Improving Virtual Function Call Target Prediction via
Dependence-Based Pre-Computation

Amir Roth, Andreas Moshms and Gurindar S. Sohi

Computer Sciences Department
University of Wssconsin-Madison
1210 W Dayton Street, Madison, WI 53706
{amir, moshovos, sohi}@cs.wisc.edu

Abstract
We introduce dependence-baseate-computationas a

complemento history-basedarget predictionschemes.

We presentpre-computationin the contet of virtual

functioncalls (v-calls), a classof contiol transfes that
is becomingincreasingly important and has resisted
corventional prediction. Our proposed technique
dynamicallyidentifiesthe sequenceof operations that
computes v-call’s target. Whenthe first instructionin

sud a sequenceis encounteed, a small execution
enginespeculativelyand aggressivelypre-executesthe
rest. The pre-computedtarget is stored and subse-
guentlyusedwhena prediction needsto be made We

showthat a commorv-call instructionsequencean be
exploited to implementpre-computatiorusing a previ-

ously proposed prefetthiing medanism and minimal
additional hardware. In a suite of C++ programs,
dependence-baseaare-computationeliminates46% of

themispredictionsincurredby a simpleBTBand 24% of

those associated with a path-based twel@redictor

1 Introduction

Accuratebranchand tamget predictionis an important
factor in maintaining a continuoussupply of useful
instructionsfor processing. Traditional prediction is
done dynamically and works by capturing patternsin
the outcome(direction or tamget) history of the branch
stream.While thesetechnique$iandlemary of thecon-
trol transferfoundin programssomecontinueto resist.
In this paper we presenta complementaryapproachn
which branchtargetsarecorrelatedwith theinstructions
that computethem rather than with previous tamets.
Our mechanisnpre-computesargetsratherthanguess-
ing at them statistically

In this initial work, we concentrateon pre-computing
virtual functioncall (v-call) targets. The v-call mecha-
nismenablesodereuseby allowing a singlestaticfunc-

tion call to transparentlynvoke oneof multiple function
implementationshasedon run-time type information.
As shavn in Table 1, v-calls are currently used in

object-orientegorogramswith frequenciesangingfrom

1in 200to 1000instructions(4 to 20 timesfewer than
direct calls and 30 to 150 timesfewer than conditional
branches).V-call importancewill increaseasobject-ori-
entedanguagesindmethodologiegain popularity For

now, v-calls make an ideal illustration vehicle for pre-
computatiortechniquesincetheir targetsareboth diffi-

cult to predict and easy to pre-compute.

Corventional target prediction techniquesare branch
tamget buffers (BTB), which store a single tamget per
static instruction, and path-basedwo-level predictors
[3, 6], which associate¢argetswith staticinstruction/tar-
get-historycombinations.BTBs cannoteffectively han-
dle v-calls, which feature multiple targets per static
instruction. On the otherhand,sincev-call targetsare
determinedby objecttype, path-historybasedschemes
can exploit the correlationbetweenmultiple v-calls to
the sameobject refeenceto predict the targets of the
subsequent-calls. However, they frequently mispre-
dict the initial v-call in sucha sequenceind mustcon-
tendwith aliasingthatresultsfrom theincorporationof
irrelevant information into the tget history

A pre-computatiomapproachjn which tametsare pre-
computedusing “recipes” extractedfrom the executing
program,canavoid theseproblems. Pre-computatiors
program-basedaturegivesit mary advantages.Mim-
icking programactionsdirectly rather than extracting
statistical correlationsfrom addressstreamstranslates
into improved prediction accuracy. A programbased
representatiors alsomore compacthana historybased
oneandavoidsthealiasing problemshatplaguethelat-
ter. Finally, pre-computationhas a shorter learning
period andworksevenin the absenceof statisticalcor-
relation Althoughit is agenerapurposeechniquehat
can be appliedto ary type of instruction, v-call pre-
computationhasa particularly simple hardware imple-
mentationthat leveragesa previously proposedmecha-
nism for prefetchinglinked datastructureg15]. As a

complementto corventional prediction, pre-computa-
tion reduces mispredictions by 24%.

In the rest of the paper Section 2 presentsa more
detailedoverview of the problemandour proposedolu-
tion. We describeanimplementationin Section3 and
evaluateit in sectiond. Thelastsectiongdiscusgelated
work and our conclusions.

2 Target Pre-Computation

Thepurposeof this sectionis two-fold. We begin with a
moredetaileddiscussioron the effectivenesf corven-
tional, history-basedechniquesn predictingv-call tar-
gets. Thenwe describea commonimplementatiorof v-
callsandshav how we canexploit this implementation
to createa pre-computation solutionthatavoids someof
thesedifficulties. We supportour qualitatve arguments
with dataand examplesfrom the OOCSB C++ bench-
mark suite,a collectionof programsthathasbeenused
to study indirect call target prediction [6], and Coral
[14], adeductve databaselevelopedat the University of
Wisconsin. We compiledthe programsfor the MIPS-I
architectureusing the GNU GCC 2.6.3 compiler with
flags- Q2 and- fi nl i ne-functi ons. Tablel sum-
marizes the benchmarks their input parametersand
dynamicinstructioncounts. It alsoshavs thetotal num-

ber of static and dynamic v-calls for each benchmark.

2.1 Conventional Target Prediction

History-basedschemedor predictingv-call targetsare
thebranchtargetbuffer (BTB) andtheproposedthough
as yet unimplemented path-basedwo-level predictor
[3, 6]. ThesimpleBTB recordghelasttargetof all con-

trol transferinstructions,including v-calls. BTBs are
effective for control transfersthat have only one possi-
ble taken tamet, like direct calls and conditional
branches.They do not effectively predictv-calls,which
feature multiple targets per static instruction, unless
individual static v-calls exhibit high levels of temporal
target locality. Path-basedwo-level predictorsover-
comethis problemby maintaininga history of recent
indirect targets and associatingtargets with static
instruction/historypairs. Additional datain Table 1
shaws v-call target mispredictionratesfor two predictor
configurations. The BTB configurationusesa 4-way
associatie, 2K-entry BTB. PATH adds a direct-
mapped,untagged2K-entry path-basedpredictor that
uses a three tget (4 bits per tget) history

Although PATH eliminates68% of the mispredictions
incurredby BTB, therearestill caseghatit cannothan-
dle. To understandhesehardto predictcaseswe look
to the programsthemseles. A high rate of v-calls
impliesiterationover a collectionof objectswith poten-
tially multiple v-calls per objectreference.Sincev-call
targetsaredeterminedy objecttype, it is not surprising
that v-calls using the sameobjectreferenceare highly
correlated. As a result, once the first v-call tamget is
known, the secondand subsequensame-reference-
calls can usually be predictedby history-basedtech-
nigues. Predictingthe first v-call’s targetis more diffi-
cult. Here, history-basedschemesmay succeedif
objectsarestatisticallyorderedby type, however this is
not alwaysthe case. Objectsmay be orderedrandomly
asin richards, or in an input-dependentvay, asin ixx
and porky. History basedschemesnust also contend
with aliasing, which occurswhenirrelevanttargetsare
incorporatedinto the history Aliasing, often due to
intersperseaalls to multiple objects,occursfrequently
in egn andtroff.

Dyn | v-calls BTB PATH

Inst
Program Description Input Parameters | Count | Stat | Dyn | Misp | 90% | Misp | 90%
coral deductive database | 4 joins, 110 relations| 170M| 54| 1350K| 11.0% 1| 0.1% 1
deltablue | constraint solver 10,000 constraints 179M| 16| 4250K| 1.5% 2| 0.0% 1
egn equation formatter | eqn.input.all 71IM| 111| 100K| 28.1%| 18| 21.7%| 24
idl IDL compiler all.idl.i 81M| 516| 1756K| 0.1% 4| 0.1%| 16
IXX IDL parser Som_PlusFresco.idl 49M | 157| 102K| 7.2%| 10| 3.7% 9
Icom VHDL compiler circuit3.| 192M| 321| 1103K| 2.2%| 31| 1.6%| 47
porky SUIF middleware | g2shp.snt 323M| 270| 2636K| 24.7% 5| 6.4%| 12
richards OSsimulator 50 processes 372M 7| 3290K| 54.0% 1] 20.1% 1
troff text formatter gce.l 98M| 116| 827K| 20.3% 7| 10.7% 8

Table 1. OOCSB benchmarks. Satic and dynamic v-call counts. V-call misprediction rates on a 4-way
associative, 2K-entry BTB and a 2K-entry direct-mapped path-based two-level predictor with a history depth of
three targets. Number of static calls that account for 90% of all BTB and PATH mispredictions.

2.2 Our Solution

We introduce dependence-basqute-computationas a
complemento history-basegrediction. Pre-computa-
tion is a program-basetkchniquethat captureghe tar-
get generation process and mimics it to obtain
predictions. By consideringinformation relevant to a
particularv-call in isolation,pre-computatioravoidsthe
aliasing problemsthat plague history basedschemes
schemes. Pre-computatiortan also supply predictions
in the absence of statisticaldat correlation.

Pre-computationis a general techniquethat can be
appliedto ary type of instruction. However, v-call tar-
get pre-computatiorcan be implementedas a minimal
addition to a previously proposedprefetchingmecha-
nism[15]. The simpleimplementatiorexploits a com-
mon v-call implementation:the virtual function table
(vtbl) shawvnin Figurel. Part(a) shavs anexampleof a
classBase anda classDerived that implementmethods
(classfunctions)Valid andPrint. The v-call mechanism
allows the programmerto treat an array of objectsof
mixedtypesBase andDerived uniformly andusea v-call
to invoke the correctfunction implementations.A vtbl
containsthe addressegat predeterminedffsets)of all
the methodsaccessibléby a given objectclass. Every
object is initialized with a pointer to the vtbl corre-
spondingto its classand accessegts functionsvia this
pointerasshowvn in figure 1(b). Thecharacteristiz-call
implementationwhich we call OVFC, accessethe vtbl
usinga sequencef threedependentoadsandan indi-

Object, the secondusesthe objects baseaddressto
accessits Vibl, and the third retrieves the Function
addresswhich is usedby theindirectCall. The OVFC
sequencesorrespondingo the Valid and Print calls are
showvn boldfacedin figure 1(c). Note that both VFC
chainsusethesameobjectreferenceD. Likewise,asin-
gle VFC chainmaybe dynamicallyattachedo multiple
static Os due to the use of conditionals.

Targetpre-computatioris a simpleprocess.For agiven
v-call site,weisolatethe OVFC sequencéhatcalculates
the target address. Whenerer an instanceof the first
instructionin the sequencgO) completeswe quickly
pre-ecutetherestandcalculatea targetin anticipation
of having to male a prediction. A calculationthatcom-
pletesbeforethe actualv-call (C) is encountered¢anbe
usedto supplya prediction. We shaw the pre-computa-
tion processin the abstractin Figure 1(d) scenariol
(shaded). The left and right most parts of the figure
shav the executeand fetch schedulesrespectiely, for
the loop from part (a) of the figure. Perour proposed
solution,assoonastheinstruction3 (O) completeswe
consultan internal representatiorand pre-execute the
remainderof the dependencehain (VFC). The pre-
computedargetis bufferedandusedto predictthe next
fetchedinstanceof instruction6. We call thesekinds of
pre-computationsimple pre-computations.

Figure1(d) containsonecritical abstractionnamelythe
misrepresentedistancebetweenthe launchof the pre-
computation(completionof instruction3) andthe pre-

rect call. The initial load accesseghe baseof the diction that usesits result(fetch of the instructionthat

succeed®). On anaggressie processarthis distance

(a) class Base (c) 1: Iw$16, arr (d) o E)|(,\IIESCTUTE PRE-COMPUTE ENGINE FEF')rgH
virtual void Print(){ ... }] |I§ P0¥4$107(,$fg) o - 0
virtual int Valid() { ... - 19 1w 94, ——
0{..} W3 008d) V, 3 | ano] \PC |NOST _ @™ [=
class Derived : public Base| ~ 15: Iw$3,0($3) F, 4 |arol>vil |\ ") 4 janOl>viol 77 15 |
void Print() { ... } 16: jalr $3 C, 5 | arr[0]->vtbl->Valid 5 | arf0]->vibl->Valid| [6 |
int Valid() { ... I7: bne $2, F Bl IR 6 | jalrVald {50
18: w$3,0$4) Vo 30 2) |51
Base * arr[ASIZE], 19: Iw $3’ 4($3) FP ___Sj_/\/: 8 arr[O]->thI O '§9\
10: jalr $3 Cp T8 [anfovier | 9 | arr[0]->vtbl->Print 9
for (i = 0; i < ASIZE; i++) F: 11 addiu$16,$16,4 | 9 [anf0]->vtbl->Print| \| 10] jalr Print \1_0
if (arr[i]->Valid()) I : "eq7 E | [Fo[garPrnt ‘ ORE
art[il->Print() l12: addu $17, $17, 1 || = 3 Jari] N
! 113: blt$17, ASIZE, L v s——— [ilaom %
, T3 TamT— [[5]aril>vbl>Vaid] 7]
(b) arr anf] o Base::vbl 4 Taniove] 6 | Jalr Vaiid =
— vtbl p)| Base::Valid 19(C ~vibl>val 6 |
p) 5 | ar1]->vtbl->Valid [6 |

FIGURE 1. V-call mechanism and pre-computation. (a) Classes Base and Derived both implement functions
Valid and Print. A collection of these objects may be treated uniformly as a collection of Base objects. (b,c)
Runtime v-call target disambiguation is performed with code that traverses a per class-type function table through
a special pointer found in each object. (d) The v-call disambiguation mechanism can be pre-computed to achieve

a target prediction effect.

may not exist atall. Pre-computatiomelieson this sep-
arationto provide a timely predictions. A distanceof
only afew dynamicinstructionampliesthatwe maynot
be able to complete the pre-computation in time.

Fortunately two commonprogrammingconstructspro-
vide us with the necessarydynamic instruction spac-
ing. First, mary object referencesare usedto make
multiple v-calls, eachof which will beincreasinglydis-
tantfrom the objectreference.In our example eachref-
erenceo the objectin art[i] is usedto make callsto Valid
andPrint. While thecall to Valid is probablytoo closeto
the objectreferenceart|i] to receve a timely prediction,
thesubsequentall to Print is probablydistantenoughas
shavn in Figure1(d) scenarid2. Secondmary objects
aretypically keptin datastructures|ike arraysor lists,
that areamenabldo addresgprediction[2, 13]. While
referencingoneobjectin the datastructurewe canpre-
dicttheaddresgor thenext objectandusethis predicted
addressto launch pre-computations. For instance,in
scenario3 of Figure 1(d) we launcha pre-computation
for ar{1]->Valid usingthe addressarr[0] and stride infor-
mation. Pre-computationdaunchedwith the help of
object addresspredictionsare called n-lookahead pre-
computations with n beingthe objectreferencedistance
betweenthe current object and the addresspredicted
object (=1 in our example). An implementationof
simple and lookaheadpre-computatioris describedin
the net section.

3 Mechanism

Ourimplementatiorof dependence-basgue-computa-
tion comprisesthree main components. The first is
responsibldor detectingdatadependenceamongloads
and betweenloads and indirect calls and representing
thesedependencemternally The secondis a simple
dataflov enginethat usesthis internalrepresentatiomo
aggressiely executedependenthainsthatterminatein
indirectcalls. Thefinal piece,andthe focusof our pre-
sentation,collects the pre-computatiorresults, orders
themandorchestratesheir useby the processos main
target prediction mechanism. We describean imple-
mentationof the basicsolution,thenshaov how it canbe
extended to include lookahead pre-computations.

3.1 Performing Pre-Computations

We borraw the first two componentsfor dependence
detectionand speculatre dataflav pre-execution,from
the previously proposeddependence-basequtefetching
(DBP) mechanisnil15]. Initially designedor prefetch-
ing linkeddatastructuresthesecomponentganbeused
virtually unchangedo captureand pre-execute OVFC
sequencesyhich areessentiallychainsof pointerderef-
erences.The dependenceredictoris a cachein which
eachentry represents true datadependenceetweera
load that producegloadsfrom memory)anaddressand

a subsequenipad which consumegdereferencesphat
address.For target pre-computationwe modify the pre-
dictor to recognizea dependencbetweeraloadandan
indirectcall. Loadsthatcompletecanaccesshepredic-
tor to determinewhich otherloadscanbe speculatiely
issuedusing the just-loadedvalue as an input address.
A separateaxecution engine servicestheseloads and
sendsthosethat themseles produceaddressebdack to
the predictor to potentially launch other loads. The
actionsperformedby the pre-eecutionenginehave no
architecturallyvisible effect and are scheduledo mini-
mize interference with the main program.

3.2 Matching Pre-Computationsto Predictions

Thecomponenthatconcernsismostin this paperis the
pre-computation/predictioimterface. For ourtechnique
to succeedpre-computationsnustbe pairedwith their
intendedpredictions. We call this processcorrespon-
dence sinceit amountgo maintaininga one-to-onecor-
respondencbetweerpre-computationandpredictions.
Correspondendeastwo parts. First,apre-computation
mustfigure out which static v-call it belongsto. Thisis
easygivenour dependenc&éamevork which nameghe
v-call explicitly aspartof the OVFC chainrepresenta-
tion. Themoredifficult partis matchinga pre-computa-
tion with the dynamic instanceof thatv-call. A wrong
dynamicpairing canoftenresultin anincorrectpredic-
tion, and thereare mary waysto producewrong pair-
ings. A pre-computatiomayarrive latein which caset
mustdiscardedratherthan usedspuriouslyto predicta
future v-call instance. Similarly, an early pre-computa-
tion must be bffered until it is needed.

To solwe the problem of dynamic correspondenceve
exploit non-interleaving, a common property of the
dynamic execution of programs. Considera pair of

static programinstructionswhich are dynamicallydata
dependentjike the O and C endpointsof an OVFC

chain. Non-interleaing saysthata dependen®/C pair
doesnot occurin a dynamicexecutioninterleaved with

anotherdependen©O/C pair. In otherwords,O andC

sequencesppearin programsas Oy, C4, O,, C, and
neveras0y, 0,, Cq, Co. If O, wereto intercedebetween
04 andCy, it would overwrite the value written by O

and conertC, to C,.

Non-interleaing helpsusto enforcecorrespondencky
ensuringhatevery objectreferenced; is associateabith

at most one dynamic instanceCy; of ary dependent
staticv-call Cy andthatthis Cy; appeardeforeQ;, . As

a result, if a simple pre-computatiorcorrespondingo
Cy; thenit musthave beeninitiated by O;. Similarly, a

correctn-lookaheadpre-computatiorfor Cy; musthave
beenlaunchedoy O;,,. To exploit non-interleaing, pre-

computations must be ordered using their launch
sequence (th®;) rather than their completion order

In the next section,we presenta correspondencinple-
mentation for handling simple pre-computations.
Beforewe proceedwe notethatnon-interleaing is not
auniversalproperty However, whenit doesoccur it is
the resultof an explicitly interleaving optimizationlike
softwarepipeliningandis not random but ratherhighly
structured. Althoughwe do not discusst in this paper
it is simpleto extendour dependencé&amevork to cap-
ture these cases and correct for them.

3.3 Implementing Simple Correspondence

To exploit non-interle&ing, a mechanisnis requiredto

order pre-computationyr rathertheir launchingobject
referenceswith respecto predictions. Sincepre-com-
putations are launchedat load completion time and
retrievedduringfetch, thisis accomplishedby assigning
to eachfetchedinstructiona monotonicallyincreasing
Fetch SequenceNumber(FSN). The FSN travels with

aninstructionuntil it completes. A pre-computations

tagged with the FSN of the object reference that
launched it.

With pre-computationandpredictionssequencedsing
FSNs, we implementcorrespondencesing two small
tables:the Pre-computatiorBuffering Table (PBT) and
the Pre-computatiorOrdering Table (POT). The PBT
storesthe latest completedpre-computationfor each
static v-call while the POT storesthe FSN of the last
instanceof eachstatic objectreference. At prediction
time, information in the POT is usedto determine
whetheror not the pre-computatiomufferedin the PBT
is the correct one.

The PBT is indexed by static v-call andrecordsthe pre-
dicted target (TARG), the PC of the launchingobject
reference(O) and the FSN of ary pre-computation
intendedfor that staticv-call asit completes.The POT
is indexed by static object refelence and recordsthe
FSNsof objectreferencessthey arefetched. In order

for the POT to distinguish betweenobject references
andotherloads,POT entriesareallocatedon pre-com-
putationcompletion(usingthe pre-computatior© field)
and onlyupdatedat fetch time.

At predictiontime, a v-call instanceaccesseshe PBT
and retrieves a pre-computationcorrespondingto its
staticinstruction. The next stepis to decidewhetherit

was intendedfor the currentdynamicv-call instance.
Recall, the correspondenceriterion for a simple pre-
computationis that it waslaunchedby the mostrecent
instanceof a staticobjectreference.To verify this con-
dition, we first obtain the static objectreferenceusing
the O field in the PBT. We determinethe lastdynamic
instanceof this object referenceby indexing the POT

usingO. If theFSNfoundin the POT matchegshe FSN
attachedto the pre-computatiorin the PBT, then the
pre-computatiorwasindeedlaunchedby a mostrecent
object reference and can be used toerakrediction.

We work throughanexamplein Figure2. In part(a),as
arr[1] is fetched,the POT entry correspondingdo art[i] is
updatedwith thelatestFSN. In part(b) arf[1] completes
andlaunchesa pre-computatiorfior arr[1]->Print, the pre-
computationis taggedwith the launchinginstructions
PC (O) andFSN. On completion,the pre-computation
is depositedn the PBT. In part(c), we predicta target
for ar1]->Print. A pre-computations retrieved from the
PBT using the arr{i]->Print PC (action 1, circled). To
determinewhether or not the pre-computationcorre-
spondswe useits objectidentifier (O) to accesshe POT
(action2). Next we comparethe pre-computatior-SN
with the most recentobject referenceFSN (action 3)
Since they match, we know that the pre-computation
was launchedby the most recentarr|i] (arr[1]) and was
intendedfor the currentinstanceof arri]->Print (arr[1]-
>Print). The precomputations forwardedto the predic-
tion unit (action4). Finally, in part(d) ar2] is fetched
andthe POT is again updated. This action effectively
invalidating the pre-computationin the PBT as the

(@ FETCH POT (b) EXECUTE PRE-COMPUTE PBT
FSN PC O FSN FSN PC INST
8 | 3 ari] FSN O PC INST PC TARG FSN O
8 |3 3] 8 9 | 4 [an1]->vtbl \‘I 8 |3 |10|arr[1]->Print|\
10 | 5 |an{1}->Vald 10| 80 | 8 |3
© FETCH PBT POT @ FETCH POT
FSN PC PC TARG FSN O O FSN FSN PC O FSN
10
RO MERRRIONEE 60 | 3 3] 60
a2
~—@! O~

FIGURE 2. Simple Correspondence Working Example. (a) arrf1] is fetthed and updatesthe POT. (b) arr[1]
completesindlaundchesa pre-computatiorior arr[1]->Print which is enteedinto the PBTon completion.(c) When
a predictionfor arr[1]->Print is neededye verify that the objectrefelencethat laundhedthe pre-computationn

the PBT is the mostdynamicinstanceof that instruction. \erification succeedsand the pre-computatiorcan be
used. (d) When the xtanstance of arr[i] is fethed, the PO update imalidates the p-computation.

objectreferencethat launchedit is no longerthe most
recent one.

3.4 Adding One I nstance L ookahead

In a lookaheadschemeobject referenceghat exhibit

eitherrecurrentbehaior (pointerchasing)or arithmeti-

cally regularinput (stride)canlaunchmultiple pre-com-
putations. A pre-computatiorschemeis referredto as

n-lookaheadf an objectreference0; is usedto predict
the addressof and launch pre-computationgor object
reference0,,,. Implementinga generaln-lookahead
pre-computatiorschemes easy but potentially expen-

sive and not extremelyuseful. We have found a 1-loo-

kahead solution to be both cheap aridative.

Implementing1-lookaheadcorrespondenceés straight-
forward. Recall,a simplepre-computatiorcanbe used
asapredictionif it waslaunchediy amostrecentobject
referenceinstance. Similarly, a 1-lookaheadpre-com-
putationis valid if it wasinitiated by the objectrefer-

enceinstanceprior to themostrecentone. To beableto

checkthis condition,we extendthe POT to trackthelast

two FSNsper static object reference. We also expand
the PBT to buffer two pre-computationper staticv-call

(the mostrecentl-lookaheadpre-computatiorand the

mostrecentsimplepre-computation) Finally, eachpre-

computatioris taggedwith lookaheadit. At prediction
time, both pre-computationsare checled in parallel

againstthe samePOT entry The simple pre-computa-
tion FSN must matchthe mostrecentobjectreference
FSN, while the lookaheadpre-computatiormustrefer-

encetheprior one. In caseof multiple matchespriority

is givento the simplepre-computatiorsince,notrelying

on address prediction, it is moredlk to be accurate.

4 Evaluation

In this section,we evaluatethe effectivenessof tarmget
pre-computation. We presentthe reductionin v-call
mispredictionrates obsened when pre-computations
addedto a history-basedpredictor We do not display
direct performancedatafor the following reason. The
frequeng with which our benchmarksuite executesv-
calls, while relatively high, is low in absoluteterms.
Consequentlyeven a complete elimination of target
mispredictions is nobgressed in speedups ofer 3%.

Although timing datais not shown, cycle-level simula-
tion s still usedto ensurghatunreasonablassumptions
aboutthe completionof pre-computationarenot made.
Our resultswere obtainedusing the SimpleScalaf2]
simulator We simulatea corventional5-stage 4-wide
superscalapipeline with a maximum of 64 in-flight
instructions. We model speculatie, out-of-orderissue
andrequireloadsto wait until all previous storeaddress
are known. Our memory hierarcly consistsof 32KB,
32B-line, 2-way associatie first-level instruction and
data cacheswith 1 cycle accesdateny and a unified
512KB, 64B-line,4-way associatie secondevel-cache
with a 12 cycle lateny. Lateny to memoryis 70
cycles. We allow a maximumof 4 simultaneoushout-
standing data cache misses, and model contention
throughoutthe memory system. Conditionalbranches
are predicted using an 8K-entry combined predictor
with 10-bit historygshareon onesideand?2-bit counters
on the other Again, we simulatetwo target prediction
schemesBTB usesa 2K-entry, 4-way associatie BTB,
PATH addsa 2K-entry direct mapped2-level predictor
with a history length of threetametsto handlev-calls.
Our pre-computationmachineryconsistsof a 256-entry
dependencpredictor and64-entryPOT andPBT struc-

54.0

B s
2 0% B BTB+ Simple
B O BTB+1-Lookahead .
B3 55 247
& 20% o7 - 203
= 11.011.011.0 27 12641 0
72 72 72
0% 1515 15 04 01 04 22 18 1.8 1.0 1.0
coral deltablue eqn idl XX Icom porky richards troff
30%
B PATH
2 o B PATH + Simple 27
B O PATH + 1-Lookahead
8 13.9
& 10%
s :
3.7 3.7 3.7 RES4 52
0% il 000000 030303 S
coral deltablue eqn idl iXX Icom porky richards troff

FIGURE 3. Misprediction Rate I mpact. V-call target mispredictratesfor both (a) BTBand (b) path-basedwo-
level predictorbaseconfiguations. Ead baseconfiguation wasalso augmentedvith a simplepre-computation

scheme and a one instance lookaheduksae

tures. Speculatre dataflav pre-executionusestwo ded-
icatedaddresgieneratiorunits andthe processos data
cache ports, although only whenytee idle.

4.1 Impact on Misprediction Rates

We report the reduction in v-call mispredictions
obsened when dependence-basegre-computationis

usedto complemenboth our BTB and PATH predictor
configurations. For eachbasemechanismwe evaluate
two pre-computatioschemesa simpleschemeandone

that adds 1-lookaheadpre-computations. Figure 3

shavs theseresults. Overall, simple pre-computation
reducesv-call mispredictionsby 42% over BTB and

21%over PATH. Thesenumbersgrow to 46%and24%

respectiely whenwe add1-lookaheagre-computation.
As we predicted thereis somesynegy betweenpath-

basedbredictionandpre-computationespeciallyfor the

1-lookaheadschemewhich attacksmispredictionsthat

are not easily captured by statistical correlation.

The greatestimprovementusing the simple schemeis

obsered for richards, an operatingsystemscheduling
simulator Richards hasa single,atrociouslyunpredict-
able static v-call. Fortunately the associatedbjects

addresss available well in advanceof the call itself,

giving simple pre-computationampletime to complete
and supply useful predictions. Significant improve-

mentsare alsoobsened for egn, lcom, porky andtroff.

Thesebenchmarksontainmary usesof single object
reference/multiplev-call sequencesnd iteration over
object data structureswith one or multiple v-calls per
iteration. Thesearethe programmingconstructsve ini-

tially identifiedasbeingsuitablefor simplepre-compu-
tation and lookahead pre-computation, respelti

As for the other benchmarks,idl and deltablue are
highly predictableavenwith a simpleBTB andprovide
little roomfor improvement. In coral, a singlestaticv-
call contritutesover 90% of the mispredictions. How-
ever, the underlying object structureis a databasdree
that is not addresspredictable at its outer levels.
Although object types are statistically correlated,
accountingfor the effectivenessof the path-basedgre-
dictor, objectaddressesannotbe correctlypredictedby

our 1-lookaheadnechanism.Althoughixx usesv-calls,
it alsoemploys C++ featureshat make the detectionof
OVFC chainsimpossibleusing our simple dependence
detectionscheme.We do notinvestigatea moregeneral
dependence detector in thiomk.

4.2 A Closer Look at Pre-Computation

To provide furtherinsightandsupportour earlierasser-
tions,we breakdown the positive andnegative contritu-
tions of our technique. On the positive side we are
interestedin the fraction of would-be mispredictions
thatwere corrected by pre-computations On the nega-
tive side,we countthe numberof mispredictiongntro-
duced by pre-computationsThesearewould-becorrect
predictions that wereverturned.

Thegraphin Figure4 breaksdown correctednispredic-
tions for the 1-lookaheadscheme. Theleft barin each
group shaws resultsfor the BTB basedconfiguration,
the bar on the right for the PATH basedconfiguration.
Eachbar shaws the fraction of would-bemispredictions
that were either correctedby a simple pre-computation
(blackportion,bottom),correctedoy a 1-lookaheadre-
computatior(grayportion,middle)or recevedanincor-
rectpre-computatiorfwhite portion,top). Pre-computa-
tions are not always available dueto eitherinsuficient
time or aninability to correctlypredictthe next objects
address, as indicated by the missing portion of each bar

We malke threeobsenationsfrom this plot. First, most
v-call mispredictionsare sufiiciently distantfrom their
associatedbject referencesgiving even simple pre-
computationgime to complete. Timely pre-computa-
tions are available for most mispredictionsat leastfor
benchmarksvith significanta priori mispredictiorrates
like egn, porky, richards, andtroff. Secondwhena pre-
computationis available, it is usuallyaccurate(at least
75%of thetime andcompletelyaccuratén somecases).
Finally, both availability andaccurag arehigherin the
BTB contet thanin PATH with most of this discrep-
ang is dueto areductionin relative effectivenessf the
simple scheme. This is not a surprisesinceboth path-
basedpredictorsand simple pre-computatiorattackthe
samekinds of v-call mispredictionspamelysecondand

100%
O incorrect Pre-Computation

75%

O 1-Lookahead Correct
50%

[| Simple Correct

25%

Would-be Mispredictions

0%

coral

deltablue eqn idl

iXx lcom richards troff

porky

FIGURE 4. Breaking Down Pre-Computation Effects Would-be mispredictions broken into incorrect
predictions, correct predictions supplied by simple pre-computation and correct predictions supplied by
lookahead pre-computation. The missing portion of each bar indicates that no pre-computation was available.

subsequent v-calls to the same object reference.

Thenumbersn Figure4 do not matchup preciselywith

the mispredictionratesshovn previously. The reason
for the mismatchis that, althoughit mimics program
actions, pre-computationoccasionallyprovides incor-

rect tamgets, mainly due to conditional execution and
lookaheadaddressmisprediction. Introducedmispre-
dictions occur when incorrect pre-computationsver-

ride would-becorrectBTB or PATH predictions. The
fraction of correct predictionsturned into mispredic-
tions variesfrom 0% to 4% in the BTB configuration
andfrom 0% to 7% in the PATH configurationwith the
differenceattributed to the fact that PATH simply pro-

duces more correct predictions. In those rare cases
where more mispredictionsare introduced than cor-

rected for instancan coral, aconfidenceschemecanbe

usedto selectvely disablepre-computation.Our exper-

iments found that the addition of confidencemostly
eliminatesintroducedmispredictions but also slightly

reducesthe obsered benefitfor eqn troff, porky and
richards as some impending mispredictions attain
unjustifiably high confidencevels.

In additionto eliminatingintroducedmispredictionsa

confidencemechanism&an also be usedto reducethe

number of unnecessarpre-computations. Theseare

pre-computationghat typically arrive late, are unsuc-
cessfulat correctingmispredictionor attackv-callsthat

are likely to be predictedcorrectly anyway. We note,

however, thatwhile unnecessarpre-computationsnay

be not be ideal, they do not directly disturbthe execut-

ing program. Pre-computationgarely missin the cache
andeven whenthey do, they often provide a beneficial
prefetchingeffect. The only adwerseeffect of unneces-
sary pre-computationss contentionwith other poten-

tially useful, pre-computations.

5 Related Work

Indirectjump targetpredictionin generalandv-call tar-
get prediction in particular have beenthe subjectof
somerecentinvestigation. A numberof softwaremeth-
ods have been proposed that corvert v-calls into
cheaperandmore predictabledirectcalls[1, 5, 9, 10].
Where applicable,thesetechniquesare preferableto
hardwaresolutionssincethey reducethe costof thecall
itself and improve its target predictability They also
expandthe scopeof compiler analysisand enablefur-
ther optimizations.However, thesemethodshave draw-
backsas well: they may be overly conserative, incur
software misprediction detection and recovery over-
head,replaceunpredictables-calls with equally unpre-
dictable branches,or duplicate code. One emeging
possibility is to duplicateour pre-computatiorprocess
in eithersoftware,usingarchitectedoranchspeculation
constructdik e the PlayDoharchitecturd12] branchtar-
get register file and prepare-to-branclnstructions,or

microcode[4]. In both casesmultithreadingmay be
used to hide the cost of the pre-computation.

A similar volume of work hasbeendonein the areaof
hardware prediction mechanismsalthoughmost target
indirect calls in generalratherthan the someavhat nar-
rower classof v-calls. All of thes€3, 6,7, 11] usesome
form of history (branchor path based)BTB indexing.
The advantageof thesetechniquess amguablehardware
simplicity and leverageof existing control prediction
structuresand techniques. Thesetechniquesmprove
predictionaccurayg for a larger classof indirectcontrol
transfersput do not performaswell onv-callsin partic-
ular. Themainreasorfor this deficieny is thatrelevant
piecesn the historyarebothdifficult to isolateandvary
on a call-by-call basis;recentwork [11] hasbegun to
attack this problem.

The useof pre-executiontechniquedor branchpredic-
tion is a still more recentdevelopment[8, 16]. The
brand flow windowapproact8] usesstaticinstruction
tagging to copy instruction sequenceghat compute
branchoutcomesnto a separatduffer. To producepre-
dictions, the computationis executed without side
effectsusingpredictedvaluesasinputs. This technique
hasbeenshavn to applyto branchesn generalbut can
handle only a single loop-resident,input-predictable
branchat atime. Our pre-executionmethodusesload-
value dependencedo drive a decoupled execution
engine. Load value dependenceandthe components
that captureand manipulatethem were initially pro-
posed for use in prefetching lieét data structures [15].

6 Summary and Future Directions

We introduce dependence-basaqate-computatioras a
complemento history-basednethodsfor v-call target
prediction. Our mechanismleveragespreviously pro-
posedprefetchinghardwareto capturethe characteristic
instruction sequencethat computesthe v-call tamget.
Given the appropriateinput, it then pre-executesthe
sequencdo supply a target prediction. Dependence-
basedpre-computatiomeducesv-call target mispredic-
tions46% over a BTB and24% over a path-basedwo-
level predictor We male the follaving contritutions:

* We introducepre-computatioras a complementary
methodfor supplying target predictionsfor virtual
functioncalls. We arguethathistory basedschemes
are fundamentallylimited by target history aliasing
and a lack of correlationacrossobjects,and shov
that pre-computatiorhasthe potentialfor overcom-
ing these limitations.

* We shav that a common v-call implementation
allows us to leveragea previously proposeddepen-
dence-basegrefetchingmechanisnto captureand
perform the appropriate pre-computation.

* We shav that correspondencethe problem of
matchingpre-computationsvith predictions,canbe
solved by exploiting a commonpropertyof dynamic
programexecution. We devise a compactschemeo
implement correspondence reliably

The work presentedn this paperis aninitial foray into
the areaof dependence-baseadmget pre-computation,
and the proposedmplementationsimply demonstrates
the potential power of this technique. Marny other
implementationsare possible,and several are likely to
be more effective, efficient, and practical. In addition,
thedesignspacewe outlinedhasnot beenfully explored
andthe interactionbetweendifferent pointsalongeach
of its dimensionss unclear How would two-instance
lookaheadberform?ls therea benefitto adoptingdiffer-
ent lookaheadpolicies on a static v-call basis?These
andmary otherquestionsaareopen. Along otherfronts,
work hasalreadybegun on using pre-computatiorvari-
ants to attack chronically mispredicted conditional
branchesandpre-computatiolis gaining popularityasa
general purpose technique with mapplications.

Acknowledgements

TheauthorghankCraigZilles for his commenton sev-
eraldraftsof this paper andthe anorymousrefereedor
their suggestions.This work was supportedn part by
NSF grantMIP-9505853andby anequipmentdonation
from Intel. Amir Roth is supportedoy a Cooperatie
Graduate Fellship from IBM.

References

[1] G.AignerandU. Hoelzle.Eliminating Virtual Function
Callsin C++ Programsin Proc. 10th European Confer-
ence on Object Oriented Programming, Jun. 1996.

[2] D.C. Burgerand T.M. Austin. The SimpleScalarTool
Set,Version2.0.TechnicaReportCS-TR-97-1342Uni-
versity of Wisconsin-Madison, Jun. 1997.

[3] P-Y.ChangE.Hao,andY.N. Patt.TargetPredictionfor
IndirectJumpsin Proc. 24th Annual International Sym-
posium on Computer Architecture, pages274-283,Jun
1997.

[4] R.S.Chappell,J.Stark, S.P.Kim, S.K. Reinhardt,and
Y.N. Patt. SimultaneousSubordinateMicrothreading
(SSMT).In Proc. 26th Annual International Symposium
on Computer Architecture, May 1999.

[5] G.DeFouw,D. Grove,andC. ChambersFastinterpro-
ceduralClassAnalysis.In Proc. Annual Conference on
Principles of Programming Languages, pages222—-236,
Jan 1998.

[6] K. Driesenand U. Hoelzle. Accurate Indirect Branch
Prediction.In Proc. 25th International Symposium on
Computer Architecture, pages 167-178, Jun. 1998.

[7] K. Driesen and U. Hoelzle. The CascadedPredictor:
Economicaland Adaptive Branch TargetPrediction.In
Proc. 31st International Symposium on Microarchitec-
ture, pages 249-258, Dec. 1998.

[8] A.Farcy,O.Temam,R. EspasaandT. Juan.Dataflow
Analysisof BranchMispredictionsandlts Applicationto
Early Resolutionof BranchOutcomesin Proc. 31st In-
ternational Symposium on Microarchitecture, pages9—

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

68, Dec. 1998.

D. Grove,J.Dean,C. Garrett,andC. ChambersProfile-
GuidedReceiverClassPrediction.In Proc. 10th Annual
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pagesl08-1280ct1995.

U. Hoelzle.Adaptive Optimizationfor SELF: Reconcil-
ing High Performancewith Exploratory Programming.
Technical report, Stanford University, 1994.

J.Kalamatianosand D.R. Kaeli. Predicting Indirect
Branchesvia DataCompressionln Proc. 31st Interna-
tional Symposium on Microarchitecture, page272—-281,
Dec. 1998.

V. Kathail, M. SchlanskerandB.R. Rau.HPL PlayDoh
Architecture Specification:Version 1.0. TechnicalRe-
port HPL-93-80, HP Laboratories, Feb. 1994.

S.MehrotraandL. Harrison.Examinationof a Memory
AccessClassificationSchemefor Pointer-Intensiveand
Numeric Program.In Proc. 10th International Confer-
ence on Supercomputing, pages 133-139, May 1996.

R.Ramakrishnan, W.G. Roth, P.Seshadri,
D. SrivastavaandS. SudarshariThe CORAL Deductive
Databas&ystemlin Proc. 1993 ACM S GMOD Interna-
tional Conference on Management of Data, pagess44—
545, 1993.

A. Roth, A. Moshovos, and G.S. Sohi. Dependence
BasedPrefetchingfor Linked Data Structuresin Proc.
8th Conference on Architectural Support for Program-
ming Languages and Operating Systems, pagesl15-126,
Oct. 1998.

A. RothandG.S.Sohi.NewMethodsfor Exploiting Pro-
gramStructureandBehaviorin ComputerArchitecture.
In Proc. 2nd International Workshop on Innovative Ar-
chitecture, pages 24-28, Oct. 1998.

