
Improving Virtual Function Call Target Prediction via
Dependence-Based Pre-Computation

Amir Roth, Andreas Moshovos and Gurindar S. Sohi

Computer Sciences Department
University of Wisconsin-Madison

1210 W Dayton Street, Madison, WI 53706
{amir, moshovos, sohi}@cs.wisc.edu

Abstract
We introducedependence-basedpre-computationas a
complementto history-basedtarget predictionschemes.
We presentpre-computationin the context of virtual
functioncalls (v-calls),a classof control transfers that
is becomingincreasingly important and has resisted
conventional prediction. Our proposed technique
dynamicallyidentifiesthe sequenceof operations that
computesa v-call’s target. Whenthe first instructionin
such a sequenceis encountered, a small execution
enginespeculativelyand aggressivelypre-executesthe
rest. The pre-computedtarget is stored and subse-
quentlyusedwhena predictionneedsto be made. We
showthat a commonv-call instructionsequencecanbe
exploited to implementpre-computationusing a previ-
ously proposed prefetching mechanism and minimal
additional hardware. In a suite of C++ programs,
dependence-basedpre-computationeliminates46% of
themispredictionsincurredbya simpleBTBand24%of
those associated with a path-based two-level predictor.

1 Introduction

Accuratebranchand target prediction is an important
factor in maintaining a continuoussupply of useful
instructionsfor processing. Traditional prediction is
done dynamically and works by capturingpatternsin
the outcome(direction or target) history of the branch
stream.While thesetechniqueshandlemany of thecon-
trol transfersfoundin programs,somecontinueto resist.
In this paper, we presenta complementaryapproachin
which branchtargetsarecorrelatedwith theinstructions
that computethem rather than with previous targets.
Our mechanismpre-computestargetsratherthanguess-
ing at them statistically.

In this initial work, we concentrateon pre-computing
virtual functioncall (v-call) targets. Thev-call mecha-
nismenablescodereuseby allowing asinglestaticfunc-
tion call to transparentlyinvokeoneof multiple function
implementationsbasedon run-time type information.
As shown in Table 1, v-calls are currently used in
object-orientedprogramswith frequenciesrangingfrom
1 in 200 to 1000instructions(4 to 20 timesfewer than
direct calls and30 to 150 timesfewer thanconditional
branches).V-call importancewill increaseasobject-ori-
entedlanguagesandmethodologiesgainpopularity. For
now, v-calls make an ideal illustration vehicle for pre-
computationtechniquessincetheir targetsarebothdiffi-
cult to predict and easy to pre-compute.

Conventional target prediction techniquesare branch
target buffers (BTB), which store a single target per
static instruction, and path-basedtwo-level predictors
[3, 6], which associatetargetswith staticinstruction/tar-
get-historycombinations.BTBs cannoteffectively han-
dle v-calls, which feature multiple targets per static
instruction. On the otherhand,sincev-call targetsare
determinedby object type, path-historybasedschemes
can exploit the correlationbetweenmultiple v-calls to
the sameobject referenceto predict the targetsof the
subsequentv-calls. However, they frequentlymispre-
dict the initial v-call in sucha sequenceandmustcon-
tendwith aliasingthat resultsfrom the incorporationof
irrelevant information into the target history.

A pre-computationapproach,in which targetsarepre-
computedusing“recipes” extractedfrom the executing
program,canavoid theseproblems. Pre-computation’s
program-basednaturegivesit many advantages.Mim-
icking programactionsdirectly rather than extracting
statisticalcorrelationsfrom addressstreamstranslates
into improved prediction accuracy. A programbased
representationis alsomorecompactthanahistorybased
oneandavoidsthealiasingproblemsthatplaguethelat-
ter. Finally, pre-computationhas a shorter learning
periodandworksevenin theabsenceof statisticalcor-
relation. Althoughit is ageneralpurposetechniquethat
can be applied to any type of instruction, v-call pre-
computationhasa particularlysimplehardware imple-
mentationthat leveragesa previously proposedmecha-
nism for prefetchinglinked datastructures[15]. As a

complementto conventional prediction, pre-computa-
tion reduces mispredictions by 24%.

In the rest of the paper, Section 2 presentsa more
detailedoverview of theproblemandourproposedsolu-
tion. We describean implementationin Section3 and
evaluateit in section4. Thelastsectionsdiscussrelated
work and our conclusions.

2 Target Pre-Computation

Thepurposeof thissectionis two-fold. Webegin with a
moredetaileddiscussionon theeffectivenessof conven-
tional, history-basedtechniquesin predictingv-call tar-
gets. Thenwedescribeacommonimplementationof v-
callsandshow how we canexploit this implementation
to createa pre-computation solutionthatavoidssomeof
thesedifficulties. We supportour qualitative arguments
with dataandexamplesfrom the OOCSBC++ bench-
marksuite,a collectionof programsthathasbeenused
to study indirect call target prediction [6], and Coral
[14], adeductivedatabasedevelopedat theUniversityof
Wisconsin. We compiledthe programsfor the MIPS-I
architectureusing the GNU GCC 2.6.3 compiler with
flags-O2 and-finline-functions. Table1 sum-
marizes the benchmarks,their input parametersand
dynamicinstructioncounts. It alsoshowsthetotalnum-
ber of static and dynamic v-calls for each benchmark.

2.1 Conventional Target Prediction

History-basedschemesfor predictingv-call targetsare
thebranchtargetbuffer (BTB) andtheproposed,though
as yet unimplemented,path-basedtwo-level predictor
[3, 6]. ThesimpleBTB recordsthelasttargetof all con-

trol transferinstructions,including v-calls. BTBs are
effective for control transfersthat have only onepossi-
ble taken target, like direct calls and conditional
branches.They do not effectively predictv-calls,which
feature multiple targets per static instruction, unless
individual staticv-calls exhibit high levels of temporal
target locality. Path-basedtwo-level predictorsover-
comethis problemby maintaininga history of recent
indirect targets and associating targets with static
instruction/historypairs. Additional data in Table 1
shows v-call targetmispredictionratesfor two predictor
configurations. The BTB configurationusesa 4-way
associative, 2K-entry BTB. PATH adds a direct-
mapped,untagged2K-entry path-basedpredictor that
uses a three target (4 bits per target) history.

Although PATH eliminates68% of the mispredictions
incurredby BTB, therearestill casesthat it cannothan-
dle. To understandthesehardto predictcases,we look
to the programsthemselves. A high rate of v-calls
impliesiterationover a collectionof objectswith poten-
tially multiple v-callsperobjectreference.Sincev-call
targetsaredeterminedby objecttype,it is notsurprising
that v-calls using the sameobject referenceare highly
correlated. As a result, once the first v-call target is
known, the secondand subsequentsame-referencev-
calls can usually be predictedby history-basedtech-
niques. Predictingthe first v-call’s target is morediffi-
cult. Here, history-basedschemesmay succeedif
objectsarestatisticallyorderedby type,however this is
not alwaysthecase.Objectsmaybeorderedrandomly,
as in richards, or in an input-dependentway, as in ixx
and porky. History basedschemesmust also contend
with aliasing, which occurswhenirrelevant targetsare
incorporatedinto the history. Aliasing, often due to
interspersedcalls to multiple objects,occursfrequently
in eqn andtroff.

Program Input Parameters

Dyn
Inst

Count

 V-Calls BTB PATH

Description Stat Dyn Misp 90% Misp 90%

coral deductive database 4 joins, 110 relations 170M 54 1350K 11.0% 1 0.1% 1

deltablue constraint solver 10,000 constraints 179M 16 4250K 1.5% 2 0.0% 1

eqn equation formatter eqn.input.all 71M 111 100K 28.1% 18 21.7% 24

idl IDL compiler all.idl.i 81M 516 1756K 0.1% 4 0.1% 16

ixx IDL parser Som_PlusFresco.idl 49M 157 102K 7.2% 10 3.7% 9

lcom VHDL compiler circuit3.l 192M 321 1103K 2.2% 31 1.6% 47

porky SUIF middleware g2shp.snt 323M 270 2636K 24.7% 5 6.4% 12

richards OS simulator 50 processes 372M 7 3290K 54.0% 1 20.1% 1

troff text formatter gcc.1 98M 116 827K 20.3% 7 10.7% 8

Table 1. OOCSB benchmarks. Static and dynamic v-call counts. V-call misprediction rates on a 4-way
associative, 2K-entry BTB and a 2K-entry direct-mapped path-based two-level predictor with a history depth of
three targets. Number of static calls that account for 90% of all BTB and PATH mispredictions.

2.2 Our Solution

We introducedependence-basedpre-computationas a
complementto history-basedprediction. Pre-computa-
tion is a program-basedtechniquethat capturesthe tar-
get generation process and mimics it to obtain
predictions. By consideringinformation relevant to a
particularv-call in isolation,pre-computationavoidsthe
aliasing problemsthat plague history basedschemes
schemes.Pre-computationcanalsosupplypredictions
in the absence of statistical target correlation.

Pre-computationis a general technique that can be
appliedto any type of instruction. However, v-call tar-
get pre-computationcanbe implementedasa minimal
addition to a previously proposedprefetchingmecha-
nism [15]. The simpleimplementationexploits a com-
mon v-call implementation:the virtual function table
(vtbl) shown in Figure1. Part (a)showsanexampleof a
classBase anda classDerived that implementmethods
(classfunctions)Valid andPrint. The v-call mechanism
allows the programmerto treat an array of objectsof
mixedtypesBase andDerived uniformly andusea v-call
to invoke the correctfunction implementations.A vtbl
containsthe addresses(at predeterminedoffsets)of all
the methodsaccessibleby a given objectclass. Every
object is initialized with a pointer to the vtbl corre-
spondingto its classandaccessesits functionsvia this
pointerasshown in figure1(b). Thecharacteristicv-call
implementation,which we call OVFC, accessesthevtbl
usinga sequenceof threedependentloadsandan indi-
rect call. The initial load accessesthe baseof the

Object, the secondusesthe object’s baseaddressto
accessits Vtbl, and the third retrieves the Function
addresswhich is usedby the indirect Call. The OVFC
sequencescorrespondingto the Valid andPrint calls are
shown boldfacedin figure 1(c). Note that both VFC
chainsusethesameobjectreferenceO. Likewise,asin-
gle VFC chainmaybedynamicallyattachedto multiple
static Os due to the use of conditionals.

Targetpre-computationis a simpleprocess.For a given
v-call site,we isolatetheOVFC sequencethatcalculates
the target address. Whenever an instanceof the first
instructionin the sequence(O) completes,we quickly
pre-executetherestandcalculatea targetin anticipation
of having to make a prediction. A calculationthatcom-
pletesbeforetheactualv-call (C) is encounteredcanbe
usedto supplya prediction. We show thepre-computa-
tion processin the abstractin Figure 1(d) scenario1
(shaded). The left and right most parts of the figure
show the executeand fetch schedules,respectively, for
the loop from part (a) of the figure. Perour proposed
solution,assoonasthe instruction3 (O) completes,we
consult an internal representationand pre-executethe
remainderof the dependencechain (VFC). The pre-
computedtarget is bufferedandusedto predictthenext
fetchedinstanceof instruction6. We call thesekindsof
pre-computationssimple pre-computations.

Figure1(d) containsonecritical abstraction,namelythe
misrepresenteddistancebetweenthe launchof the pre-
computation(completionof instruction3) and the pre-
diction that usesits result (fetch of the instructionthat
succeeds6). On an aggressive processor, this distance

FIGURE 1. V-call mechanism and pre-computation. (a) Classes Base and Derived both implement functions
Valid and Print. A collection of these objects may be treated uniformly as a collection of Base objects. (b,c)
Runtime v-call target disambiguation is performed with code that traverses a per class-type function table through
a special pointer found in each object. (d) The v-call disambiguation mechanism can be pre-computed to achieve
a target prediction effect.

lw $4, 0($16)
lw $3, 0($4)
lw $3, 0($3)
jalr $3

class Base
virtual void Print() { ... }

Base * arr[ASIZE];

for (i = 0; i < ASIZE; i++)
 if (arr[i]->Valid())

(c)(a)

I3:
I4:
I5:
I6:

addiu $16, $16, 4
addiu $17, $17, 1
blt $17, ASIZE, L

I11:
I12:
I13:

lw $16, arr
mov $17, $0

I1:
I2:

L:

arr

O
Vv
Fv
Cv

virtual int Valid() { ... }

class Derived : public Base
void Print() { ... }
int Valid() { ... }

 arr[i]->Print();

Base::vtbl

Base::Print
vtbl
data

bne $2, F
lw $3, 0($4)
lw $3, 4($3)
jalr $3

I7:
I8:
I9:

I10:

EXECUTE PRE-COMPUTE ENGINE

Ti
m

e

FETCH
PCPC INST

arr[i]
Base::Valid

PC INST

arr[0]->vtbl8

jalr Print10
arr[0]->vtbl->Print9

arr[0]->vtbl->Valid5
jalr Valid6

51

arr[0]->vtbl4

50

arr[0]3
2

arr[0]->vtbl8

jalr Print10
arr[0]->vtbl->Print9

arr[0]->vtbl->Valid5
jalr Valid6

arr[0]->vtbl4

10

59
9

5
6

51

4

50

3

80
80 81

arr[1]->vtbl->Valid5
jalr Valid6

arr[1]->vtbl4
arr[1]3

5
6

3

50

arr[1]->vtbl->Valid5
jalr Valid6

arr[1]3

(d)

(b)

Vp
Fp
Cp

81
4

arr[1]->vtbl4

1

2

3

I3(O) I8(VP)
I9(FP) I19(CP)

F:

maynot exist at all. Pre-computationrelieson this sep-
arationto provide a timely predictions. A distanceof
only a few dynamicinstructionsimpliesthatwemaynot
be able to complete the pre-computation in time.

Fortunately, two commonprogrammingconstructspro-
vide us with the necessarydynamic instruction spac-
ing. First, many object referencesare usedto make
multiple v-calls,eachof which will be increasinglydis-
tantfrom theobjectreference.In ourexample,eachref-
erenceto theobjectin arr[i] is usedto make callsto Valid
andPrint. While thecall to Valid is probablytoo closeto
the objectreferencearr[i] to receive a timely prediction,
thesubsequentcall to Print is probablydistantenoughas
shown in Figure1(d) scenario2. Second,many objects
aretypically kept in datastructures,like arraysor lists,
that areamenableto addressprediction[2, 13]. While
referencingoneobjectin thedatastructurewe canpre-
dict theaddressfor thenext objectandusethispredicted
addressto launch pre-computations. For instance,in
scenario3 of Figure1(d) we launcha pre-computation
for arr[1]->Valid usingthe addressarr[0] andstride infor-
mation. Pre-computationslaunchedwith the help of
object addresspredictionsare called n-lookahead pre-
computations with n beingtheobjectreferencedistance
betweenthe current object and the addresspredicted
object (n=1 in our example). An implementationof
simple and lookaheadpre-computationis describedin
the next section.

3 Mechanism

Our implementationof dependence-basedpre-computa-
tion comprisesthree main components. The first is
responsiblefor detectingdatadependencesamongloads
and betweenloadsand indirect calls and representing
thesedependencesinternally. The secondis a simple
dataflow enginethat usesthis internalrepresentationto
aggressively executedependentchainsthat terminatein
indirectcalls. Thefinal piece,andthefocusof our pre-
sentation,collects the pre-computationresults,orders
themandorchestratestheir useby theprocessor’s main
target prediction mechanism. We describean imple-
mentationof thebasicsolution,thenshow how it canbe
extended to include lookahead pre-computations.

3.1 Performing Pre-Computations

We borrow the first two components,for dependence
detectionand speculative dataflow pre-execution,from
the previously proposeddependence-basedprefetching
(DBP) mechanism[15]. Initially designedfor prefetch-
ing linkeddatastructures,thesecomponentscanbeused
virtually unchangedto captureand pre-executeOVFC
sequences,whichareessentiallychainsof pointerderef-
erences.Thedependencepredictoris a cachein which
eachentry representsa truedatadependencebetweena
loadthatproduces(loadsfrom memory)anaddressand

a subsequentload which consumes(dereferences)that
address.For targetpre-computationwe modify thepre-
dictor to recognizea dependencebetweena loadandan
indirectcall. Loadsthatcompletecanaccessthepredic-
tor to determinewhich otherloadscanbespeculatively
issuedusing the just-loadedvalue as an input address.
A separateexecution engineservicestheseloads and
sendsthosethat themselvesproduceaddressesback to
the predictor to potentially launch other loads. The
actionsperformedby the pre-executionenginehave no
architecturallyvisible effect andarescheduledto mini-
mize interference with the main program.

3.2 Matching Pre-Computations to Predictions

Thecomponentthatconcernsusmostin thispaperis the
pre-computation/predictioninterface. For our technique
to succeed,pre-computationsmustbe pairedwith their
intendedpredictions. We call this processcorrespon-
dence sinceit amountsto maintaininga one-to-onecor-
respondencebetweenpre-computationsandpredictions.
Correspondencehastwo parts. First,apre-computation
mustfigureout which static v-call it belongsto. This is
easygivenour dependenceframework which namesthe
v-call explicitly aspart of the OVFC chain representa-
tion. Themoredifficult partis matchingapre-computa-
tion with the dynamic instanceof that v-call. A wrong
dynamicpairingcanoften result in an incorrectpredic-
tion, and thereare many ways to producewrong pair-
ings. A pre-computationmayarrive latein whichcaseit
mustdiscardedratherthanusedspuriouslyto predicta
futurev-call instance.Similarly, anearlypre-computa-
tion must be buffered until it is needed.

To solve the problem of dynamic correspondencewe
exploit non-interleaving, a common property of the
dynamic execution of programs. Considera pair of
staticprograminstructionswhich aredynamicallydata
dependent,like the O and C endpointsof an OVFC
chain. Non-interleaving saysthat a dependentO/C pair
doesnot occurin a dynamicexecutioninterleavedwith
anotherdependentO/C pair. In other words, O and C
sequencesappearin programsas O1, C1, O2, C2 and
never asO1, O2, C1, C2. If O2 wereto intercedebetween
O1 and C1, it would overwrite the value written by O1
and convert C1 to C2.

Non-interleaving helpsusto enforcecorrespondenceby
ensuringthateveryobjectreferenceOi is associatedwith
at most one dynamic instanceCXi of any dependent
staticv-call CX andthat this CXi appearsbeforeOi+1. As
a result, if a simple pre-computationcorrespondingto
CXi then it musthave beeninitiated by Oi. Similarly, a
correctn-lookaheadpre-computationfor CXi musthave
beenlaunchedby Oi-n. To exploit non-interleaving, pre-
computations must be ordered using their launch
sequence (theOi) rather than their completion order.

In thenext section,we presenta correspondenceimple-
mentation for handling simple pre-computations.
Beforewe proceed,we notethatnon-interleaving is not
a universalproperty. However, whenit doesoccur, it is
the resultof an explicitly interleaving optimizationlike
softwarepipeliningandis not random,but ratherhighly
structured.Althoughwe do not discussit in this paper,
it is simpleto extendour dependenceframework to cap-
ture these cases and correct for them.

3.3 Implementing Simple Correspondence

To exploit non-interleaving, a mechanismis requiredto
order pre-computations,or rathertheir launchingobject
references,with respectto predictions. Sincepre-com-
putations are launchedat load completion time and
retrievedduringfetch,this is accomplishedby assigning
to eachfetchedinstructiona monotonicallyincreasing
Fetch SequenceNumber(FSN). The FSN travels with
an instructionuntil it completes.A pre-computationis
tagged with the FSN of the object reference that
launched it.

With pre-computationsandpredictionssequencedusing
FSNs,we implementcorrespondenceusing two small
tables:the Pre-computationBuffering Table (PBT) and
the Pre-computationOrdering Table (POT). The PBT
stores the latest completedpre-computationfor each
static v-call while the POT storesthe FSN of the last
instanceof eachstatic object reference. At prediction
time, information in the POT is used to determine
whetheror not thepre-computationbufferedin thePBT
is the correct one.

ThePBT is indexedby staticv-call andrecordsthepre-
dicted target (TARG), the PC of the launchingobject
reference(O) and the FSN of any pre-computation
intendedfor thatstaticv-call asit completes.ThePOT
is indexed by static object referenceand recordsthe
FSNsof objectreferencesasthey arefetched. In order

for the POT to distinguishbetweenobject references
andotherloads,POT entriesareallocatedon pre-com-
putationcompletion(usingthepre-computationO field)
and onlyupdated at fetch time.

At predictiontime, a v-call instanceaccessesthe PBT
and retrieves a pre-computationcorrespondingto its
static instruction. The next stepis to decidewhetherit
was intendedfor the current dynamicv-call instance.
Recall, the correspondencecriterion for a simple pre-
computationis that it was launchedby the most recent
instanceof a staticobjectreference.To verify this con-
dition, we first obtain the static object referenceusing
theO field in thePBT. We determinethe lastdynamic
instanceof this object referenceby indexing the POT
usingO. If theFSNfoundin thePOT matchestheFSN
attachedto the pre-computationin the PBT, then the
pre-computationwasindeedlaunchedby a mostrecent
object reference and can be used to make a prediction.

Wework throughanexamplein Figure2. In part(a),as
arr[1] is fetched,the POT entry correspondingto arr[i] is
updatedwith thelatestFSN. In part(b) arr[1] completes
andlaunchesa pre-computationfor arr[1]->Print, thepre-
computationis taggedwith the launchinginstruction’s
PC (O) andFSN. On completion,the pre-computation
is depositedin thePBT. In part (c), we predicta target
for arr[1]->Print. A pre-computationis retrievedfrom the
PBT using the arr[i]->Print PC (action 1, circled). To
determinewhether or not the pre-computationcorre-
spondsweuseits objectidentifier(O) to accessthePOT
(action2). Next we comparethepre-computationFSN
with the most recentobject referenceFSN (action 3)
Since they match, we know that the pre-computation
was launchedby the most recentarr[i] (arr[1]) and was
intendedfor the current instanceof arr[i]->Print (arr[1]-
>Print). Theprecomputationis forwardedto thepredic-
tion unit (action4). Finally, in part (d) arr[2] is fetched
and the POT is again updated. This action effectively
invalidating the pre-computationin the PBT as the

FIGURE 2. Simple Correspondence Working Example. (a) arr[1] is fetched and updatesthe POT. (b) arr[1]
completesandlaunchesa pre-computationfor arr[1]->Print which is enteredinto thePBToncompletion.(c) When
a predictionfor arr[1]->Print is needed,weverify that theobjectreferencethat launchedthepre-computationin
thePBTis themostdynamicinstanceof that instruction. Verificationsucceeds,andthepre-computationcanbe
used. (d) When the next instance of arr[i] is fetched, the POT update invalidates the pre-computation.

FETCH
PC

3

FSN

8

POT
O

3

FSN

8

EXECUTE
INST

3

5
4

PCFSN
8
9
10

arr[1]

arr[1]->Valid
arr[1]->vtbl 38 arr[1]->Print10

FSN O PC INST

PRE-COMPUTE

PC TARG

PBT

10 80

FSN

8

O

3

FETCH
PC

10
?

FSN

40
41

PC TARG
PBT

10
10 80

FSN

8

O

3

POT
O

3

FSN

8

=?

FETCH
PC

3

FSN

60

POT
O

3

FSN

60

(a)

(c) (d)

(b)

1 2
34 3

object referencethat launchedit is no longer the most
recent one.

3.4 Adding One Instance Lookahead

In a lookaheadscheme,object referencesthat exhibit
eitherrecurrentbehavior (pointerchasing)or arithmeti-
cally regularinput (stride)canlaunchmultiplepre-com-
putations. A pre-computationschemeis referredto as
n-lookaheadif an object referenceOi is usedto predict
the addressof and launchpre-computationsfor object
referenceOi+n. Implementinga generaln-lookahead
pre-computationschemeis easy, but potentiallyexpen-
sive andnot extremelyuseful. We have found a 1-loo-
kahead solution to be both cheap and effective.

Implementing1-lookaheadcorrespondenceis straight-
forward. Recall,a simplepre-computationcanbeused
asapredictionif it waslaunchedby amostrecentobject
referenceinstance. Similarly, a 1-lookaheadpre-com-
putationis valid if it was initiated by the object refer-
enceinstanceprior to themostrecentone. To beableto
checkthiscondition,weextendthePOT to trackthelast
two FSNsper static object reference. We also expand
thePBT to buffer two pre-computationsperstaticv-call
(the most recent1-lookaheadpre-computationand the
mostrecentsimplepre-computation).Finally, eachpre-
computationis taggedwith lookaheadbit. At prediction
time, both pre-computationsare checked in parallel
against the samePOT entry. The simplepre-computa-
tion FSN must matchthe most recentobject reference
FSN, while the lookaheadpre-computationmust refer-
encetheprior one. In caseof multiple matches,priority
is givento thesimplepre-computationsince,not relying
on address prediction, it is more likely to be accurate.

4 Evaluation

In this section,we evaluatethe effectivenessof target
pre-computation. We presentthe reduction in v-call
mispredictionratesobserved when pre-computationis
addedto a history-basedpredictor. We do not display
direct performancedatafor the following reason. The
frequency with which our benchmarksuiteexecutesv-
calls, while relatively high, is low in absoluteterms.
Consequently, even a complete elimination of target
mispredictions is not expressed in speedups of over 3%.

Although timing datais not shown, cycle-level simula-
tion is still usedto ensurethatunreasonableassumptions
aboutthecompletionof pre-computationsarenot made.
Our resultswere obtainedusing the SimpleScalar[2]
simulator. We simulatea conventional5-stage,4-wide
superscalarpipeline with a maximum of 64 in-flight
instructions. We model speculative, out-of-orderissue
andrequireloadsto wait until all previousstoreaddress
are known. Our memory hierarchy consistsof 32KB,
32B-line, 2-way associative first-level instruction and
datacacheswith 1 cycle accesslatency and a unified
512KB, 64B-line,4-way associative secondlevel-cache
with a 12 cycle latency. Latency to memory is 70
cycles. We allow a maximumof 4 simultaneouslyout-
standing data cache misses, and model contention
throughoutthe memorysystem. Conditionalbranches
are predicted using an 8K-entry combined predictor
with 10-bithistorygshareononesideand2-bit counters
on the other. Again, we simulatetwo target prediction
schemes:BTB usesa 2K-entry, 4-way associative BTB,
PATH addsa 2K-entry direct mapped2-level predictor
with a history lengthof threetargetsto handlev-calls.
Our pre-computationmachineryconsistsof a 256-entry
dependencepredictor, and64-entryPOT andPBTstruc-

FIGURE 3. Misprediction Rate Impact. V-call target mispredictratesfor both(a) BTBand(b) path-basedtwo-
level predictorbaseconfigurations. Each baseconfiguration wasalsoaugmentedwith a simplepre-computation
scheme and a one instance lookahead scheme.

0%

20%

40%

60%

coral deltablue eqn idl ixx lcom porky richards troff

M
isp

re
di

ct
io

ns

11.011.011.0

1.5 1.5 1.5

28.125.5

16.7

0.1 0.1 0.1

7.2 7.2 7.2
2.2 1.8 1.8

24.7

14.912.7

54.0

1.0 1.0

20.3

12.611.0

BTB

BTB + Simple

BTB + 1-Lookahead

0%

10%

20%

30%

coral deltablue eqn idl ixx lcom porky richards troff

M
isp

re
di

ct
io

ns

1.0 1.0 1.4 0.0 0.0 0.0

21.7
19.5

13.9

0.3 0.3 0.3
3.7 3.7 3.7

1.6 1.3 1.3

5.7 5.4 5.2

20.1

0.7 0.7

10.7 9.8
7.7

PATH

PATH + Simple

PATH + 1-Lookahead

FIGURE 4. Breaking Down Pre-Computation Effects Would-be mispredictions broken into incorrect
predictions, correct predictions supplied by simple pre-computation and correct predictions supplied by
lookahead pre-computation. The missing portion of each bar indicates that no pre-computation was available.

0%

25%

50%

75%

100%

coral deltablue eqn idl ixx lcom porky richards troff

W
ou

ld
-b

e
M

isp
re

di
ct

io
ns Incorrect Pre-Computation

1-Lookahead Correct

Simple Correct

tures. Speculative dataflow pre-executionusestwo ded-
icatedaddressgenerationunitsandtheprocessor’s data
cache ports, although only when they are idle.

4.1 Impact on Misprediction Rates

We report the reduction in v-call mispredictions
observed when dependence-basedpre-computationis
usedto complementbothour BTB andPATH predictor
configurations. For eachbasemechanismwe evaluate
two pre-computationschemes:asimpleschemeandone
that adds 1-lookaheadpre-computations. Figure 3
shows theseresults. Overall, simple pre-computation
reducesv-call mispredictionsby 42% over BTB and
21%overPATH. Thesenumbersgrow to 46%and24%
respectively whenweadd1-lookaheadpre-computation.
As we predicted,thereis somesynergy betweenpath-
basedpredictionandpre-computation,especiallyfor the
1-lookaheadschemewhich attacksmispredictionsthat
are not easily captured by statistical correlation.

The greatestimprovementusing the simple schemeis
observed for richards, an operatingsystemscheduling
simulator. Richards hasa single,atrociouslyunpredict-
able static v-call. Fortunately, the associatedobject’s
addressis available well in advanceof the call itself,
giving simplepre-computationsampletime to complete
and supply useful predictions. Significant improve-
mentsarealsoobserved for eqn, lcom, porky and troff.
Thesebenchmarkscontainmany usesof single object
reference/multiplev-call sequencesand iteration over
object datastructureswith one or multiple v-calls per
iteration. Thesearetheprogrammingconstructswe ini-
tially identifiedasbeingsuitablefor simplepre-compu-
tation and lookahead pre-computation, respectively.

As for the other benchmarks,idl and deltablue are
highly predictableevenwith a simpleBTB andprovide
little roomfor improvement. In coral, a singlestaticv-
call contributesover 90% of the mispredictions.How-
ever, the underlyingobject structureis a databasetree
that is not addresspredictable at its outer levels.
Although object types are statistically correlated,
accountingfor the effectivenessof the path-basedpre-
dictor, objectaddressescannotbecorrectlypredictedby

our 1-lookaheadmechanism.Although ixx usesv-calls,
it alsoemploys C++ featuresthatmake thedetectionof
OVFC chainsimpossibleusingour simpledependence
detectionscheme.We do not investigatea moregeneral
dependence detector in this work.

4.2 A Closer Look at Pre-Computation

To provide further insightandsupportour earlierasser-
tions,webreakdown thepositiveandnegativecontribu-
tions of our technique. On the positive side we are
interestedin the fraction of would-be mispredictions
thatwerecorrected by pre-computations.On thenega-
tive side,we countthe numberof mispredictionsintro-
duced by pre-computations.Thesearewould-becorrect
predictions that were overturned.

Thegraphin Figure4 breaksdown correctedmispredic-
tions for the 1-lookaheadscheme.The left bar in each
group shows resultsfor the BTB basedconfiguration,
the bar on the right for the PATH basedconfiguration.
Eachbarshows thefractionof would-bemispredictions
that wereeithercorrectedby a simplepre-computation
(blackportion,bottom),correctedby a1-lookaheadpre-
computation(grayportion,middle)or receivedanincor-
rectpre-computation(whiteportion,top). Pre-computa-
tions arenot alwaysavailabledueto either insufficient
time or aninability to correctlypredictthenext object’s
address, as indicated by the missing portion of each bar.

We make threeobservationsfrom this plot. First, most
v-call mispredictionsare sufficiently distantfrom their
associatedobject references,giving even simple pre-
computationstime to complete. Timely pre-computa-
tions areavailable for mostmispredictions,at leastfor
benchmarkswith significanta priori mispredictionrates
like eqn, porky, richards, andtroff. Second,whenapre-
computationis available,it is usuallyaccurate(at least
75%of thetimeandcompletelyaccuratein somecases).
Finally, both availability andaccuracy arehigherin the
BTB context than in PATH with most of this discrep-
ancy is dueto a reductionin relative effectivenessof the
simplescheme. This is not a surprisesinceboth path-
basedpredictorsandsimplepre-computationattackthe
samekindsof v-call mispredictions,namelysecondand

subsequent v-calls to the same object reference.

Thenumbersin Figure4 donotmatchuppreciselywith
the mispredictionratesshown previously. The reason
for the mismatchis that, althoughit mimics program
actions,pre-computationoccasionallyprovides incor-
rect targets, mainly due to conditional execution and
lookaheadaddressmisprediction. Introducedmispre-
dictions occur when incorrect pre-computationsover-
ride would-becorrectBTB or PATH predictions. The
fraction of correct predictionsturned into mispredic-
tions varies from 0% to 4% in the BTB configuration
andfrom 0% to 7% in thePATH configurationwith the
differenceattributed to the fact that PATH simply pro-
ducesmore correct predictions. In those rare cases
where more mispredictionsare introduced than cor-
rected,for instancein coral, aconfidenceschemecanbe
usedto selectively disablepre-computation.Our exper-
iments found that the addition of confidencemostly
eliminatesintroducedmispredictions,but also slightly
reducesthe observed benefit for eqn, troff, porky and
richards as some impending mispredictions attain
unjustifiably high confidence levels.

In addition to eliminating introducedmispredictions,a
confidencemechanismscanalsobe usedto reducethe
numberof unnecessarypre-computations. Theseare
pre-computationsthat typically arrive late, are unsuc-
cessfulatcorrectingmispredictionsor attackv-callsthat
are likely to be predictedcorrectly anyway. We note,
however, that while unnecessarypre-computationsmay
be not be ideal, they do not directly disturbthe execut-
ing program. Pre-computationsrarelymissin thecache
andeven whenthey do, they often provide a beneficial
prefetchingeffect. Theonly adverseeffect of unneces-
sary pre-computationsis contentionwith other, poten-
tially useful, pre-computations.

5 Related Work

Indirectjumptargetpredictionin general,andv-call tar-
get prediction in particular, have been the subjectof
somerecentinvestigation. A numberof softwaremeth-
ods have been proposed that convert v-calls into
cheaper, andmorepredictable,direct calls [1, 5, 9, 10].
Where applicable,these techniquesare preferableto
hardwaresolutionssincethey reducethecostof thecall
itself and improve its target predictability. They also
expandthe scopeof compiler analysisand enablefur-
theroptimizations.However, thesemethodshave draw-
backsas well: they may be overly conservative, incur
software misprediction detection and recovery over-
head,replaceunpredictablev-calls with equallyunpre-
dictable branches,or duplicate code. One emerging
possibility is to duplicateour pre-computationprocess
in eithersoftware,usingarchitectedbranchspeculation
constructslike thePlayDoharchitecture[12] branchtar-
get register file and prepare-to-branchinstructions,or

microcode[4]. In both cases,multithreadingmay be
used to hide the cost of the pre-computation.

A similar volumeof work hasbeendonein the areaof
hardware predictionmechanismsalthoughmost target
indirect calls in generalratherthan the somewhat nar-
rowerclassof v-calls. All of these[3, 6, 7, 11] usesome
form of history (branchor path based)BTB indexing.
Theadvantageof thesetechniquesis arguablehardware
simplicity and leverageof existing control prediction
structuresand techniques. Thesetechniquesimprove
predictionaccuracy for a largerclassof indirectcontrol
transfers,but donotperformaswell onv-callsin partic-
ular. Themainreasonfor this deficiency is thatrelevant
piecesin thehistoryarebothdifficult to isolateandvary
on a call-by-call basis;recentwork [11] hasbegun to
attack this problem.

The useof pre-executiontechniquesfor branchpredic-
tion is a still more recentdevelopment[8, 16]. The
branch flow windowapproach[8] usesstaticinstruction
tagging to copy instruction sequencesthat compute
branchoutcomesinto aseparatebuffer. To producepre-
dictions, the computation is executed without side
effectsusingpredictedvaluesasinputs. This technique
hasbeenshown to applyto branchesin general,but can
handle only a single loop-resident,input-predictable
branchat a time. Our pre-executionmethodusesload-
value dependencesto drive a decoupled execution
engine. Load valuedependencesandthe components
that captureand manipulatethem were initially pro-
posed for use in prefetching linked data structures [15].

6 Summary and Future Directions

We introducedependence-basedpre-computationas a
complementto history-basedmethodsfor v-call target
prediction. Our mechanismleveragespreviously pro-
posedprefetchinghardwareto capturethecharacteristic
instruction sequencethat computesthe v-call target.
Given the appropriateinput, it then pre-executesthe
sequenceto supply a target prediction. Dependence-
basedpre-computationreducesv-call target mispredic-
tions46%over a BTB and24%over a path-basedtwo-
level predictor. We make the following contributions:

• We introducepre-computationas a complementary
methodfor supplying target predictionsfor virtual
functioncalls. We arguethathistorybasedschemes
are fundamentallylimited by target history aliasing
and a lack of correlationacrossobjects,and show
that pre-computationhasthe potentialfor overcom-
ing these limitations.

• We show that a common v-call implementation
allows us to leveragea previously proposeddepen-
dence-basedprefetchingmechanismto captureand
perform the appropriate pre-computation.

• We show that correspondence,the problem of
matchingpre-computationswith predictions,canbe
solvedby exploiting a commonpropertyof dynamic
programexecution. We devisea compactschemeto
implement correspondence reliably.

Thework presentedin this paperis an initial foray into
the areaof dependence-basedtarget pre-computation,
and the proposedimplementationsimply demonstrates
the potential power of this technique. Many other
implementationsare possible,and several are likely to
be moreeffective, efficient, andpractical. In addition,
thedesignspaceweoutlinedhasnotbeenfully explored
andthe interactionbetweendifferentpointsalongeach
of its dimensionsis unclear. How would two-instance
lookaheadperform?Is therea benefitto adoptingdiffer-
ent lookaheadpolicies on a static v-call basis?These
andmany otherquestionsareopen. Along otherfronts,
work hasalreadybegunon usingpre-computationvari-
ants to attack chronically mispredicted conditional
branchesandpre-computationis gainingpopularityasa
general purpose technique with many applications.

Acknowledgements

TheauthorsthankCraigZilles for hiscommentsonsev-
eraldraftsof this paper, andtheanonymousrefereesfor
their suggestions.This work wassupportedin part by
NSFgrantMIP-9505853andby anequipmentdonation
from Intel. Amir Roth is supportedby a Cooperative
Graduate Fellowship from IBM.

References

[1] G. Aigner andU. Hoelzle.EliminatingVirtual Function
Callsin C++ Programs.In Proc. 10th European Confer-
ence on Object Oriented Programming, Jun. 1996.

[2] D.C. Burger and T.M. Austin. The SimpleScalarTool
Set,Version2.0.TechnicalReportCS-TR-97-1342,Uni-
versity of Wisconsin-Madison, Jun. 1997.

[3] P-Y.Chang,E. Hao,andY.N. Patt.TargetPredictionfor
IndirectJumps.In Proc. 24th Annual International Sym-
posium on Computer Architecture, pages274–283,Jun
1997.

[4] R.S. Chappell,J.Stark,S.P.Kim, S.K. Reinhardt,and
Y.N. Patt. SimultaneousSubordinateMicrothreading
(SSMT).In Proc. 26th Annual International Symposium
on Computer Architecture, May 1999.

[5] G. DeFouw,D. Grove,andC. Chambers.FastInterpro-
ceduralClassAnalysis.In Proc. Annual Conference on
Principles of Programming Languages, pages222–236,
Jan 1998.

[6] K. Driesen and U. Hoelzle. Accurate Indirect Branch
Prediction.In Proc. 25th International Symposium on
Computer Architecture, pages 167–178, Jun. 1998.

[7] K. Driesen and U. Hoelzle. The CascadedPredictor:
EconomicalandAdaptiveBranchTargetPrediction.In
Proc. 31st International Symposium on Microarchitec-
ture, pages 249–258, Dec. 1998.

[8] A. Farcy,O. Temam,R. Espasa,andT. Juan.Dataflow
Analysisof BranchMispredictionsandIts Applicationto
Early Resolutionof BranchOutcomes.In Proc. 31st In-
ternational Symposium on Microarchitecture, pages59–

68, Dec. 1998.
[9] D. Grove,J.Dean,C. Garrett,andC. Chambers.Profile-

GuidedReceiverClassPrediction.In Proc. 10th Annual
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages108–128,Oct1995.

[10] U. Hoelzle.AdaptiveOptimizationfor SELF:Reconcil-
ing High Performancewith ExploratoryProgramming.
Technical report, Stanford University, 1994.

[11] J.Kalamatianosand D.R. Kaeli. Predicting Indirect
Branchesvia DataCompression.In Proc. 31st Interna-
tional Symposium on Microarchitecture, pages272–281,
Dec. 1998.

[12] V. Kathail,M. Schlansker,andB.R. Rau.HPL PlayDoh
ArchitectureSpecification:Version 1.0. TechnicalRe-
port HPL-93-80, HP Laboratories, Feb. 1994.

[13] S.MehrotraandL. Harrison.Examinationof a Memory
AccessClassificationSchemefor Pointer-Intensiveand
Numeric Program.In Proc. 10th International Confer-
ence on Supercomputing, pages 133–139, May 1996.

[14] R. Ramakrishnan, W.G. Roth, P.Seshadri,
D. Srivastava,andS.Sudarshan.TheCORAL Deductive
DatabaseSystem.In Proc. 1993 ACM SIGMOD Interna-
tional Conference on Management of Data, pages544–
545, 1993.

[15] A. Roth, A. Moshovos, and G.S. Sohi. Dependence
BasedPrefetchingfor Linked DataStructures.In Proc.
8th Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages115–126,
Oct. 1998.

[16] A. RothandG.S.Sohi.NewMethodsfor ExploitingPro-
gramStructureandBehaviorin ComputerArchitecture.
In Proc. 2nd International Workshop on Innovative Ar-
chitecture, pages 24–28, Oct. 1998.

