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Abstract

Recentlytwo hardware techniques— Value Prediction(VP) and
Instruction Reuse(IR) — have beenproposedfor exploiting the
redundancyin programs to collapse data dependencesln this
paper weattemptto undestandthe differentwaysin which VP and
IR interact with other microarchitectural featuesandtheimpactof
sud interactions on net performance More specifically we per-
form the following tasks: (i) we identify the various differences
betweerthe two techniqguesand qualitativelydiscusgheir microar-
chitectural interactions,(ii) weevaluatetheimpacton performance
of theseinteractions,and(iii) sincelR is more restrictiveof thetwo
techniques, we also estimatethe amount of total redundancy
present in ppgrams, that can be caped by IR.

Our resultsshowthat the performanceobtainedby VP is sensi-
tive to the way brancheswith value-speculativeperandsare han-
dled. We also see that, although IR captules less amount of
redundancyit mayperformequallywell becausét validatesresults
early, it is non-speculativeand it reducesbranch mispiediction
penalty Finally, we showthat 84-97%of redundancyn programs
can be reused,implying that the approac of detectingredundant
instructionsnon-speculativelybasedon their operands,doesnot
significantlyrestrict IR’s ability to captule redundancypresentin
programs.

1. Introduction

Severalrecentstudies[2, 5, 8, 10] have shown thatthere
is significant result redundang in programs,i.e,, mary
instructionsperformthe samecomputationand, hence pro-
ducethe sameresultover andover again. Thesestudieshave
found that for several benchmarksmore than 75% of the
dynamic instructions produce the same result as before.
Also, recently two hardwaretechniquesave beenproposed
to exploit this redundang: (i) Value Prediction(VP) [3, 4,
5], and (ii) Instruction Reuse (IR) [9]. Both techniques
attemptto reducethe executiontime of programsy alleviat-
ing the dataflav constraint.They usethe redundang in pro-
gramsto determine— speculatiely (Value Prediction)or
non-speculatiely (Instruction Reuse) — the results of
instructionswithout actuallyexecutingthem. The adwvantage
of doing sois thatinstructionsdo not have to wait for their
sourceinstructionsto executefirst; they canexecutesooner
usingtheresultsobtainedby the above two techniquesthus,
relaxing the datafle constraint.

Although both VP andIR attemptto shortenthe critical
path through a computation, they follow very different

approachesVP predictsthe resultsof instructions(or, alter-
natively, the inputsof otherinstructions)hasedon the previ-
ouslyseerresults performscomputatiorusingthe predicted
valuesandconfirmsthespeculatioratalaterpoint. Thecrit-
ical pathis shortenedsincethe instructionsthat would nor-
mally be executed sequentially could be executed
(speculatiely) in parallel.On the otherhand,IR recognizes
thata certaincomputationchain hasbeenperformedbefore
and thereforeneednot be performedagain, i.e., it “splices
out” a chain of computation from the critical path.

The effectivenessof ary microarchitecturatechniquein
improving the net performanceof a processornot only
depend®on how well it performsby itself, but alsoon how it
interactswith othermicroarchitecturafeaturege.g.,branch
prediction,availability of resourcesyhenit is integratedin
apipeline.SinceVP andIR aredifferenttechniquesthey not
only performdifferently by themseles (i.e., capturediffer-
entamountf theredundang presenin programs)ut also
interact with other microarchitecturalfeaturesin different
ways, thereby impacting the net performancedifferently
The purposeof this work is to identify and evaluatethe dif-
ferent microarchitecturalinteractionsof thesetechniques.
Theintentis notto arguewhich techniqueis better but is to
gain a better understandingof the working of eachtech-
nique.We feel, thatwill helpin designingothertechniques
(possiblyhybrid of VP andIR) that exploit the redundang
in programamore profitably More specifically in this paper
we achieve thefollowing threetasks.(i) We identify thevar-
ious differencesbetweenthe two techniquesand qualita-
tively discusstheir microarchitecturainteractions.(ii) We
evaluate the impact on performanceof theseinteractions.
And finally, (iii) sincelR is morerestrictive of thetwo tech-
niques(we discusshis later),we alsoestimatehow muchof
thetotal redundang presenin programscanbe capturedby
IR.

The layout for the rest of the paperis as follows. In
Section2, we describe VP and IR in more detail. In
Section3, we identify the variousdifferencesetweenthem,
and qualitatvely discussvarious interactionsand their the
impacts on performance.ln Sectiord, we evaluate these
interactionsquantitatvely. Finally, in Section5, we summa-
rize and preide conclusions.
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Figure1: (a) Pipelinewith VP, (b) Pipelinewith IR.

2. Value Prediction and I nstruction Reuse

As mentionedearlier VP is a speculativetechniquethat
exploits redundang in programsto predictvaluesthat are
eitherproducedresults)or used(inputs) by instructions.In
Figurel(a), we shav a pipeline with VP. The predictions
areobtainedfrom a hardwaretable,calledValue Prediction
Table (VPT). Thesepredictedvaluesare usedasinputs by
instructionswhich canthenexecuteearlierthanthey could
have if they hadto wait for theirinputsto becomeavailable
in the traditional way. When the correct values become
available (after executinganinstruction)the speculatedal-
uesare verified; if a speculationis found to be wrong, the
instructionswhich executedwith the wrong inputs are re-
executed(Figurel(a)). The executionof suchinstructionsis
delayedby the lateny of verifying the prediction(VP-veri-
ficationlatency. However, if the speculatioris foundto be
correctthen nothing specialneedsto be done;instructions
get executedearlier than they would have otherwise.VP
collapsegrue dependenceby allowing dependentnstruc-
tions, that would have executedsequentiallyto executein
parallel.

Unlike VP, IR is a non-speculativetechnique that
exploits redundang in programsby obtaining results of
instructionsfrom their previous executionsandthereby not
executingthem.In Figurel(b) we shav a pipelinewith IR.

Whenaninstructionis first executedjts resultsarestoredin
a hardwarestructurecalleda ReuseBuffer (RB), indexed by
its PC.Whentheinstructionis encountere@gin, its previ-
ousresultsarereadfrom the RB (in parallelwith fetching
theinstruction)andtheir validity establishedby areusetest
(in parallel with decodingthe instruction). The reusetest
validatesresultsby establishingthat the currentoperands
valuesare the sameas thoseusedto calculatethe results.
There are different ways of doing so, one of which is
describedaterin Section4.1.20f this paper Sincethe cor-
rectresultsareknown, a reusednstructionis not executed,
and insteadit is queuedfor retirement.IR collapsestrue
dependencdsy reusingin the samecycle adependenthain
of instructions that wuld normally &ecute sequentially

In Figure2, we illustratehow VP andIR improve perfor-
manceby collapsingdata dependencedn the figure, we
shav a flow of a dependenthain of instructions(l, J, and
K) through three different pipelines: (i) a base pipeline
(without VP or IR); (ii) a pipelinewith VVP; and(iii) a pipe-
line with IR. In all threecasesyve assumeheinstructiond,
J,andK, arefetched,decodecandrenamedogetherin the
basepipeline, the instructionsexecute sequentially since
they are datadependentrequiring three cyclesto execute
them;the chainis committedby cycle 6. In the pipelinewith
VP, the dependencéetweeninstructionsis broken by pre-
dicting the outputsof | andJ (alternatelytheinputsof Jand
K). This enablesthe threeinstructionsto executesimulta-
neously(in cycle 3); the chainis committedin cycle 4. In
the pipelinewith IR, the previous resultsof theseinstruc-
tionsarereusedn parallelwith decodingthem(in cycle 2).
The datadependenceés alleviated becausethe dependent
instructionsare reusedat the sametime. Sincethe results
areknown, the instructionsskip over the executestageand
arecommittedin cycle 3. Thus,we seethatboth VP andIR
enabledependeninstructionsto completesimultaneously
which otherwise wuld hare completed one at a time.

3. Impact of Differences. Qualitative

The pipelinesin Figurel bring forth the key difference
betweenthe two techniquesiR verifies the resultsbefore

Base Super scalar With VP With IR
Pipeline
1 2 3 4 5 6 1 2 3 4 1 2 3
Fetch 1,J, K I, J, K I, J, K
Dec & Ren I,J, K I,J, K I, J,K
Execute I J K l,J,K
Commit I J K 1,J, K 1,J, K

Figure 2: Flow of a dependent chain of instruction, I, J, K, (where J is dependent on |, and K is dependent on J) on (i) a base
superscalar, (i) a superscalar with VP, and (iii) a superscalar with IR. For both VP and IR, the true dependences ar e collapsed
becausetheinstructionsin the chain do not execute one at atime asin the base superscalar.



using them (early validation), while VP usesthe results
speculatiely and verifiesthem later (late validation). This

featureof early andlate validationleadsto two differences
in theway VP andIR function: (i) VP is speculatre while

IR is non-speculatie, and (ii) reusedinstructionsdo not

execute,while the value predictedinstructionsneedto exe-

cuteto verify the prediction.Due to thesedifferencesthe

two techniquesvary in (i) the amountof redundang they

can capture, and (ii) the way they interact with other
microarchitectural features.&\elaborate on them xte

3.1 Amount of Redundancy Captured

SincelR validatesesultsearlybasedninputs,it maybe
consenative. For example,if theinputsof aninstructionare
notreadyatthetimeit is testedfor reusethenit will notget
reused;or, aninstructionthat produceshe sameresultbut
with differentinputs(e.g.logical operationsjoads)will not
getreusedHowever, VP can malke the correctpredictions
for eachof the above casessince it neither dependson
inputsbeingavailablenor onthembeingthe sameThus,IR
may hot captureas much redundang in programsas VP.
However, validatingresultsearly makesIR non-speculatie
and has other adntages that we discussxhe

3.2 Impact on Performance

In this section,we describetheinteractionsof VP andIR
with othermicroarchitecturafeaturesandqualitatively rea-
son about their ligly impact on performance.

* Effect of value misprediction: Whenavalueis mispre-
dicted,instructionsdependenbn thatvaluearere-executed.
Since mispredictionsare detectedduring the verification
stage,the executionof theseinstructionsis delayedby the
VP-verification lateng. On the other hand, IR does not
incur ary misprediction penalty

* Impact on branch prediction: Typically, when a
branchis mispredictedall instructionsfollowing the branch
arediscardedandinstructionfetchresumegrom the correct
addressThe branchmispredictionpenalty which includes
cycles spentexecuting the discardedinstructions,can be
reducedif the mispredictionis detectedearlierin the pipe-
line; this way the machinecanstartexecutingon the correct
path sooner saring cyclesthat would have otherwisebeen
wasteddoing the wrong work. Both VP andIR canresohe
branchegandtherebydetectmispredictionsgarlierby col-
lapsing the dependenthainsof operationsleadingto the
branchesandtherebyreducethe branchmispredictionpen-
alty.

VP andIR alsointeractwith branchpredictionin other
ways. IR further reducesbranchmispredictionpenaltydue
to two reasonsFirst, whena mispredictedranchis reused,
the mispredictiongets detectedearlier (at decode)than it
would have if the branchhadto execute.Second,due to
convergentcodesometimegprocessorperformusefulwork

onthewrongpath.SincelR bufferswork doneonthewrong
path,it canrecover usefulwork from thework squashedue
to misprediction, resulting irater receery.

VP, on the otherhand,may increasethe branchmispre-
diction penaltyin two ways: (i) by causingmoremispredic-
tions, and (ii) by delayingbranchresolution.Which of the
two effectsoccurdependon how the brancheghatexecute
with value-speculate operandsare handled.For the pur-
poseof explanationwe semanticallydivide a branchinto
two operations:(i) executing a branch — which means
determiningits outcome,and (ii) resolving the branch —
which meanstaking the action basedon its outcome(e.g.
squash)Branchewith speculatie operandsanbehandled
in two ways: (i) they areresohed while their operandsare
still speculatie, or (ii) their resolutionis delayeduntil their
operandsbecome non-speculatie. The first option may
causespurious branch mispredictions,becausenow cor-
rectly predictedbranchesmnay also get mispredictedwhen
they producethe wrong outcome(dueto wrong inputs).In
the secondoption, wherethe actionis taken only after the
branchinputs are known to be non-speculatie, branches
have to wait till their sourceinstructionshave beenverified.
This delaysthe branchresolutionby the lateng of VP-veri-
fication, delaying branch misprediction detection and,
thereby increasing the misprediction penalty

* Impact on resource contention: As an instruction
flows througha pipelineit contendgor differentresources
(e.g.functionalunits, cacheports) at differentstagesn the
pipeline.VP and IR may influenceresourcecontentionby
changing both the pattern in which the resourcesare
requestedand the demandfor them. By collapsing true
dependencesoth VP andIR canmalke instructionsreadyto
executesooner This changeshe scheduleof theinstruction
execution,which mayresultin clusteringor spreadingf the
requestsfor resourcesthereby increasingor decreasing
resource contention.

Sincea reusedinstructiondoesnot execute,IR tendsto
reducethedemandor resourcesThis freesup resourcesor
useby othercontendingnstructions VP, on the otherhand,
may increasethe demandfor resourcessince instructions
which executewith wrong inputsneedto re-execute.These
instructionsmay executemultiple timesif they seewrong
valuesrepeatedlyplacingfurtherdemandntheresources).

* Impact on execution latency: IR decreasesexecution
lateng of individual operationssincereusingan operation
effectively reducesdts executiontime (from possiblymulti-
ple cycles) to the 1 cycle (lateny of performing reuse).
Unlike IR, VP doesnot bypassxecution— theinstructions
still have to executeto verify their prediction— hence,it
doesnot impact the execution lateny of the operations.
Thus,in VP, the completiontime of aninstructionwill still
be limited by its recution (and grification) lateng.



Instruction fetch

4 instspercycle. Only onetakenbranchpercycle. Cannotfetchacrosscachdine boundariesn thesamecycle,

Instruction cache

64K bytes, 2-\ay set assoc., 32 byte line,¥les miss latenc

Branch predictor

Gshare [6]. 10-bit history gister 16K entry counter table.

Speculatie execution
mechanism

0-0-Oissueof 4 operations/fgcle, 32 entry reorderbuffer, 32 entry load/storequeue.Max of 8 unresohed
branchesLoadsexecutedonly after all precedingstoreaddresseare known. Valuesbypassedo loadsfrom|
matching stores ahead in the load/store queue.

Architected Rgisters | 32 intager, hi, lo, 32 floating point, fcc.

Functional Units (FU

8-integer ALUs, 2 load/store units, 4-FP adders, 1gateMULT/DIV, 1-FP MULT/DIV.

FU lateng (totall/issue] int alu-1/1, load/store 1/1, int mult 3/1, intd0/19, fp adder 2/1, fp mult 4/1, fpvdl2/12, fp sqrt 24/24.

Data Cache

64K bytes, 2-ay set assoc., 32 byte line,¥lkes miss latenc Dual ported, non-blocking.

Table 1: Details of the base smulator

4. Impact of Differences: Quantitative

In this sectionwe first quantitatvely evaluatethe various
microarchitecturainteractionsof VP andIR, anddetermine
their impact on net performanceln the latter part of this
section,we estimateamountof total redundang presentn
programs that can be captured by IR.

4.1 Impact on Performance: Experimental Setup

Since we are more concernedwith the differences
betweenthe paradigmsof value predictionand instruction
reuse,we would, ideally, like to remore implementation
specific effects from the evaluation. But, using oracle
schemesor schemeswith unboundedobuffers (resultingin
very high predictionand reuserate) would maskthe “real
life” effects of thesetechniqueghat we wish to highlight.
Thus, we choosetwo comparableand realistic schemego
implement each of the technique. We describe these
schemes bela

4.1.1 Value Predictor

We implement VP using a scheme,which we call
VPyiagic: This schemeis like the last value predictor [4],
except that instead of saring only the last result of an
instructionwe save its last ‘n’ unique results.With each
result we also store a 2-bit confidencecounter which is
incrementedr decrementedlependingon whetherpredic-
tion is right or wrong. Only confidentresults(which have
the countervalue above certainthreshold)are usedfor pre-
diction. We obtainthe predictionfor theresultof aninstruc-
tion as follows: if the correctresult of the instructionis
presenmongthelast'n’ resultsthenthatresultis selected
as prediction; otherwise, the most confident result is
selectedasthe prediction. Thereasorwe usesuchanoracle
selectionpolicy (which gives the schemeits name)is to
malke the VP schemecomparableto the IR scheme(we
describét next). The IR schemds capableof buffering dif-
ferentinstancesof an instructionand selectingthe correct
instancefor reuse! Sincewe did notwantthis differenceto
biasour evaluation,we chooseto make VP schemesqually
powerful. However, this VP schemes still quite realistic;

[11] describesa value predictionschemewhich buffers ‘n’
resultsper instructionand accuratelyselectsthe prediction
value from these ‘n’ alues.

We also simulatethe last value predictor, V|yp, which
usesthe last resultof aninstructionas a predictionfor its
future result. This predictorincurs highervalue mispredic-
tions than VPyagic. We simulatethis predictor becauset
permitsusto obsene how the variousinteractionswve wish
to studywill shapeup for programavherethevaluepredic-
tion performance is not high.

4.1.2 Reuse Scheme

The IR schemawe simulateis S,,, 42 describedn [9]. In
this scheme,results of instructionsare storedin the RB
alongwith two piecesof informationneededor establish-
ing the reusability of the result: (i) the operandregister
namesand(ii) pointersto the RB entriesof the instructions
which producedvaluesfor the operandsThe pointerslink
the RB entriesto form a dependenthain.A reusableentry
is detectedasfollows. The start-entrieof dependenthains
areinvalidatedwhentheir operandegistersareoverwritten;
only valid start-entriesrereused Otherentriesin a depen-
dentchainarereusedf the entrieson which they aredepen-
denthave beenreused We handleloadsin a specialway.
Load entriesare invalidatedwhen a store writes to their
memoryaddressin this paper we augmentthis scheman
two ways. First, we also save operandvalueswith the RB
entries.A start-entryis invalidatedonly if the new operand
valueis differentfrom the old one.Second,f the operand
valuesfor an invalidatedentry becomecurrentagain then
the entry is reerted to the &lid state.

4.1.3 Microarchitecture
Our microarchitecturakimulatoris built on top of the
SimpleScalartoolset [1], an execution-drven simulator

1 Oneway to selectthe correctinstancefrom amongseveralinstancess to
readall instance®ut of the RB, andthenperformthe reuseteston eachof
them in parallel. The instance that succeeds the reuse test is selected.
2 Letters‘'n’ and‘d’ in Sp,q Standfor nameand dependencebetween
instructions.Thesearethe two piecesof informationusedfor establishing
the reusability of the results.



baseduponMIPS-1 ISA. Thesimulatormodelsin detaila 4-
way dynamically-schedulegrocessomith its first level of
instructionand datacachememory The parametergor the
out-of-order simulator are listed irafilel.

A VPT and an RB are incorporatedin this pipeline as
shavn in Figurel. We usea 16k-entryVPT anda 4k-entry
RB. Both structuresare4-way setassociatie (i.e,, they can
storea maximumof 4 instancegerinstruction),with LRU
replacemenpolicy. SinceanRB entryis effectively 4 times
thesizeof aVPT entry (anRB entrystoresthe operandval-
uesand dependeng information with the result), we pro-
vide the VPT with 4-timesasmary entriesasthe RB soas
to assignsameamountof hardware storageto both tech-
niques.Both structuressupportfour readsand four writes
per cycle, which allows four instructionsto be value pre-
dicted or reusedper cycle. In addition, the RB supports
invalidationsbasedon four different register names.Both
VP and IR can collapse dependencechains up to four
instructions long in aycle.

We employ an aggressie value mispredictionrecovery
policy. In case of mispredictions,only the dependent
instructionsarere-executed Only thefirst instructionin the
dependentchain pays the misprediction penalty; other
instructionsissueasthey seenew values.This ensureghat
themispredictionpenaltyis chagedonly oncefor theentire
dependenthain(asopposedo chagingit for everyinstruc-
tion in the chain).

4.1.4 Configurations Studied

As we describedin Section3.2, VP can interact with
branchprediction differently dependingon how branches
with value-speculatie operandsare handled.To evaluate
theimpactof theseinteractionsjn our simulationswe han-
dle branchesn two ways: (i) speculative branch resolution
(SB)— wherebranchesreresohedassoonasthey execute
(evenif their operandsarevalue-speculatie); and (i) non-
speculative branch resolution (NSB) — wherebranchesre
resohedonly aftertheir operanddecomenon-\alue-specu-
lative.

Also, as describedSection3.2, VP may causeinstruc-
tionsto re-executeseveraltimes. To evaluateits impact,we
handlere-executionsin two ways in our simulations: (i)
multiple executions allowed (ME) — where we allow an
instructionto executeas mary times asit seesnew input
values;and (i) no multiple executions allowed (NME) —
where we re-execute instructionsonce after their correct
operands are kmn.

A combinationof the above variationsresultsin four dif-
ferentconfigurationdeensimulatedfor VP: ME-SB,NME-
SB, ME-NSB, and NME-NSB.

To seethe effect of VP-verification lateng, we run the
VP experiments with both 0- and 1-cycle verification
lateng. For IR experimentswe assumehat the reusetest

canbe performedin parallelwith instructiondecodehence
it does not incur anextra lateng.

4.1.5 Benchmarks

We used seren programs from the SPEC95 integer
benchmarkssuite for our study The benchmarkprograms
arelisted in Table2 alongwith their inputs,the numberof
dynamicinstructionsexecutedon the timing simulator and
branchand return predictionrates.We simulateall bench-
marks for 200 million cycles or until completion,which
ever occursearlier For go, m88ksim, ijpeg, vortex, andgcc
we skip the initial 1 billion instructions,andfor compress,
we skipthefirst 2.5hillion instructionsgxecutingthemon a
functionalsimulator(sothatwe don't make all our measure-
mentsin the initialization phase).The exact number of
instructionssimulatedin a fixed numberof cyclesis depen-
denton the microarchitecturaenhancemerdipplied. Thus,
the numberof instructionsshown in table are approximate
numbers.All benchmarkprogramswere compiled using
GNU gcc (version2.6.3),gas (version2.5.2)and gld (ver-
sion2.5) with maximumoptimizations(-O3 -funroll-loops-
finline-functions).

4.1.6 \alue Prediction and Reuse Rates

In Table3, we shav the percentagef reuseand value
predictionratesobtainedfor variousbenchmarksisingthe
schemeddescribedearlier As expected,more resultsand
addressesget value predicted correctly (VPyagi0 than
reused,except for compress, where more addresseget
reused.This is becausefor mary loadsin compress IR
reuseonly addresseénotresults) but VP is ableto predict
their resultsand hencedoesnot needto predictaddresses.
We alsoshaw the predictionaccurag obtainedfor VP yp
Again, as expected,VPyp makes less correctpredictions
than VPy,4ic (exceptijpeg, where mispredictionratesare
also higher), sinceit buffers only oneinstanceper instruc-
tion.

Inst. Count| Br. Pred | Ret.Pred|
(mil.) Rate (%) | Rate (%)
354.7 75.8 99.9
491.4 94.6 100
439.8 88.8 99.9
479.1 95.6 100
507.6 97.8 99.9
420.8 92.0 100
421.2 89.3 100

Bench Input

go null.in (ref)
m88ksim |ctl.in (ref)

ijpeg vigo.ppm(train)
perl scrabble.in (train

vortex vortex.in (train)

gcc reload.i (ref)

compresqbigtest.in (ref)

Table 2: Benchmark programs, their inputs, inst. committed
(after skipping), branch and return prediction rates.



IR VPmacic VPLyp
result address result address
Benchmerks r(eij)lt ad(;r)?ss pred | mispred| pred | mispred] pred | mispred| pred | mispred

(%) (%) (%) (%) (%) (%) (%) (%)
go 24.3 19.9 38.4 3.3 26.8 4.7 30.4 4.5 25.6 4.0
m88ksim 48.5 33.9 54.8 0.6 42.0 4.6 42.0 2.7 31.2 1.3
iipeg 11.2 24.0 16.7 0.9 194 2.2 17.4 4.4 18.1 2.2
perl 19.8 28.1 354 1.2 35.6 2.0 26.8 1.7 32.0 1.2
vortex 20.9 16.2 36.7 1.1 26.9 4.4 33.8 3.3 24.7 3.3
gcc 18.6 194 36.5 1.9 23.9 5.2 29.2 3.9 18.9 2.9
compress 16.5 65.1 20.5 0.2 43.4 0.03 17.3 0.6 41.7 0.1

Table 3: Percentage IR and VP rates for various benchmarks. The result percentages are over the total number of
dynamic instructions smulated, while the addr ess per centages are over thetotal number of memory operations.

4.2 Results

4.2.1 Early Validation
As pointedoutin Section2, a key featureof IR is thatit

validategresultsheforeusingthem.This earlyvalidationhas
several benefits:it makes results available soonerin the
pipeline, resolhes branchesearly, and reducesthe demand
for execution resources(since reusedinstructionsdo not
execute).In this section,we isolatethe importanceof early
validation to performanceln Figure3, we showv the per-
centagespeedup®btainedwith IR over the basecasefor
thetwo experimentsearly — whereresultsarevalidatedat
decodestage(asin IR); andlate — whereresultsare vali-
datedat executestage(this is asif the reusedinstructions
wherepredictedcorrectly).We seethatmorethanhalf of the
performance improvement is lost if the validation is
deferred to thexecution stage.

4.2.2 Interaction with Branch Prediction
In this sectionwe quantify the interactionsof VP andIR
with branch prediction.

* Spuriousbranch mispredictions: In Table4, we shav
theincreasdn the numberof branchsquasheslueto spuri-

20

15.

are not resoled value-speculatiely) the numberof branch
squashess notaffected.Fromthetablewe seethatspurious
mispredictionsanincreasethe numberof branchsquashes
significantly for somebenchmarkgqe.qg., go, perl, vortex).
Although,theincreasen mispredictionss large,theimpact
of theseextra mispredictionsn overall performancewill be
determinedby how muchmispredictionpenaltythey incur.
Since,thesespuriouslymispredictedoranchesisespecula-
tive values,they get executed(and squashedgarly in the
pipeline, therebyincurring less mispredictionpenalty than
branches which resaate in pipeline.

In Table4, we alsoshaw the increasein branchmispre-
dictions for VP yp Sincethe value mispredictionrate for
this schemeis higher than VP, the increaseis more
pronounced in this case (e.88ksim andvortex).

* Recovering useful work from sguashes: One way IR
reducesbranchmispredictionpenaltyis by recovering use-
ful work from the control-squasheihstructions.n Table5,
we shav the percentageof executedinstructionsthat are
squasheddue to branch misprediction,and percentageof

% Speedup

ousbranchmispredictionsThe numbersshavn arefor con- Increasein Branch Squashes dueto Value

figurationsSB; for configurationdNSB (wherethe branches Misprediction (%)
ety Benchs VPmagic VPLyp
W Lae ME-SB | NME-SB | ME-SB | NME-SB

go 20.0 171 37.8 37.2

o . m88ksim 3.4 2.9 102.9 99.8

ijpeg 3.3 3.1 31.9 31.8

s s 5 5 . s perl 30.3 22.0 39.4 37.9

= , , , : ) B ; vortex 54.4 51.8 164.5 160.4

go m8sksim ijpeg  perl vortex gcc compress HM gcc 16.4 14.1 50.9 49.5

Benchmarks compress 1.5 1.5 30.6 30.6

Figure 3: Performance benefits of early validation. BarsHM
show the har monic mean over all benchmarks.

Table 4. Percent increase in the number of control squashes
dueto spurious branch mispredictions.
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Figure 4: Branch resolution latency (normalized to the base case) for different configurationsof VP and IR. (a) 0-cycle VP-veri-
fication latency. (b) 1-cycle VP-verification latency. The barsfor reuse-n+d are samein (a) and (b).

suchinstructionsthatarerecoveredusingIR. We seethata
significantamountof squashedwvork is recovered for all
benchmarkqfor most benchmarkgnore than 30% of the
squashe@xecutednstructionsarerecovered).This contrib-
utes tavards reducing the branch misprediction penalty

* Branch resolution latency: In Figure4, we shav how
VP and IR affect branch resolution lateng. We define
branch resolution latency as the time betweenwhen a
branchis decodedandwhenit is finally resohed(i.e., action
on its outcome taken). Smaller this lateng, the better
becaus¢henmispredictedoranchesanbe detectedsooner
reducing the mispredictionpenalty In IR, if a branchis
reused,t getsresohed immediately resultingin a resolu-
tion lateng of zerocycle. On the otherhand,in VP with
NSB configurationa branchis notresohedtill its operands
becomenon-value-speculatie, thusdelayingbranchresolu-
tion by the lateny of verifying the value prediction. In
Figure4, we shav the branchresolutionlateng normalized
to thebasecase We shaw resultsfor 0- and1-cycle VP-ver-
ification lateng in figures(a) and (b); the barsfor IR are
same in both graphs.

As seenfrom the figure, both VP and IR reducebranch
resolutionlateng/; but IR doesso to a greaterextent. As

Inst Exec Inst Squashed I nst
Benchs | Executed Squashed recovered
(millions) | (% of Inst Exec)|(% of Inst squashed)
go 450.4 15.0 36.6
m88ksim] 543.5 4.9 53.9
ijpeg 454.8 25 49.4
perl 530.7 4.7 33.8
vortex 560.9 1.2 29.8
gcc 466.8 5.7 35.3
compresy 490.8 9.8 27.7

Table 5: Percent of executed instructions squashed due to
branch misprediction, and percent of such sguashed
instructionsrecovered by IR.

would be expected, the SB configuration reduces this
latengy morethanthe NSB configuration We alsonotethat
with 1-cycle VP-verificationlateny (Figure4(b)), for sev-
eral benchmarkg(ijpeg, perl and vortex) the reductionin
branch resolution lategds negligible.

4.2.3 Impact on Resource Contention

In this section,we quantify impactof VP andIR onthe
contentionfor resourceqe.g. functional units, datacache
ports,writebackbus etc.). We estimateresourcecontention
by countingthe numberof timesresourcesrenot available
for executingthereadyinstructions anddividing this by the
total number of requestsmade for resources.The bars
shavn in Figure5 are normalizedto the basecase.The
resultsshavn are for 0-cycle VP-verification lateng; the
resultsfor 1-cycle VP-verification lateng are similar. As
pointedoutin Section3.2,VP andIR mayaffect contention
in both ways— they may increaseor decreaseontention.
We seethatin mostcasedR reducesesourcecontention It
increasesontentionslightly for go and perl. On the other
hand,VP increasegontentionin all the casesTheincrease
is specially significant icompress, go, perl andvortex.

We alsoobsene thatresourcecontentionis unafectedby
multiple re-executions (resourcecontentionfor ME and
NME are same).This result would be expectedfrom the
percentageof dynamic instructionsthat execute multiple

2.2
vp-me-sb
204 vp-nme-sb
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vp-me-nsb
1.6 M
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144
B reusen+d
124

10
0.8
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0.24
0.0.

do m88ksim  ijpeg perl vortex gcc  compress
Benchmarks
Figure5: Resource contention (normalized to base). Theline

at 1.0 standsfor the resource contention in the base case.



% inst # times executed
Benchmarks
1 2 3
go 94.4 4.9 0.7
m88ksim 97.6 23 0.1
ijpeg 98.9 1.0 0.1
perl 98.3 1.6 0.2
vortex 98.5 15 0.0
gcc 96.3 3.3 0.4
compress 99.6 0.4 0.0

Table 6: Percent of dynamic instructions that executeonce,
twice, and thrice. The numbers are for VPyggic
configuration ME-SB with 1-cycle VP-\erification latency.

times, shovn in Table6. We seethat very few instructions
(< 0.5% in most cases)execute more than twice (similar
resultsare also presentedn section5 of [7]), and hence,
restrictingthe numberof executionsperinstructionto 2 (as
done by NME configuration) does not benefit much.

4.2.4 Net Rrformance
VPMagic and IR

In Figure6, we shav the impacton performanceof the
two techniquesln thefigure,we shav thespeedupsverthe
basecase(IPC/IPG, 54 for the VP andIR schemesFigures
(a)and(b) shav speedup$or 0- and1-cycle VP-verification
lateng respectiely; IR speedupshowvn in boththefigures
are the same.

We make someobsenationsfrom theresultsin Figure6.
First, the VP performancas sensitve to whenbranchesre
resohed. The configurationsSB performbetterthanconfig-
urationsNSB for all benchmarksexceptperl, becausesB
resohes branchesearlierthan NSB (Figure4). Also, since
the valuepredictionratesfor VPy,4ic arehigh (andmispre-
diction rates are low), the negative effects of spuriously
mispredictedbranchesin SB (which are small for most
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benchmarksare morethanoffset by the benefitsof resolv-
ing branchessooner(exceptin perl, where the spurious
mispredictionsare high, and configurationNSB performs
slightly better).

Second,as expectedfrom Table6, we obsere that the
impact of the multiple executionsdue to value mispredic-
tionsis nagligible. The slight benefitseenin the caseof go
is becauseghe NME-SB configurationsreducethe number
of spuriousmispredictiongTable4) by restrictingthe num-
ber of re-&ecutions per instruction.

Third, aswould be expected,ncreasingthe VP-verifica-
tion lateny from 0-cycle to 1-cycle decreaseshe perfor-
mancebenefitfor VP. But, interestingly theincreaseaffects
the NSB configurationsmore than the SB configurations.
This happensbecausein the NSB configurations the
branchesave to wait longer(dueto 1-cycle VP-verification
latengy) for their operandsto become non-speculatie
(Figure4 (b)).

Fourth,we obsene thatfor somebenchmarkge.g.,ijpeg,
perl, vortex), eventhoughthereuserateis lessthanthe pre-
diction rate, IR performsbetterthanVP. This is dueto the
combinedeffect of early validation (Figure3), recovering
work from control squasheqTable5), and reducing the
branchresolutionlateng (Figure4). Anotheradwantageof
IR is that it does not incur gmmisprediction penalty

VPLvp

To furtherstudythesensitvity of VP to theway branches
are handledwe shov the performancenumbersfor VP p
in Figure7. We shaw resultsfor both0- and1-cycle mispre-
diction penaltyin figures(a) and (b) respectiely. We note
that, sincein VP|p We only storeoneinstanceperinstruc-
tion, its results should not be comparedagainst the IR
results presentedearlier in this section (where up to 4
instancegerinstructionarestored) FromFigure7, first, we
seethatwith predictionaccuracie®f VP yp VP mayactu-
ally performworsethanthe basecase.For all benchmarks,

vp-me-sh
vp-nme-sh
vp-me-nsh
vp-nme-nsb

B reusen+d

go m88ksim ijpeg perl  vortex gcc  compress HM

Benchmarks

(b)

Figure6: Speedupswith VPy,gic and IR schemeS; 4. (a) 0-cycleVP-verification latency. (b) 1-cycleVP-verification latency. Bars
HM are the harmonic mean over all the benchmarks.



1.30,
vp-me-sh

1.25 vp-nme-sb
1204 vp-me-nsb
vp-nme-nsb
1.154

1.10

Speedup

1.054

il

go m8sksm ijpey  perl vortex gcc compress HM

Benchmarks

@

1.30

vp-me-sh
1.254 vp-nme-sh
120 vp-me-nsb
vp-nme-nsh
1.154
a
=]
’g 1.10
8_ 1.054

Ll

gcc compress HM

= ol 1Tl

go m88ksim ijpeg perl vortex

Benchmarks

(b)

Figure 7: Speedups with VP yp. (a) 0-cycle VP-verification latency. (b) 1-cycle VP-verification latency. Bars HM are harmonic

means over all benchmarks.

with configurationsSB we see a degradationin perfor-
mance. This is becausethe negative effects of spurious
branchmispredictiongTable4) arenot offsetbecausef the
low value predictionaccuracief VP ,p The benefitsof
VP arefurtherreducedwhenthe VP-verificationlatengy is
increased to 1ycle (Figure7(b)).

Secondpnlike for VPyagic, in this casethe configuration
NSB works betterthanthe configurationSB, implying that
for caseswherevalue mispredictionsare higherit is more
beneficial to delay branch resolution until the operands
becomenon-value-speculate thanto resohe themvalue-
speculatiely. Resultsin Figure6 and7 alsoindicatethata
particularway of handlingbranchesnaynotbethebestpol-
icy for all caseshigh andlow value mispredictionaccura-
cies may warrant diferent treatment for branches.

4.3 Amount of Redundancy Captured

In this section,we try to geta feel for how restrictve is
IR. To do so, we first estimatethe total redundang in pro-
gramsandthendeterminewhat fraction of thatredundang
can be captured by IR.

To estimatetheredundanyg, we buffer dynamicinstances
of every staticinstructiongeneratediuring a programexe-

] Derivable
80 Repeated
70 H Unique

] ! = —/ (] - — [l Unaccounted

Per cent Instruction
3

||
gcc compress go m88ksim ijpeg  perl vortex

Benchmarks

Figure 8: Classification of instruction resultsinto unique,
repeated, and derivable results. Unaccounted are the values
which could not be accounted for dueto limited buffering.

cution (limited to 10K instanceger staticinstruction),and

classify eachresult-producinglynamicinstructioninto one
of thefollowing threecategories:(i) unique — if it produces
a resultfor the first time, (ii) repeated — if it produceghe

sameresult again, and (i) derivable — if it producesa

result that can be determinedfrom the resultsit had pro-

duced earlier (e.g., instructions whose results fall on a

stride.Oncethestridesizeis known their subsequentesults
can be derived). We define redundancy, or redundant

instructions, asthe sum of the repeatedand the derivable

instructions.This measureof redundang also provides a

roughupperboundon the numberof instructionghatcanbe

value predicted.

In Figure8, we shaw the above instructioncateyoriesfor
the benchmarkprograms® We seethat few (< 5%) instruc-
tions produceuniqueresults,most (80% to 90%) produce
repeated results, andifé€< 5%) produce derable results.

3 This upperbound doesnot include the caseswhere VP may correctly
predictsomeuniqueinstructionsby chance Anyhow, the numberof such
cases will be small because number of unique instructions is small.

4 In the figure, we have a catejory Unaccounted, which representshe
instructionsthat could not be buffered (and hencecould not be accounted
for) because we only cached 10K instances per static instruction.

1004 — ! D ! D B Proddist <50
90+ Prod-dist > 50

80+ — Prod Reused

Per cent Repeated I nstruction

gcc compress go ma88ksim ijpeg  perl  vortex

Benchmarks

Figure9: Categorizingtherepeated instructionsfor deter-
mining whether their inputs areready.



Next, we estimatehow mary of the redundantinstruc-
tions are reusable.We note that, IR can reuserepeated
instructions put not derivableinstructions However, not all
repeatedinstructions are reusable;as mentionedearlie
instructionsarenot reusedf (i) theirinput operandsrenot
readyatthetime reusetestis done,or (ii) inputoperandsre
different. To estimatethe numberof reusableinstructions,
we subtractthe numberof timesthe above two casesoccur
from the total repeated instructions.

We assumehatthe inputsof aninstructionarenotready
if their producerinstructionsare lessthan 50 instructions
ahead, unless the producer instructions themseles are
reusedIn Figure9, we cateyorizerepeatednstructionsinto
threecategories:(i) instructionswhoseproducersarereused
(inputsareready),(ii) instructionswith unreusegroducers
greaterthan 50 instructionsahead(inputs are ready), and
(i) instructions with unreusedproducersless than 50
instructionsahead(inputs are not ready).As shavn in the
figure, for most repeatedinstructionsthe inputs become
readybecauseheir producerinstructionsare reused.Only
for lessthan10% of repeatednstructionsthe inputsarenot
ready (Prod-dist< 50). This is contraryto the expectation
that most of the times inputs may not be readyearly in a
pipeline (where the reuse test is done).

Due to lack of spacewe do not presentseparatelythe
numberof repeatednstructionsthatarenot reusedbecause
of differentinputs. In Figurel0, we shov the net of the
redundaninstructionsthat can be reused.The bar labelled
“redundant’is the sumof the barsrepeated andderivablein
Figure8. As seenfrom the figure, most (84-97%) of the
redundantnstructionsin programsare amenableo reuse.
Thus,theapproachhatIR usesfor detectingreusedoesnot
significantly restrict its ability to capture redundang
present in programs.

5. Summary and Conclusions

In this paper we attemptedo understandhe differences
betweenthe two recentlyproposechardwaretechniques—
Value Prediction(VP) and Instruction Reuse(IR) — that
exploit the redundang presentin programsto collapsethe
critical path of the computation.The purposeof this work
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Figure 10: Amount of redundancy that can bereused.

wasto gain insightinto theworking of thesetechniquesand
to understandheir interactionswith other microarchitec-
tural features We believe thata betterunderstandingvould
helpin designingother mechanismgwhich may be hybrid
of VP and IR) that exploit redundang in programsmore
effectively.

We identifiedthe key differencebetweerthetechniques:
IR validatesresultsbeforeuse(early validation), while VP
validatesresultsafter use (late validation). We highlighted
how thesetechniquediffer in their interactionwith other
microarchitecturafeaturesandattemptedo understandhe
differences in performance based on these interactions.

Our resultsshaved that the performanceobtainedusing
VP is sensitve to theway brancheghatexecutewith value-
speculatre operandsare resolved (i.e., action taken based
on their outcome).We evaluatedtwo ways of resolving
branches(i) resolvingthemimmediatelyafterthey execute,
and (ii) resolvingthem only after their operandsbecome
non-walue-speculage. In the first case,the branchesget
resohed sooney but they also get mispredictedspuriously
In the secondcase the branchresolutionis delayed which
reduceghebenefitsgainedby VP. Ourresultsshavedthata
particularway of resolvingbranchmay not be the bestpol-
icy for all casesfor lowervaluemispredictiornratesthefirst
policy works better while for higher value misprediction
rates the second pojievorks better

AlthoughIR capturegessamountof redundang (for the
sameamountof hardwarestorage)jt performedbetterthan
the VP schemestudiedfor somebenchmarksThe perfor-
mance advantageof IR stemsfrom, early validation of
results,recovering usefulwork from branchmisprediction,
andreducingthe branchresolutionlateng. Anotheradwan-
tageof IR is thatit is non-speculatie, andhenceit doesnot
incur ary misprediction penalty

Finally, we estimateda limit on how muchredundang
presentin programscan be capturedby IR. We found that
most(84-97%)of the redundang canbe reused.Thus,the
approachof detectingredundaninstructionsbasedon their
operandsnon-speculatiely, doesnot significantly restrict
IR’s ability to capture redundanpresent in programs.
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