Trace Processors

Eric Rotenberg*, Quinn Jacobson, Yiannakis Sazeides, Jim Smith
Computer Sciences Dept.* and Dept. of Electrical and Computer Engineering
University of Wisconsin - Madison

Copyright 1997 IEEE. Published in the Proceedings of Micro-30, December 1-3, 1997 in Research Triangle Park, North
Carolina. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works, must be obtained from the IEEE. Contact:

Manager, Copyrights and Permissions
|EEE Service Center

445 Hoes Lane

PO. Box 1331

Piscataway, NJ 08855-1331, USA
Telephone: + Intl. 908-562-3966

Trace Processors

Eric Rotenbay*, Quinn Jacobson,i&nnakis Sazeides, Jim Smith

Computer Sciences Dept.* and Dept.

of Electrical and Computer Engineering

University of Wisconsin - Madison

Abstract

Traces ae dynamic instruction sequences constructed
and catied by hadware. A micoarchitectue omganized
around tiaces is pesented as a means fofigéntly ee-
cuting many instructions per cycle Trace pobcessos
exploit both contol flow and data flow hiarchy to wer-
come compbdty and achitectural limitations of comen-
tional supescalar pocessos by (1) distriloiting execution
resouces based on dce boundaries and (2) applying
contol and data pediction at the tce level rather than
individual branches or instructions.

Three sets ofveriments using the SPECInt95 benc
marks ae presented. (i) A detailedvaluation of tace
processor configations: the esults dirm that significant
instruction-level pamllelism can be xploited in intger
programs (2 to 6 instructions per cycle).e\Wso isolate
the impact of distribted esouces, and quantify the value
of successively doubling the number of distigll ele-
ments. (ii) A tace pocessor with data pdiction applied
to intertrace dependences: potential performance
improvement with perfect pdiction is aound 45% for all
bendimarks. Mth realistic pediction, gcc achieves an
actual imppvement of 10%. (iii) Evaluation ofgressive
contol flow: some bergnarks benefit ém contol inde-
pendence by as muas 10%.

1. Introduction

Improvements in processor performance come about
in two ways - adances in semiconductor technology and
adwances in processor microarchitectureo shistain the
historic rate of increase in computingws, it is impor-
tant for both kinds of agnces to continue. It is almost
certain that clock frequencies will continue to increase.
The microarchitectural challenge is to issue yniastruc-
tions per gcle and to do so #fiently. We ague that a
conventional superscalar microarchitecture cannot meet
this challenge due to itsompleity - its ineficient
approach to multiple instruction issue - and due to its
architectural limitations on ILP- its inability to etract
sufficient parallelism from sequential programs.

In going from todays modest issue rates to 12- or 16-
way issue, superscalar processasef compleity at all
phases of instruction processing. Instruction fetch band-
width is limited by frequent branches. Instruction dis-
patch, rgister renaming in particular requires

increasingly compbe dependence checking among all

instructions being dispatched. It is not clear that wide
instruction issue from a Ige pool of instruction differs or

full result bypassing among functional units is feasible
with a ery fast clock.

Even if a wide superscalar processor coufitiehtly
exploit ILP, it still has fundamental limitations in finding
the parallelism. These architectural limitations are due to
the handling of control, data, and memory dependences.

The purpose of this paper is to adate a e gener-
ation microarchitecture that addresses both caxitple
and architectural limitations. The widopment of this
microarchitecture brings together concepts from a signifi-
cant body of research ¢pting these issues and fills in
some @ps to gie a more complete and cohespicture.
Our primary contrilition is ealuating the performance
potential that this microarchitectureferfs.

1.1 Trace processor microarchitecture

The proposed microarchitecture (Figd)eis oga-
nized aroundraces In this contgt, a trace is a dynamic
sequence of instructions captured and stored by hard-
ware. The primary constraint on a trace is a hardw
determined maximum lengthubthere may be a number
of other implementation-dependent constraintacés are
built as the programxecutes, and are stored in a trace
cache [1][2]. Using traces leads to interesting possibilities
that are reealed by the follewing trace properties:

* A tracecan contain any number and type of control
transfer instructions, that is, any number of implicit
control predictions.

This property suggests the unit of control prediction
should be a trace, not imitlual control transfer
instructions. Anext-trace pedictor [3] can mak pre-
dictions at the trace Vel, efectively ignoring the
embedded control flwin a trace.

A trace uses and produces register values that are
either live-on-entry, entirely local, or live-on-exit
[4][5]. These are referred to asdiins, locals, and
live-outs, respeately.

This property suggests a hierarchicabjiseer file
implementation: a local gister file per trace for hold-
ing values produced and consumed solely within a
trace, and a global gester file for holding &lues that

are lve between traces. The distinction between local

dependences within a trace and global dependences

between traces also suggests implementing a distrib-
uted instruction winde based on trace boundaries.

The result is a processor composed of processing ele-
ments (PE), each timg the oganization of a small-scale
superscalar processoEach PE has (1) enough instruction
buffer space to hold an entire trace, (2) multiple dedicated
functional units, (3) a dedicated locafjigter file for hold-
ing local \alues, and (4) a cgpf the global rgister file.

Global
Next | Rename
Trace | Maps
Predict
FTrace| | || Processing Element 1]7 7] |
Cache] 1
Live-in
G T i
Predict| | | | Processing Element 2" 7 |
Reorder
Buffer
1 segmen 7 Processing Element 3["
per trace — S

Figure 1. A trace processor.
1.1.1 Hierarchy: overcoming complexity

An organization based on traces reduces corityle
by taking adantage ohierarchy. There is a control fle
hierarcly - the processor sequences through the program
at the leel of traces, and contained within traces is a finer
granularity of control flae. There is also aalue hierarch
- global and local alues - that enables the processor to
efficiently distritute execution resources. XM hierarcly
we overcome compbaty at all phases of processing:

Instruction fetb: By predicting traces, multiple
branches are implicitly predicted - a simpler altex@ati
to brute-force xtensions of single-branch predictors.
Together the trace cache and trace predicttar et
solution to instruction fetch compligy.

Instruction dispath: Because a trace isvgh a local
register file that is not &cted by other traces, local
registers can be pre-renamed in the trace cache [4][5].
Pre-renaming by definition eliminates the need for
dependence checking among instructions being dis-
patched,
entirely contained within a trace. Onlydtins and
live-outs go through global renaming at trace dispatch,
thereby reducing bandwidth pressure tgister maps
and the free-list.

Instruction issueBy distrituting the instruction win-
dow among smaller trace-sized winag, the instruc-
tion issue logic is no longer centralized. Furthermore,
each PE has ¥eer internal result ises, and thus a
given instruction monitors Yeer result tag bses.

Result bypassing Full bypassing of local alues
among functional units within a PE iswdeasible,
despite a possibly longer latgnfor bypassing global
values between PEs.

Ragister file The size and bandwidth requirements of
the global rgister file are reduced because it does not
hold local \alues. Sufcient read port bandwidth is
achiered by haing copies in each PE. Write ports
cannot be handled thisay because\e-outs must be
broadcast to all copies of the global filewswer, write
bandwidth is reduced by eliminating locallwe trafic.

Instruction etirement Retirement is the “dual” of dis-
patch in that pysical rayisters are returned to the free-
list. Free-list update bandwidth is reduced because
only live-outs are mapped toysical rayisters.

1.1.2 Speculation: exposing ILP

To alleviate the limitations imposed by control, data,
and memory dependences, the processor gmplggres-
sive speculation.

Control flov prediction at the granularity of traces can
yield as good or bettewerall branch prediction accusac
than mag aggressie single-branch predictors [3].

Value prediction [6][7] is used to relax the data depen-
dence constraints among instructions. Rather than predict
source or destinationalues of all instructions, we limit
value predictions to Ve-ins of traces. Limiting predic-
tions to a critical subset ofalues imposestructue on
value prediction; predictingMe-ins is particularly appeal-
ing because it enables tracesxeaite independently

Memory speculation is performed indwvays. First,
all load and store addresses are predicted at dispatch time.
Second, we empjo memory dependence speculation -
loads issue as if there are no prior stores, and disambigua-
tion occurs after theatt via a distribted mechanism.

1.1.3 Handling misspeculation: selective reissuing

Because of the pesgiveness of speculation, handling
of misspeculation must fundamentally change. Misspecu-
lation is traditionally vieeed as an uncommonent and is
treated accordingly: a misprediction represents a barrier
for subsequent computation. Wever, data misspecula-

Yion in particular should be vieed as a normal aspect of

computation.
Data misspeculation may be caused by a mispredicted
source rgister \alue, a mispredicted address, or a memory

dependence violation. If an instruction detects a mispre-
diction, it will reissue with ne values for its operands. A
new value is produced and promdgd to dependent
instructions, which will in turn reissue, and so on. Only
instructions along the dependence chain reissue.
mechanism foselective reissuing is simple because it is in
fact the gisting issue mechanism.

Selectve reissuing due to control misprediction,
while more iwolved, is also discussed and the perfor-
mance impreement is ealuated for trace processors.

1.2 Prior work

This paper dnas from significant bodies ofavk that
either eficiently exploit ILP via distrilution and hierargh
expose ILP via aggres@ speculation, or do both.oFthe
most part, this body of research focuses on harelw
intensve approaches to ILP

Work in the area of multiscalar processors [8][9] first
recognized the complay of implementing wide instruc-
tion issue in the comte of centralized resources. The
result is an interesting combination of compiler and hard-
ware. The compiler dides a sequential program into
tasks, each task containing arbitrary controiflo Tasks,
like traces, imply a hierarghor both control flav and \al-
ues. Ercution resources are distited among multiple
processing elements and allocated at task granulakity
run-time tasks are predicted and scheduled onto the PEs

ple smaller clusters. Hh@ver, instructions are dispatched

to clusters based on dependences, not based on proximity
in the dynamic instruction stream as is the case with
traces. Instructions are steered to clusters so as to localize

Thedependences within a clust@and minimize dependences

between clusters.

Early work [16] proposed the fill-unit for constructing
and reusing layer units of gecution other than indidual
instructions, a conceptew releant to net generation
processors. This and subsequent research [17][18] empha-
sizeatomicity, which allavs for unconstrained instruction
preprocessing and code scheduling.

Recent werk in value prediction and instruction col-
lapsing [6][7] address the limits of true data dependences
on ILP. These wrks proposex@osing more ILP by pre-
dicting addresses andgister \alues, as well as collapsing
instructions for gecution in combined functional units.

1.3 Paper overview

In Section2 we describe the microarchitecture in
detail, including the frontend, thele predictarthe pro-
cessing element, and the mechanisms for handling mis-
speculation. SectioB describes the performance
evaluation method. Primary performance results, includ-
ing a comparison with superscalare presented in
Sectiond, followed by results with alue prediction in

Section5 and a study of control floin Sectior6.

and both control and data dependences are enforced by the

hardware (with aid from the compiler in the case djise
ter dependences).

Multiscalar processors ha seeral characteristics in
common with trace processors. Disting the instruc-
tion windov and rgister file soles instruction issue and
register file complrity. Mechanisms for multiple fles of
control not only woid instruction fetch and dispatch com-
plexity, but also eploit control independence. Because

2. Microarchitecture of the trace processor
2.1 Instruction supply

A trace is uniquely identified by the addresses of all
its instructions. Of course this sequence of addresses can
be encoded in a more compact form, fkaraple, starting
addresses of all basic blocks, or trace starting address plus
branch directions. Rprdless of he a trace is identified,

tasks are neither scheduled by the compiler nor guaranteedrace ids and dewatives of these trace ids are used to

to be parallel, these processors demonstrate aggressi
control speculation [10] and memory dependence specula-
tion [8][11].

More recently other microarchitectures V& been
proposed that address the comjile of superscalar pro-
cessors. The trace wing@rganization proposed in [4] is
the basis for the microarchitecture presented here. Con-
ceivably, other register file and memory ganizations
could be superimposed on thiganization; e.g. the origi-
nal multiscalar distribted rgister file [12], or the distrib-
uted speculate-versioning cache [13].

So far we hae discussed microarchitectures that dis-
tribute the instruction winde based on task or trace

sequence through the program.

The shaded ggon in Figure2 shavs the st-path of
instruction fetch: the neé-trace predictor [3], the trace
cache, and sequencing logic to coordinate the datapath.
The trace predictor outputs a primary trace id and one
alternate trace id prediction in case the primary one turns
out to be incorrect (one could use more alternatesyith
diminishing returns). The sequencer applies some hash
function on the bits of the predicted trace id to form an
index into the trace cache. The trace cache supplies the
trace id (equialent of a cache tag) of the trace cached at
that location, which is comparedaingst the full predicted
trace id to determine if there is a hit. In the best case, the

boundaries. Dependence-based clustering is an interestingpredicted trace is both cached and correct.

alternatve [14][15]. Similar to trace processors, the win-
dow and eecution resources are distiied among multi-

If the predicted trace misses in the cache, a trace is
constructed by the shepath sequencer (non-shaded path

in Figure2). The predicted trace id encodes the instruc-
tions to be fetched from the instruction cache, so the
sequencer uses the trace id directly instead of theenen
tional branch predictor

The eecution engine returns actual branch outcomes.
If the predicted trace is partially or completely incorrect,
an alternate trace id that is consistent with thewkno
branch outcomes can be used to try tedsht trace (trace
cache hit) or bild the trace remainder (trace cache miss).
If alternate ids pree insuficient, the slav-path sequencer
forms the trace using the ammtional branch predictor
and actual branch outcomes.

outcomes from execution
instr. block (optional path)

slow-path pranch

R v
BTB cACHE (Construct eprocess.

fast-path I

sequencey| Next

Bttt Hash TRACE4>
Trace == primary: CACHE >
Predictol | alternare!
T e " | predicted cached trace id
traceid Ihiti T$ hit

Figure 2. Frontend of the trace processor.
2.1.1 Trace selection

An interesting aspect of trace construction is the algo-
rithm used to delineate traces, toace selection. The
ohvious trace selection decisionsatve either stopping at
or embedding arious types of control instructions: call
directs, call indirects, jump indirects, and returns. Other

heuristics may stop at loop branches, ensure that traces

end on basic block boundaries, embed leaf functions,

embed unique call sites, or enhance control independence.

Trace selection decisionsfedt instruction fetch band-
width, PE utilization, load balance between PEs, trace
cache hit rate, and trace prediction accyraall of which
strongly influence eerall performance. Often, tgting
trace selection for oneadtor ngatively impacts another
factor We hare not studied this issuatensiely. Unless

otherwise stated, the trace selection we use is: (1) stop at a

maximum of 16 instructions, or (2) stop atyasall indi-
rect, jump indirect, or return instruction.

2.1.2 Trace preprocessing

Traces can be preprocessed prior to being stored in the
trace cache. Our processor model requires pre-renaming

information in the trace cache. di&ter operands are
marked as local or global, and locals are pre-renamed to
the local rgister file [4]. Although not done here, prepro-
cessing might also include instruction scheduling [17],
storing information along with the trace to set up the reor-
der huffer quickly at dispatch time, or collapsing depen-
dent instructions across basic block boundaries [7].

2.1.3 Trace cache performance

In this section we present miss rates fofedént trace
cache configurations. The miss rates are measured by run-
ning through the dynamic instruction streanyiding it
into traces based on the trace selection algorithm, and
looking up the succesa trace ids in the cache. evdnly
include graphs foigo and gcc. Compress fits entirely
within a 16K direct mapped trace caclypeg and xlisp
shav under 4% miss rates for a 32K direct mapped cache.

There are tw sets of cures, for tvo different trace
selection algorithms. Each set slsomiss rates for 1-ay
through 8-vay associatity, with total size in kilobytes
(instruction storage only) along the x-axis. The top four
curnwes are for the dafilt trace selection (Secti@nl.l).

The bottom four cums, labeled with ‘S’ in thedy, add

two more stopping constraints: stop at call directs and stop
at loop branches. Daflt trace selection gs aerage
trace lengths of 14.8 faggo and 13.9 foigcc. The more
constraining trace selectionvgs smaller werage trace
lengths - 11.8 fogo and 10.9 fogcc - but the adantage is
much laver miss rates for both benchmarksor go in
particular the miss rate is 14% with constrained selection

and a 128kB trace cache yadofrom 34%.
70

DM —
60 2-way e
) GCC 4-way =

50 8-way
S) DM (S) =
T 40 S —
g : 4-way (S) -
2 30 8-way (S) ~+
E

20

10

0

80

70
— 60 &)
g
g4
= 40 kA
7 N
‘€ 30

20 ii\},_; e

» e (9)

0

4816 32 64 128

size (K-bytes)
Figure 3. Trace cache miss rates.

2.1.4 Trace predictor

The core of the trace predictor is a correlated predic-
tor that uses the history of preus traces. The prus
few trace ids are hashedwio to faver bits and placed in a
shift register forming a path history The path history is

used to form an indeinto a prediction table with2
entries. Each table entry consists of the predicted trace id,

an alternate trace id, and a 2-bit saturating counter for only if the predictions ha a high lgel of confidence.
guiding replacement. The accwauf the correlated pre- The confidence mechanism is a 2-bit saturating counter
dictor is aided by hang areturn history stack. For each stored with each pattern in the firstdétable.

call within a trace the path historygister is copied and The table sizes used in this study aegyvlage in
pushed onto a harawe stack. When a trace ends in a order to @&plore the potential of such an approach:

return, a path historyaue is popped from the stack and 218 entries in the first-teel, 22° entries in the secondviel.
used to replace alib the nevest trace in the path history accurag of context-based alue prediction is &cted by

register timing of updates, which we accurately model. A detailed

To reduce the impact of cold-starts and aliasing, the treatment of thealue predictor can be found in [19].
correlated predictor is augmented with a second smaller

predictor that uses only the pieus trace id, not the 2.3 Distributed instruction window

whole _path histor.y_ Each table entry in the correlated pre- 23.1 Tracedispatch

dictor is tagged with the last trace to use the entirghe

tag matches then the correlated predictor is used, other- The dispatch stage performs decode, renaming, and
wise the simpler predictor is used. If the counter of the value predictions. Me-in raisters of the trace are
simpler predictor is saturated its prediction is automati- renamed by looking up phical reyisters in the global e
cally used, rgardless of the tag. A more detailed treat- ister rename map. Independentlyve-out rgisters
ment of the trace predictor can be found in [3]. receive nav names from the free-list of phical reisters,

and the global gister rename map is updated to reflect

2.15 Trace characteristics these n& names. The dispatch stage looks aju# pre-

Important trace characteristics are whon Tablel. dictions for all live-in registers and all load/store addresses
Average trace lengthfatts instruction supply bandwidth ~ in the trace. _
and instruction bffer utilization - the lager the betterWe The dispatch stage also performs functions related to

want a significant fraction ofalues to be locals, to reduce ~ Precise Eceptions, similar to the mechanisms used in con-
global communication. Note that the ratio of locals to Ventional processors. First, aysgent of the reorderffer

live-outs tends to be higher for longer traces, as obderv (ROB) is resered by the trace. Enough information is
in [4]. placed in the ggment to allev backing up rename map

state instruction by instruction. Second, a snapshot of the

Table 1. Trace characteristics. register rename map isva at trace boundaries, to allo

sl comp_jgcc 190 Lipeg Xish backing up state to the point of arception quickly The

trace length (inst) 145 [139 (148 [158 [124 . .
Vens 57 3 5o 58 %) processor_flrst backs up to the_ snapsh_ot c_orrespondlng to
live-outs W 56 53 64 51 the ecepting trace, and then information in that trace’
Jocals 56 |38 |59 |71 |26 ROB s@ment is used to back up to thecepting instruc-
loads 26 |36 |31 29 [37 tion. The FOB is also used to free péical r@isters.

stores 09 [19 |10 |12 (22

cond. branches 2.1 2.1 1.8 1.0 1.9 232 Freeing and a]locating PEs

control inst 2.9 2.8 2.2 1.3 2.9

trace misp. rate 17.1% | 8.1% |15.7% |6.6% |6.9% For precise interrupts, traces must be retired in-prder

requiring the ®B to maintain state for all outstanding

2.2 Valuepredictor traces. The number of outstanding traces is therefore lim-

The \alue predictor is conté-based and ganized as ited by the number of 8B sggments (assuming there are
a two-level table. Contet-based predictors learralies enough pisical registers to match).
that follow a particular sequence of preus \alues [19]. Because RB state handles tracetirement, a PE can
The first-level table is indeed by a uniquerediction id, be freed as soon as its trace ltampleted execution.

derived from the trace id. A gen trace has multiple pre- Unfortunately knowving when a trace is “completed” is not
diction ids, one perVe-in or address in the trace. An simple, due to our misspeculation model (a mechanism is
entry in the first-leel table contains a pattern that is a needed to determine when an instruction has issued for the
hashed ersion of the prdous 4 data alues of the item last time). Consequentla PE is freed when its trace is
being predicted. The pattern from the firsteletable is retired, because retirement guarantees instructions are
used to look up a 32-bit data prediction in the secovel-le done. This is a leer performance solution because it
table. Replacement is guided by a 3-bit saturating counter effectively arranges the PEs in a circular queue, just lik
associated with each entry in the secoveiléable. sggments of the BB. PEs are therefore allocated and
The predictor also assigns a confidenaelléo pre- freed in a fifo &shion, gen though the might in fact com-

dictions [20][6]. Instructions issue with predictealues plete out-of-order

2.3.3 Processing element detail

The datapath for a processing element isnshin
Figured. There are enough instructiouaffers to hold the
largest trace. &t loads and stores, the address generation
part is treated as an instruction in thesffdss. The mem-

ory access part of loads and stores, along with address pre-

dictions, are placed into load/storefflers. Included with
the load/store Uiffers is \alidation hardware for \alidating
predicted addressesagst the result of address computa-
tions. A set of rgisters is preided to hold We-in predic-
tions, along with hardare for \alidating the predictions
agpinst \alues receied from other traces.

[e locd
LRt,)cal buses
eg
N 5 File i
o<
FU
é % issue issue - 1] globa |addr/data
- buffers result |buses
(111 buses |(D$ ports)
Global °
Reg =
. agen results
- File s9e
| tags_|values + load/store buf
(=3
livein eg
value e-
pred’ s—~(=3

Figure 4. Processing element detail.

Instructions are ready to issue when all operands
become wailable. Lve-invalues may already beailable
in the global rgister file. If not, e-ins may hae been
predicted and thealues are Wifered with the instruction.

In ary case, instructions continually monitor resulises
for the arrval of nev values for its operands; memory
access operations continually monitor thevairof nev
computed addresses.

Associated with each functional unit is a queue for
holding completed results, so that instruction issue is not
blocked if results are held upaiting for a result bs. The
result may be a localalue only a live-out \alue only or
both; in ay case, local and global resuludes are arbi-
trated separatelyGlobal result bses correspond directly
with write ports to the global gester file, and are charac-
terized by tvo numbers: the total number aides and the
number of ises for which each PE can arbitrate in a
cycle. The memoryises correspond directly with cache
ports, and are characterized similarly

2.4 Misspeculation

In Sectionl.1.3 we introduced a model for handling
misspeculation. Instructions reissue wheny thietect
mispredictions; selestély reissuing dependent instruc-

tions follows naturally by the receipt of wevalues. This
section describes the mechanisms for detectamipws
kinds of mispredictions.

2.4.1 Mispredicted live-ins

Live-in predictions arealidated when the computed
values are seen on the global reswlsds. Instruction
buffers and storeudfers monitor comparator outputs cor-
responding to Vlie-in predictions the used. If the pre-
dicted and computedalues match, instructions that used
the predicted Vie-in are not reissued. Otherwiseyttdo
reissue, in which case thalidation lateng appears as a
misprediction penaltybecause in the absence of specula-
tion the instructions may kia issued sooner [6].

2.4.2 Memory dependence and address misspeculation

The memory system (FiguBg is composed of a data
cache and a structure fouffering speculatie store data,
distributed load/store uifers in the PEs, and memory
buses connecting them.

When a trace is dispatched, all of its loads and stores
are assignedeguence numbers. Sequence numbers indi-
cate the program order of all memory operations in the
window. The store bffer may be aganized lile a cache
[21], or integrated as part of the data cache itself [13]. The
important thing is that some mechanism musstefor
buffering speculatie memory state and maintaining multi-

ple versions of memory locations [13].
o L P
] global memory buses

multiple versions

datal dat: ataN

..PEs...

addr

DATA CACHE

(commit)

STORE BUFFER
Figure 5. Abstraction of the memory system.

Handling stores:

When a store first issues to memoity supplies its
address, sequence numbend data on one of the
memory huses. The storeulfer creates a meversion
for that memory address andfters the data. Multiple
versions are ordered via store sequence numbers.

* If a store must reissue because it has vedea ne
computed address, it must first “undo” its state at the
old address, and then perform the store to the ne
address. Both transactions are initiated by the store
sending its old address,wm@ddress, sequence number
and data on one of the memonysks.

If a store must reissue because it has vedanev data,
it simply performs agin to the same address.

Handling loads:

If a store is remeed from the windev and it has
already performed, it must first issue to memorgimgut
only an undo transaction is performed as described in the
previous section. Loads that weralde-dependent on the

* Aload sends its address and sequence number to thestore will snoop the store and thus reissue. Riémgoor

memory system. If multipleersions of the location
exist, the memory system kws which \ersion to
return by comparing sequence numbers. The load is

adding loads/stores to the wivdodoes not cause
sequence number problems if sequence numbering is
based on {PE #,Uffer #}.

supplied both the data and the sequence number of the

store which created theeksion. Thus, loads maintain
two sequence numbers: itwio and that of the data.

If a load must reissue because it has veckia nes
computed address, it simply reissues to the memory
system as before with thewaddress.

Loads snoop all store tfaf (store address and
sequence number). A load must reissue if (1) the store

3. Simulation environment

Detailed simulation is used tovaduate the perfor-
mance of trace processors.orFeomparison, superscalar
processors are also simulated. The simulats deel-
oped using thesimplescalar simulation platform [23].
This platform uses a MIPS-kkinstruction set (no delayed
branches) and comes with a gcc-based compiler to create

address matches the load address, (2) the storebinaries.

sequence number is less than that of the load, and (3)

the store sequence number is greater than that of the

load data. This is a true memory dependence violation.

The load must also reissue if the store sequence num-

ber simply matches the sequence number of the load
data. This tafis care of the store changing its address
(a false dependence haxisted between the store and
load) or sending out medata.

2.4.3 Concerning control misprediction

In a cowentional processpra branch misprediction
causes all subsequent instructions to be squashed- Ho
ever, only those instructions that are control-dependent on
the misprediction need to be squashed [22]. At least three
things must be done tx@oit control independence in the
trace processorFirst, only those instructions fetched from
the wrong path must be replaced. Second, although not all
instructions are necessarily replaced, those that remain
may still have to reissue because of changes gister
dependences. Third, stores on the wrong path must
“undo” their speculatie state in the memory system.

Trace re-predict sequences are used for selew# con-
trol squashes. After detecting a control misprediction
within a trace, traces in subsequent PEs are not automati-
cally squashed. Instead, the frontend re-predicts and re-
dispatches traces. The resident trace id is @tkakinst
the re-predicted trace id; if there is a partial (i.e. common
prefix) or total match, only instructionsymend the match
need to be replaced. oF those not replaced, gister
dependences may V& changed. So the globalgister
names of each instruction in the resident trace are etleck
agqainst those in the metrace; instructions that dér pick
up the nev names. Reissuing will folle from the &isting
issue mechanism. This approach treats instructions just
like data alues in that theare indvidually “validated”.

Table 2. Fixed parameters and benchmarks.

frontend Tateny
trace predictor
value predicto
trace cache

2 gycles (fetch + dispatch)

see SectioR.1.4

see SectioR.2

size/assoc/repl = 128kB(instr only)/&awLRU
total traces = 2048

trace line size = 16 instructions

predictor = 64k 2-bit sat counters

BTB = 16k entries, dir map, no tags, 1-bysh

branch pred.

instr. cache size/assoc/repl = 64kB/4ay/LRU
line size = 16 instructions
2-way interlezed
miss penalty = 12ycles
global plys regs unlimited
functional unit$ n symmetric, fully-pipelined FUs (far-way issug
memory unlimited speculatie store bffering

D$ size/assoc/repl = 64kB/4ay/LRU

D$ line size = 64 bytes

D$ miss penalty = 14ycles

D$ MSHRs = unlimited outstanding misses
address generation = $ate

memory access = ¥cles (hit)

integer ALU operations = lycle

complec operations = MIPS R10000 latencies
validation lateng = 1 g/cle

exec. latencies

benchmark input dataset instr count
compress * 200000 € 2231 | 104 miflion
gcce -O3 genrecog.i | 117 million
go 99 133 million
ijpeg vigo.ppm 166 million
xlisp gqueens 7 202 million

*Compress w&s modified to makonly a single pass.

Our primary simulator uses glirid trace-dven and
execution-drven approach. The control Woof the simu-
lator is trace-drien. A functional simulator generates the
true dynamic instruction stream, and this stream feeds the
processor simulator The processor does natpécitly
fetch instructions den the wrong path due to control mis-
speculation. The data floof the simulator is completely

execution-driven. This is essential for accurately portray- nicely with windav size and issue bandwidth, for both
ing the data misspeculation modelor Fexample, instruc- processor models. Except foompress and go, which
tions reissue due to rewiig nev values, loads may exhibit poor control prediction accungcabsolute IPC is
pollute the data cache (or prefetch) with wrong addresses,also encouraging. df example, lage trace processors
extra bandwidth demand is obsedvon result bses, etc. average 3.0 to 3.7 instructions pgcle forgcc.

As stated abee, the dedult control sequencing model The «tra g/cle for transferring globalalues has a
is that control mispredictions cause navneaces to be noticeable performance impact, on the order of 5% to
brought into the processor until resedv A more aggres- 10%. Also notice crosser points in the trace processor
sive control flav model is inestigated in Sectio®. To cunes. fr example, “F64 2-way per PE” performs bet-
accurately measure selegti control squashing, a fully ter than “F128 1-way per PE". At lav issue widths, it is
execution-drven simulator \es deeloped - it is consider- better to augment issue capability than add more PEs.

ably slaver than the ybrid approach and so is only Superscalar versus Trace Processors

applied in Sectio. One va . i
. . y to compare the twvprocessors is to fix total
The simulator dithfully models the frontend, PE, and window size and total issue width. That is, if wesba

memory system depicted in F|gure_s 2, 4, e_md 5’.reSpeC'centralized instruction windg what happens when we
tively. Model parameters that arevémiant for simulations divide the windev into equal partitions and dedicate an

are shwtr: N Eablei. Thedtablle also I_|shts_ the é!\aSPECQS d equal slice of the issue bandwidth to each partition? This
Integer benchmarks used, along with input datasets an guestion focuses on thefext of load balance. Because of

dynamic instruction counts for the full runs. load balance, IPC for the trace processor can only
approach that of the superscalar proces$or example,
consider tw points from thecc, jpeg, andxlisp graphs:

In this section, performance for both trace processors “T-128 (0) 2-vay per PE” and “SS-128 16ay”. The IPC
and comentional superscalar processors is presented, performance dfers by 16% to 19% - the fett of load
without data prediction. The only tifence between the balance. (Also, in the trace processpstruction biffers
superscalar simulator and the trace processor simulator isare underutilized due to small traces, and instructidh b
that superscalar has a centralize@ogition engine. All ers are freed in discrete chunks.)
other hardwre such as the frontend and memory system The abe@e comparison is rather arbitrary because it
are identical. Thus, superscalar has the benefit of the tracesuggests an equlence based on total issue width. In
predictor trace cache, reduced rename coxiple and reality, total issue width lacks meaning in the cantef
selectve reissuing due to memory dependence violations. trace processors. What we really need is a comparison

The eperiments (able3) focus on three parameters: method based on egalent complgity, i.e. equal clock
window size, issue width, and global result bypass Iatenc cycle. One measure of compity is issue compbaty,
Trace processors with 4, 8, and 16 PEs are simulated.which goes as the product of windaize and issue width
Each PE can hold a trace of 16 instructions. v€ntional [15]. With this equvalence measure, comparing thetw
superscalar processors with wimdsizes ranging from 16 previous datapoints is Wralid because the superscalar pro-
to 256 instructions are simulated. Ces\are labeled with cessor is much more complél28x16 ersus 16x2).
the model name - T for trace and SS for superscalar - fol- Unfortunately there is not one measure of processor
lowed by the total windwe size. Points on the same ceirv compleity. So instead we takan approach that demon-
represent a&rying issue widths; in the case of trace proces- strates the philosoptof next generation processors:
sors, this is the aggyate issue width. rBce processor 1. Take a small-scale superscalar processor and maximize
curves come in pairs - one assumes xtoeelateny (0) for its performance.
bypassing &lues between processing elements, and the 5
other assumes onetea g/cle (1). Superscalar is not
penalized - all results are bypassed as if the locals.
Fetch bandwidth, local and global resulsbs, and cache
buses are chosen to be commensurate with the configura-
tion’s issue width and windosize. Note that the windo
size refers to all in-flight instructions, including those that
have completed it not yet retired. The retire width equals
the issue width for superscalar; an entire trace can be
retired in the trace processor

From the graphs in Figu& the first encouraging
result is that all benchmarks shdLP that increases

4. Primary performanceresults

Use this highly-optimized processor araplicate it,
taking adantage of a hierarchicalganization.

In other words, the goal is to increase IPC whiéek-
ing clock g/cle optimal and constant. The last graph in
Figure6 interprets data fagcc with this philosopli. Sup-
pose we start with a superscalar processor with a 16
instruction windev and 1, 2, or 4-ay issue as a basic
building block, and successly add more copies to form
a trace processorAssume that the only penalty fonirag
more than one PE is thetm o/cle to bypass alues
between PEs; this might account for global resust b

Table 3. Experiments.

T-64 T-128 T-256 SS-16 SS-32 SS-64 SS-128 |SS-256
'PE window Size -or- fetch/dispatch b/w 16 16 16 4 8 16 16 16
number of PEs 4 8 16 - - - - -
issue b/w per PE 1(2(4(|8[1|2[4[8|1]|2[4 - - - - -
total issue b/w 418]16[32] 8[16[32]64|16|32[64[1 [2]4[1]2]4|8]2[4]8]16]4[8]16[8[16
local result buses 1(2(4(|8[1|2|4[8|1]|2[4 - - - - -
global result buses 4 4 8 1|2|4 1|2|4|8 2|4|8|16 4|8|16 8|16
#globa busesthat canbeusedbyaPE [1[2[4[4[1[2[4[4[1[2]4 - - - - -
cache buses 214144 4 8 1|1|2 1|1|2|4 1|2|4|4 2|4|4 8
cache buses that can be used by a PE 1[2]4]4]1[2]4]4]1]2]4 - - - -
2 55
eT-128 (0) SS-256. - T.OR
SS-128 PR I By D 5 F-256 (0)
1.8 : 2= T=64(0)
~*T-64 (1
1.6
214 v
12 8532 OMPRESS
1
‘' /SS-16
0.8
1 2 4 8 16 32 64 1 2 4 8 16 32 64
total issue width total issue width
2.4 7
<T-128 (0)
292 SS-128 AT =128 (1) 6 P . T-256 (0)
T-64 (O _AT-256 (1)
2 T-64 (1 5 (0)
1)
1.8
4
216 2
;. _ 3
14 ss a2 o
1.2 2
1/ss186 !
0.8 6]
1 2 4 8 16 32 64 1 2 4 8 16 32 64
total issue width total issue width
4
4.5
4 ©) 35 cC
1
35 §o§ 3
1
3 25
£ 25 2 , —]
2
% 15 1-way issue ——
15 ss:32~ 2-way issue
L _E516 1 4-way issue -=--
0.5 0.5
1 2 4 8 16 32 64 1 2 4 8 16
total issue width number of PEs

Figure 6. Trace processor and superscalar processor IPC. Note that the bottom-right graph is derived
from the adjacent graph, as indicated by the arrow; it interprets the same data in a different way.

arbitration, global bypass laten@and &tra wakeup logic
for snooping global result tagubes. One might then
roughlyamgue that complety, i.e. g/cle time, remains rel-
atively constant with successly more PEs. &1 gcg 4-
way issue per PE, IPC progresdy improves by 58% (1
to 4 PEs), 19% (4 to 8 PEs), and 12% (8 to 16 PESs).

5. Adding structured value prediction

This section presents actual and potential perfor-

mance results for a trace processor configuration using

data prediction. W chose a configuration with 8 PEs,
each haing 4-way issue, and 1xé&ra g/cle for bypassing
values @er the global resultuses.

The eperiments gplore real and perfectalue pre-
diction, confidence, and timing o&le predictor updates.
There are 7 bars for each benchmark in Figurdhe first
four bars are for realalue prediction, and are labeled R/*/
* the first R denoting real prediction. The second quali-
fier denotes the confidence model: R (real confidence)
says we use predictions that are nedriconfident by the
predictor O (oracle confidence) says we only usale
if it is correctly predicted. The third qualifier denotesslo
(S) or immediate (1) updates of the predictofhe last
three bars in the graph are for perfeaitie/no address pre-
diction (PV), perfect address/nalue prediction (R), and
perfect walue and address prediction (P).

50.0%
45.0%
40.0%
35.0%
30.0%
25.0% o
20.0%
15.0% o
10.0% -

5.0% -

0.0% -

ER/R/S
ER/R/
OR/O/IS
OR/ON
HPV
OPA
mP

% improvement over base IPC

compress gcc go ipeg xlisp
Figure 7. Performance with data prediction.

From the rightmost bar (perfect prediction), the poten-
tial performance impnement for data prediction is signif-
icant, around 45% for all of the benchmarks. Three of the

half the potential impneement is achiable. Unfortu-
nately xlisp performs poorly in terms of letting incorrect
predictions pass as confident.

The first graph in Figur®8 shavs the number of
instruction squashes as a fraction of dynamic instruction
count. The first tw bars are withoutalue prediction, the
last two bars are with alue prediction (denoted by V).
The first two bars she the number of loads squashed by
stores (dependence misspeculation) and the total number
of squashes that result due to a cascade of reissued instruc-
tions. Lie-in and address misspeculation add to these
totals in the last tev bars. Xlisp’s 30% reissue rate
explains wly it shaws less performance imprement than
gccdespite higher accunac The second graph shkis the
distribution of the number of times an instruction issues
while it is in the winduv.

30%
25%
20%
15% -+
10% -

5% -

0%

M load squash

M total

Oload squash (V)
Ototal (V)

1L

comp go jpeg xlisp

instruction squash rate

100.0%
90.0% -
80.0% -
70.0% -
60.0% -
50.0% -+
40.0% -~
30.0% -
20.0% -
10.0% +

0.0%

Ojpeg
I compress
dgo
mgcc
H xlisp

fraction of dynamic instr

1

2
number of times issued

Figure 8. Statistics for selective reissuing.

3

6. Aggressve control flow

This section ealuates the performance of a trace pro-
cessor capable okploiting control independence. Only
instructions that are control dependent on a branch mispre-
diction are squashed, and instructions whosgister

benchmarks benefit twice as much from address prediction dependences change are seletyireissued as described

than from \alue prediction, as stwm by the R/PV bars.
Despite data predictios’potential, only tw of the
benchmarks -gcc and xlisp - shav noticeable actual
improvement, about 10%. Meever, keep in mind that
data \alue prediction is at a stage where significant engi-
neering remains to be done. There is still much to be
explored in the predictor design space.
Althoughgcc andxlisp shav good impreement, it is
less than a quarter of the potential im@ment. Br gcg
the confidence mechanism is not atlf; oracle confi-
dence only mads up for about 7% of the thfence. Xlisp
on the other hand stws that with oracle confidenceyey

in Section2.4.3. Accurate measurement of this control
flow model requires fetching instructions vao wrong
paths, primarily to capture data dependences that may
exist on such paths. df this reason we use a fullyezu-
tion-driven simulator in this section.

For a trace processor with 16 PEs, dywissue per
PE, two of the benchmarks shoa significant impree-
ment in IPC:compess (13%) andjpeg (9%). These
benchmarks frequently trarse small loops containing
simple, recovermgent control flae. Also important are
small loops with a f@ and fixed number of iterations,
allowing the processor to capture tracegdmal the loop.

7. Conclusion

Trace processorsxploit the characteristics of traces
to eficiently issue mayinstructions perycle. Trace data
characteristics - localersus global alues - suggest dis-
tributing execution resources at the traceeleas a \ay to
overcome compbdty limitations. Thg also suggest an
interesting application ofalue prediction, namely predic-
tion of intertrace dependences. Furthieeating traces as
the unit of control prediction results in arfi@ént, high
accurag control prediction model.

An initial evaluation of trace processors withoalwe
prediction shars encouraging absolute IP@lwes - e.g.
gcc between 3 and 4 - rdmming that ILP can be
exploited in lage programs with comptecontrol flaw.
We have isolated the performance impact of disttibg

[4] S.Vajapeyam and TMitra. Improving superscalar instruc-
tion dispatch and issue by exploiting dynamic code sequenc-
es. 24th Intl. Symp. on Computer Architecture, pages 1-12,
June 1997.

[5] E. Sprangle and YPatt. Facilitating superscalar processing
via a combined static/dynamic register renaming scheme.
27th Intl. Symp. on Microarchitecture, pages 143-147, Dec
1994.

[6] M. Lipasti. Value Locality and Speculative Execution. PhD
thesis, Carnegie Mellon University, April 1997.

[7] Y. Sazeides, S/assiliadis, and E. Smith. The performance
potential of data dependence speculation and collaf2dtiy.

Intl. Symp. on Microarchitecture, pages 238-247, Dec 1996.

[8] M. Franklin. The Multiscalar Architecture. PhD thesis, Uni-
versity of Wisconsin, Nov 1993.

[9] G.S. Sohi, SBreach, and TN. Vijaykumar. Multiscalar pro-
cessors22nd Intl. Symp. on Computer Architecture, pages
414-425, June 1995.

execution resources based on trace boundaries, and dem{10] Q. Jacobson, Bennett, N.Sharma, and E. Smith. Control

onstrated theverall performance alue of replicatingdst,
small-scale ILP processors in a hierarch

Trace processors with structured@dlue prediction
shav promise. Although only ta of the benchmarks
shav noticeable performance impement, the potential

flow speculation in multiscalar process@sd Intl. Symp. on
High Perf. Computer Architecture, pages 218-229, Feb 1997.

[11] A. Moshovos, SBreach, TVijaykumar, and GSohi. Dy-
namic speculation and synchronization of data dependences.
24th Intl. Symp. on Computer Architecture, pages 181-193,
June 1997.

improvement is substantial for all benchmarks, and we [12]S.Breach, TVijaykumar, and GSohi. The anatomy of the

feel good engineering ofalue prediction and confidence
mechanisms will increase thaigs.
With the perasiveness of speculation inxtegenera-

tion processors, misspeculation handling becomes an
important issue. Rather than treating mispredictions as an

afterthought of speculation, we discusseddata mis-
speculation can be incorporated into thestng issue
mechanism. Walso discussed mechanisms fgleiting
control independence, and shedl that sequential pro-
grams may benefit.

Acknowledgments

This work was supported in part by NSF Grant MIP-
9505853 and by the U.S. Army Intelligence Center and

Fort Huachuca under ContractABT63-95-C-0127 and
ARPA order no. D346. The wes and conclusions con-

register file in a multiscalar processarth Intl. Symp. on Mi-
croarchitecture, pages 181-190, Nov 1994.

[13] S.Breach, TVijaykumar, S.Gopal, JSmith, and GSohi.
Data memory alternatives for multiscalar processors. Techni-
cal Report CS-TR-97-1344, University of Wisconsin, CS De-
partment, Nov 1996.

[14] J.Keller. The 21264: A superscalar alpha processor with out-
of-order executior@th Microprocessor Forum, Oct 1996.

[15] S.Palacharla, NJouppi, and ISmith. Complexity-effective
superscalar processogith Intl. Symp. on Computer Archi-
tecture, pages 206-218, June 1997.

[16] S.Melvin, M. Shebanow, and YRatt. Hardware support for
large atomic units in dynamically scheduled machigést
Workshop on Microprogramming and Microarchitecture,
pages 60—63, Nov 1988.

[17] R. Nair and M.Hopkins. Exploiting instruction level parallel-
ism in processors by caching scheduled gro@gth Intl.
Symp. on Computer Architecture, pages 13-25, June 1997.

tained herein are those of the authors and should not be[18] E. Hao, P.-Y. Chang, MEvers, and YPatt. Increasing the

interpreted as necessarily representing tfieialf policies
or endorsements, eithexpress or implied, of the U.S.
Army Intelligence Center andoR Huachuca, or the U.S.

Government. This wrk is also supported by a Graduate

Fellowship from IBM.
References
[1] E. Rotenberg, SBennett, and E. Smith. Trace cache: A low
latency approach to high bandwidth instruction fetch2®¢h
Intl. Symp. on Microarchitecture, pages 24—-34, Dec 1996.
[2] S.Patel, D.Friendly, and Y Patt. Critical issues regarding the

instruction fetch rate via block-structured instruction set ar-
chitectures.29th Intl. Symp. on Microarchitecture, pages
191-200, Dec 1996.

[19] Y. Sazeides and $mith. The predictability of data values.
30th Intl. Symp. on Microarchitecture, Dec 1997.

[20] E. Jacobsen, ERotenberg, and &mith. Assigning confi-
dence to conditional branch predictio@8th Intl. Symp. on
Microarchitecture, pages 142-152, Dec 1996.

[21] M. Franklin and GS. Sohi. ARB: A hardware mechanism for
dynamic reordering of memory referenc&SEE Transac-
tions on Computers, 45(5):552-571, May 1996.

trace cache fetch mechanism. Technical Report CSE-TR-335- [22] M. S. Lam and RP. Wilson. Limits of control flow on paral-

97, University of Michigan, EECS Department, 1997.

[3] Q.Jacobson, ERotenberg, and &mith. Path-based next
trace prediction30th Intl. Symp. on Microarchitecture, Dec
1997.

lelism. 19th Intl. Symp. on Computer Architecture, pages 46—
57, May 1992.

[23] D. Burger, T.Austin, and SBennett. Evaluating future mi-
croprocessors: The simplescalar toolset. Technical Report
CS-TR-96-1308, Univ. of Wisconsin, CS Dept., July 1996.

