
Abstract
We revisit memory hierarchy design viewing memory as an

inter-operation communication mechanism. We show how
dynamically collected information about inter-operation
memory communication can be used to improve memory
latency. We propose two techniques: (1) Speculative Memory
Cloaking, and (2) Speculative Memory Bypassing. In the first
technique, we use memory dependence prediction to
speculatively identify dependent loads and stores early in the
pipeline. These instructions may then communicate prior to
address calculation and disambiguation via a fast
communication mechanism. In the second technique, we use
memory dependence prediction to speculatively transform DEF-
store-load-USE dependence chains within the instruction
window into DEF-USE ones. As a result, dependent stores and
loads are taken off the communication path resulting in further
reduction in communication latency.

Experimental analysis shows that our methods, on the
average, correctly handle 40% (integer) and 19% (floating
point) of all memory loads. Moreover, our techniques result in
performance improvements of 4.28% (integer) and 3.20%
(floating point) over a highly aggressive, dynamically
scheduled processor implementing naive memory dependence
speculation. We also study the value and address locality
characteristics of the values our methods correctly handle. We
demonstrate that our methods are orthogonal to both address
and value prediction.

1  Introduction

Programs execute operations which produce values
for other operations; these values must be stored while
they are waiting to be consumed by the later operations.
This inter-operation communication is commonly imple-
mented by providing register and memory name spaces
coupled with an agreed upon communication conven-
tion: the producer binds its value to a name within the
name space, and the consumer(s) access the value by
using the same name. Faster processing requires faster
inter-operation communication.

In this paper we are concerned with inter-operation
communication carried out through the memory name
space, or simply memory communication. Caches have
been used extensively to implement more efficient mem-
ory communication. Caches perform memory name pres-
ence speculation: a given memory name could reside in a
variety of storage structures that are typically either fast
but small or slow but large. A processor implicitly specu-

lates that a desired name will be present in faster storage
(cache), and attempts to access it from there, going to
slower storage only if speculation fails. To verify the
speculation, the desired memory name and the memory
names stored in the given storage structure are com-
pared; speculation succeeds only if a match occurs. 

In this paper we revisit memory communication by
observing that the traditional, implicit form of memory
communication where the store does not directly know
the identity of the consuming load(s) and vice versa, is
not the only possible form. Explicit forms in which the
stores and loads are linked to one another are not only
possible but may lead to new forms of speculation, to
new memory hierarchy components, and hopefully, to
new ways of thinking about such hierarchies. In this
work we focus on two such methods: Speculative Mem-
ory Cloaking (or simply cloaking) and Speculative Mem-
ory Bypassing. Both are memory latency reduction
techniques. 

 The effect of our techniques is illustrated in
Figure1. In speculative memory cloaking we dynami-
cally convert implicitly specified memory communica-
tion into an explicit, albeit speculative form. To do so we
use history-based memory dependence prediction to
explicitly link loads and stores. These loads and stores
can then communicate via a dynamically created name
space without incurring the overhead of address calcula-
tion, disambiguation and data cache access. Speculative
memory bypassing further reduces latency when the
dependent load and store co-exist in the instruction win-
dow. This technique converts DEF-store-load-USE depen-
dence chains into DEF-USE ones. As a result, values can
then flow directly from the actual producer (DEF) to the
actual consumer (USE). Both techniques are speculative
and any communication performed in this manner has to
be eventually verified. However, when speculation is
successful performance may improve as memory
appears faster to the consumers of a speculated load. 

The rest of this paper is organized as follows: We
start our discussion of the problem and approach by
looking at inter-operation memory communication in
more detail in Section 2. Here we describe the rationale
for our proposed approach. We continue with a brief
quantitative assessment of inter-operation memory com-

 Speculative Memory Cloaking and Bypassing

Andreas Moshovos
Electrical and Computer Engineering

Northwestern University
moshovos@ece.nwu.edu

Gurindar S. Sohi
Computer Sciences Department

University of Wisconsin-Madison
sohi@cs.wisc.edu



munication in Section 3. We use the quantitative data,
along with our rationale, to describe the requirements for
cloaking in Section 4. In Section 5 we describe specula-
tive memory bypassing. We provide a quantitative
assessment of both techniques in Section 6. Finally, we
comment on related work in Section 7 before we offer
concluding remarks in Section 8. For clarity we use the
terms cloaking and bypassing to refer to speculative
memory cloaking and to speculative memory bypassing
respectively.

2  Memory as an Inter-operation
Communication Agent
Much of research in improving memory perfor-

mance has focused on exploiting properties of the
address stream. This is natural as memory appears as a
storage mechanism accessed via addresses. In this work
we take a different, yet orthogonal approach to improv-
ing memory performance. We observe that the memory
interface is really a primitive which is often used to syn-
thesize inter-operation communication. Separating speci-
fication from implementation, we observe that while we
have chosen to specify memory communication via an
address-based interface we do not have to perform it in
the exact same way. In this section we discuss how the
traditional specification impacts memory communica-
tion and advocate that a dynamically created explicit
specification of memory communication could be used
to further improve memory performance.

 Memory communication is currently expressed
implicitly. The load, the store or the address used provide
no a priori indication of the communication that has to
happen. As a result, detecting communication requires
significant effort. To detect the communication and
establish the communication link both the store and the
load have to calculate an address and go through disam-
biguation. The latter action entails comparing the
addresses of stores and loads taking program order into
account; a store and a load communicate if (1) they
access the same address, and (2) no intervening store
accesses the same address. Both address calculation and
disambiguation introduce overheads as the value may be
available long before either action completes. An exam-

ple is shown in Figure 2 where communication is to take
place between the STORE and LOAD instructions of the
code fragment of part (a). Part (b) shows a possible event
sequence. Initially the store is fetched, its address is cal-
culated, and at some later point the store’s data becomes
available. Later on, the load is encountered. At this point
both communicating instructions have been encountered
and the value is available. Yet, communication is delayed
until LOAD has calculated its address and has passed
through disambiguation. This is necessary to establish
the dependence with STORE. Depending on whether
memory dependence speculation is used, accessing the
value may be delayed even further until it is established
that no intervening store writes to the same address. For
example, LOAD may get delayed until STORE1 also cal-

culates its address and goes through disambiguation.

Even when the value becomes available after both
the load and the store complete address-calculation and
disambiguation, we will still observe the latency associ-
ated with accessing the value through the memory hier-
archy, i.e., through the store buffer or the data caches.
Unfortunately, current memory hierarchies cannot distin-
guish between memory communication and other mem-
ory accesses. As such, they have to be large enough to
service as many accesses as possible.

The aforementioned overheads can be eliminated if
we opt for an explicit representation of memory commu-
nication. In an explicit representation the producing store
and the consuming load both know that communication
will take place and can locate each other directly. As a
result, communication can take place as soon as the two
instructions are encountered and the value becomes
available. Since both instructions can locate each other,
there is no need for address-calculation and disambigua-
tion. Moreover, as the results of Section 3 suggest, a rela-

Figure 1. Speculative Memory Cloaking and Bypassing

LOAD RY

USE RY

CloakingBypassing

DEF RX

STORE RX

Memory

register address direct link

Figure 2. An example of inter-operation memory
communication. (a) Program segment with a store and a
load that will communicate. (b) Time-line of execution.
With an implicit specification, communication cam take
place after address-calculation and disambiguation.
With an explicit specification communication can take
place as soon as the two instructions are encountered
and the value is available.

STORE

STORE1

LOADP
ro

gr
am

 O
rd

er STORE

STORE ADDRESS
STORE DATA

LOAD

LOAD ADDRESS
STORE1 ADDRESS

explicit

implicit

Execution Time-line

(a) (b)



tively small storage structures can be used to service a
large fraction of memory communication activity.

Inter-operation communication gives rise to true
(RAW) dependences. An explicit representation of mem-
ory communication requires a representation of the cor-
responding dependences. We could attempt to determine
and specify these memory dependences statically as, for
example, was done in dataflow machines [7, 27]. Even
though this is an interesting option, we will not consider
it further for two reasons. First, a static representation
would involve changing the program representation. This
would create legacy for future processor implementa-
tions and provide no benefit for legacy software. Second,
identifying inter-operation communication statically
may not be possible either because the dependences can-
not be determined (i.e., they are ambiguous) or because
they are transient (i.e., do not occur every time). For
these reasons, we opt for a dynamic approach in which
the conversion is done while the program is running
using architecturally invisible structures. While our
approach entails higher hardware costs than a pure soft-
ware approach, it can be used at will and only when jus-
tified by technological trade-offs. This avoids software
incompatibilities and legacy issues.

In our approach we utilize memory dependence pre-
diction to explicitly express dependences dynamically as
follows: we use dynamically collected dependence his-
tory information to predict future dependences. We then
use these speculative dependences to create a dynamic
name space through which the dependent loads and
stores can communicate without incurring the overhead
of address-based communication.

3  Memory Traffic Analysis

Before we delve into describing our methods it is
best if we consider their potential coverage. To do so we
present an empirical study of memory communication
traffic using the SPEC95 benchmarks on a MIPS-I like
instruction set architecture (the benchmarks, architecture
and methodology are detailed in Section 6). 

To get an estimate (i) of the fraction of the memory
operations we can serve with a dependence-based mech-
anism, and (ii) of how much the storage might we
require for this speculative explicit communication in
this section measure the percentage of loads that read a
value created by a preceding store (true dependences).
We measure this characteristic as a function of the
unique store address distance or simply store distance.
This we define as the number of unique addresses stored
to between the dependent instructions in the dynamic
instruction stream. This metric provides an upper bound
on the number of accesses that have to be recorded in
order to detect the particular dependence.

Part (a) of Figure 3 reports the cummulative distri-
bution of dynamic loads as a function of store distance.
Percentages are measured over all dynamic loads. The
measured distance range is 32 (leftmost) to 2K (right-
most) in power of two steps. Benchmarks are identified
using the first three numbers of their name (see Table 1
in Section 6.1). Part (b) reports averaged results. From
the average results it can be seen that 50% (integer) and
20% (floating-point) of dynamic loads get a value
through a dependence at a store distance less than 128.
On a per program basis, we can observe that most integer
program exhibit high volumes of short store distance
memory communication. This is not so for most floating
programs. These programs are dominated by long run-
ning loops with little intra- and inter-iteration memory
communication (these loops write large arrays using
other arrays as inputs). 

These results suggest that detecting dependences
even over short distances (e.g., 128) has the potential to
service a large fraction (50%) of all dynamic loads for
integer codes and to a lesser extent for floating-point
codes (20%). Motivated by the large fraction of loads
that get their value through a dependence with a recent
store, in Sections 4 and 5, we propose techniques that
attempt to reduce the latency of this communication by
explicitly linking the dependent instructions.  

4  Speculative Memory Cloaking

Cloaking aims at streamlining memory communica-
tion by dynamically converting the implicit specification
of communication into an explicit form. In cloaking
memory dependence prediction is used to identify
dependent loads and stores with high probability. Once a
dependence is deemed predictable, the dependent load
and store are explicitly linked via a new name, a syn-
onym which uniquely identifies the dependence. For
example, the synonym can be a (load PC, store PC) pair.
One may wonder how using a different name may help in
streamlining the actual communication. After all, data
addresses and synonyms are just names that the depen-
dent instructions use to link to each other. The answer
lies (1) in the nature of the association between the name
and the instructions that use it, and (2) in the information
associated with the existence of the name itself. In con-
trast to an address, the synonym is intended to uniquely
identify the dependent instruction pair. This allows the
load and the store to derive the synonym based solely on
their identity (PC). This in turn allows them to locate the
appropriate value without having first to perform an
address calculation and go through disambiguation. Fur-
thermore, the mere association of a synonym with a load
or a store is intended to indicate that the instruction is
involved in short distance inter-operation communica-



tion.
The process of cloaking is illustrated in Figure 4. As

shown in part (a), detecting a load-store dependence
results in an association among the load, the store and a
synonym. When a subsequent instance of the store is
encountered and a dependence is predicted (part (b),
action 1), this association results in the generation of a
new version of the synonym (action 2). Storage for this
synonym is preferably provided in the Synonym File (SF)
which is a small, low-latency/high-bandwidth storage
structure. The storage element is initially marked as
empty as no value is yet available. Upon value reception
the synonym file entry is updated and marked as full
(action 3). Finally, when the store computes its address it
accesses memory as it normally would (action 4). When
the appropriate instance of the load is encountered mem-
ory dependence prediction is used. Provided that predic-
tion is correct, the same synonym is derived (part (c),

action 5). This synonym can now be used to locate the
appropriate SF element (part (c), action 6). Instructions
consuming the load’s value may at this point execute
speculatively using the value read from the synonym file
(action 7). When the load’s address becomes available,
the memory system is accessed to read the actual value
(action 8). The memory value is compared with the value
obtained earlier via the cloaking mechanism. If the two
values are the same, cloaking was successful and no fur-
ther action is required. Otherwise, data value mispecula-
tion occurs, and any instructions that used wrong data
have to be re-executed. It should be noted that the above
discussion covers one possible sequence of events. Other
sequences are possible in practice. For example, the load
may be encountered before the store writes a value in the
SF. In any case, cloaking still provides the benefit of
establishing a communication link early without requir-
ing address-calculation and disambiguation.       

To perform cloaking we need to be able to: (1) pre-
dict dependences, (2) create synonyms, associate them
with the dependent instructions and assign storage for
the communication, and (3) verify the speculatively
communicated values. In Sections 4.1 and 4.3 we discuss
each of these requirements in detail. Finally, we present
an implementation of cloaking in Section 4.4.

Before we proceed with our description we should
note that in the discussion that follows we make the
assumption that the value read by a load is always pro-
duced by a single store. However, since loads and stores
may operate on different data types, this might not be
always the case. While support for memory communica-
tion among loads and stores that operate on different data

Figure 3. Distribution of dynamic store-to-load dependence distances. (a) Per program results. (c) Averaged results.
Range shown in 32 to 2K in power of 2 steps.

0%
20%
40%
60%
80%

100%

099 124 126 129 130 132 134 147 101 102 103 104 107 110 125 141 145 146

SpecINT SpecFP Overall

(a)

0%
20%
40%
60%
80%

100% (b)

SpecINT SpecFP

Figure 4. Streamlining memory communication via speculative memory cloaking: (a) Detecting a dependence results
in an association between the dependent load and store instructions and in the creation of a synonym for the
dependence, (b) A later instance of the store creates a new version of the synonym, (c) A later instance of the load
locates the synonym and uses the data speculatively.

Traditional Memory
Hierarchy

address

store

load

((((aaaa)))) ((((bbbb)))) ((((cccc))))

Dependence

Traditional Memory
Hierarchy

store

store  load
association

 synonym

Synonym File

1

2

synonym3

4

addressstore  load
association

 synonym

Traditional Memory
Hierarchy

load

store  load
association

 synonym

Synonym File

synonym
address

5

6
8

7



types might be possible [21] we do not consider such
options here.

4.1  Detection and Prediction of Dependences

For the purposes of this work we use a history-based
memory dependence predictor. This predictor works by
detecting memory dependences through the memory
address space and by using this information to predict
future dependence behavior. Regarding memory depen-
dence detection there are two considerations: (1) how
dependences should be reported, and (2) what is the
desired scope of this mechanism (i.e., how many loads
and stores it should detect dependences for). 

Since we want to initiate predictions early in the
pipeline we require that the dependence detection mech-
anism reports dependences as (store PC, load PC) pairs.
Regarding the scope of the detection mechanism and as
the analysis of Section 3 suggests to capture a large frac-
tion of dependences we need to be able to detect depen-
dences over several addresses (e.g., 128). This is possible
if we maintain a record of recent stores (e.g., their PC)
along with the memory address each touched in a
Dependence Detection Table (DDT). Dependence detec-
tion could be initiated when loads access memory. Using
its address a load can locate the last store that updated
the particular memory location. At this point the identi-
ties of both the load and the store are known: the store
PC is recorded in the DDT entry while the load’s PC is
readily available.

With a dependence detection mechanism in place,
the next step is devising a history-based dependence pre-
diction scheme. The most straightforward prediction
scheme is to record and predict dependences as (load PC,
store PC) pairs. Unfortunately, we found [21] that such a
scheme often will have to: (1) predict among many pos-
sible dependences (e.g., a load has many possible pro-
ducing stores that alternate in the execution stream), and
(2) predict multiple dependences at the same time (e.g., a
store has many consuming loads). For these reasons, we
treat dependence prediction as a two step process. In the
first step, a prediction is made on whether the given load
or store has a dependence (i.e., the dependence status of
the instruction), and in the second step, a prediction is
made to decide with which load or store the dependence
is with. 

We have found that the dependence status of loads
and stores rarely changes making simple counter-based
predictors highly accurate [19]. Instead of predicting the
exact dependence we found it sufficient to use a level of
indirection in representing all possible dependences a
store or a load has. To do so we use a scheme which
assigns a common synonym to all dependences that have
common producers (stores) or consumers (loads). This

synonym is used to identify all these dependences collec-
tively. We can then determine which of all the possible
dependences is currently observed by a mere inspection
of the incoming instruction stream as done for register
dependences. 

We perform assignment of synonyms to depen-
dences using an incremental method which we explain
using the example code fragment of Figure 5, part (a).
This code has two read-after-write dependences:
(STORE1, LOAD) and (STORE2, LOAD). We next explainn

how eventually both dependences are assigned the same
synonym. During the first iteration, one of the depen-
dences, for example the (STORE1, LOAD), is detected. A

new synonym is allocated and associated with both
STORE1 and LOAD. At a later iteration the (STORE2, LOAD)
dependence is detected. We now associate the same syn-
onym with STORE2 also (the synonym is readily available

as it is associated with LOAD). 
When the aforementioned method is used it is possi-

ble to detect a dependence between store and a load that
have different synonyms already assigned to them. Con-
sider for example the code fragment of Figure 5, part (b).
Dependences can be encountered in the following order:
first (STORE1, LOAD1), then (STORE2, LOAD2), and finally,

(STORE1, LOAD2). When the first two dependences are
detected, different synonyms are assigned to them as
they share no instructions. As a result, when the third
dependence is encountered, STORE1 and LOAD2 have dif-

ferent tags. At this point it is often desirable to merge all
dependences together by assigning one common syn-
onym to all four instructions. This is desirable in our
example since which excatly store feeds a load depends
on the current control path. If a different synonym is
assigned to each store, then a load will have to predict
among multiple synonyms. There are cases where we
should not assign a common synonym. However, we
have found that if one policy is to be used for all depen-
dences, always assigning a common synonym is better
than never doing so. To assign a common synonym to all
such dependences can be done by replacing all instances
of one synonym with the other. This is the method we
originally used [21]. Doing so would probably require a
broadcast mechanism, an undesired feature. Alterna-
tively, we could use the approach suggested by Chrysos
and Emer in the context of speculation/synchronization
[6]. In their approach, the smallest synonym is assigned
to both instructions. As a result, eventually all relevant
loads and stores are assigned the same synonym. We
have found that this method offers virtually the same
accuracy as our original full-merge method. 



4.2  Synonym Generation and Communication

In cloaking, stores initiate the communication by
creating a new version for the synonym when a depen-
dence is predicted. The exact encoding of the synonym is
not important. However, it is desirable to provide differ-
ent versions of the same synonym for unrelated commu-
nication at any given point of time. This may require
generating different versions for different instances of
the same static dependence. This is the case when these
instances are simultaneously active (e.g., the values have
not been consumed yet). This problem is somewhat sim-
ilar to register renaming. However, in contrast to register
dependences, the lifetimes of instances of a static mem-
ory dependence may overlap. For example, this would be
the case in a loop containing an “a[i]=a[i - 2] + doo”
statement. An example is shown in Figure 6. While a
general solution might be possible, we restrict our atten-
tion to the most frequent case where given a store-load
dependence no other instance of the store appears in
between the dependent instructions. That is, we do not
handle dependences generated by statements of the form
“a[i] = a[i - 2] + bee”, while we handle dependences gen-
erated by statements of the form “a[i] = a[i - 1] + doo”.
This simplification allows us to use methods similar to
those developed for register renaming. That is, we can
use a synonym directly as an index in synonym file pro-
vided that the corresponding store has committed. If the
corresponding store has not yet committed, we use a
small structure, the synonym rename table, to associate
its synonym with the reservation station where the store
resides. Given that stores represent only a small fraction
of all dynamic instructions, even a relatively small syn-
onym rename table (SRT) should be sufficient. It should
be understood that this is a performance optimization
and not a correctness issue. We could simply ignore
overlapping instances of the same static dependence at
the expense of reduced coverage or accuracy. Moreover,
we should note that accessing the SRT can be done as
soon as the PC or a load or a store is known possibly
before the actual instruction is fetched. 

4.3  Verification

Because the communication that takes place in

cloaking is based on dependence prediction, any values
so obtained are speculative and have to be verified. This
can be done by letting the dependent instructions also
communicate via memory. This does not necessarily
imply that we have to access the memory system [11,
19]. In fact, another memory dependence prediction
based technique, the transient value cache will service
most relevant accesses hiding them from the rest of the
memory hierarchy [21]. 

The support required for invalidating and re-execut-
ing instructions that used incorrect data is no different
than that required for memory dependence or value spec-
ulation [16]. Two options have been proposed to date: (i)
squash, and (ii) selective invalidation [16, 15, 26]. In
squash invalidation, which is also used on branch
mispredictions, all instructions after the mispeculated
one are invalidated and re-executed. In selective invalida-
tion only those instructions that used incorrect data are
re-executed. While squash invalidation requires no more
hardware than what is typically found in modern proces-
sors (it is also used to support control speculation) its
performance penalty is relatively high. Selective invali-
dation on the other side offers relatively low perfor-
mance penalty at the expense of added hardware cost and
complexity. In fact, support for selective invalidation is
in our opinion still in an experimental phase and whether
such mechanisms are practically possible has yet to be
demostrated.

4.4  Implementation Aspects

In this section we describe an implementation of the
speculative memory cloaking technique. We partition the
support structures in the following: (a) dependence
detection table (DDT), (b) dependence prediction and

Figure 5. Code fragments that have multiple true
dependences.

loop:
if (cond) STORE1 Ma
else STORE2 Ma
LOAD  Ma

loop:
if (cond) STORE1 Ma
else STORE2 Ma
if (cond1) LOAD1  Ma
else LOAD2 Ma

(a) (b)

Figure 6. Examples illustrating dependences whose
lifetimes do not overlap (parts (a) and (b)) or do overlap
(parts (c) and (d)). Dependences are marked with thick
arrows. Dependence lifetimes are marked with thin
arrows.

for (i = 1; i < N; i++)

a[i] = a[i - 1]

(a)
store

load

load a[10]

store a[11]

load a[11]

store a[10]

Pr
og

ra
m

 O
rd

er

(b)

dependence

lifetim
e

for (i = 1; i < N; i++)

a[i] = a[i - 2]

(c)
store

load

load a[9]

store a[11]

load a[10]

store a[10]

Pr
og

ra
m

 O
rd

er

(d)



naming table (DPNT),  (c) synonym file (SF) and (d)
synonym rename table (SRT). As we explained earlier,
the DDT is used to detect dependences. An entry of this
table consists of the following fields: (1) Data Address
(ADDR), (2) Store PC (STPC) and (3) a valid bit. This
information identifies the store that last updated the
given word data address. The DPNT is used to identify,
through prediction, those loads and stores that have
dependences. It also provides the tags that are used to
create synonyms for the dependences. An entry of this
table comprises the following fields: (1) instruction
address (PC), (2) dependence predictor (PRED), (3)
dependence tag (DTAG), and (4) a valid bit. The instruc-
tion address identifies the load or the store this entry cor-
responds to. The purpose of the dependence predictor
field is to provide an indication on whether a dependence
exists. Finally, the dependence tag field is used to iden-
tify the dependences of this instruction. The SF is used to
provide storage for synonyms. SF entries have the fol-
lowing fields: (1) name, (2) value, (3) full/empty bit, (4)
valid bit. Based on the exact configuration used, some of
the fields may not be required (e.g., we may not use a
name field in a direct mapped SF) and some structures
can be combined (e.g., we can merge the DPNT and the
SF, or the register file and the SF). An SRT entry con-
tains 3 fields: (1) synonym, (2) reservation station tag,
and (3) valid. If the valid flag is set, the entry maps the
given synonym to the reservation station where the pro-
ducing store resides. [21, 19] provide examples illustrat-
ing the operation of the support structures. We omit such
a description due to space limitations.

Figure 7 illustrates how the support structures can be
integrated into the pipeline of a dynamically scheduled
processor. Loads and stores access the DPNT upon
entering the pipeline to obtain a prediction and a syn-
onym. If no dependence is predicted no further action is
taken. Stores create an SRT entry for the provided syn-
onym. When a store commits it updates the DDT,
releases the SRT entry and writes its value into the SF.
Loads using the predicted synonym access the SRT to
find where the value resides. If an entry is found it points
to the reservation station for the producing store. Other-
wise, the synonym resides in the SF. On commit time,
loads probe the DDT to detect dependences. This infor-
mation along with information about the success of any
speculation attempts on this load are used to update
DPNT. Verification and speculation resolution are done
when loads access memory. A description of the specula-
tion resolution mechanism can be found in [19].  

5  Speculative Memory Bypassing

In typical load/store architectures, stores and loads
do not compute values. Loads and stores are simply used

to pass the values that some other instructions produce to
some other instructions that consume them. If we knew
that a store and a load are used for inter-operation com-
munication we could have eliminated them altogether.
This is exactly the goal of speculative memory bypass-
ing. This technique converts a DEF-store-load-USE chain
into a DEF–USE chain whenever the load-store depen-
dence is predicted and the DEF and USE instructions co-
exist in the instruction window. In this case, the value
can speculatively flow directly from the actual producer
(DEF) to the actual consumer (USE). This concept we
illustrate in Figure 8 using the DEF–store–load–USE

chain shown in part (a). Even though cloaking may allow
communication between the store and the load, the value
will still have to travel through these two instructions
before it can reach USE. However, as shown in part (b)
with bypassing, the value can be sent directly from DEF

to USE. As was the case with cloaking, this communica-
tion is speculative and has to be verified via the tradi-
tional memory name space. Note that bypassing is
different than cloaking only when the dependent load
and store co-exist within the instruction window.

Speculative memory bypassing can be implemented
as a straightforward extension to cloaking. We explain
the exact process using the working example of Figure 8,
part (c). At step (1), instruction DEF is decoded and regis-
ter renaming creates a new name, TAG1, for the target
register R1. At step (2), the store instruction is decoded
and as part of register renaming it locates TAG1 the cur-
rent name of its source register R1. In parallel, via the
use of cloaking, a synonym is created. To perform
bypassing, at this point we associate the synonym with
the store’s source register R1 name TAG1. This associa-
tion is be done by recording TAG1 in the SRT entry. At
step (3), the load instruction is decoded and register
renaming creates a new name TAG2 for the destination
register R2. In parallel, the load locates the synonym
through cloaking. Using the synonym the load may now

Figure 7. An out-of-order processor pipeline with a
cloaking mechanism

Fetch
Decode

&
Rename

Schedule Execute Commit

DPNT

PC

SF DDT

Verify

predict

update

SRT

update



determine the name, TAG1, of the store’s source register
R1. In doing so, the load has determined the storage
(e.g., physical register or reservation station) where the
actual producer DEF will place or has placed the value.
This name is speculatively associated with the target of
the load R2. This way, when at step (4) USE is decoded, it
can determine that its source register R2 has two names:
one actual TAG2 and one speculative TAG1. By using the
speculative name TAG1, DEF can link directly to use and
execute as soon as DEF produces its value. Later on, after
the load has accessed memory, the integrity of the com-
munication can be verified. 

Note that bypassing naturally extends for chains that
include multiple memory dependences; whenever a store
detects that its source register has a speculative name, it
can optimistically pass it via the synonym. However, we
do not study such an extension in our evaluation. More-
over, speculative memory bypassing becomes more
attractive when a store has multiple dependences as it
may help in further reducing latency compared to cloak-
ing when register write-back bandwidth is limited. In
this case, the speculative value will be propagated to all
consumers of all the dependent loads as soon as the
actual producers writes its target register. If no bypassing
is used, then each of the dependent loads will have to
propagate the speculative value to their consumers indi-
vidually. Finally, bypassing can also be used to eliminate
the need for an explicit synonym file at the expense of
reduced coverage. In such a design, prediction will have
to be restricted to only those dependences that are visible
from within the instruction window. In this case, no syn-
onym file is required as bypassing associates synonyms
with pre-existing storage elements (i.e., physical regis-
ters or reservation stations).

6  Experimental Evaluation

In this section we demonstrate the effectiveness of
cloaking and bypassing. Initially we investigate our tech-
niques ignoring timing considerations. This approach
allows us to make observations on the nature of memory
communication and on its predictability. We then simu-
late an aggressive dynamically scheduled processor and
show that our techniques can improve its performance.

The rest of this section is organized as follows. We
start by describing our methodology in Section 6.1. In
Section 6.2 we study the accuracy of a cloaking mecha-
nism. In this experiments we assume infinite prediction
structures and study the effects of: (1) DDT’s of various
practical sizes, and (2) of two confidence mechanisms.
In Section 6.3 we present various characteristics of the
load values predicted by cloaking. We study the base-
register, address-space, address-locality and value-local-
ity characteristics of those loads. A detailed description
of the characteristics we consider along with a justifica-
tion is given in that section. In Section 6.4, we measure
the performance impact of a combined cloaking and
bypassing mechanism under two mispeculation models.

6.1  Methodology

In our experiments we used the SPEC’95 programs
which we compiled for the MIPS-I architecture [12]
using the 2.7.2 version of the GNU gcc compiler (flags: -
O2 -funroll-loops -finline-functions). We translated
FORTRAN codes to C using AT&T’s f2c compiler. To
keep simulation times reasonable we: (1) modified the
standard train or test inputs, and (2) used sampling
[28,22,4]. Table 1 reports the dynamic instruction count,
the fraction of loads and stores and the sampling ratios
per program. While we used relatively shorter inputs we
note that virtually no variation was observed in cloaking
accuracy compared to the standard SPEC inputs. A
description of the modified inputs can be found in [19].
We used sampling only for the timing experiments of
section 6.4. The observation size used is 50,000 instruc-
tions. The sampling ratios are reported under the “SR”
columns as “timing:functional” ratios. These ratios
resulted in roughly 100M instructions being simulated in
timing mode. We did not use sampling for 126.gcc,
130.li and 147.vortex as cloaking was sensitive to its use.
During the functional portion of the simulation the fol-
lowing structures were simulated: I-cache, D-cache, and
branch prediction. In the rest of the evaluation we will
refer to the benchmarks by using the first numbers of
their name shown in Table 1.

We employ both trace and execution-driven timing
simulation. Trace based simulation is used for Sections
6.2 and 6.3. Timing simulation is used for Section 6.4.
Traces are generated via a functional simulator. All but

Figure 8. Speculative Memory Bypassing: (a)
Communication path through a load-store dependence.
(b) Communication path with speculative memory
bypassing. (c) How are the load and the store are
removed.

store R1

Def R1

Use R2

load R2
(a)

Def R1

Use R2

store R1

load R2

(1). Bypass

(2). Verify

(b)

Def R1
store R1

1 2

R2  TAG1 TAG2

3 4synonym

(c) load R2
Use R2

R1  TAG1
 TAG1

I1

I4



system code references are included. System calls are
handled by trapping to the OS of the simulation host. To
investigate the potential impact of the proposed tech-
niques, we model a realistic, 8-way superscalar proces-
sor with out-of-order execution characteristics. Up to
128 instructions can be in-flight at any given point of
time. The processor is pipelined and it takes 5 cycles for
an instruction to be fetched, decoded and placed into the
128-entry re-order buffer for scheduling. It takes one
cycle for an instruction to read its input operands from
the register file once issued. Functional units are fully
pipelined and have a latency of 1 cycle except for multi-
plication and division which take 4 and 12 cycles respec-
tively.

A 128-entry load/store scheduler (load/store queue)
is also included. This scheduler is capable of scheduling
up to 4 loads and stores per cycle. It takes at least one
cycle after a load has calculated its address to go through
the load/store scheduler. An important parameter is the
use of naive memory dependence speculation [20]. That
is: (1) a load will access memory even if the addresses of
preceding stores are unknown, (2) a load will wait for
preceding stores to the same address, and (3) stores post
their address to loads even their data is not yet available.
It has been shown that memory dependence speculation
can have a significant impact on base performance with
minimal hardware support [20, 6]. Not including this

technique in our base configuration would inflate the
performance benefit of our techniques (and of any value
speculative technique). Moreover, not using memory
dependence speculation impacts the observed critical
path artificially inflating the importance of predicting
most load values. We note that for our continuous
instruction-window processor model naive memory
dependence speculation is virtually identical to ideal
memory dependence speculation [19].

 The base memory system comprises: (1) a 128-
entry write buffer, (2) a non-blocking 32Kbyte/16 byte
block/4-way interleaved/2-way set associative L1 data
cache with 2 cycle hit latency, (3) a 64K/16 byte block/8-
way interleaved/2-way set-associative L1 instruction
cache with 2 cycle hit latency, (4) a unified 4Mbyte/8-
way set-associative/128 byte block with 10 cycle hit
latency, and (5) an infinite main memory with 50 cycles
miss latency. Miss latencies are for the first word
accessed. Additional words incur a latency of 1 cycle
(L2) or 2 cycles (main memory). Memory system is
event-driven. For branch prediction we use a 64-entry
call stack and a 64k-entry combined predictor that uses a
2-bit counter selector to choose among a 2-bit counter
based and a GSHARE predictor [17].

6.2  Cloaking Accuracy

The first step in cloaking is dependence detection.
The results presented in Section 3 show the fraction of
loads that would have dependences detected for DDTs of
various sizes. We next measure the fraction of loads that
get a value from a cloaking mechanism. For this experi-
ment we assume infinite DPNT and SF structures and
vary the size of the DDT. Moreover, we use an non-adap-
tive predictor: once a dependence is detected cloaking
will be used for all subsequent instances of the corre-
sponding load. We consider two metrics: (1) coverage,
and (2) mispeculation rate. We define coverage as the
fraction of dynamic loads that get a correct value via
cloaking. We define mispeculation rate as the fraction of
dynamic loads that get an incorrect value from cloaking.
These results are shown in Figure 9 part (a). Four mea-
surements are taken per benchmark for the following
DDT sizes: 32, 128, 512 and 2K shown from left to right.
The white bars report cloaking coverage while the dia-
monds report mispeculation rates. The thick lines report
the fraction of loads that have a dependence detected
(taken from Figure 3). We can observe that the vast
majority of loads with detected dependences get a cor-
rect value from cloaking. Not all loads with depen-
dences, however, get a value from cloaking. We found
that there is high correlation between unit-distance
dependences (i.e., static dependences whose dynamic
instance lifetimes do not overlap) and cloaking coverage.

Program IC Loads Stores SR

SPECint’95

099.go 133.8 20.9% 7.3% N/A

124.m88ksim 196.3 18.8% 9.6% 1:1

126.gcc 316.9 24.3% 17.5% N/A

129.compress 153.8 21.7% 13.5% 1:2

130.li 206.5 29.6% 17.6% N/A

132.ijpeg 129.6 17.7% 8.7% N/A

134.perl 176.8 25.6% 16.6% 1:1

147.vortex 376.9 26.3% 27.3% N/A

SPECfp’95

101.tomcatv 329.1 31.9% 8.8% 1:2

102.swim 188.8 27.0% 6.6% 1:2

103.su2cor 279.9 33.8% 10.1% 1:3

104.hydro2d 1,128.9 29.7% 8.2% 1:10

107.mgrid 95.0 46.6% 3.0% N/A

110.applu 168.9 31.4% 7.9% 1:1

125.turb3d 1,666.6 21.3% 14.6% 1:10

141.apsi 125.9 31.4% 13.4% N/A

145.fpppp 214.2 48.8% 17.5% 1:2

146.wave5 290.8M 30.2% 13.0% 1:2

Table 1. Benchmark Execution Characteristics. Instruction
counts (“IC” columns) are in millions.



A major source of non-unit distance dependences are
recursive functions. Another major source of non-unit
distance dependences are arrays which are written to by
one loop and read by a later loop (very common in float-
ing-point programs). In this cases, the static dependence
is insufficient in representing the dynamic communica-
tion relationships. Interestingly, in some cases, cloaking
coverage exceeds the fraction of loads with dependences
detected. Dependences whose store distances fluctuate
are the cause. Once a dependence is detected, it can be
correctly predicted even if later the store and the load are
so far apart as to escape detection by the DDT. While
increasing the size of the DDT generally increases cloak-
ing coverage in some cases a decrease is observed (e.g.,

132.ijpeg from 512 to 2K). Infrequent large store dis-
tance dependences are the cause. To understand why this
is so consider the following sequence: store a[i], store
a[j] and load a[i]. A dependence exists between store a[i]
and load a[i] every time this sequence is encountered.
However, occasionally when i equals j a dependence
exists between store a[j] and load a[i].  Our greedy
approach to assigning synonyms will incorrectly give the
same synonym to all three instructions. Such infrequent
dependences often appear at large store distances.
Finally, it can be seen that the use of an non-adaptive
predictor results in very high mispeculation rates. For
this reason we next consider an adaptive predictor.

Parts (b) and (c) of Figure 9 report coverage and
mispeculation rates respectively with an adaptive cloak-
ing predictor. The lines in part (b) report the coverage of
the non-adaptive predictor of part (a). Our adaptive pre-
dictor uses a 4 stage automaton per DPNT entry. Once a
dependence is detected cloaking is used the next time
around. However, upon mispeculation it takes 2 correct
predictions for cloaking to be used again. For virtually
all programs coverage is very close to that of the non-

adaptive predictor of part (a). Moreover, mispeculation
rates are drastically lower and often barely noticeable
(for some programs the mispeculation rate is not visible
since it is below 0.01%). Parts (d) and (c) report average
coverage and mispeculation rates over the integer, the
floating-point and all benchmarks. It can be seen that
cloaking offers high coverage with relatively low mis-
peculation rates. For example, with a DDT of 128 words
(512 bytes) about 45% (integer) and 19% (floating-

Figure 9. Accuracy of Cloaking: (a) A non-adaptive cloaking predictor. (b) - (e): An adaptive cloaking predictor.
Measurements are as a function of DDT size. DDT sizes included are: 32, 128, 512 and 2k.

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

0.0%
0.5%
1.0%
1.5%
2.0%

0%

20%

40%

60%

0.00%
0.25%
0.50%
0.75%
1.00%

099 124 126129 130 132 134 147 101 102103 104 107110 125141 145 146

SpecINT SpecFP Overall SpecINT SpecFP Overall

099 124 126 129 130 132 134 147 101 102 103 104 107 110 125 141 145 146

099124126129130132134147 101102103104107110125141145146

(a)

(b)

(c)

(d) (e)



point) of all loads get a correct value via cloaking. For
the same DDT, only about 0.60% (integer) and 0.12% of
all loads get an incorrect value.

While we omit these results we note that a cloaking
mechanism with a 4K DPNT and a 1K SF resulted in vir-
tually identical coverage and mispeculation rates. For the
rest of this evaluation we use cloaking mechanisms that
use a 128 word DDT.

6.3  Characteristics of Predicted Loads

In this section we present a characterization of the
loads that get a value from cloaking. In Section 6.3.1 we
present a breakdown of predicted loads in terms of the
base-register and the address-space used. We do so to
provide additional insight on the type of predicted loads.
In Section 6.3.2 we measure the address locality of loads
and how it is distributed among those predicted by cloak-
ing. In Section 6.3.3 we measure the value locality char-
acteristics of predicted loads and compare cloaking with
a last-value load value predictor [16]. The measurements
of Sections 6.3.2 and 6.3.3 are included to provide
insight on the interaction of cloaking with address pre-
diction and value prediction based schemes.

6.3.1  Base-Register and Address-Space Distribution

Table 2 reports a breakdown of loads that were pre-
dicted by cloaking in terms of the base register and the
address space used. Percentages are over all dynamic
loads. Two rows are shown per benchmark. The top row
reports the base-register breakdown while the bottom
row reports the address-space breakdown. Both correctly
(“R” columns) and incorrectly predicted (“W” columns)
loads are included. It can be seen that while the stack and
the stack pointer are major contributors to correctly pre-
dicted loads other parts of the address space and other
base-registers are also correctly predicted. In fact, large
fractions of the loads that access the heap of the data seg-
ment are correctly predicted. Note that the heap accesses
in floating-point programs are an artifact of our compila-
tion process.

6.3.2  Address Locality

Memory latency could be reduced if we could pre-
dict the address a load will access. For this reason in this
section we consider the address locality characteristics of
the values predicted by cloaking. Figure 10 shows a
breakdown of loads that exhibit address locality in terms
of whether they have a dependence detected or not. We
measure address locality by counting the fraction of
dynamic loads that access the same address as the last
instance of the same static load. Address locality pro-
vides an upper bound on the accuracy of an infinite, last-
address based address predictor with no hysteresis. The
lower, dark bar reports the fraction of loads that have a

SP GP OTHER
W R W R W R

STACK DATA HEAP
W R W R W R

099 0.01 24.41 0.01 4.97 0.39 4.42

0.07 25.43 0.34 8.37 0.00 0.00

124 0.00 19.82 0.00 12.53 0.99 21.45

0.01 19.98 0.98 33.61 0.00 0.22

126 1.49 19.95 0.00 1.55 0.14 8.81

1.55 25.94 0.02 3.28 0.06 1.09

129 0.00 6.75 0.00 46.61 0.20 1.20

0.00 6.75 0.21 47.81 0.00 0.00

130 0.54 27.29 0.00 11.89 0.48 3.34

0.72 27.81 0.00 11.90 0.30 2.82

132 0.00 10.01 0.00 0.01 0.10 5.95

0.04 13.62 0.00 0.16 0.06 2.19

134 0.11 33.19 0.00 8.53 0.03 7.70

0.11 33.32 0.01 8.62 0.02 7.48

147 0.01 43.57 0.00 1.70 0.05 13.10

0.05 54.87 0.00 1.71 0.01 1.78

101 0.00 0.61 0.00 0.41 0.00 21.99

0.00 22.42 0.00 0.46 0.00 0.13

102 0.00 6.59 0.00 0.00 0.00 0.78

0.00 6.59 0.00 0.78 0.00 0.00

103 0.00 4.27 0.00 2.88 0.04 7.61

0.04 10.49 0.00 3.09 0.00 1.18

104 0.00 3.94 0.00 2.18 0.01 1.67

0.01 4.18 0.00 2.80 0.00 0.82

107 0.00 11.55 0.00 0.05 0.00 0.14

0.00 11.59 0.00 0.14 0.00 0.00

110 0.00 10.64 0.00 0.01 0.49 1.95

0.19 12.26 0.30 0.35 0.00 0.00

125 0.00 4.58 0.00 0.00 0.27 17.09

0.25 19.84 0.03 1.83 0.00 0.00

141 0.00 19.91 0.00 0.25 0.24 6.63

0.00 24.56 0.24 2.11 0.00 0.13

145 0.00 29.85 0.00 0.05 0.01 5.27

0.00 30.09 0.01 5.08 0.00 0.00

146 0.00 7.48 0.00 0.19 0.03 12.66

0.00 7.92 0.03 12.40 0.00 0.00

Table 2. Base-Register and Address-Space distribution of
cloaked loads. Two rows are shown per benchmark. The top
reports the percentage of cloaked loads whose base register is
the stack pointer (SP), global pointer (GP) or none of these two
(OTHER). For each base-register type two numbers are given:
correctly predicted loads (R) and incorrectly predicted loads
(W). Percentages are over all dynamic loads. The second row
reports a breakdown of cloaked loads in those that access the
stack, the data or the heap address spaces.



dependence detected and also exhibit address locality.
The upper part reports loads that have no dependence
detected and exhibit address locality. The diamonds
report the fraction of loads that get a correct value from
cloaking. It can be seen that often loads that get a value
from cloaking do not exhibit address locality. Further-
more, many loads that do exhibit address locality do not
get a value form cloaking. The results of this section sug-
gest that cloaking and address prediction are orthogonal
and could be combined for improved coverage. However,
such an investigation is beyond the scope of this work 

6.3.3  Value Locality

Memory latency could be also reduced by predicting
load values directly. For this reason in this section we
compare a load value predictor with a cloaking mecha-
nism. For this experiment we simulate a last-value pre-
dictor with 16K entries. The cloaking mechanism we use
has an 8K DPNT, a 128-entry DDT and a 2K synonym
file. All structures are fully-associative. Figure 11 reports
coverage (part (a)) and mispeculation rates (part (b)).
Value prediction results are shown by the light left bar,
while cloaking prediction results are shown by the right
dark bar. In terms of coverage the results are mixed.
None of the two techniques appears to have a clear
advantage. However, in terms of mispeculation rates,
cloaking is superior suggesting that dependence behavior
is more stable than value behavior.

Coverage and mispeculation rates are insufficient
for comparing value prediction and cloaking. A better
comparison considers which loads cloaking predicts that
value prediction doesn’t and vice versa. These results are
shown in Table 3. Column VP reports the fraction of
loads that are correctly predicted by value prediction and
not by cloaking. Column CLOAK reports the fraction of
loads correctly predicted by cloaking but not by value
prediction. These results demonstrate that while some
overlap exists between load value prediction and cloak-
ing, the two techniques also cover rather large fractions
of different loads. One could argue that more complex
value predictors may be used to potentially cover all

loads that cloaking predicts. However, and besides that
better cloaking predictors may be possible, we note that,
if so desired, cloaking could be viewed as a value predic-
tion enhancing technique.However, it exploits regulari-
ties in the dependence stream and not the value stream. 

6.4  Performance Impact

Having shown that program behavior is such that
cloaking could predict large fractions of all loads in this
section we measure its performance impact. We evaluate
a combined cloaking/bypassing mechanism that
includes: (1) a 4K 2-way set associative DPNT, (2) a 1K
2-way set associative SF, (3) a 128 word fully-associative
DDT, and (4) a 128 SRT. Up to 4 loads or stores can
access each prediction structure simultaneously. Predic-
tion updates occur at commit time. Moreover, mispecula-
tions are signaled on the consumers of loads. As a result,
no mispeculation is signalled on incorrectly predicted

Figure 10. Address-locality and Cloaking. Dark bar:
loads with dependence detected that exhibit address
locality. Light bar: loads that exhibit address locality but
have no dependence detected. Diamonds: loads that get
a correct value from cloaking.

0%
20%
40%
60%
80%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

Figure 11. Comparing a last-value load value predictor
and a cloaking predictor. (a) Correctly predicted loads.
(b) Incorrectly predicted loads. Gray bars: load value
prediction. Dark bars: cloaking.

Bench. VP CLOAK Bench. VP CLOAK

099 11.72 23.63 101 7.79 10.22

124 19.01 13.68 102 24.84 6.43

126 24.08 16.63 103 16.01 7.13

129 10.00 40.85 104 80.54 3.01

130 15.20 29.43 107 18.22 2.36

132 12.61 9.12 110 37.43 2.69

134 19.42 21.92 125 54.99 2.02

147 26.67 29.34 141 20.88 9.08

145 28.38 29.59

146 21.29 10.12

Table 3. Comparing Cloaking and Load Value Prediction.
Column VP reports the fraction of loads that are correctly
value predicted but not correctly cloaked. Column CLOAK
reports the fraction of loads that are correctly cloaked but not
correctly value predicted.

0%
20%
40%
60%
80%

100%

0%

2%

4%

6%

(a)

(b)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6



load values that have not been used by any instruction.
Compared to Figure 9 and for most programs this

delay rarely changed prediction coverage. However, mis-
peculation rates increased. Noticeable differences in cov-
erage were observed for 126.gcc and 134.perl. In
126.gcc coverage was up by 7% and for 134.perl it was
down by 9%. For mispeculation handling we studied
three models: (1) squash invalidation, (2) selective inval-
idation, and (3) oracle. The first two were described in
Section 4.3. The oracle model does not use incorrect pre-
dictions. We do not include performance results for the
oracle model here. However, we note that performance
was virtually identical to that of selective. In fact, in
some cases using an incorrectly predicted value proved
beneficial. This is the case for some values that were par-
tially correct. It turns out that some computations depend
only on part of their input values (e.g., for AND X, 0xf
only the lower 4 bits of X are important). When mispec-
ulation is detected, only the immediate consumers of the
mispeculated value are notified. They will notify their
consumers only if after they are re-executed and the
value produced is different than that they produced with
the mispeculated value. More information on the specu-
lation resolution mechanism we used is given in [19].

Figure 10 shows the relative performance of cloak-
ing. The gray bars report speedups with selective invali-
dation. The white and dark bars report slowdowns and
speedups respectively with squash invalidation. It can be
seen that cloaking with squash invalidation is not robust
and rarely beneficial. On average (harmonic mean) this
mechanism leads to slowdowns of 5.63% (integer),
1.59% (floating-point) and 3.43% (all programs). Cloak-
ing with selective invalidation, however, is robust and in
most cases beneficial. It never reduced performance. On
average this mechanism offers speedups of 4.28% (inte-
ger), 3.20% (floating-point) and 3.68% (all programs). 

As we have seen in Section 6.2, cloaking mispecula-
tion rates are often very small. Nevertheless, we see that
squash invalidation more than often leads to slowdown.
This should not come as a surprise. Cloaking mispredic-
tions often occur when most of the instruction window is
full and control prediction is correct. Under these condi-
tions, flushing part of the window proves highly disrup-
tive and has a large impact on performance. A similar
result has been reported for memory dependence mispec-
ulations where it was shown that even very small mis-
peculation rates have great impact on performance [20]. 

Part (b) of Figure 12 shows a breakdown of pre-
dicted loads in (1) those that get a value through cloaking
(gray bar), and (2) those that get a value through bypass-
ing (dark bar). There is no definite pattern here. In some
cases cloaking covers most of the values (e.g., 099.go)
and in some cases bypassing accounts for most of the

predictions (e.g., 125.turb3d). Two  primary forces are at
work: the observed critical path and the distance in
instructions between dependent loads and stores. Both
are program specific attributes. Bypassing can be applied
only when both the dependent store and load appear
within the window. Even when they do, the store value
may be available long before the load is decoded.

The results of this section suggest that even over a
highly aggressive base configuration cloaking can offer
respectable performance improvements. However, bene-
fits are limited by the control prediction accuracy and by
the optimistic assumptions about load/store queue and
data cache latencies (2 cycles and 3 cycles respectively).
As instruction windows and load/store queues grow, as
control prediction accuracy improves and as wire lengths
start dominating it should expected that the latency of
memory communication will increase. In such environ-
ments it is likely that the performance impact of cloaking
and bypassing will be higher.

7  Related Work

Memory dependence prediction was introduced in
[20] where it was used to improve the accuracy of mem-
ory dependence speculation in the context of a split-win-
dow processor.

Numerous techniques that attempt to predict the
addresses of loads and stores have been proposed both in
hardware and in software [e.g., 1,2,3,8,9,25,5]. Address
prediction provides no explicit information about com-
munication. A mechanism may be required to compare
any predicted addresses for reducing communication
latency. Moreover, address prediction relies in regulari-

Figure 12. (a) Relative performance of a cloaking
mechanism. Grey bars are with selective invalidation.
These bars report SPEEDUP. White and dark bars are
with squash invalidation. White bars report
SLOWDOWNS, dark bars report SPEEDUP.

0%

5%

10%

15%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

1
01

1
02

1
03

1
04

1
07

1
10

1
25

1
41

1
45

1
46

(a)

Selective Speedup Squash Slowdown Squash Speedup

0%
20%
40%
60%
80%

100%
(b)

0
9

9
1

2
4

1
2

6
1

2
9

1
3

0
1

3
2

1
3

4
1

4
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

Value Available Wait For Producer



ties in the address stream. Cloaking is orthogonal to such
techniques and may streamline memory communication
even if the access pattern defies prediction.

In this work we were motivated by the large fraction
of short-distance memory communication. Numerous
memory referencing behavior studies for the purpose of
optimizing the memory hierarchy exist. Two are most
relevant to this work: McNiven and Davidson [18] ana-
lyzed memory referencing behavior and suggested using
compiler hints to identify values that are killed in order
to reduce traffic between adjacent levels of the memory
hierarchy. Huang and Shen studied the minimal band-
width requirements of current processors, as a function
of instruction issue rate, memory capacity and memory
bandwidth [10].

Value speculation may effectively reduce the latency
of memory communication independently of whether the
load has a true dependence or not [16]. The success of
this approach relies on the ability to track and predict the
actual values. In cloaking we do not directly predict the
load value, rather we predict its producer.

Cloaking and bypassing were originally reported in
[21]. Simultaneously, Tyson and Austin proposed mem-
ory renaming a technique similar to cloaking [26]. They
combined memory dependence prediction with value
prediction and studied their combined effect. They uti-
lized a last-producing-store prediction scheme for pre-
diction purposes. A restricted form of cloaking is alias
prediction [14]. In this technique loads predict a write
buffer entry where their producing store resides. This
optimization alleviates the need for an SRT.

A mechanism similar to bypassing was proposed by
Jourdan, Ronen, Bekerman, Shomar and Yoaz [11]. In
their proposal, bypassed loads do not necessarily have to
access memory and as result memory bandwidth require-
ments are also reduced. The Transient Value Cache has a
similar effect [21]. They also combined address predic-
tion with cloaking/bypassing. A software guided
approach to cloaking was investigated by Reinman,
Calder, Tullsen, Tyson and Austin [24]. In their
approach, new instructions are introduced that allow the
compiler to communicate speculative memory depen-
dences to the hardware. Reinman and Calder also per-
formed a comparative study of load value prediction,
memory dependence speculation/synchronization [20],
of a variation of the Memory Renaming technique of
Tyson and Austin [23] and of address-prediction-based
techniques.

While we have investigated cloaking in the context
of sequential programs, cloaking could be applied to
explicitly parallel programs also. Kaxiras and Goodman
have proposed such a mechanism [13].

8  Contributions and Future Directions 

We revisit memory design observing that memory is
often used as a communication mechanism. From this
perspective we identify a number of overheads intro-
duced by traditional address-based memory communica-
tion. We propose techniques to alleviate these overheads.
Our techniques are architecturally transparent as they
utilize dynamically collected dependence information.
Our contributions are:

(1) We show that highly-accurate history-based
memory dependence prediction is possible.

(2) We show that the traditional implicit specifica-
tion of memory communication can be dynamically
converted into a explicit, albeit speculative form.
(3) We propose speculative memory cloaking and its

extension speculative memory bypassing which utilize a
dynamically created explicit specification of memory
communication to reduce memory latency.

We conclude by commenting on a research direction
regarding prediction-based techniques. Prediction-based
techniques already empower most modern high-perfor-
mance processors. Examples include branch prediction,
caching and memory dependence speculation. We
believe that such techniques will play an increasingly
important role in the future. In this context, cloaking and
bypassing represent a step toward a class of new predic-
tion techniques that in addition to regularities in the out-
comes of program execution (e.g., values, addresses and
branch directions) also exploit regularities in the actions
programs take to produce these outcomes. As outcome-
based prediction techniques are perfected reaching a
point of diminishing returns, action-based prediction
techniques represent a promising direction for continu-
ous improvement.

References

[1] T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi.
Fast address calculation. In Proc. ISCA-22, June
1995.

[2] T. M. Austin and G. S. Sohi. Zero-cycle loads: Mi-
croarchitecture support for reducing load latency. In
Proc. MICRO-28, Nov. 1995.

[3] J.-L. Baer and T.-F. Chen. An effective on-chip pre-
loading scheme to reduce data access penalty. In
Proc. Supercomputing ’91, 1991.

[4] S. E. Breach. Design and Evaluation of a Multiscalar
Processor, in preparation. Ph.D. thesis, University
of Wisconsin-Madison, Madison, WI 53706, Dec.
1998.

[5] B.-C. Cheng, D. A. Connors, and W.-M. Hwu. Com-
piler-directed early load-address generation. In Proc.
MICRO-31, Dec. 1998.

[6] G. Z. Chrysos and J. S. Emer. Memory dependence
prediction using store sets. In Proc. ISCA-25, June
1998.

[7] J. Dennis. Data Flow Supercomputers. IEEE Com-



puter, Nov. 1980.
[8] R. J. Eickemeyer and S. Vassiliadis. A load-instruc-

tion unit for pipelined processors. In IBM journal on
research and development, 37(4), July 1993.

[9] M. Golden and T. Mudge. Hardware support for hid-
ing cache latency. In CSE-TR-152-93, University of
Michigan, Dept. Of Electrical Engineering and
Computer Science, Feb. 1991.

[10] A. S. Huang and J. P. Shen. A Limit Study of Local
Memory Requirements Using Value Reuse Profiles.
In Proc. MICRO-28, Dec. 1995.

[11] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar,
and A. Yoaz. A novel renaming scheme to exploit
value temporal locality through physical register re-
use and unification. In Proc. MICRO-31, Dec. 1998.

[12] G. Kane. MIPS R2000/R3000 RISC Architecture.
Prentice Hall, 1987.

[13] S. Kaxiras and J. Goodman. Improving cc-numa
performance using instruction-based prediction. In
Proc. HPCA-5, Feb. 1999.

[14] M. H. Lipasti. Value Locality and Speculative Exe-
cution. Ph.D. thesis, Carnegie Mellon University,
Pitsburgh, PA 15213, Apr. 1997.

[15] M. H. Lipasti and J. P. Shen. Exceeding the dataflow
limit via value prediction. In Proc. on MICRO-29,
Dec. 1996.

[16] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Val-
ue locality and load value prediction. In Proc. ASP-
LOS-VII, Oct. 1996.

[17] S. McFarling. Combining branch predictors. Tech-
nical Report TN-36, Digital Equipment Corp., WRL,
June 1993.

[18] G. D. McNiven and E. S. Davidson. Analysis of
Memory Referencing Behavior for Design of Local
Memories. In Proc. ISCA-15, May 1988.

[19] A. Moshovos. Memory Dependence Prediction.
Ph.D. thesis, University of Wisconsin-Madison,
Madison, WI 53706, Dec. 1998.

[20] A. Moshovos, S. Breach, T. Vijaykumar, and
G. Sohi. Dynamic speculation and synchronization
of data dependences. In Proc. ISCA-24, June 1997.

[21] A. Moshovos and G. Sohi. Streamlining inter-opera-
tion communication via data dependence prediction.
In Proc. MICRO-30, Dec. 1997.

[22] M. Reilly and J. Edmondson. Performance simula-
tion of an Alpha microprocessor. In IEEE Computer,
31(5), May 1998.

[23] G. Reinman and B. Calder. Predictive Techniques
for Aggresive Load Speculation. In Proc. MICRO-
31, Dec. 1998.

[24] G. Reinman, B. Calder, D. Tullsen, G. Tyson, and
T. Austin. Profile guided load marking for memory
renaming. Technical Report CS98-593, University of
California, San Diego, July 1998.

[25] Y. Sazeides, S. Vassiliadis, and J. E. Smith. The
Performance Potential of Data Dependence Specula-
tion and Collapsing. In Proc. MICRO-29, Dec. 1996.

[26] G. S. Tyson and T. M. Austin. Improving the Accu-
racy and Performance of Memory Communication
Through Renaming. In Proc. MICRO-30, Dec. 1997.

[27] A. H. Veen. Dataflow Machine Architectures. ACM
Computing Surveys, vol. 18, Dec. 1986.

[28] K. M. Wilson, K. Olukotun, and M. Rosenblum. In-

creasing Cache Port Efficiency for Dynamic Super-
scalar Processors. In Proc. ISCA-23, May 1996.


