To appear in ASPLOS ‘98

An Empirical Analysis of Instruction Repetition

Avinash Sodani and Gurindar S. Sohi

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706 USA

{sodani, sohi}@cs.wisc.edu

Abstract

We study the phenomenon of instruction repetition, where the inputs
and outputs of multiple dynamic instances of a static instruction are
repeated. e observe that over 80% of the dynamic instructions
executed in several programs are repeated and most of the repeti-
tion is due to a small number of static instructions. We attempt to
understand the source of this repetitive behavior by categorizing
dynamic program instructions into dynamic program slices at both
a global level and a local (within function) level. \We observe that
repeatability is more an artifact of how computation is expressed,
and less of program inputs. Function-level analysis suggests that
many functions are called with repeated arguments, though almost
all of them have side effects. e provide commentary on exploiting
the observed phenomenon and its sources in both software and
hardware.

1. Introduction

Recently seeral studies hae obsered that may static instructions
in programs generate only a small numberadfigs whenecuted

dynamically implying that repeatedexutions of such instructions

generated repeatedlues [7, 9, 10, 13]. Seral diferent ways of
exploiting this phenomenon ti@ been proposed. Some vha

a quantitatie analysis and discussing the implications of the
analysis. & start out with a brief description of theperimental
setup (and its limitations) in Secti@1 We continue with a
characterization of instruction repetition in Sectigrand with an
analysis of the sources of repetition in SecBol\e proszide some
commentary on the implications of our empirical obagons for
exploiting the phenomenon in sofane and hardare in Sectior®
and 7, respeately, and we summarize and conclude in Sedion

2. Instruction Repetition

We start out by formalizing the definition ofstruction repetition

that we use in this papdRepetition occurs when &fent dynamic
instances of the same static instructiomehaepeated outcomes. An
instruction can generate a repeated outcome if its operands are
repeated (the common case). wéwer, the outcome of an
instruction can be repeatedea if its operands are not repeated
(e.g., the outcome of a compare instruction can be the same with
vastly diferent inputs). In some cases, the result of an instruction
may not be repeatedien if its operands are, due to sidéeef of

other instructions (e.g., a load instruction readinferéht \alues

from the same memory address). In this paper we say that (a
dynamic instance of) an instruction is repeated if both the inputs
and the outputs of the instruction are repeated,the instruction

suggested that this repetition beplited to predict the results of produces the same outputs for the same set of inputs asiaupre
future instances of such instructions [7, 8, 9, 10, 14]. Othess ha instance of the instruction. &Wse the termepeatability for the

suggested that this phenomenon b@la@ted to cut den the
number of instructions that areezuted dynamically by pwiding
microarchitectural support that transforms instructioecation

into a hardware table lookup [13]. Still others y&suggested that

this phenomenon be xploited
optimizations, such as
specialization [1, 4, 6].

using dynamic sof@ave
function memoization and

codé’|

phenomenon of instruction repetition.

What causes instruction repetition® dnswer this qualitately, we
consider what transpires during programeaition. Program
execution ivolves carrying out a set of operations on input data.
owever, a program typically does not consist of the entire
dynamic set of operations to breeuted. Ratheiit consists of a
static image of the dynamic computation due to: (i) the desire to

The purpose of this ark is to get a better understanding of what haie a compact static representation of the dynamic operation
underlying program attriltes gve rise to this phenomenon of sequence, and (i) the desire toa “generic” representation, one

instruction repetition. Our goal in this paper is not to proposeeio
schemes toxploit a certain form of program behar, but to

that can be used with aarety of input data sets. Creating the
dynamic operation sequence to operate onengset of input data

characterize this betar. Only with a thorough understanding of jnvolves eecuting instructions that sequence through the static
the underlying phenomenon and its causes can the researfdpresentation. Liwise, the data to be operated upon are
community hope to do a systematipkeration of mechanisms to  organized into data structures, and instructions aecuted to
exploit it. address and access elements of data structures for processing by the
In Section2 we prwide a qualitatie discussion of the phenomenon actual “computation” instructions.

and its potential causes. eWalso discuss issues in doing a From the abee, one can glean three potential sources of
quantitatve assessment.&\épend the rest of the paper carrying outrepeatability First, instruction repetition can occur due to repetition

Permission to make digital or hard copies of part or all of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with credit
is permitted. To copy otherwise, to republish, to post on servers or to redistrib-
ute to lists, requires prior specific permission and/or a fee.

© 1998 ACM

in the input data being processedr Example, programs that scan
through tet files (like gcc, compress and grep) may encounter
repeated occurrences of same items likords, spaces, and
characters. Second, instruction repetition can occur in the process
of unraveling the dynamic computation: if a function to add 10
elements of an array is written as a loop that iterates 10 times,
instructions that are used to iterate through the loop and generate
the actual addition operations will be repeated fdediht calls to

the function gen though the actual addition operations might not



be repeated. Third, when non-scalar data structures are used iof the preiously kuffered instances of the same instructiore W
programs (the common case), arfamount of processing is buffer up to 2000 unique instanceé®( instances that use fiifent
involved to access elements of these data structures. Repeatedput \alues or produce dédrent output ®lue) per static
access to elements of the same data structure can result in repeatétstruction for each benchmark.

processing. As we shall see latepeatability can also arise due 1o \ye 4150 had to limit the number of instructions simulated so as to
other programming practices, such as a modular rC’rogr"’lmm'ngcomplete the simulations in a reasonable amount of time. W

style with lots of functions. simulate the benchmarks as folte Except focompress andper!,
This then brings up the quantitai question: he much for every benchmark we skipped the first 500 million instructions
repeatability is there in programezution, and what is causing it?  to avoid making most of the calculations in the initialization phase

Given the &tremely broad nature of the question, a simple answer ©f the program and then simulated thetrie billion instructions
is not practical, and we makno attempt to get such an answer _(or untl_l completlo_n). Br COMpress, we sl_<|pped first 2.5 t."”'on
Instead, we dide the question into a series of questions in an instructions, since it had a long initialization phasa.gerl, since

attempt to understand the phenomenon. The questibistd two fjhg comp;l_etem_cuﬂon <_:on5|sged Ofl 555d6hm'”'%n llnsbtructrl]ons,kw?
broad catgories: a catgory that attempts to characterize the Id not skip ag Instruction and analyzed the whole benchmark. In

phenomenon, and a cgtey that attempts to isolate the Tablel, we shw the number of dynamic instructiongeeuted

contritution of different “parts” of a program to the phenomenon. (column 3), the number of static instructions present (column 5),
and the percentage of static instructiorsceited (column 6) for

To characterize instruction repetition, we carry out analyses similareach benchmark (other columns in this table are discussed in the
to what others ([3, 10]) va carried out for related phenomenon: next section).

we analyze the instructions of a program as a whaleldek of a
better term, we call this tatal analysis. Here we ask questions of
the form: hev much repeatability »ésts, hav mary static
instructions account for a certain fraction of the repeatabdity
We can also carry out a total analysis forfedédnt types of
instructions, e.g., loads, stores, ALU operations, ettt.db not do
so in this paper).

Since the analysisag performed only on a portion of a program, it
might appear that the results of the analysis may not be
representate of a typical program. ol address this issue we
simulated the programs for 10 billion instructi%n@r until
completion) and collected the statistics mmrall local analysis

(we discuss what this analysis is and its purpose later in the paper).
) ) ) _ The statistics from the long simulations tallied with those obtained
While a total analysis ales us to characterize the phenomenon, it (and presented later) from the short simulations. Though this
fails to give us insight into the causes of instruction repetition. yerification does not necessarily imply that the results of the
Answers to questions of the form:hanuch of the repeatability is  analysis are representatiof the complete run, it suggests that the
due to repeated inputs,aanuch can be attrilted to instructions  program &ecution pattern @s in a steady state during the short

that unwind the dynamic computation, etc., are waliable. ' do simulations and that we simulated a typical part of the
this, we need to cajerize both the instructions that were penchmarks.

executed, as well as the instructions that are repeated, ifecedif
classes, e.g., instructions that operate uptereal inputs, or those
that operate upon globahsiables.

Since the phenomenon we are analyzing is dependent on the
properties of data, it is reasonable to suspect that the results may be
sensitve to the program inputs chosene Véin similar gperiments
Categorizing instructions into diérent classes requires us t0 ysing other program input§gone2l.in for go, 1stmt.i for gcc,
capture dynamic slices of instructions, e.g., a slice of instructionsspecmun.ppm  for ijpeg, primespl for perl, and testin for
executed in a function that depend upon its firguarent. In  compress) and found similar trends with the second set of inputs.
capturing slices of computation, we aaedd with the question of |n this paper we present results only for inputsishim Table1.

whether to consider only data or control dependences, or both.

Control dependences determinehich static instructions are 4. Characterizing Instruction Repetition

entered into the dynamic instruction stream, and data dependenceg, ;g section, we attempt to get a feel for the characteristics of

determine the outcome of those instructions. Since our purpose inepeatapility in the program as a whotetdl analysis). Before

this paper is to u_nderstand the_ rt_epzﬂltbe_halor of instructions .., proceeding, we reiterate a definition and define some more terms.
that are present in the dynamic instruction stream, and not withag'ingicated earligne say that a dynamic instructionrépeated

haw static instructions are entered into the dynamic instruction it onerates on the same inputs and produces the same result as an
stream, we do not consider control dependences wiatting the earlier instance of the same instruction. Correspondimgstatic

dynamic instruction stream into dynamic slices; we base ourinquction is said to be repeated if it generates at least one repeated
decisions and analysis solely on data dependence relatiohships. dynamic instruction

3. Experimental Setup In our first set of data, we try to get a feel fowhauch instruction
repetition &ists, and hev mary program instructions conttite to
repetition. Bblel shavs the percentage of dynamic and static
instructions that were repeated. The third coluffoal) shavs

the number of instructions that wepeeuted dynamicallyand the
fourth column Repeat) shavs the percentage of dynamic
instructions that were classified as repeated. The remaining
columns of the table deal with static instructiong $¥e that only

a small fraction % of Total) of the total static instructions get
executed dynamicallybut a lage fraction of thosexecuted % of

Exec) are repeated. Thus repetition is not a phenomenon which is

We used th&PEC ‘95integer benchmarks programs for this study
The programs were compiled withcc (version 2.6.3) using
optimization flags “-O3 -funroll-loops -finline-functions”, for a
MIPS-1 like instruction set. The programs and their inputs are
showvn in Tablel. Execution of these programsaw simulated on a
functional simulator desloped using the simulators pided with
Smplescalar tool set [2]. To track instruction repetition, weuffer
each ne instance of a static instruction that is generated during
the course of x@cution. An instance is consideregpeated if it

uses the same operanalues and produces the same result as one

1 In fact, the notion of a control dependence is somewhat meaningless in & We didn't have to track repetition for these experiments and hence both
dynamic instruction stream. the time and memory requirements were small.



Dynamic I nstructions Static Instructions
Benchmarks Inputs Total Executed | Repeated
. Repeat (%) Total

(millions) %of Total | % of Exec
go null.in (ref) 1000 85.2 84,552 62.9 934
m88ksim ctlin (ref) 1000 98.8 37,824 4.5 97.7
ijpeg vigo.ppm (train) 942.2 79.3 58,894 25.4 98.1
perl scrabble.in (train] 555.6 84.2 73,850 22.3 65.6
vortex vortex.in (train) 1000 93.2 125,018 28.3 93.5
li 22.Isp files (ref) 1000 77.8 23,026 23.6 92.0
gce reload.i (ref) 666.3 75.5 299,988 39.5 87.7
compress bigtest.in (ref) 1000 56.9 13,798 131 66.3

Table 1: Table shows the benchmark programs with their inputs, total dynamic instructions executed and the
percentage of them repeated. It also shows the total static instructionsin the program, percentage of them executed,
and repeated.

exhibited by only a small fraction of the static instructions that are instances. The instances 12 and 14 are the first (hence unique)
executed. Hwever, a fev static instructions might be accounting occurrence of the instance that gets repeated later on as 13, 15, 16,
for a lage number of repeated instructions, and we study tixét ne 17. We call I2 and |4 unique repeatable instances. Note that |11 does
not fall in this catgory (although it is unique) because it does not

In Figurel, we shw the percentage of the repeated static
gure.., \we S P g P sal get repeated.

instructions which account for a certain fraction of the total
dynamic repetition. \& obsere that for all the benchmarkscept In Figure3, we shw the contrilution of instructions with a certain
for m88ksim, less than 20% of the repeated static instructions number of unique repeatable instances to theratl dynamic
account for more than 90% of the dynamic repetition. Although repeatability For example, ingo, 25% of the dynamic repeatability
the corresponding percentage of the repeated static instructions iss due to instructions with 1 unique repeatable instance, and
higher form88ksim (56%), the absolute number of repeated static another 12% is due to instructions thaténd-10 unique repeatable
instructions in that case is small tabewith. instances. \& obsere that repetition is not limited to instructions
producing fev unigue repeatable instances onlystructions
which produce manunique repeatable instances also account for
a sizeable amount of the dynamic repetition (e.g., instructions
producing between 101 to 1000 unique instances account for 47%
gof the repetition inijpeg, 28% inli, and 28% invortex). This
suggests that we need to track multiple repeatable instances of
instructions in order to capture adarfraction of the repeatability

Tablel and Figurel suggest that mgninstructions are repeated,
but do not tell us ho mary different \alues generated by the
instructions contribte to the repeatabilitfhe measure this we

To facilitate this, we define @anique repeatable instance to be the
basic dynamic instance (of a static instruction) that gets repeate
For example in Figure the static instruction (1) generatevese

100 in a program.
% mesksin To get a feel for the total number of instruction instances we need
el s
vortex -—
01 compresg i
"t gee static instruction (I)r1 — r2+r3
é 601 Dynamic Inputs output
Sl Instances r2 r3 r1
; 40 11 2 0 2
5 12 2 1 3
25 4 13 2 1 3
% 14 2 2 4
15 2 1 3
. 16 2 2 4
0 2 ‘“‘/(u] repeated static ines[I) 8 100 |7 2 2 . t 4b|
. i . ) . unigque repeatable
Figure1: Staticinstructions coverage of dynamic repetition. inrs?ﬁ?ce;itggs q|nstance

Thisgraph showsthat very few (lessthan 20% for most cases)
of the static instructions which get repeated generate most

Figure2: An example of unique repeatable instances. These
(morethan 90%) of the repetition observed dynamically.

arethe basic dynamic instances which get repeated.



instances: 1k-2k

instances: 101-1000

instances: 11-100
instances: 2-10

instance: 1

Per cent Repetition
3
)

90
80
704
60
40 —
304
20
104
o —— T T —— —— —T—

T . -
do  m8sksm ijpeg perl  vortex i gic  compress

Benchmarks

Figure 3: Contribution to total dynamic repetition of static
instructions generating different number of unique repeat-
ableinstances. Asseen, repetition isnot limited toinstructions
generating few unique repeatable instances only, e.g., signifi-
cant repetition is seen from instructions which generate be-
tween 100 to 1000 unique repeatable instances.

to track in order to capture a certain fraction of the repeatability
we turn to the data inable2 and Figuret. In Table2, we shav the
number of unique repeatable instances (colwount) in the

100
95 -
90 -

804
75 -

compress ——
gcc ——

60+

50 -

404

% repeated dynamic inst

25 Lhkk
204

0 T T T T
0 20

40 60 100
% unique repeated dynamic inst
Figure4: Coverage of repeatability by the uniquerepeatable
instancess shown in Table 2. For example, in most cases (ex-
cept compress) 75% of the repeatability is generated by less
than 25% of the instances shown in column 2 of Table 2.

program (the sum of all the unique repeatable instances of a||p|'ob|em' we perform tw levels of analysis, a global program

instructions that are repeated)e\&lso she the aerage number
of times that a repeatable instance is repeated (coléwan
Repeats). We obsere that a unique repeatable instance gets
repeated seeral times on werage. In Figurd, we shw the

analysis, and a local (within a function) analysis, and define
instruction classes that correspond to well-understood program
functions at those Vels. A third lerel of analysis, at a function
level, is also presented tadilitate answering questions that arise

fraction of the unique repeatable instances that account for awhen we analyze osome of the empirical obsertions might be

certain fraction of the dynamic repetitioneWbsere that in most

exploited (Sectiorb).

of the cases, less than 30% of all the repeatable instances account

for more than 75% of the dynamic repetition.

5. Understanding the Causes of Repetition

5.1 Global Analysis

At the global leel, we can classify program instructions into 3
broad catgories: (i) instructions whose inputs are influenced by

In this section we try to understand the causes of repetition. Ideallyexternal program input, orexternal input instructions, (ii)

we would like to identify the repeatability due to a particular
program function, e.g., which instructions in the dynamic

instructions whose inputs are influenced by initialized global
variables, orglobal init data instructions, or (iii) instructions

execution of a program corresponds to addressing a particular datavhose inputs are influenced solely kyrogram internals.

structure, and he mary of them are repeated? Such a precise
breakdevn is \ery difficult, but possible once thexact question
has been posed. Unfortunatgdpsing the question is kshooting

(Instructions classified as program internal either operate upon
immediate alues, or (transiely) operate uponalues generated
by instructions that operate upon immediasdugs). Sometimes

in the dark. Vi need to get a better picture before precise questionsinstructions use uninitialized gisters; for gample, when an

can be posed.dldo so, we attempt to bin the dynamic instructions
into catgories based upon their functionaligain, we aredced
with the dilemma of defining the functionalityo overcome this

Unique Repeatable I nstances
Benchmarks
Count Avg. Repeats
go 3,947,406 216
m88ksim 74,628 13232
ijpeg 1,672,546 447
perl 330,12( 1416
vortex 1,922,845 485
li 743,53( 1046
gcc 8,947,200 36
compress 263,747 2155

Table 2: Number of unique repeatable instances and
average number of times each isrepeated.

uninitialized callee-sa&d re@ister is seed on a function entry\Ve
classify such instructions in a separate (fourth) gmate called
uninit.

To perform the analysis, we trace thewflof data through the
program duringecution. Vi tag each data item with the amigy
name to which it belongs, and propégthese tags along with the
data to the dependent instructions. This prafiag traces slices of
instructions for each source ogwey. The catgory of an
instruction is determined based on the gatis of its input
operands. & use a supersede rubsgernal input >¢ global init
data >4 programinternal >¢ uninit, to determine the cagery of an
instruction where tw slices with diferent catgories meet. In this
rule, A > B (A supersedes B) implies that if slices of A and B
meet, the resultant slice will be that of AeWhose this rule to
assign higher priority to a source that iselik to be “less
repeatable”.

* Overall Results: In Table3 (overall), we shw the percentage

of all dynamic instructions in each of the epiges.For most of
the instructions (more than 50% in all benchmawceptperl) the
inputs come from slices which originate from program internals
(e.g., initialization statements). About 12% to 30% instructions
inputs come from slices which originate from global initialized



Categories go m88k ijpeg perl vortex li gce comp
Overall % of all dynamic instructions
internals 86.2 54.6 63.2 46.6 53.6 51.4 59.4 68.5
global init data] 13.7 26.3 20.3 19.0 28.5 12.0 25.2 29.5
external input 0.0 19.0 16.5 34.0 17.9 36.1 15.3 2.0
uninit 0.0 0.1 0.0 0.4 0.0 0.5 0.1 0.0
Repeated % of all repeated dynamic instructions
internals 85.9 54.4 62.2 52.1 54.7 55.5 64.6 77.1
global init data] 14.1 26.2 20.7 22.6 28.7 14.5 29.2 22.9
external input 0.0 19.3 17.1 24.7 16.6 29.5 6.1 0.0
uninit 0.0 0.1 0.0 0.6 0.0 0.5 0.1 0.0
Propensity % of all dynamic instructions in each agbey
internals 84.9 98.5 78.0 94.2 95.2 89.2 82.0 64.0
global init data 87.3 98.4 81.0 99.7 93.9 99.7 87.8 44.1
external input 97.1 99.9 82.2 61.2 86.1 67.5 30.2 0.0
uninit 98.7 100.0 99.3 99.3 99.0 99.7 96.2 60.6

Table 3: Breakdown in terms of sources of input: constant, global init data, external input, and uninit. Overall
shows the breakdown of the complete program. Repeated showsthe br eak down of ther epeated instructions.
Propensity showsthe percentage of dynamic instruction in each category that got repeated.

data. Br most benchmarks, less than 20% of the dynamic computation that getsupnked repeatedlyOften thg are written to
instructions usealues that come from slices which originate from be general purpose (parameterized lguarents), and a specific
external input. This shes that most of the computation performed task is performed by vWoking them with aguments walues
in the program is on the data internal (or “hardwired”) to the appropriate for that task. One of the reasonyg kepetition occurs
program. This should not come as a surprise: in addition to theis because often functions gevaked repeatedly with the same
“computation” instructions themseds that operate on datalues, amument alues &rgument repetition). Accordingly we measure
programs contain a lot of Verhead” instructions, such as the repetition in function guments and present the results in
instructions that perform addressing and program control. This Table4. The second column shie the number of static functions
obsenation also sems as a basis for decoupled architectures that called, and the third column the number of dynamic calls to these
divide the instruction stream into an addressing stream and aunctions. The fourth column stvs the percentage of all dynamic
computation stream ([12]). calls in which all the grjuments were repeated and the fifth column
shaws the percentage of dynamic calls in which muarents were
repeated. A strikingly lge number of times the functions sho
all-argument repetition (e.g., 98% forijpeg, 83% m88ksim, and
0e78% forgo), and \ery fen timesno-argument repetition (highest
"Yeing 15% foti).

* Repeated Results: Most of the repetition also comes from the
“hardwired” part of the program, that is most of the instructions
which get repeated operate on the data that is internal to th
program. This suggests that repeatability may be a phenomen
inherent to the ay programs arexpressed and less sensitito

the eternal input (as mentioned earjiere hae obsered similar
results using diérent input files for the programs). Since much of No. of Dyn calls Dyn calls
> . s . No. of - with ALL | with NO
the repetition occurs due to the “hardwired” part of the program, it Benchs funcs dynamic aras aras
would appear that an optimizing compiler shouldehaliminated calls r egted r egted
this “redundany’ in the first place. W defer the discussion on this & &0
issue until Sectio®. go 481 11M 78% 0.49%
* Propensity Results: We see significant percentage of dynamic | M88ksim 390 1M 83% 0.03%
instructions in each cajery get repeated. Asxgected both ijpeg 528/ 1.5M 98% 0.01%
internals andglobal init data shav high propen_s_ity for repetition perl 4771 6.4M 76% 1.36%
(greater than 80% for most cases). A significant percentage of 5 5
instructions inexternal input catejory get repeated (e.g., 99% for vortex 1,077 21M 67% 0.07%
m88ksim, 86% for ertex). This propensity is small fagcc and li 473 29M 69% 15.1%
compress (30% and 0% respeuwtly). Althoughgo shavs high gce 2,027 5.6M 59% 9.00%
propensity for gternal input catgory, we point out that there are
very faw instructions in this cagery in the first place. Although compress 131 14M 60% 177%
percentages fauninit are high, we note that this cgtey also has Table 4: Function Level Analysis. For each benchmark we
very few instructions (compared to other agteies) to bgin with. show the number of functions, number of function calls
. . encountered during execution, the percentage of function
5.2 Function Level AnaIySIs calls with all-argument repetition, and the percentage of

Functions (or procedures) are a commoayvof epressing a function callswith no-argument repetition.



Do the abwe results suggest that dgr numbers of function calls
are redundant? Not necessarilince not all of the computation in
a function depends solely on itsgaments. W will revisit this
issue in Sectiod when we consider osoftware might &ploit
some of our quantitatt obserations, and the problems

from the data ggment are tagged apobal, and we use function
calling comventions to identify gyjuments and returnalues. The
categgory in which an instruction is binned depends upon the
categories of its input data. L&in global analysis, an instruction
whose inputs are from twdifferent catgories is catgorized using

encountered in doing so. Nonetheless, the repeatability of all orthe supersede rulargument > return value > (global, heap) >4
some of the guments of functions suggests an important source function internal. The reason is to gt preference to cajeries

of repetition in instructionx@cution. (The percentage of calls with

that may she more \ariability and less repeatabilitidentifying

some aguments repeated can be calculated from the data inthe task-based caferies, such as global address calculation,
Table4. Due to space reasons, we do not present datawen ho function returns, and operations on, $ straightforvard. The

mary function aguments are partially repeatede\Ware also seen
that agument repetition is not limited to singlegament functions

only).
5.3 Local Analysis

prologue and epilogue are identified as follws. On entry into a
function, we mark all mgisters asunint (except those used for
passing the guments). Store instructions thavsanint registers
are catgorized asprologue, whereas, load instructions that load
these seed \alues are catmrized asepilogue. Instructions which

To further our understanding of instruction repetition, we continue allocate or deallocate space on the stack are alsgocited,

our analysis within each function — we call thosal analysis. W&
divide dynamic instructions into dérent catgories using tw

accordingly asprologue or epilogue.

broad classification criteria: (i) the source of input data used by 5.3.1 Overall Results
instructions, and (i) and the specific task performed by groups ofIn Table5 we shev the percentage of total dynamic instructions

instructions.

within each catgory (overall analysis). Prologue and epilogue

In general, the data used within a function come from one of theConstitute a significant fraction of the dynamic prograogether

following sources: (i)arguments, (ii) global data, () returned
values, and (v) function internals. Arguments are the alues
explicitly passed to functions at the time of theivadnation.
Global data are thealues which are global to the program ythe
either reside in the dataggment or on the heap) and were not
passed as guments.Returned values are the wlues a&plicitly
returned from other function callstunction internals, like

they comprise as much as 24% of the dynamic instructions in
vortex, 19% forli, 17% ingcc, and 15% irperl.

Although global analysis s that most of the instructionalf
on slices originating from immediatalues program internals),
in local analysis we see relaly fewer instructions deve their
input values from immediatealues (function internals and global
address calculations). This is becausegisd program internal

program internals in our global analysis, operate on immediateslices span across functions and the information that &ne

constants. Thus, using the first criterion foviglon, we will
classify a slice of computation, foxample, asarguments if it
originates by operating on functiorgaments.

We identify the folleving cateories for instructions based on the
task performed: (i)prologue, (ii) epilogue, (iii) global address
calculation, (iv) function returns, and (v) operations on stack
pointer &°). Prologue and epilogue represent the werhead
incurred for calling a function. Tlreperform, respectely, sare
and restore of callee-gad rayisters on entry andki to functions.
Just like addressing and loop control areéchead” for a generic

internal slices (and that themight possibly be operating upon a
compile time constant) gets hidden whenytl®oss function
boundaries. These slices thenwhap as part of global, heap, or
amgument slices.

Most of the dynamic instructionslf on global, heap or argument
slices. A significant portion of the dynamic program igotied to
calculating the addresses of globatigbles, e.g., 16% fago, 15%

for m88ksim, and 10% forcompress. Catgyories SP and returns
constitute fev dynamic instructions (less than 2% in most cases).
Return value slices also compriseviedynamic instructions (less

and compact representation of a computation, function prologuethan 5%) for all benchmarks,x@ept compress where thg

and epilogue are verheads associated with a modular
programming style. {8bal address calculation comprises of

comprise 17% of dynamic instructions.

sequences of instructions which calculate the address of a globab.3.2 Repetition Breakdown

variable either using immediatealues or using global pointer
register gp (a special rgister proided in MIPS architecture that
points to the data genent). Since these instructions performesyv
specific task, we group then separately friumction internals
(even though thg operate on immediatakues).Returns comprise
of function returns. The cajery SP consists of operations on
stack pointer (e.g., adding anfsgt to stack pointer to form an
address of a ariable on the stack). &/keep returns and SP

separate from other cajaries because their repeatability depends
(partly) upon the present depth of the stack, and we wished t

analyze the repeatability due to this influence separately

We realize that the twbroad classification criteria that wevha
chosen are not completely disjoint and also that thegodés
within them may not be the best possiblaywof dviding a
function, lut we belige that this diision is a good first step in
understanding the causes of instruction repetition.

Like in global analysis, we cajerize the instructions dynamically
while executing the program on our simulatd¥e tag the data
values with their appropriate source cag, e.g., data loaded

In Table6, we shw the percentage of total repeated instructions
for each catgory. The amount of repetition that each gaiey
accounts for aries with the benchmark. But, in general, most of
the repetition is accounted for hyguments, global (or heap), and
function internals. Prologue and epilogue also mak significant
contrikution to repetition.

In Table7, we sha the propensity of each catay to repetition,
i.e, the percentage of dynamic instructions in eachgoagethat

oJot repeated. ¥/see thatvery catgory is amenable to repetition

(greater than 90% propensity for most cases). The propensity is
specially high (as wuld be &pected) forfunction internals and
global address calculations. The percentages are high feturn

and SP as well, lnt we note that these cgtwies hae \ery fev
instructions (compared to other ggeies) in the first place.

Next we discuss the results and describgy whch catgory may
be getting repeated (all percentagdues presented beloare
from Table6, unless specified otherwise).

® Global and Heap Values: For all benchmarks between 20%



Categories go m88k ijpeg perl vort li gce comp
prologue 3.12 4.93 1.17 7.42 12.40 9.48 8.71 1.90
epilogue 3.12 4.93 1.17 7.40 12.40 9.47 8.71 1.90

function internals 9.77 17.22 9.33 9.08 18.02 7.96 15.50 5.41
glb_addr_calc 15.78 14.79 0.44 4.51 3.35 1.26 3.07 10.27
return 1.12 1.75 0.16 1.14 2.11 2.72 1.33 2.79

SP 1.34 0.17 0.65 1.05 4.14 1.71 241 0.00

return \alues 1.57 4.45 1.81 2.67 1.52 3.90 2.32 16.72

arguments 9.94 15.40 26.63 21.85 24.27 6.76 16.15 5.02

global 54.23 26.97 3.06 9.74 7.63 10.95 17.03 56.00

heap 0.00 9.45 55.61 35.27 14.16 45.78 24.75 0.00
Table 5: Overall local analysis. The numbersare % of all dynamic instructions

Categories go m88k ijpeg perl vort li gce comp
prologue 3.59 4.99 1.38 8.15 12.42 9.41 6.76 2.83
epilogue 3.59 4.99 1.38 8.13 12.42 9.40 6.75 2.83

function internals] 11.34 17.44 11.76 10.76 19.29 9.62 19.34 9.51
glb_addr_calc 18.49 14.97 0.56 5.36 3.59 1.53 4.06 18.06
return 1.31 1.77 0.20 1.35 2.26 3.29 1.76 491

SP 1.57 0.17 0.82 1.25 4.44 2.07 2.99 0.00

return \alues 1.82 4.50 2.27 1.12 1.60 4.50 2.23 9.28
arguments 10.13 15.36 26.07 21.40 22.41 7.32 12.07 3.79

global 48.18 26.26 3.19 8.38 7.95 13.14 20.81 48.78
heap 0.00 9.56 52.38 34.09 13.62 39.71 23.22 0.00

Table 6: Contribution of each category to total repetition. The numbersare % of all repeated dynamic instructions.

Categories go m88k ijpeg perl vort li gce comp
prologue 97.95 99.99 93.76 92.53 93.35 82.06 58.57 84.72
epilogue 97.95 99.99 93.76 92.51 93.35 82.05 58.54 84.72

function internals] 98.89 100.00 99.97 99.77 99.75 99.98 94.23 100.00
glb_addr_calc 99.85 100.00 99.98 99.99 99.99 100.00 99.78 100.00

return 99.99 100.00 99.97 99.99 99.99 100.00 99.90 100.00
SP 99.90 100.00 99.89 99.99 99.86 99.79 93.85 77.16
return \alues 98.85 99.99 99.67 35.37 97.83 95.46 72.67 31.55
arguments 86.82 98.56 77.64 82.45 86.05 89.68 56.44 42.93
global 75.69 96.21 82.65 72.48 97.07 99.26 92.27 49.54
heap n.a. 99.96 74.69 81.38 89.63 71.73 70.84 n.a.

Table 7: Propensity of each category for repetition. The numbersare % of all dynamic instructionsin that category.

to 50% of repeated instructiorallfon slices originating from load  of frequencies for all letters used in ftaén encoding, or machine
instructions that read globahles. This repetition can occur due descriptions like function unit latenc in a processor simulator

to several reasons. The runtime switches (which are mostly setThese data structures get initialized once per progeaouéon
using parameters that are input to a program) are often stored irfeither at compile time or runtime) and remain unchanged
global \ariables. These get initialized when prograngihe thereafterFor some globalariables, e.g., positions on a chess or a
execution and remain constant for the rest of tkexetion. Often go board, the alues may change infrequently or ttegiables may
other program parameters, which remain constant forvangi  assume only a small set ddlues, causing the samalwes to flav
execution, are stored in global data structures.écample, a table dowvn to the dependent instructions and hence resulting in



repetition.

® Function Prologue and Epilogue: These tw  catgories

comprise a significant percentage of total repetition (e.g., 7%
go, 10% for m88ksim, 24% forvortex, and 13% forgcc). This

repetition occurs because often functionsesand restore the same
values of callee-s&d raisters from the same stack locationst F

for

function via aguments and globalalues, and that thisviariance

may not be olious (statically) inside the function.

6. Commentson Software Exploitation of
Instruction Repetition

In the last fev sections seeral characteristics of sources of

example, such a situation may happen when functions get calledinstruction repetition hse surbced. V¢ nav provide some

from the same call site repeatedly (hence thie aad restore code
accesses same locations in the stack) andaibewof callee-sad
registers are the same as before (becausexéonge, if thg are
not used in the caller function at all).

Function Arguments: For ijpeg 26%, forvortex 22%, and for
m88ksim 15% of the repeated instructioral fon agument slices.
As shavn in Table4, mary times functions are called repeatedly
with some or all of their guments hang the same alues as

commentary on he this phenomenon might bexmoited in
software and the possible hurdles in doing so.

From Figurel, we see that ¥ static instructions account for most
of the instruction repetition. Thus, if required, most of the
repetition can be aered by tracking a fe static instructions
(either by using program profiling or in harale).

Global analysis (@ble3) shavs that most of the dynamic
instructions and the repetitioalf on theprogram internal slices

before. In such cases, the instructions which operate on thesgnqgiohal initialized slices. These slices originate from immediate

amguments may perform the same computation repeatéiysee
an ception forijpeg, in which case only 77% of the instructions
from this catgory (Table7) are repeatedven though 98% of
functions are called with all-gument repetition. This suggests
that \alues coming from other slices (e.g., global sﬁ):etbat
meige with agument slices may change and hencevesre
repetition.

® Function Return Value: Often, the @lue returned by function

calls belongs to a small set of possibddues (e.g., true oalse).

In such cases, the computation in the caller function which uses

this return alue may perform the same task repeatedihhough
repetition due to this cajery is not high, it is measurable for
compress (9.3%),li (4.5%), andn88ksim (4.5%).

® Function Internals: Since these slices originate from

instructions operating on immediatalwes, the dferent execution

of these slices generate the same resultviffed the geerning
control flov resolhes in the same ay for each xecution). The
percentage contriltion to repetition for some of the benchmarks
are, 11% foigo, 17% form88ksim, 12% forijpeg, 19% forvortex,
and 19% fogcc.

Global Address Calculation: Instructions in this cagory
either operate on immediatalues or on rgistergp (which is a
runtime constant). Hence th@erform the same taskeary time
they are eecuted. The percentage contiibn of this catgory to
repetition for some of the benchmarks are, 18%gtpr15% for
m88ksim, and 5% foiperl.

SP and Returns: The computation wolving SR like adding

an immediate to form an address ofagiable, generates the same
result if the alue in SP is the same, which is the case when the
same function is called from the same call depth repeatedly (e.g.

function called from the same call site repeatedly). The percentaga

contribution of SP to repetition for some of the benchmarks are,
4.4% forvortex, 3% forgcc, and 1.5% fogo. Returns get repeated
when a function returns to the same call site repeatddig
percentage contrittion of returns to repetition for some of the
benchmarks are 4.9% faompress, 3.3% forli, and 2.3% for
vortex.

We obsere that, although the results from global analysisnsho
that most of the repeated instructions are papragram internal
slices, comparately fewer repetitions dll on function internal
slices. This indicates that much of thevdariance flavs into a

3 Inijpey, several functions are called with pointers to global arrays as ar-

guments. Although the pointers values remain same the contents of the ar:

ray change.

values and statically initialized data respeadii, both of which are
known at compile time. Although, this information suggests that a
compiler might be able to optimize code to eliminate this repetition
statically we male seeral comments about the challenges in
doing so:

The dynamic path through the program may not bevkreiat-
ically. Although the same definition of alue may reach a use
repeatedlythis invariance may not be glous at compile time.

To ensure correctness a compiler needs to assume dependences
conseratively. On s@eral occasions globahviables cannot be
register allocated in the presence of pointers or function calls.
Dynamically loads of globalariables may load the samalwe
repeatedly

The fact that a &lue is statically knen may not be olious
within the body of a function if thealue was passed to the
function as an gument, without sophisticated inferoce-
dural analysis.

Much instruction repetition is a result of codeeeuted to
dynamically recreate a computation from its static image. T
exploit such repetition statically maywvolve “unrolling” the
dynamic computation statica/lperhaps décting the general-
ity of the computation as well as the code size.

Some instruction repetition is due to features of the instruction
set, and cannot be eliminated by optimizatione ldonstant
propagtion. For example, the number of bits in the immediate
field of an instruction format limits the size of the immediate
value that can be handled by an instruction. In such cases, big-
ger constants are manipulated using a sequence of instructions,
all of which would perform the same computation whee-e
cuted repeatedly

In some situations a loopvariant computation may not be
register allocated, because of the resultant increasayistee
pressure which might cause spills inside the loop.

Function analysis @ble4) shavs that most of the functions are
called with repeated gwments &ll-argument repetition). From
this result it vould appear that such functions could be memoized.
Memoization can be hindered if a function has sidectd, like
external input/output or stores to a global address, or if it has
implicit inputs through globalariables. In @ble8, we shw the
percent of functions called with allgarment repetition that do not
have ary side efects or implicit inputs (hence may be candidates
for memoization). As we can see, most of the functionge Bide
effects or implicit inputs and may defy memoization (unless the
side efects and other inputs themsedvhae a repeated pattern
hat can be detected statically).

t



Dynamic Functions w/o side effects o
implicit inputs
Benchmarks
% of funcs with all-
% of all funcs i
arg repetition

go 0.0% 0.0%
m88ksim 7.8% 9.3%
ijpeg 0.3% 0.2%
perl 0.0% 0.0%
vortex 0.0% 0.0%
li 0.3% 0.2%
gcc 0.6% 0.9%
compress 0.0% 0.0%

Table 8: Functions which do not hae any side effects or
any implicit input. The numbers are percentages of all
dynamic functions (column 2) and pecentages of functions
with all-argument repetition (column 3).

Another vay to eploit the repeatability of function guments
might be to specialize functions for commonly occurrirguarent
values [4, 5, 6]. This optimization can be successfully eyepoldf
a small set of gument alues occurs frequenthin Figure5, we
show the percentage of function calls with alament repetition
for the 5 most frequent combinations ofaments. Thus, if we
specialize eery function with all-agument repetition based on its
most frequently occurring gument alues we wuld capture 5%
of the function calls fogo, 42% forperl, 17% forvortex and 7%
for gcc. However, in all but one case,ven specializing \ery
function for the 5 most frequent sets ofaments alues does not
allow us to ceer more than 50% of the dynamicallyeeuted

functions.

Local analysis (@ble6) shavs that function prologue and epilogue
are a significant contnittor to both the number of instructions
executed dynamicallyas well as to instruction repetition. This

I 5th most freq arg sets
904 I 4th most freq arg sets
80 3rd most freq arg sets
g 704 . 2nd most freq arg sets
% 0. Most freq args set
g .
= 501
8 —
= 404
k=i
304
B
204
104 E ﬁ ﬁ E
o T " T T — — —T—
go m88ksim ijpeg perl vortex li gce compress

Benchmarks
Figure 5: Percentage of all-argument repetition due to five
most frequently occurring argument set.

overhead and repetition can potentially be optimized if the
compiler had global information and could inline the function at
the call site. One of the issues that a compiler has to deal with in
function inlining is the resulting increase in code size (along with
others that we do not discuss here such as, recursalatality of

the function definition at the time its call site is complied etc.). In
Table9 we shav the sizes (in number of static instructions) of the
functions that are the top 5 contribrs to the prologue/epilogue,

as well as the fraction of all prologue and epilogue instructions
accounted for by these 5 functionsoverage column) for the
benchmarks. & obsere that most functions are greater than 50
instructions in size and may be consideredydafor inlining
purposeé‘. Also, from the percent werage we can deduce that
significant prologue and epilogue repetition remains (greater than
40% for mawy cases)een after considering top 5 functions¢ept

for compress). Thus, just capturing theviebig contrilutors may

not eliminate all the prologue and epilogue repetition.

Local analysis also identifies other sources of instruction

4 Because the dynamic path length through a function can be smaller than
the static instruction count, the prologue/epilogue can still be a significant
contributor to the dynamic instruction count even for large functions.

Bench. 1 2 3 4 5 coverage)
addlist geteflibs lupdate Idndate livesordies 0
g0 113 558 683 683 799 40%

. Data_path execute display_trace Pc test_issue 0
magksim 143 883 150 149 56 66%
.. emit_bits encode_one_block fill_bit_buffer jpeg_idct_islav memcly 0
Peg 97 103 93 643 55 81%

orl eval memmaoe malloc str_nset str_sset 59%
P 6639 97 304 76 142 °
Mem_Get\Wrd TmFetchCoreDb [Chunk_ChkGetChunk Mem_GetAddr TmGetObject
vortex 49%
53 125 50 49 49
. livecar livecdr xlobgetwalue xlsave xlevlist
li 60%
61 29 88 40 90
cc reg_scan_mark_refs mark_set_resources canon_rg mark_jump_label| copy_rtx_if_shareq 17%
9 262 309 162 259 271 °
getcode output readbytes 0
compress 86 142 85 100%

Table 9: We shav names of fie functions which ae 5-top contributors to prologue+epilogue epetition. For each function we
show its size in number of instructions. This inbrmation is useful in deciding whether these functions should be inlined. \also
show the amount of prologue+epilogue epetition covered by these fie functions.



100
B 5th most freq value
90 I 4th most freq value

80 3rd most freq value

70 2nd most freq value

604 Most freq value
504
40
304

20

% of all repeated global+heap loads

104

L1

go m88ksim ijpeg perl vortex li gce compress

Benchmarks

Figure 6: Percentage of all global+heap load repetition with
five most frequent repeated values.

repetition, such as global slices, function internal slices, and
instructions that compute global addresses. Qaetw exploit the
repetition on a global slice (a slice which originates with a load
from the data ggment or the heap) may be to specialize the slice
for the commonly seeralues for the originating global load [1, 4,
6]. Just as for function specialization, such a scheme can b
successfully empled when fe values are seen frequentiyn
Figure6, we shw the percentage of global load repetition
accounted by considering 1-5 most frequently seduneg for each
load. The figure suggests that if we specializene repeated
global slice (assuming other criteria for triggering the code
specialization hold) based on the most frequently seen lmad v
then we may capture 18% of global slice repetitiorgip7 1% for
m88ksim, 39% forvortex and 22% foigcc. To capture more of the
global repetition, global slices may need to be specialized for
several possible alues.

The issues in@loiting repetition thatdll on function internal

slices and global address calculations are similar to those discusse

for global analysis earlier in this section.

7. Comments on Hardware Exploitation of
Instruction Repetition

Recently tvo hardvare approaches v been proposed tx@oit

the phenomenon of instruction repetitioiue prediction [8, 9,

10, 14] anddynamic instruction reuse [13]. In value prediction, a
prediction table is used to predict the outcome of an instruction,
and in instruction reuse, results instructions aiféebed in a reuse
buffer which is used to streamline thexéeution” of some
repeated instructions by transforming theeeution” into a table
lookup.

In Table10 we shw the amount of repetition that can be captured
by an 8k entry 4-way set associae reuse bffer [13].
Comparing the entries irable10 to the entries indblel, we see
that there is still room for impv@ment in performance. Léwise,

we belive there is room for impr@ment in structures used to do
value prediction. These imprements are ligly to result from our
obsenations that: (i) a f@ static instructions account for most of
the repetition, and (ii) dérent “parts” of program>&cution hae
different repetition belhéor (similar obserations are also made in
[11]). We epect that these, and other obsions will be used to
better manage prediction and reuse structures.ekample, by
using information about the kihood of repetition for a certain
instruction (or instruction class) we might be able tosg@mé the
insertion of unprofitable instructions into the prediction/reuse
structures, resulting in smaller structures or morécient

Repetition
Benchmarks e of al ing % of repeated
inst
90 46.5 65.4
m88ksim 73.7 74.9
iipeg 28.0 45.8
perl 49.0 61.2
vortex 55.6 67.0
li 45.8 66.6
gce 475 69.9
compress 30.2 53.3

Table 10: Repetition captured by 8k 4-way set assoc. buffer

and sources of instruction repetition to im@o hardvare
structures is b@nd the scope of this paper; weect mag such
papers to appear in the coming years.

8. Summary and Conclusions

%n this paperwe empirically analyzed instruction repetition, which

is the phenomenon that instructions operate on same operand
values and produce the same result repeat¥dyanalyzed the
SPEC ‘95 intger benchmarks to understand the underlying
characteristics of programs that@irise to this phenomenon.

We first characterized instruction repetitiore Ygund that most of

the dynamic instructions in programs are repeated (e.g., 99% for

mB8ksim, 93% forvortex, and 84% fomperl). We also found that

although almost all of thexecuted static instructions conuiie to

repetition, less than 20% of the repeated static instructions account

for more than 90% of the dynamic repetition véwer, instruction

repetition is not limited to instructions producingvfénstances
ynamically; as much as 42% of the repetitiofjpag, and 28% in

li is due to instructions that produce between 101 to 1000 distinct

values.

To better understand this phenomenon, we further analyzed the
dynamic eecution of these programs at threeels: (i) global, (ii)
function, and (iii) local (inside functions). In global analysis, we
tracked the data usage pattern of the program as a whole and
determined the sources of repeated instructioreerfgal input,
global initialized data, or program internals)e \8&v that most of

the instruction repetitiorafl on instruction slices originating from
program internals alues (lile immediate &lues) and global
initialized data. W sav similar results when running the
benchmarks with other inputs though we did not report these
results in this papeihis suggests that repetition as a phenomenon
is more a property of the ay computation is »@ressed in a
program and less a property of input data.

In the function analysis, we wathat \ery often functions get
invoked repeatedly withxactly the same set ofgurments alues
(e.g., 98% of function call ifjpeg, 83% inm88ksim, 78% ingo).
On the other side of the spectrurary few function calls hee no
repeated gruments @lues (less than 1% fonaral benchmarks).

In the local analysis, we trae#f the source of repetition. eV
classified the instructions of a function intofei€nt catgories
based on the source of da&lues used (e.g., functiongaments)
and the specific task performed (e.gvesand restore gisters).
We found that most of the repeated instructioalé éither on
global walue or agument alue slices. Instructions on function

structures. Methods to use information about the characteristicsnternals slices also get repeated frequerglgnificant repetition



is also seen due to function prologue and epilogue. S6me
benchmarks the sequences of instructions that calculate the
addresses of globabxiables also get repeated significantly [4]

Next, we discussed the axious issues in xploiting this
phenomenon in softave. W& agued that detecting repetition
requires a lot of dynamic information. This requirement may limit
the amount of repetition that can be optimized staticAlijpough
dynamic information can be collected by profiling, wevsltioat in
mary instructions are repeated withveeal diferent \alues and to
capture most of the obsex repetition static optimizationsowld
need to optimize the code foveeal diferent \alues.

Finally, we made a fe obserations on gploiting instruction
repetition in hardare. The characteristics and sources of
instruction repetition presented in this paper couldxXmptoéed to
significantly improe the performance andfiefency of hardvare
schemes such aslue prediction and dynamic instruction reuse
that ploit the repetitre nature of instructionxecution.

Acknowledgments

We thank Subramga Sastry for answering weral compiler
related questions and for piding comments on this avk. We

would also lile to thank Haitham AkkaryTodd Austin, Andy

Glew and the referees for their helpful comments on the earlier
drafts of this paper [9]

This work was supported in part by NSF Grant MIP-9505853, the
U.S. Army Intelligence Center anai Huachuca under contract
DABT63-95-C-0127 and AR® order no. D346, and a donation [10]
from Intel Corp. The vies and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the B€ial policies or endorsements, eithepeessed
or implied, of the U.S. Army Intelligence Center andrtF
Huachuca, or the U.S. @ernment.

5]

[6]

[7]

(8]

[11]

References
(1]

[12]
J. AuslanderM. Philipose, C. Chambers, S. J. Eggers, and
B. N. Bershad. &st, Efective Dynamic Compilation. In the
Symposium on Programming Language Design and Imple-
mentation, pp. 149-159, May 1996.

D. Bumger, T. M. Austin, and S. Bennett. Biuating Future
Microprocessors: The SimpleScalaool Set. Echnical
Report CS-TR-96-1308, Wrersity of Wsconsin-Madison,
July 1996.

B. Calder P Feller and A. Eustace. alue Profiling. In the

[13]

(2]
[14]

(3]

Proc. of the 30th Annual International Symposium on
Microarchitecture (MICRO-30), pp. 259-269, Dec 1997.

C. Consel and .FNoél. A General Approach for Run-time
Specialization and its Application to C. In tBgmposium on
Principles of Programming Languages, pp. 145-156, Jan
1996.

M. Das. Rrtial Evaluation Using Dependence Graphs. Ph.D.
Thesis, Bch. Rep. TR-1362, Computer Sciences Depart-
ment, Unversity of Wisconsin, Madison, Feb 1998.

B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J.
Eggers. Annotation-Directed Rurirfe Specialization in C.

In theProc. of Symposium on Partial Evaluation and Seman-
tics-Based Program Manipulation, pp. 163-178, June 1997.

M. H. Lipasti and JP. Shen. Exceeding the Datafld_imit
Via Value Prediction. In th€roc. of the 29th International
Symposium on Microarchitecture, pp. 226-237, December
1996.

M. H. Lipasti, C.B. Wilkerson, and . Shen. ¥lue Local-
ity and Load \dlue Prediction. In th@roc. of 7th Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
VII), pp. 138-147, September 1996.

A. Mendelson and .FGabbay Characterization of Specula-
tive Execution based onalue Prediction. &chnical report,
Technion - Israel Institute ofeChnology 1997

Y. Sazeides and B. Smith. The Predictability of DataaV
ues. InProc. of 30th Annual International Symposium on
Microarchitecture (MICRO-30), pp. 248-258, December
1997.

Y. Sazeides and J. E. Smith. Modeling Program Predictabil-
ity. In theProc.of the 25th Annual International Symposium
on Computer Architecture, pp. 73-84, June-July 1998.

J. E. Smith. Decoupled Access#exte Computer Architec-
ture. In theProc. of the 9th Annual International Symposium
on Computer Architecture, pp. 112-119, April 1982.

A. Sodani and GS. Sohi. Dynamic Instruction Reuse. In the
Proc. of the 24th Annual International Symposium on Com-
puter Architecture, pp. 194—205, July 1997.

K. Wang and M. Franklin. Highly Accurate Datal\e Pre-
diction using Hybrid Predictors. In theroc. of the 30th
Annual international Symposium on Microarchitecture
(MICRO-30), pp. 281-290, December 1997.



