 51337
go 99 133*10 14.8 48736
jpeg vigo.ppm 166 *1F 15.8 5462
m88ksim ctl.in 120*1¢ 13.1 2871
xlisp queens 7 first100 12.4 1393

million

5. Performance

5.1. Sequential branch predictor

For reference we first determined the traceprediction
acarracy that could be atieved by taking proven control
flow prediction components and predicting ead control
instruction sequentially. In sequential prediction eat
branch is explicitly predicted and at the time of the
prediction the outcomes of all previous branches are
known. This is useful for comparisons althoughiit is not
redizable because it would require multiple acceses to
predict a single trace ad requires knowledge of the
branch addresses within the trace The best multiple
branch predictors to date have atempted to approximate
the behavior of this conceptual sequential predictor.

We used a 16-bit GSHARE branch predictor, a
perfed branch target buffer for branches with PC-relative
and absolute aldress targets, a 64K entry correlated
branch target buffer for branches with indired targets [2],
and a perfed return address predictor. All of these
predictors had ided (immediate) updates. When
simulating this medanism, if one or more predictions
within a trace was incorred we munted it as one trace
misprediction.  This configuration represents a very
aggressve, ided predictor. The prediction acarracy of

this idedized sequentia prediction is given in Table 2.
The mean of the trace misprediction rate is 12.1%. We
show later that our proposed predictor can achieve levels
of prediction acaracy significantly better than those
adhievable by this idedized sequentia predictor. In the
results sdion we refer to the traceprediction acaragy of
the idealized sequential predictor as “sequential.”

The misprediction rate for traces tends to be lower
than that obtained by simply multiplying the branch
misprediction rate by the number of branches becaise
branch mispredictions tend to be dustered. When a trace
is mispredicted, multiple branches within the same trace
are often mispredicted. Xlisp is the exception, with hard
to predict branches tending to be in different traces. With
the aygressve target prediction medhanisms none of the
benchmarks showed substantial targetprediction.

Table 2 Prediction accuracy for sequential predictors
Benchmark 16-bitGshare Number of Mispredic

branch Branches  tion of

misprediction per Trace traces

compress 9.2 21 17.9
gcc 8.0 21 14.0
go 16.6 1.8 24.5
ipeg 6.9 1.0 6.7
m88ksim 1.6 1.8 3.1
xlisp 3.2 1.9 6.5

5.2. Performance with unbounded tables

To determine the potential of path-based next trace
prediction we first studied performance asming
unbounded tables. In this gudy, ead urique sequence of
traceidentifiers maps to its own table entry. l.e. there is
no aliasing.

We oonsider varying depths of trace history, where
depth is the number of traces, besides the most recent
trace that are combined to index the prediction table. For
a depth of zero only the identifier of the most recent trace

is used. We study history depths of zero through seven.

Figure 6 presents the results for unbounded tables, the
mean of the misprediction rate is 8.0% for the RHS
predictor at the maximum depth. For comparisons, the
“sequential” predictor is based on a 16-bit Gshare
predictor that predicts al conditional branches
sequentialy. For all the benchmarks the proposed path-
based predictor does better than the idedized sequential
predictor. On average, the misprediction rate is 34%
lower for the proposed predictor. In the cases of gcc and
go the predictor has lessthan half the misprediction rate
of the idealized sequential predictor.
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Figure 6 Next trace prediction with unbounded tables

For al benchmarks, the hybrid predictor has a higher
prediction accuracy than using the correlated predictor
alone. The benchmarks with more static traces see a
larger advantage from the hybrid predictor because they
contain more unique sequences of traces. Because the
table size is unbounded the hybrid predictor is not
important for aliasing, but is important for making
predictions when the correlated predictor entry is cold.

For four out of the six benchmarks adding the return
history stack (RHS) increases prediction accuracy.
Furthermore, the four improved benchmarks see a more
significant increase due to the RHS than the two
benchmarks hurt by the RHS see a decrease. For
benchmark compress the predictor does better without the
RHS. For compress, the information about the subroutine
being thrown away by the RHS is more important than the
information before the subroutine that is being saved.

Xlisp extensively uses recursion, and to minimize
overhead it uses unusual control flow to backup quickly to
the point before the recursion without iteratively

3 .4
Depth of History

performing returns. This behavior confuses the return
history stack because there are a number of calls with no
corresponding returns. However, it is hard to determine
how much of the performance loss of RHS with xlisp is
caused by this problem and how much is caused by loss of
information about the control flow within subroutines.

5.3. Performance with bounded tables

We now consider finite sized predictors. The table
for the correlated predictor is the most significant
component with respect to size. We study correlated
predictors with tables of 2', 2'° and 2° entries. For each
size we consider a number of configurations with different
history depths.  The configurations for the index
generation function were chosen based on trial-and-error.
Although better configurations are no doubt possible we
do not believe differences would be significant.
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Figure 7 Next trace prediction

We use a RHS that has a maximum depth of 128.
This depth is more than sufficient to handle al the
benchmarks except for the recursive section of xlisp,
where the predictor is of little use, anyway.

Performance results are in Figure 7. Three of the
benchmarks stress the finite-sized predictors: gcc, go and
jpeg. In these predictors the deviation from the
unbounded tables is very pronounced, as is the deviation
between the different table sizes. As expected, the
deviation becomes more pronounced with longer histories
because there are more unique segquences of trace
identifiers being used and, therefore, more aliasing.

Go has the largest number of unique sequences of
trace identifiers, and apparently suffers from aliasing
pressure the most. At first, as history depth is increased
the miss rate goes down. As the history depth continues
to increase, the number of sequences competing for the
finite size table increases aliasing. The detrimental effects
of aliasing eventually starts to counter the gain of going to
deeper histories and at some point dominates and causes a
negative effect for increased history depth. The smaller

the table size, the sooner the effects of aiasing start to
become a problem. It is important to focus on the
behavior of this benchmark and the other two larger
benchmarks -- gcc and jpeg, because in general the other
benchmarks probably have relatively small working sets
compared to most realistic programs.

We see that for redistic tables, the predictor can
achieve very high prediction accuracies. In most cases,
the predictor achieves miss rates significantly below the
idealized sequential predictor. The only benchmark
where the predictor can not do better than sequential
prediction is for a small, 2'* entry, table for jpeg. But
even in this case it can achieve performance very close to
the sequential, and probably closer than a redistic
implementation of Gshare modified for multiple branches
per cycle throughput. For our predictor the means of the
mispredict rates are 10.0%, 9.5% and 8.9% for the
maximum depth configuration with 24, 2*° and 2'° entry
tables respectively. These are al significantly below the
12.1% misprediction rate of the sequential predictor, 26%
lower for the 2*° predictor.



Table 3 Index generation configurations used

Depth D-O-L-Cfor D-O-L-Cfor D-O-L-C for
14 bit Index 15 bit Index 16 bit Index
0-0-0-14 (1p) 0-0-0-15 (1p) 0-0-0-16 (1p)
1-0-6-8 (1p) 1-0-7-8 (1p) 1-0-7-9 (1p)

3-5-7-11 (2p) 3-5-8-12 (2p) 3-5-9-13 (2p)
5-3-6-11 (2p) 5-4-5-9 (2p) 5-5-5-7 (2p)
7-4-7-11 (3p) 7-4-9-12 (3p) 7-5-7-11 (3p)
9-3-7-11 (3p) 9-3-9-12 (3p) 9-4-7-9 (3p)
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5.4. Impact of delayed updates

Thus far simulation results have used immediate
updates. In ared procesor the history register would be
updated with ead predicted trace and the history would
be orreded when the predictor badks up due to a
misprediction. The table entry would not be updated urtil
the last instruction of a trace has retired.

Table 4 Impact of real updates

Benchmark Misprediction Misprediction
with ideal updates  with real update

compress 5.8 5.8
gcc 10.5 10.5

go 9.3 9.3
ipeg 3.5 3.6
m88ksim 2.4 2.1
xlisp 4.7 4.8

To make sure this does not make asignificant impad
on prediction acarragy, we ran a set of simulations where
an exeadution engine was smulated. The aonfiguration of
the exeaution engine is discussed in sedion 4.1. The
predictor being modeled has 2'° entries and a 7-3-6-8
DOLC configuration. Table 4 shows the impad of
delayed updates, and it is apparent that delayed updates
are not significant to the performance of the predictor. In
one cae, m88ksim, the delayed updates adually increased
prediction acaracy. The delayed updates has the dfed
of increasing the amount of hysteresis in the prediction

table which in some cases can increase performance.

5.5. A cost-reduced predictor

The st of the proposed predictor is primarily a
function of the size of the arrelated predictor’'s table.
The size of the arrelated predictor’s table is the number
of entries multiplied by the size of an entry. The size of
an entry is 48 hts. 36 hitsto encode atraceidentifier, two
bits for the counter plus 10 bits for the tag.

A much less expensive predictor can be @nstructed,
however, by observing that before the trace cabe can be
accesxd, the trace identifier read from the prediction
table must be hashed to form a trace cabe index. For

pradicd sized trace cahes thisindex will be in the range
of 10 hits. Rather than storing the full traceidentifier, the
hashed cade index can be stored in the table, instead.
This hashed index can be the same & the hashed
identifier that is fed into the history register (Figure 2).
That is, the Hashing Function can be moved to the input
side of the prediction table to hash the trace identifier
beforeit isplaceal into the table. This modification should
not affed prediction acarragy in any significant way and
reduces the size of the traceidentifier field from 36 Ltsto
10 hts. The full traceidentifier is gill stored in the trace
cadte & part of its entry and is read out as part of the
trace cabe accas The full traceidentifier is used during
exeadtion to validate that the control flow implied by the
trace is correct.

6. Predicting an alternatetrace

Along with predicting the next trace an aternate
trace ca be predicted at the same time. This aternate
trace ca simplify and reduce the latency for recovering
when it is determined that a prediction is incorred. In
some implementations this may allow the processor to
find and fetch an dternate trace instead of resorting to
building a trace from scratch.

Alternate trace prediction is implemented by adding
another field to the correlated predictor. The new field
contains the identifier of the dternate prediction. When
the prediction of the crrelated predictor is incorred the
aternate prediction field is updated. If the saturating
counter is zero the identifier in the prediction field is
moved to the dternate field, the prediction field is then
updated with the a¢ual outcome. If the saturating counter
is non-zero the identifier of the adual outcome is written
into the alternate field.

Figure 8 shows the performance of the dternate trace
predictor for two representative benchmarks. The graphs
show the misprediction rate of the primary 2 entry table
predictor as well asthe rate & which both the primary and
aternate ae mispredicted. A large percent of the
mispredictions by the predictor are caught by the dternate
prediction. For compress 2/3 of the mispredictions are
caught by the dternate, for gccit is dightly lessthan half.
It is notable that for alternate prediction the aliasing effed
quickly dominates the benefit of more history becaise it
does not require & much history to make aprediction of
the two most likely traces, so the benefit of more history is
significantly smaller.

There ae two reasons dternate trace prediction
works well. First, there ae caes where some branch is
not heavily biased; there may be two traces with similar
likelihood Sewmnd, when there ae two sequences of
traces aliased to the same prediction entry, as one
sequence displaces the other, it moves the other’s likely



prediction to the dternate slot. When a prediction is made
for the displaced sequence of traces, and the secondary
predictor is wrong, the alternate is likely to be correct.

COMPRESS
04 - - T oLl ——Primary | _
—o— Alternate
i3
kSt
15+ - - - - - = - = = = - = - - - - - - o -
c
S
B8
BIOT - - - s s s s s oo oo
2
= 5
0
0 1 3 5 7 9
Depth of History
GCC
20
R N
Al m NG —e—Primary |-
Buar - - N —o— Alternate | -
2
0

3 5
Depth of History

Figure 8 Alternate trace prediction accuracy

7. Summary

We have proposed a next trace predictor that treas
the traces as basic units and explicitly predicts squences
of traces. The predictor colleds histories of trace
sequences and makes predictions based on these histories.
In addtion to the basic predictor we proposed
enhancements to reduce performance losss due to cold
starts, procedure cdl/returns, and the interference in the
prediction table. The predictor yields consistent and
substantial improvement over previously proposed,
multi ple-branch-prediction methods. On average the
predictor had a 26% lower mispredict rate than the most

aggressive previously proposed multiple-branch predictor.
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