Appears in the Proceedings of the 7th International Conference on High Performance Computer Architecture (HPCA-7), 280122-24,

Speculative Data-Driven Multithreading

Amir Roth and Gurindar S. Sohi
Computer Sciences Department, University of Wisconsin - Madison
{amir, sohi}@cs.wisc.edu

Abstract sequence instructions in program order, regardless of their
contribution to performance. Using a compiler to isolate criti-

Mispredicted branches and loads that miss in the cache causEa! computations from their surroundings at the program level
the majority of retirement stalls experienced by sequential proS !0 difficult. It often requires algorithm-level code trans-
cessors; we call these critical instructions. Despite theirformatlons, and may shift criticality to new instructions.
importance, a sequential processor has difficulty prioritizing
critical computations (computations of critical instructions),
because it must fetch all computations sequentially, regardles
of their contribution to performance. Speculative data-driven
multithreading (DDMT) is a general-purpose mechanism for
overcoming this limitation.

Speculative data-driven multithreading (DDMiE)a general-
purpose mechanism that expedites the execution of critical
computations by allowing them to be sequenced directly while
skipping over dynamically interleaved instructions from non-
critical computations. DDMT exploits the fact that only a few
static critical computations produce the majority of dynamic
critical instruction instances. These computations are anno-
ted so that they can execute standalone. Whenrhi&
thread (which we also call theequentialor control-driven
d.thread) predicts an upcoming instance of a critical instruction,
| it “forks” a copy of its computation as a new kind of specula-
tive thread — adata-driven thread (DDT).A DDT is data-
riven in the sense that it is not necessarily a dynamically con-

In DDMT, critical computations are annotated so that they can
execute standalone. When the processor predicts an upcomi
instance of a critical instruction, it microarchitecturally forks
a copy of its computation as a new kind of speculative threa
a data-driven thread (DDT). The DDT executes in paralle
with the main program thread, but typically generates the crit-

ical result much faster since it fetches and executes only th . . ) .
critical computation and not the whole program. A DDT {Juous instruction sequence. The main thread continues

“pre-executes” a critical computation and effectively “con- fetching and executing the entire program sequentially. In par-

sumes’ its latency on behalf of the main thread. A DDMT allel, the DDT fetches and executes only the critical computa-
: tion often completing execution of the critical instruction

component called integration incorporates results computed inbefore the main thread has even fetched it. A DDT “absorbs”

DDTs directly into the main thread, sparing it from having to ” . .

repeat the Wzrk. panng 9 a critical computation’s latency on behalf of the main thread.
We simulate an implementation of DDMT on top of a simulta-DDTiI execut?sEeculatLyely th:y do hnqt chalrége the arr?hi-h
neous multithreading (SMT) processor and use program pro-€¢ted state of the machine. As such, it would appear that the

files to create DDTs and annotate them into the executablefJnly way a DDT can assist the main thread is indirectly — for

Our experiments show that DDMT pre-execution of critical instance by initiating would-be cache misses early. However,

; P DDMT can take advantage of a technique caliegister inte-
loads and branches can improve performance significantly. ; . :
P P 9 y gration [18] to allow the main thread to directly use results

computed in DDTs. Integration exploits the fact that both
1 Introduction main thread and DDT place results in a shared physical regis-
ter file. Using a modification to register renaming, integration

Sequential program performance is measured by instructio@llows the main thread to recognize and claim DDT results.
retirement throughput. Performance degrades when retirelntegration spares the main thread from having to re-execute
ment stalls waiting for the oldest active instruction to com- (but not re-fetch) DDT instructions. It also enforces a one-to-
plete. The majority of retirement stalls are due to loads thatone correspondence between DDT and main thread instruc-
miss in the cache and, indirectly, to mispredicted branchedions, a property we use to match pre-computed branch out-
which delay the fetch and completion of future instructions. comes with their intended dynamic branch instances.
We call misbehaving branches and loadscal instructions.

In this paper, we present an implementation of DDMT that is
Since they are responsible for the majority of lost throughput,0a@sed on simultaneous multithreading (SMT) and an algo-
it seems intuitive that processors would prioritize critical fithm for creating DDT annotations from program traces. Our
instructions. However, in eontrol-driven(or sequentigipro- ~ €xperiments using this framework show that using DDMT to
cessor, this conceptually simple goal is difficult to achieve.Pre-compute frequently misbehaving branches and loads
First, prioritizing only the critical instructions themselves is improves performance over aggressive base configurations.
rarely sufficient — thecomputationsof the critical instruc- ) ) )
tions, the instructions that transitively contribute values to theThe next section presents an overview and working example of
critical instruction, must also be prioritized. At the same time, DDMT. Sections 3 and 4 describe two DDMT aspects, DDT
the number of high-priority operations must be limited lest the Selection and hardware implementation, in more detail. Sec-
entire program be prioritized. A more significant problem is tion 5 evaluates DDMT'’s effectiveness in reducing the impact
that instructions must beequenced.e., fetched and renamed) of mispredicted branches and cache misses. Sections 6 and 7
before they can be scheduled, and a sequential processor muliscuss related and future work.



2 Working Example map translations). A similar operation is used (for similar rea-

sons) in threaded multipath execution (TME) [28]. It also pro-
As an overview of DDMT, we begin with a working example. vides a common mapping for starting the integration process.
The top of Figure 1 shows a simple computation loop that
traverses a linked list of nodes. Computation for each nodeDDTs are fetched and executed like conventional (control-
checks for the existence of and then accesses a neighbor noddriven) traces — performingo explicit control flow DDT
This is a simplified version of a computation froem3din instructions are not sequential, so control flow has little mean-
which each node loops over an array of neighbors. The neighing for them. The outcomes of DDT control instructions (like
bor-test branch and neighbor data-access in bold are two critik3) are saved for later integration but do not affect subsequent
cal instructions. The bottom of Figure 1 shows a sampleDDT instructions. In lieu of explicit control, a DDT may
execution of parts of four loop iterations. The instructions of aimplicitly represent any control flow (ours contains parts of
single iteration are shaded to match the source code. Criticalwo “unrolled” loop iterations). This arrangement simplifies
branch (3) and load I5) instances are in darker shade and, implementation and prevents runaway cyclic threads, while
although it is not explicitly represented, we wish to “absorb” still letting DDTs perform perfectly general computations.
their latencies by pre-executing their computations as DDTs.

A DDT executes speculatively — its results are not made
The DDT we choose consists of the boxed instructions in thearchitecturally visible. However, all DDT instruction results
trace —10, 110, 12, I3 andI5. The first boxed instance &0 are entered into the physical register file and indexed in an
(marker 1) is actuallyot in the DDT itselfrather it is theDDT integration table (ITXmarker 7). The IT indexes physical reg-
trigger — the instructiorafter which the DDT is forked. The isters by their dataflow properties — the instruction (PC) and
trigger is typically chosen to be the instruction that computesphysical registers used to compute the stored value. The IT
thelastexternal input to the DDT. In our example, the trigger also contains a target field that remembers the pre-computed
110 provides the only register input to the DDT % which
containsnode. The DDT executes two instances of the loop
induction instructionl10 (node = node->next) (markers 2 and
3), effectively jumping two iterations ahead of the main
thread, then executd®, I3 andl5, the computations that lead
from the induction variable to the branch and load. MAIN THREAD DDTC Q

Our choice of DDT (and trigger) is meant to maximize the :g :;thfgfol,gtsr,lfo > 110: :ég :ég :gq lbgeq Ilgt IF;(s:t
execution advantage, with respect to the critical computation, '

the DDT has over the main thread. The main thread and DD |11.' br 11 1 MAP MAP
execute in parallel starting from the trigger. To getto the criti- “ ;0 |05 o Pl P1@———Ff>
cal computation (marker 3) from this point, the main thread I2: Id qr2 18(r1) v
must fetch 22 instructions while the DDT must only fetch 2. |3: bg 2,110 PC Pin Pout Tq PCY Instruction

Notice, I3 andI5 computations from the two iteratiomsme- I4: Idt?O 16 rl)e 110| P2 | P4 [4—110] Idg r1, 0(r1)
diately followingthe trigger (markers 4) aexcludedrom the I5: Idt 11, 16(12) 110]P4]P5] - |«4—{110] Idgrl, O(rl)
DDT. Their proximity to the trigger means that a DDT has lit- |6: dt 12 24(r1 12 [P5]P6] - |4 12] Idgr2, 8(r1)
tle if any advantage over the main thread in sequencing and - 2, 24(r1) 13|P6] - | 14 [« 13| beqr2, 110

executing them. This certainly does not mean that any I3 or I5 I7: multfl, 2,3 15| P6|P7 -d— 15 ] Idtf1, 16(r2)

instances are ignored. Each iteration’s critical computation is 18:  subt 10, 13, f) IT DDT

forked by the induction instruction of two iterations before. 19: _sttf0, 16(rl

Notice, itis possible for a single dynamic instruction (marker Idg r1, 01 ’fl - 110 p2]Pa] - [prL: -
3) to be logically part of multiple DDTs (the ones launched '11; br 11 @MAP PC Pin Pout Tg MAP
from markers 1 and 2). Integration ensures that DDTs physi- ' bedrd, 112

for (node = list; node; node = node->next)
if (node->neighbor = NULL)
node->value -= node->neighbor->value * node->coeff

cally share such instances. 12: ldq r2, 8(r1)
13:  beqr2, 110 Q
14: Idtf0, 16(r1

Inside the processor, DDTs astatically represented by the
data-driven thread cachéDDTC) (marker 5) — a structure 19+ ldtfL, 16(r2
resembling a trace-cache [15]. The DDTC is indexed by DDT I6:dtf2, 24(r1)
trigger PC and represents DDTs as ordered lists of instruc- |7:  multfl, 2,3
tions. Each DDTC instruction is tagged with its PC because 8: subtf0, 13,0

PCs are needed to recognize DDT instruction results during—2:_Sttf0, 16(r1) 13
integration and because DDT instructions are not sequential. Ilﬁ lt;j |1rl 0(rl) gm¥rl: »>(110[P4[PS] - [pri:
©obr

The main thread forks the DDT when it decodes an instance ofL___beqrl, 112

—

its trigger instruction|10 (marker 1). A new hardware context |[12: 11dqr2, 8(r1) f—prl: »[12]p5P6] - |wr2: [Pe]
is allocated to execute the DDT and initialized with a copy of L13:10eqr2, 110 _—pr2: m »L13]P6 13 "@
the main thread’s post-trigger rename map (marker 6). Thist4.__1dtf0, 16(r1)

rename-map forkprovides the DDT with a natural and archi- |15 [ 1GtiL, 1602) |—pr2: [P6] »[15 [P6[P7] - i1 [P5]

tecturally precise way to access results produced by the mair. 16:  1dt2, 24(r1)

thread (via map translations), to allocate storage for its own FIGURE 1. Working Example.(Top) Loop with frequently
results without affecting main-thread state (by allocating phys- mispredicted branch and frequently missing load. (Bottom)
ical registers and changing only its private mappings), and to Execution of parts of four iterations augmented with a

communicate results among its own instructions (again via DDT that pre-executes the branch and load computation.
The computation results are subsequently integrated.




targets of control instructions. The IT in the figure contains amum of the output heights (DJdy) of those instructions on
description of the dataflow graph of our DDT. Physical regis- which it is data dependent. Qjj — the time at which the
ter P4 holds the result of10 which was executed with physi- instruction is complete — is computed by adding the instruc-
cal registerP2 (found via lookup in the DDT's copy of the tion's execution latency to its DRl FCDH takes fetch into
map) as input.P5 holds the result of the second instance of account by including a fetch constraint (FC) in the input height
110 which was computed witR4 as input, and so on. calculation. FCDHj, is the maximum of the output heights
(FCDHy,,y of an instruction’s dataflow predecessarsd this
When the main thread itself starts renaming the critical com-fetch constraint — it represents the earliest time at which the
putation, it uses the IT to locate the results of the correspondinstruction is both data-readgnd fetched. Since instruction
ing DDT instructions. For instance, when it renanh&@ the distances from the trigger are always lower in a data-driven
main thread sees that the input of that instructiof2gmarker ~ context, it is this fetch term which promises that a given com-
8). Looking in the IT, the main thread sees tifat holds a  putation will execute at least as fast as a DDT as it would in a
value created by instructidd 0 with input P2 (marker 9). The  control-driven thread. The fetch constraint (FC) can be calcu-
main thread recognizes P4 as having been created by aated in several ways; the simple one we use divides the
instruction that corresponds to the one it is currently renaminginstruction’s dynamic distance from the trigger by the avail-
It “claims” this result by mapping the output of the current able fetch bandwidth. FCD}g;is computed in the usual way
instruction toP4 (marker 10). Its owrl10 is nowintegrated = — by adding the instruction’s latency to its FC)H The
and need not re-execute if it has already executed in the DDTFCDH of a DDT is the maximum FCQY of its instructions.
Integration proceeds recursively. When it renames the second
instance o110, the main thread sees the recently integr&éd In Figure 3, we compute the FCDH for the DDT from our run-
as its input (marker 11). In the IT, it finds an instancd 10 ning example. For simplicity, we assume that all operations
with input P4 and outputP5 (marker 12). The input match have unit latencies. The figure shows two separate FCDH cal-
results in the integration oP5 (marker 13), which in turn  culations: one for the control-driven context and one for the
enables the integration of 12, and so on. WIi&rs integrated, data-driven context. Each computation is represented by three
its mis-prediction can be resolved immediately (marker 14). columns — I# is the instruction’s dynamic distance from the
trigger, FC is computed by dividing I# by the available fetch
) . width, FCDH is computed using dataflow-rules and FC. Our
3 Data-Driven Thread Selection calculation is for a 4-wide machine so, for the control-driven
calculation, we use a fetch width of 4. However, to simulate
Data-driven thread selection is a significant factor in determinthe fact that a DDTsharesfetch bandwidth with the main
ing the performance impact of DDMT. Good DDTs pre-com- thread, the data-driven calculation uses a fetch width of 2.
pute results that would have otherwise induced pipeline stalls
using minimal additional fetch and execution bandwidth. BadThe FCDH Computation shows where a DDT gets its perfor-
DDTs pre-compute results that would not have caused stallsmance advantage. In the control-driven context, instructions
do so no faster than a control-driven thread, and slow the sysare further away from the trigger. While the DDT fetches the
tem down by consuming too much bandwidth. Our aim in thistwo instances of10 in the cycle immediately following trig-
paper is to introduce the problem of DDT selection, describe &ering and executes them in cycles 2 and 3, the main thread
new metric for estimating the utility of DDT candidates, and must wait until cycle 3 to fetch the first instance 14D and
present an algorithm that uses this metric to create DDT annogntil cycle 6 to fetch the second one. By that time, the DDT
tations from program traces. has fetched and executed the entire computation. On a 4-wide
] ] ) o machine, this DDT accelerates the critical results by 4 cycles.
In this paper, we assume a profile-driven off-line implementa-Repeating these calculations for an 8-wide machine (not
tion that communicates the annotations to the processor via thehown), we find that doubling available fetch bandwidth does
executable. The same approach is taken by the Multiscalafot help the DDT but greatly helps the control-driven context
architecture [9, 22]. A hardware implementation of this algo- for which critical computation execution time drops from 9 to
rithm which would make DDMT entirely microarchitectural g cycles. DDTs attack the control-driven thread’s sequential
may also be possible. Simple hardware has been proposed f@ich constraints — they themselves are not fetch bound.
extracting restricted threads [16, 17] and mechanisms for genwyider fetch is a brute force attack on the same problem.
eral threads are currently being investigated.
. - . The FCDH metric is intuitive. However, it oversimplifies the
3.1 Measuring Utility of Data-Driven Threads control-driven model by ignoring sources of control-driven
- ) ) fetch under-utilization and the nature of the other work in the
Intuitively, a good DDT is one that, when executed in parallel main thread. It oversimplifies the data-driven model, ignoring

with its corresponding sequential region, will execute the criti- contentious parallel execution. Unfortunately, more accurate
cal computation faster than a control-driven thread executingstimates require detail equivalent to full simulation.

the sequential region by itself. To identify good DDTs, we
need to quantitatively estimagepriori the difference in execu-

tion times between a given computation executing in a control- &ontrlo:l(-:Dri\'éeCnDH ] #Data}:-grivggDH
driven thread and that same computation executing as a DDT. 0 T T0arL 00D T o T ol o T
We estimate execution times using fleéch-constrained data- :18 :gq r%, 8?3 g 2 ‘7‘ % 1 g
flow-height (FCDH) a composite metric that captures the B qu r2, 8(r1) w17 s 31 2 7
effects of both data-dependences and limited fetch bandwidth. B bgqrré ] 1r0 T T 312 5
For conventional dataflow height calculations, the input height ETTa o0 | 28 7 5T 51 3 G

(DH;,) of an instruction represents the time at which the
instruction becomes data-ready and is computed as the maxi-FIGURE 2. Calculating FCDH for a DDT.




instruction is the trigger) in both the control-driven and data-
driven contexts. If the difference between the control-driven
and data-driven FCDH is greater than any other such previ-

PROGRAM TRACE PASS #1 PASS #2 PASS #3
18:  subtf0, {3, 0 FCDH FCDH FCDH

||1|g.' [ f(jt:]f?l lg((rrll)) | @Cg D? ch D% @Cg Dg ogsly computed difference, the new instruction becomes the
|11'. br I y trigger (marker 4) and the search continues for what might be
Z an evem better DDT (marker 5).
11:  beqrl, 112
:gl qurrzz’ 8|(1r(1)) g Z.) The search for ever better DDTs must itself stop at some point.
4 1dtfo i6(r1) We use two criteria to determine when to stop the search.
|51 Idt fly 16(12) 7T 6 First, the algorithm considersteace windowof only the 1024
I6: ldt f2’ 24(r1) most recent instructions. The reason for this restriction is that
|7j mult fl 0 f3 a DDT instructions that are moved too far ahead of their archi-
I8: Subt 0. 3. 0 tectural location in the program consume storage for too long
|9: St 10 1‘6(r’1) before they are eventua_lly integrated. As it turns out, the bulk
|I10: Tidg ri 00D ] 5T AES 512 of a computation for a given result happens close to that result
- : [30] so this particular constraint is rarely activated. The sec-
lllj oy Il ond criterion, a hard limit on the total number of instructions
llj a2, 12 in the DDT, is activated much more frequently. The purpose
PRt ) 2 2 2 2 of this restriction is to limit DDT overhead.
13: beqr2, 110 5 4| @5 ¢

I4:  Idt 0, 16(r1)
I5: 1dtf1,16(2) @ 5| 4 5| 4
I6:  Idt2, 24(r1)
I7:  multfl, f2, f3
18:  subt f0, f3, fO

To give thread selection the best chance to succeed, the thread
constructor repeats the selection process for each dynamic
instance multiple times, each time allowing fewer critical
instructions to be added along the way. In the figure, the algo-
rithm makes three passes over the trace, adding critical

19: sttf0, 16(r1) instructions from three iterations (marker 5), then from two
{120: | Idgr1, 0(r1) | 3] 3 3{ 3 31 3 (marker 6), and finally from one (marker 7), building a new
111: bril DDT each time (markers 8, 9 and 10, respectively). This
[1: beqrl, 112 enhancement leads to the discovery that including the critical
12: ] ldg r2, 8(r1) 2] 3 21 3 21 3 branch and load from a single iteration gives a better DDT
13: | beqr2, 110 1] 1 1] 1 ﬂ 1] 1 (marker 10) than including computations from multiple itera-
14:Idt f0, 16(r1) tions (markers 8 and 9).
| 15: | Idif1, 16(r2) | 1 1 1 1 1 1

FIGURE 3. DDT Selection Algorithm.The algorithm When the program trace is completely processed, the DDT
makes three bottom-to-top passes, each time including candidates are pruned based on relative frequencies. Thread

fewer critical instruction instances, until it finds a DDT = Selection can be tuned using maximum DDT size, trace win-
that provides a sufficient execution (FCDH) advantage. dow size, control- and data- driven width parameters and
. FCDH difference threshold.
3.2 Extracting Threads from a Program Trace
) ) ] This algorithm finds fairly good DDTsOptimal DDT selec-

We now present an algorithm for extracting static DDT anno-tion is a combinatorial problem where the inclusion of a com-
tations from program traces. The algorithm is illustrated in pytation in a DDT must consider not only the resource impact
Figure 3. Input to the algorithm is a program trace on whichon the main thread but also the fetch delay induced in other
all critical load instances that miss in the cache and all misprezomputations in the DDT. DDT overlap, overhead, and likeli-

dicted critical branch instances are marked. The trace is alspood of eventual integration are additional factors that our
marked with all load and store address which are needed t@igorithm accounts for only implicitly.

establish memory dependences.

The algorithm constructs a DDT candidate for every mis-4 Hardware |mp|ementation
behaving instance of a critical instruction (marker 1). A DDT
candidate is built by walking backwards through the trace andn this paper, we propose and present an implementation of
adding any instruction that (a) is itself a misbehaving instanceDDMT that builds on a simultaneous multithreading (SMT)
of a critical instruction (marker 2) or (b) satisfies an active reg-[27, 29] processor like Compaq’s announced Alpha 21464 [7].
ister or memory dependence for an included instruction, i.eln addition to multiple sequencers, an SMT processor has a
writes to a register or a memory location that is read by ancentralized implementation that allows resources to be flexibly
instruction in the DDT candidate (marker 3). When an shared among several threads. Flexible resource allocation
instruction is added, the dependence it satisfies is deactivatddwers the run-time cost of DDTSs by letting them “steal” what-
and its own input dependences are added. ever bandwidth the main thread is unable to exploit. It also
allows us to conduct a fair evaluation of DDMT by construct-
Adding instructions to DDTs is simple. The key to the algo- ing DDMT and non-DDMT systems with identical resource
rithm is figuring out when to stop. Essentially, we want to find and bandwidth budgets. The shared physical register file and
the DDT for which a data-driven engine has the largest execuregister renaming also support integration. We do not rule out
tion time advantage over a control driven engine. The FCDHother implementations. Other multithreaded microarchitec-
was designed to answer this exact question. Whenever we addres, including decentralized ones like chip multiprocessing
an instruction to our DDT candidate, we compute the FCDH(CMP) [13], can support DDMT, albeit with a different imple-
of the newly created DDT (i.e., the DDT that assumes the newmentation of integration or perhaps no integration at all.



4.1 Life Cycle of a Data Driven Thread them are created in the integration table (IT) (marker 5).
These actions are, in fact, not particular to DDT instructions.
Figure 4 shows an SMT pipeline enhanced to support DDMT.All instructions are renamed, and all are created new entries in
The shaded structures and bold paths are DDMT-specific addithe IT — unless an entry for them is already found in the IT
tions and modifications. Shaded slots in conventional strucwhich is the subject of the Section 4.2.
tures indicate that DDT instructions may occupy these
structures. The important events in the life of a DDT and its After renaming, DDT instructions are sent to the out-of-order
instructions are marked and numbered. execution engine (marker 6) where they are allocated reserva-
tion-station slots (RS). However, unlike control-driven
A DDT is dynamically “born” when an instance of its trigger instructions, DDT instructions are not allocated reorder buffer
instruction is renamed in a control-driven thread (marker 1).(ROB) slots, nor are they entered into the memory ordering
Implicit in this statement is the restriction that DDTs cannot buffers (LDQ, STQ). DDT instructions do not affect architec-
launch other DDTs. This measure is also taken in an attemptural state until they are integrated. In-order retirement does
to contain overhead since the alternative could potentially crenot need to be enforced for them because they do not really
ate a DDT explosion. Trigger instructions can be recognizedetire. For a unified physical register file organization, like
using either pre-decode bits or a small lookup table. The decithat of our SMT, the ROB also controls the freeing of physical
sion regarding which pipeline stage should fork DDTs is actu-registers — an instruction’s retirement frees the physical regis-
ally fairly important. Forking a DDT early maximizes its fetch ter previously mapped to its output. DDT instructions — as
advantage over the control-driven main thread and the latenclong as they have not been integrated — do not share these
it can “absorb.” However, early forking also increases thesemantics. When DDT instructions are allocated physical reg-
probability that the trigger instruction is itself mis-speculated isters, the physical registers previously mapped to these loca-
and that the DDT is falsely forked. Empirically, forking DDTs tions either belong to control-driven instructions, in which
at fetch produces many false DDTs that, although they can bease the control-driven ROB is responsible for freeing them or
detected and aborted, consume a significant amount of fetchy previous instructions in the DDT, in which case we don't
bandwidth. In our implementation, DDTs are forked at the want to free them — we want to integrate them! In lieu of the
rename stage, reducing false squashes by roughly 50% whilROB, the integration table (IT) controls the freeing of registers
delaying DDTs by a relatively small fixed amount. Reducing allocated by DDT instructions.
this overhead much further requires waiting for the trigger
instruction to retire to fork DDTs and potentially incurring DDT instructions issue from the reservation stations like con-
much longer delays. ventional instructions, reading from the same pool of physical
registers and executing on the same functional units (marker
A forked DDT must be initialized with an execution context. 7). The only difference is in the handling of DDT loads and
This context is a copy of the control-driven register map as itstores. DDT loads and stores cannot really be ordered or dis-
appears immediately after the renaming of the trigger instruc-ambiguated and hence they have no need to occupy slots in the
tion (marker 2). As mentioned in Section 2, this copy allows memory ordering queues. However, there is a need for a
the DDT to pick up external values using register renamingmechanism to provide store-to-load forwarding for DDT
and synchronizes the DDT and main thread with a commorinstructions, without sending DDT stores to the cache. We use
mapping that will later be used to start the integration processa variation of the speculative memory cloaking mechanism
[12] for this purpose. DDT stores are entered into a buffer
In parallel with the map copy operation, the thread controllerwhere their address/value pairs are marked with a DDT identi-
begins scheduling the new DDT for fetch (marker 3). In our fier. DDT loads probe this structure in parallel with cache
implementation, instructions from only one thread are fetchedaccess, potentially picking up a value from a store with a
in any cycle. The thread control uses a modified ICOUNT matching address/identifier pair (marker 8).
[26] policy to decide which thread has control of fetch in a
given cycle. The chosen thread is the one that has the fewe€ompleted DDT instructions write their results into the physi-
total entries in the instruction fetch queue (IFQ) and reservacal register file and forward them to other waiting DDT
tion stations (RS). Reorder buffer (ROB) occupancy is notinstructions. When a completed DDT instruction is removed
used because DDT instructions are not allocated ROB entriefrom the execution engine, the only remaining record of its
existence is its IT entry which marks the physical register
DDT instructions are fetched out of the data-driven threadholding the result it computed. The second phase in the life of
cache (DDTC) (marker 4) and placed into the IFQ. Upon exita DDT begins when the main thread that spawned it begins
from the IFQ, DDT instructions are renamed and entries forrenaming the instructions corresponding to the DDT.

LT[ RoB [ L[] >
(VY
VYV V¥V
—P{Instruction FU
pc1 —» Cache L] L P LD FY Data
BPred pot € T T 11 L3 Acu Cache
—Q———> & [/ Integration e EE 4 o,

FIGURE 4. Hardware Implementation Aspects.Logical block diagram of a data-driven multithreading enabled SMT
processor. In an actual implementation, the rename tables, instruction buffers and re-order buffers would be shared. They are
distributed for illustration purposes. DDTC is the data-driven thread cache. CT is the cloaking table.



The working example in Figure 1 showed the integration pro-In our framework, the integration table (IT) assumes the duties
cess in detail. As the control-driven main thread renamef the free list manager and contains entriesdbrphysical
instructions, it matches mappings found in its own map tableregisters, not only the ones that are integration candidates.
with ones in the IT to locate the physical registers holding theEach physical register is in one of five statéee coMmitted
results previously computed by corresponding DDT instruc-Control-driven,Data-driven,or Squashed The states and the
tions. If a physical register is found, the main thread remaps ifprocessor actions that effect the transitions between them are
as the output of the current control-driven instruction (markershown at the top of the figure. The M, andC states, shown

9). The post-rename handling of an integrated instruction isn light gray, are the basic physical register states of a proces-
exactly the opposite of that of a DDT instruction. An inte- sor that does not implement integration. Registers inRhe
grated instructionis entered into the ROB (marker 10) and state are unmapped, those in Mestate are mapped to the last
memory ordering queues (LDQ,STQ) so that it can be ordereddommitted instances of the architectural registers, and those in
with respect to other control-driven instructions, but inist theC state are mapped to the outputs of the active instructions.
allocated a new reservation station because it is either com-

plete or already sitting in a reservation station allocated to it ilcAn implementation of integration-based squash reuse requires
its DDT execution. When a completed branch that was ini-the addition of theS state and the corresponding dark gray
tially mis-predicted is integrated, recovery starts immediately,transitions. Rather than transition into tRestate on mis-
expediting the fetch of correct-path instructions and relievingspeculation recovery, registers allocated to squashed instruc-

some of the demand on the fetch engine. tions remain mapped and transition into ®istate where they
can subsequently be integrated back intoGtstate. Since the
4.2 |ntegration only pointer to a register in thstate may be in the IT, if it is

not eventually integrated no execution event can trigger its
The integration mechanism incorporates results from DDTfreeing. To prevent leakage, a register can be spontaneously
instructions directly into the main thread, sparing the mainreclaimed from th&to theF state.
thread the task of re-executing the work.  With integration, a
DDT can perform entire computations on behalf of the mainDDT integration requires the addition of thH2 state, which
thread. Without it, a DDT can impact performance only indi- marks all registers that were allocated by DDTs and have yet
rectly, for instance by prefetching. However, integration is to be integrated into the main thread, and the black transitions.
more general than that — it is a mechanism for sharing andRegisters in th® state can also be spontaneously reclaimed to
reusing results among the different execution contexts of a sinthe F state, for reasons similar to those stated above.
gle program. Previous work has described integration as a
mechanism for implementing squash reuse, salvaging result§he bottom of Figure 5 expands on the register transitions hav-
that were unnecessarily lost due to a sequential mis-speculang to do with integration. Rows correspond to the type of
tion recovery [18]. The enabling principle for that application instruction attempting to perform the integration, columns to
is the same one we exploit here. An instruction instance angbre-integration register state, and table entries to the post-inte-
its result are unambiguously identified by the identity of the gration register state. Registers in fher M state cannot be
creating instruction and the physical registers used as inputs tmtegrated for obvious reasons. A register inhstate cannot
the operation. Any subsequent matching instruction that ha®e integrated by a control-driven instruction since that would
the same input physical registers must, by definition, be a reereate a situation with a single physical register mapped to two
executed instance of the original instruction and can, by themain thread instructions simultaneously! @\state register-
same token, claim the result as its own. Integrating a resultanbe integrated by a DDT instruction, but it must remain in
into a new execution context involves only updates to thethe C state to avoid the aforementioned case. Instructions in
appropriate context mappings. Integration does not requiréghe SandD states can always be integrated and these assume
reading from or writing to the physical registers themselves. the state of the integrating instruction.

Our previous work on integration-based squash reuse [18] Allocate o
describes the mechanics of integration in detail — the require- ' Initialize unmapped
ments of the base microarchitectures, the integration algorithm Reclaim O,,@
and circuit, the structure of the integration table, and a snoop- %,/f
ing based solution for guaranteeing the safe integration of @ ® |nitialize mapped
loads. We will not go into these details here. I

j=; F=free
Now we describe a new underlying framework for integration N M = committed
that combines squash reuse with the DDT reuse that is a cen- il Qo‘° C = control-driven
tral feature of DDMT. Aspects of this framework are shown in S = squashed
Figure 5. One feature of this framework is that it allows inte- D = data-driven
gration to proceed in several directions. Obviously, control-
driven threads may integrate both squashed results and DDT Physical Register State
results. A natural extension of this is that DDT instructions FIM]C]S]D
can be integrated, then subsequently squashed and re-inte-{__Control-Driven Instruction -1 -1-]cjlc
grated! However, our framework also allows DDT instruc- Data-Driven Instruction - -1lcliD]D

tions to integrate main thread results as well as results fronT F|IGURE 5. Integration Framework. (Top) Physical
other DDTs. These two capabilities are useful because they register state transition diagram. States and transitions

ensure that DDT results can still be integrated in situations belonging to conventional processors are in light gray.
where two DDTs partially overlap and in the event that the Integration based squash reuse integration adds those in

main threademporarilyruns ahead of a DDT. darker gray. DDT integration adds those in black.
(Bottom) Integration specific transition rules.



5 Performance Evaluation and data- driven fetch widths of 8 and 4, respectively, and
assuming a 10 cycle latency for critical loads, a 3 cycle latency
In this section, we evaluate the performance potential offor non-critical loads and a 1 cycle latency for all other instruc-
DDMT in two roles — reducing the observed latency of first- tions. The DDT selection phase uses a smaller and, where
level data cache misses and reducing the resolution latency gfossible, different input data set than the DDMT performance
mispredicted branches. Our baseline system is an 8-wideneasurement phase.
SMT similar in spirit, but perhaps not in internal organization,
to the Alpha 21464 [7]. The DDMT system also includes a Our cycle-level simulator is built using the SimpleScalar 3.0
DDTC and cloaking table. We do not model the effects of [3] Alpha toolkit. We model an SMT processor with full out-
DDMT on processor cycle time or pipeline depth. of-order speculative execution, register renaming, non-block-
ing caches, finite miss resources and cycle accurate bus utiliza-
It is difficult, and perhaps improper, to simulate DDT integra- tion. We simulate 4 hardware contexts that share all
tion — the integration of DDT instructions by the main thread bandwidths and resources. Our DDMT configuration executes
— without simulating squash reuse integration as well. Ina single control-driven thread and up to three concurrent
order to correctly attribute performance to DDMT and DDT DDTs. Table 1 shows the simulation parameters in detail.
integration, our base processor configuration simulates inte-
gration-based squash reuse. For performance reporting puur base microarchitecture makes two concessions to DDMT.
poses, the number of integrated DDT instructions is equal td=irst, it has a large number of physical registers, 512, where a
the number of committed instructions whose physical registemachine with 64 architectural registers and a 128-entry ROB
outputs were allocated by DDTs. DDT instructions that arewould need only 196. Second, it supports a large number of
integrated and squashed are not counted, while DDT instruceutstanding cache misses, 64, where a machine with only 64
tions that are integrated, squashed, and integrated again (viaads simultaneously in-flight typically provides for fewer.

squash reuse) are counted only once. The extra registers hold DDT results as they wait to be inte-
grated. The extra miss resources reflect the fact that DDMT
5.1 Methodology can overlap many cache misses that cannot be overlapped in a

purely sequential machine.
The benchmarks we use are a collection of programs selected
from the SPEC2000 and Olden pointer-intensive benchmark5,2 Targeting Cache Misses
suites. The Olden programsn3d, brandmst are in essence
microbenchmarks, executing a single algorithm on a syntheti©ur first experiment uses DDMT to target the latencies of
input. Their relative simplicity allows correlations to be loads that miss in the first level data-cache. Although a signif-
clearly drawn between DDT metrics and performance andcant portion of second level cache hit latency can be hidden
trade-offs to be clearly explored. Atthe same time, their com-by a machine with 128 instruction lookahead and reordering
plexity is high enough to fully exercise the thread selectioncapability, DDMT can further increase memory-level parallel-
algorithm. Programs are selected for their (relatively) highism (MLP) by overcoming sequencing constraints. Results for
branch misprediction or data-cache miss rates. The programsix benchmarks are summarized in Table 2. All the instruction
are compiled for the Alpha EV6 architecture by the Digital quantities are dynamic and counted in millions of events. Exe-
UNIX V4 cc compiler with optimizationsO3 -fast . All cution time savings range from 4.1% fparserto 24.8% for
programs are simulated in their entirety. The DDT selectionmst
algorithm permits a maximum DDT length of 32 instructions
and considers only misbehaving instances as potential DDTThe other metrics support these numbers. Load latency is the
candidate seeds. FCDH metrics are computed using controlverage difference between the issue and completion times of

Front End | 16K entry combined 10-bit history gshare and 2-bit predictors. 2K entry, 4-way associative BTB. B-stage
fetch. 32-entry instruction buffer. Up to 8 instructions from two cache blocks fetched per cycle with § max-

imum of one taken branch per cycle. Up to 4 hardware contexts share the fetch engine on a cyde basis.
Each cycle, instructions are fetched from the active thread with the fewest instructions in the fetclj queue
and reservation stations.

Engine 80 reservation-station slots. 512 physical registers. 2 cycle decode/register-rename. 2 cycle regigter read.
Loads speculatively issue in the presence of earlier stores with unknown addresses. The load afd subse-
quent instructions are squashed and refetched on a memory ordering violation. A 64-entry collisior] history
table (CHT) synchronizes loads that mis-speculated in the past. 1 cycle address generation. 2 cygle store-
to-load forwarding. Loads and branches have the highest scheduling priority. Scheduling priority Within a
group is determined by age.

Memory 32KB, 32B lines, 2-way associative, 1 cycle access first level instruction cache. 64KB, 32B lines)2-way
System associative, 2 cycle access, first level data cache. A maximum of 64 outstanding load misses. [L6-entry
store buffer. 16-entry ITLB, 32-entry DTLB with 30 cycle hardware miss handling. Shared 1MB, 64§ line,
4-way associative, 12 cycle access second level cache. 70-cycle memory latency. 16B per cycle bandwidth
to the L2 cache and 8B per cycle bandwidth to main memory. Cycle level bus utilization modeled.

Execution | 8 int ALU (latency = 1), 3 int mult (3), 3 int div (20), 4 FP add (2), 3 FP mult (4), 3 FP div (24), 4 load/ftore
Units (3) . The FP adders and all multipliers are fully pipelined.

DDMT 16-entry, 1 cycle access data-driven thread cache (DDTC) with a maximum of 32 instructions per DPT. Up
Support | to 8 data-driven instructions from a single DDT fetched per cycle. 16-entry cloaking table.

TABLE 1. Simulated machine configuration.

Execution | 8-way, out-of-order, speculative issue with a maximum of 128 instructions or 64 loads or 32 stores i:l-flight.




everycommittedoad. The baseline load latency for our pro- tions fetched by each system. Overall, the use of DDTs tends
cessor is 3 cycke— 1 g/cle to compute an address and 2 to to increase the total number of instructions fetched by the sys-
either hit in the first level cache or the store-queue. Howevertem, albeit not significantly as the main thread typically
with integration, average load latency can actually drop belowfetches fewer wrong path instructions. There are two effects
this number. DDT loads that are integrated after completionhere. First, reducing load latency reduces the resolution time
and subsequently committed contribute an observed latency aff branches that depend on these loads. The dominant effect,
zero. MSHR occupancy, a measure of MLP, is the per-cyclehowever, is simple fetch contention — the main thread fetches
average number of in-flight cache misses. In all cases, DDMTfewer instructions while waiting for branches to resolve.
reduces load latency while increasing miss overlapping. Ide-
ally, DDMT would not generate any new and unnecessaryOne troubling statistic is the relatively small number of
cache misses, and the increase in MSHR occupancy simplfetched DDT instructions that are eventually integrated.
reflects the same number of misses divided by a shorter execdrable 2 lists integration counts broken down by the status of
tion time. This indeed appears to be the case in most of thehe DDT instruction at the time it was integrated. DDT
benchmarks. One exceptionnscffor which some unneces- instructions integrated after completing have done useful work
sary misses are generated. on behalf of the main thread. Instructions integrated after hav-
ing issued but before completing contribute some work, but
The reduction in sequentially observed load latency does noempirically very few instructions are integrated in this state.
always translate directly to performance. One factor is the natintegrated instructions that have not issued are essentially use-
ural latency tolerance that exists in programs. The latency ofess, because they did not save the main thread any work. The
some loads may be naturally hidden by branch mispredictionsintegration of these instructions indicates that the DDT was
other long latency loads, or simply other parallel work. trying to do the right thing, but didn’t have sufficient time in
Attacking the, albeit long, latency of these loads will not which to do it. The integration rates we observe can some-
improve performance. An interesting and important extensiortimes be very highrtis), but are often lower than 30%. Inte-
to this work would be to narrow its focus to only loads whose gration rates for completed instructions are lower still,
latency actually determines performance [24]. although most DDT instructions do complete by the time they
are integrated. Two factors contribute to this inefficiency.
A more significant factor that limits performance is the over- First, our choice to fork DDTs at the rename stage unnecessar-
head associated with DDTs. We approximate the full effect ofily forks a fair number of DDTs using trigger instructions that
DDT resource contention by comparing the number of instruc-turn out to lie along mis-speculated paths. The more signifi-

parser J mcf gzip _l_ vpr em3d P mst
Instructions committed (M) 4203.56 259.62 336727 69%.50 6[7.75 230.77
Base | Instructions fetched (M) 835833 52939 5883.09 13¢4.95 1P4.64 432.46
Load latency (cycles) 5.48 12.43 3.41 3J86 111.39 2¢9.22
MSHR occupancy (/cycle) 1.49 3.23 0.83 1J70 9.42 1.44
Base + | DDTs forked (M) 15.89 1.06 26.28 10.19 0.72 b3
DDMT Mnstructions | Ctrl-driven 8351.11 466.88 5203.62 124954 110.77 23p.35
fetched (M)  MData-driven 380.18 108.08 671.02 151|80 2117 1$.97
Instructions | Total 109.68 34.44 269.20 41.37 7.5 1445
integrated (M) Completed 105.73 32.01 248.52 2081 2[99 470
Critical loads | Total 15.60 6.19 22.48 5.3 3.87 apo
integrated (M) Completed 11.67 4.9p 13.80 5.99 2134 1l66
Load latency (cycles) 4.20 7.45 3.11 36 8130 14.80
MSHR occupancy (/cycle) 1.49 3.81 1.5 1§87 10.80 14
Execution time saved (%) 4.1 9.2 15.4 12.9 15.p 248
TABLE 2. Using DDMT to pre-execute loads that miss in the L1 cache.
em3d-14 em3d-2 em3d-3_L mst-1 4 mst-2 l mst-3
Base + | DDTs forked (M) 0.7 0.64 0.6 0.53 0.53 0.b3
DDMT Finstructions | Ctri-driven 110.77 109.68 109.44 232.85 232[29 231.26
fetched (M)  Data-driven 21.11 20.4p 21.42 15.07 17[56 1915
Instructions Total 7.15 8.93 9.5 14.46 14.41 1489
integrated (M) "Completed 2.9d 7.0D 8. B 9.10 1160 12|35
Critical loads | Total 3.87 4.92 5.3 4.09 4.08 4.7
integrated (M) "Completed 2.3 3.50 VY 7 1.66 2.40 279
Load latency (cycles) 8.30 6.05 3.p0 14)80 1171 .76
MSHR occupancy (/cycle) 10.80 11.86 11188 314 3.62 .02
Execution time saved (%) 15.9 21.1 23.] 24.8 376 4419

TABLE 3. Effect of induction variable unrolling on DDT latency tolerance and performance impact.



eon_zL crafty ]r gzip _l_ vpr em3d P bh
Instructions committed (M) 458.29 4264.77 336727 693.50 6[7.75 917.44
Base Instructions fetched (M) 710.58 7082|44 5883.09 13(4.95 1p4.64 2336.08
Branch mispredictions (M) 3.98 31.78 16.p2 4178 0.73 19.90
Resolution latency (cycles) 15.35 16.21 29|94 47.48 2B.90 39.28
[Base +| Threads forked (M) 3.06 21.76 29.27 T0p1 0/69 34.42
DDMT Fnstructions | Ctri-driven 687.23 6949.68  5228.01 12151 10951 194p.91
fetched (M) Data-driven 26.0¢ 183.6p 565.41 133}i0 1852 29}.24
Instructions Total 6.11 28.38 312.58 41.99 3.00 29K9
integrated (M) [Completed 2.64 24.95 273.06 32p3 2[91 1460
Critical instr's | Total 7.12 3.60 18.11 3.4p 0.31 5.%2
integrated (M) [Completed 3.6 3.18 14.63 3.7 0.1 2|43
Mispredictions | Total 0.29 0.74 4.79 0.6p 0.12 2.37
integrated (M) [Completed 0.11 0.68 2.60 048 0.2 1o
Resolution latency (cycles) 14.81 16.02 21139 4451 1B.94 32.98
Execution time saved (%) 1.2 0.4 12.9 5.9 115 74

TABLE 4. Using DDMT to pre-compute outcomes of branches that are likely to be mispredicted.

cant factor, however, is inherent in the implicit control struc- 5.3 Targeting Branch Mispredictions
ture of DDTs themselves. A DDMT processor implicitly
predicts upcoming instances of a critical instruction by the Our second experiment uses DDTs to pre-compute the out-
appearance of its DDT'’s trigger. Such speculation is notcomes of frequently mispredicted branches. This application
always correct — a dynamic instance of a trigger instructionis particularly attractive because, in addition to expediting the
doesnot necessarilymply that a dynamic instance of the cor- fetch of correct-path instructions, it has the potential to
responding critical instruction is forthcoming. However, directly reduce the number of instructions fetched along
absent control flow, a DDT cannot deduce this fact and ismispredicted paths and alleviate some of the fetch pressure
forced to execute all computations within it, even ones fromcreated by DDMT itself.
which the main thread has diverged. Note that thisdsthe
same as saying that DDT efficiency is tied to the branch preAccelerated branch resolution results for six benchmarks are
diction accuracy in the main thread — in fact, efficiency may shown in Table 4. The branch misprediction resolution
increase with decreased prediction accuracy. However, whildatency is calculated as the average number of cycles between
our DDTs and forking procedure are fundamentally speculathe misprediction of a branch and its completion. For the
tive, no alternatives are obvious at this time. DDMT system we also measure the number of mispredicted
branches resolved by integrated DDT instructions. A mispre-
Our example from Figure 1 showed a DDT that uses twodicted branch that integrates a completed DDT instruction is
instances of a loop’s induction stemde = node->next) to over- resolved instantly, for these DDMT accomplished its mission.
lap the control-driven execution of a computation with a DDT Integration of non-completed branches may still improve per-
execution of one from two iterations ahead. This idiom, formance if most of theeomputationof the branch has been
which we callinduction unrolling is quite powerful. By add- completed by the DDT.
ing a single loop induction to the head of a DDT, we increase
its latency-tolerance capability by one loop iteration. WhenFor the branch pre-computation application, we obtain execu-
the cost of an induction is low in terms of instructions and exe-tion time savings in the range of 0.4% forafty to 12.9% for
cution time, we have the flexibility to create DDTs that can gzip. These savings are in proportion with the reductions in
tolerate nearly arbitrary latencies! misprediction resolution latency. As projected, this applica-
tion of DDMT sometimes reduces the total number of instruc-
Table 3 shows the effectiveness of induction unrolling usingtions fetched by the system. Not surprisingly, programs for
the program&m3dandmst Both programs have inexpensive which this is the case —gzip em3dand bh — observe the
induction operations — pointer-chases that hit in the cachegreatest benefit.
The table shows the performance impact of three DDTs for
each program — using one, two, and three unrolled induc-Our work investigates the performance impact of integration-
tions, respectively. Mst exhibits the classic behavior. The based branch resolution. With integration matching pre-exe-
number of instructions fetched by DDTs is progressively cuted DDT instruction instances with their corresponding
higher, mirroring the larger size of each DDT, while the num- dynamic main thread instances, the early resolution of inte-
ber of integrated DDT instructions is constant. However, thegrated branches is an application that comes essentially for
number ofcompletednstructions integrated grows with each free. However, integration-based branch resolution is not per-
additional induction, while average load latency decreases anfkct — it cannot resolve mispredictions earlier than the inte-
total execution time decreasesEm3ds behavior is similar.  gration stage itself. At its best, integration-based resolution
However, its variable loop iteration sizes mean that movingcan lower the misprediction penalty to a constant fetch-resteer-
DDTs further ahead of their architectural iterations increasesng penalty plus the pipeline distance between prediction and
the likelihood that the control-driven thread will integrate the renaming/integration. Technically, since branch outcomes are
DDT and not vice versa. pre-computed in advance, theguld be sent to their dynamic



Cache Misses Branch Mispredictions
mcf vpr mst eon _% gzip em3d
[Base Instructions fetched(M) 520.89 1304|195 234.61 710.58 5883.00 14.65
Load latency (cycle) 12.48 3.86 19.5 2)88 3141 11.38
Resolution latency (cycle 24.37 47.48 279|54 15.35 29.94 23.90
[Base + | Instructions fetched (M) 574.96 1400.95 248[32 713.32 5793.42 131.66
DDMT Load latency (cycle) 7.45 3.36 14.$0 2.88 3[24 1d.34
Resolution latency (cycle 19.44 39.02 17689 14.81 21.39 18.94
Execution time saved (% 9.2 12.0 24.9 1.2 12.9 11p
[Base + | Instructions fetched (M) 529.42 1305.15 232|63 710.11 5880.50 134.44
ggﬂgg'u”ng Load latency (cycle) 12.41 3.40 19.p5 2188 341 1137
Resolution latency (cycle 24.64 39.16 29170 153.07 29.22 26.99
Execution time saved (% 0.0 -0.1 -0.14 0.2 0.4 0B
Base + Instructions fetched (M) 605.93 1406.29 248]33 721.35 6456.13 129.67
E]'t?e'\é';lt-ion Load latency (cycle) 9.45 3.65 14.18 201 3[34 1d.75
Resolution latency (cycle 22.56 41.P9 17657 153.20 26.12 40.66
Execution time saved (% 1.7 8.5 25.0 -0.3 1.4 8.B

TABLE 5. Performance contributions of data-driven sequencing and integration.

instances earlier in the pipeline, perhaps as early as the brandhan in the pre-execution of loads. Most of the impact of pre-
predictor itself. In fact, several mechanisms for doing just thatexecuting a cache miss comes from the prefetching effect and
have already been proposed [4, 8, 17]. However, without thentegration provides only modest additional gains. Integration
benefit of relying on dynamic data-dependences which are nais more important for fast branch resolution, however, because
available that early in the pipeline, these techniques musevery cycle added to the misprediction penalty directly delays
match pre-computations to dynamic branches in ad hoc waythe processing of future correct path instructions. Accelerated
that may actually introduce mispredictions! Integration-basedoranch resolution does not provide mudzi) if any (eon
resolution may not be able to lower the misprediction penaltybenefit in the absence of integration. One Table 5 data point,
as much as these mechanisms, but the nature of integratioem3d seems to contradict this assertion. The effect we
guarantees that it will not introduce any mispredictions. observe here stems from the fact teat3ds branch computa-
tions contain, via data-dependences, loads that miss in the
cache. The branch computations prefetch the loads which in
turn expedite dependent branch execution in the main thread.
In the introduction we claimed that data-driven sequencing,
the ability to sequencethrough critical computations faster The synergy of DDMT and integration extends beyond branch
than a control-driven thread, is an important performanceresolution. In fact, it is the presence of integration that often-
enabling aspect of DDMT — simply prioritizing critical com- times makes certain kinds of DDTs profitable. In particular,
putations while using conventional sequencing is insufficient.induction unrolling relies heavily on integration, specifically
We also maintained that integration is important, especially forDDT-to-DDT and main thread-to-DDT integration. Consider
order-sensitive uses of DDMT like early branch resolution.a DDT that unrolls 5 induction copies. If a copy of this DDT
We now quantitatively support these claims by attributing theis forked at every iteration, then each dynamic main thread
performance of DDMT to each factor. The results are reportednduction actually resides in 5 DDTs. Without integration,
in Table 5. For space reasons, we include results fotad of each DDT would have to compute its 5 induction steps before
six benchmarks, three from each initial experiment. reaching the actual computation of interest — a process that

would take at least 5 cycles or more if the induction is of the
To measure the importance of data-driven sequencing, we sinpointer-chasing variety or consists of multiple instructions.
ulate the program using the DDT annotationgaseritization Repeating induction steps that have been computed by previ-
hintsto the scheduler rather than as templates for actual DDTsous DDTs not only wastes bandwidth, but it also robs the DDT
As we suspected, critical-computation priority-scheduling in of much of its execution advantage. If the amount of work in
hardware is largely ineffective and sometimes harmful. Priori-each main thread iteration is small, induction unrolling may
tizing parts of critical computations that are already in the not be profitable.  With integration, each DDT can leverage
instruction window does not increase parallelism and maythe induction steps already computed by previous DDTSs, so
delay execution of the oldest instructions in the machine, prethat instead of executing 5 induction steps, a DbfEgrates4
venting them from retiring and freeing up slots for future and executes 1. In fact, integration guarantees that the induc-
potentially critical computations. DDMT’s power arises from tion chain and, as a result, the actual computations of interest
its ability to expose parallelism by using data-driven sequencare being computed as fast as possibMcf illustrates this
ing to increase the effective scheduling window. phenomenon wellMcf's main DDT uses induction unrolling

to expedite the execution of loads in a tight loop. Although it
To quantify the contribution of integration, we repeat our only performs prefetching, this DDT requires integration to
experiments but do not integrate the work performed in theachieve most of its effect. Without integration, overlapping
DDTs. Squash reuse integration is still performed. Intuitively, DDTs are unable to leverage each other’s induction computa-
integration plays a bigger role in the pre-execution of branchedion, reducing each DDT’s ability to tolerate latency.

5.4 Sequencing and Integration Contributions
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6 Related Work but unable to contribute values directly to the main program
thread.

Long latency loads and mispredicted branches degrade perfor-

mance in large part because they and their computations afBependence based prefetching and branch pre-execution [16,

bound into a sequential order that sometimes prevents theit7] and the branch-flow microarchitecture [8] are closest in

execution from proceeding at its maximum rate. DDMT spirit to DDMT. Each of these techniques extracts true data-

“frees” critical computations from these sequential constraintsdriven threads from a sequential program, executes them, and

allowing them to execute as fast as their data dependences peattempts to reuse the results to one degree or another. Depen-

mit. This same approach to parallelism formed the basis fordence-based prefetching uses post-retirement dependence-

the explicit dataflow architectures [2, 5, 10, 11, 14] of the detection machinery to build a specialized representation of

1970s. Dataflow architectures expose computation structure gtieces of the dataflow graph. Given a seed value, this repre-

the architectural interface to enable theoretical levels of paralsentation is traversed/executed on the side by a finite-state-

lelism and latency tolerance. Speculative data-driven multi-machine. Integration is not performed. Dependence-based

threading (DDMT) attempts to bring some of the performancebranch pre-execution adds an ad-hoc correspondence mecha-

aspects of these machines into the realm of sequential praiism to allow pre-computed branch results to be matched with

grams, albeit on a smaller and more task-specific scale. dynamic branch predictions. The branch-flow microarchitec-
ture is a different implementation of the same idea.

Access/execute decoupling [21] is another technique for dis-

entangling computations from one another and allowing load

computations, which as a group are considered more critical/ Summary and Future Work

to proceed unimpeded by unrelated processing. DDMT can be

thought of as a microarchitectural decoupling of computationsPata-driven multithreading (DDMT)is a new speculation
that result in cache misses. model. Speculation is performed at the granularity diga-

driven thread (DDT,) a sequence of potentially non-consecu-

Other architectures and microarchitectures cmetrol-driven  tive dynamic instructions that represents a computation. At
Specu|ative thread® accelerate Sequentia| progran®pecu- the pointin a COﬂtrO}-deren program a_t Wh|Ch the |npUtS to the
lative control-driven multithreading (CDMT)}— commonly ~ DDT become available, the DDT is microarchitecturally
known as speculative multithreading — systems include theforked and executed in parallel with the sequential program.
Multiscalar architecture [9, 22], single-program speculative While the main thread sequentially fetches the entire program,
multithreading (SPSM) [6], thread-level data-speculationthe DDT deals with only those instructions that constitute the
(TLDS) [25], and dynamic multithreading (DMT) [1]. In critical computation of interest. Consequently, it typically
CDMT, threads are partitioned either statically (multiscalar, fetches and executes these computations much faster than
TLDS, SPSM) or dynamically (DMT), forked in software Wwould be possible in asequ.entlal thread. DDMT can improve
(TLDS, SPSM) or hardware (multiscalar, DMT) and initiated the performance of sequential programs when computations of
in oldest-first (Multiscalar), youngest-first (DMT) or com- l0ads that are likely to miss in the cache and branches that are
piler-controlled (TLDS, SPSM) order. Speculative results arelikely to be mispredicted are chosen as DDTs. By pre-execut-
incorporated as control of the architectural state passes frorfld these performance critical instructions, DDTs “absorb”
the most recently committed thread to the least speculativdatencies that would otherwise impact sequential performance.
remaining thread. CDMT and DDMT are diametrically . . L . -
opposed in their philosophies. CDMT exploits primarily An interesting component of DDMT is integration, a facility
thread-level parallelism (TLP)For CDMT techniques to suc- for incorporating results produced in DDTs into the main
ceed, the program must lpartitionedinto sequentially con- threaq, avoiding the nged for re-execution. Integratlo.n works
tiguous mutually disjointthreads that are parallel or at least by using dataflow relationships to prove that a DDT instruc-
nearly so. As a group, control-driven speculative threads mustion and a main thread instruction actually correspond to the
have high degrees of control-equivalence, data-independencéame dynamic instruction instance and allow the main thread
and load-balance. In contrast, DDMT primarily exploits to take possession of the physical register holding the DDT
instruction-level parallelism (ILP) Data-driven threads per- instruction’s result. Integration enables DDTs to perform
form implicit control speculation, follow data-dependences actual work on behalf of the main thread, including order-sen-
closely, and are automatically load balanced by an SMT prosSitive tasks like the pre-computation of branch targets.
cessor. DDMT does not require the presence of TLP to be ] ) ) )
effective. DDTs have the flexibility to attack individual laten- One attractive substrate for implementing DDMT is an SMT
cies and points of performance degradation. The price fofProcessor. This kind of processor includes register renaming
flexibility is that instructions in data-driven threads must be re-and the flexible resource allocation policies needed to run
fetched and re-renamed by a control-driven thread. DDTs efficiently. The additional hardware required to support
DDMT includes a data-driven thread cache (DDTC) to hold
Assisted execution [23] and SSMT [4] are techniques forthe DDTs, a cloaking table to implement DDT store-to-load
accelerating a sequential program by using idle thread conforwarding, and integration logic.
texts to execute auxiliary code that prefetches data, presets the )
branch predictor or performs some other performance enhandur experiments show that DDMT can be used to reduce per-
ing task. In contrast with DDMT, the auxiliary coderistan ~ formance degradations due to cache misses and branch mis-
annotated part of the original program that can later be intefredictions. In the latter case it improves performance while
grated. Itis a supporting piece of code (assisted execution) oplsoreducingthe total number of instructions fetched and exe-
microcode (SSMT) generated by the compiler or by hand ancfuted by the machine. Overall, data-driven pre-execution
managed explicitly. Assisting and SSMT threads are auxiliaryshows promise as a unified general-purpose performance

in the true sense, able to impact performance only indirectlyengine, able to attack any source of latency without the use of
any problem-specific microarchitectural gadgets.
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There are several avenues for future work. Our implicit con-
trol DDT model is simple and disallows runaway threads. One[11]
of its drawbacks is its inability to abort a DDT computation
that diverges from the main thread. This capability appears[lz]
important to limiting DDT overhead, and models that incorpo-
rate explicit control should be investigated.

In this paper, we present a DDMT implementation based on d13]
simultaneous multithreading (SMT) microarchitecture — a
choice made for reasons of both implementation simplicity
and pending availability. However, other architectures and
microarchitectures that support multiple threads and eveni4)
speculative control-driven threads are on the horizon as well.
Mapping DDMT or pre-execution onto these is certainly pos-
sible and the interaction between control- and data- driver{1°]
speculative multithreading is interesting.

Finally, the thread selection algorithm we present shows promyie]
ising success, but it is preliminary. Better data-driven threads
will enhance the performance impact of DDMT. Certainly, an
implementation of our or any other algorithm in hardware
would ease the acceptance of DDMT by moving the techniquéﬂ]
into the purely microarchitectural realm.

[18]
Acknowledgements
This work was supported in part by National Science Founda[lg]
tion grants MIP-9505853 and CCR-9900584, donations from
Intel Corp. and Sun Microsystems, the University of Wiscon- [20]
sin Graduate School and an Intel Ph.D Fellowship The
authors thank the anonymous referees for their reviews and
Adam Butts, Milo Martin, Dan Sorin, and Craig Zilles for their [21]
comments on various incarnations of this manuscript.

[22]

References 23]
[1]  H. Akkary and M. Driscoll. A Dynamic Multithreading Proces-
sor. InProc. 31st International Symposium on Microarchitec-

ture, pages 226-236, Nov. 1998. [24]

[2]  Arvind and R. Nikhil. Executing a Program on the MIT Tagged-
Token Dataflow Architectured EEE Transactions on Comput-
ers, 39(3):300-318, Mar. 1990. [25]
[3] D.Burger and T. Austin. The SimpleScalar Tool Set, Version
2.0. Technical Report CS-TR-97-1342, University of Wiscon-
sin-Madison, Jun. 1997.

[4] R.Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Simul- [26]
taneous Subordinate Microthreading (SSMT)Phoc. 26th In-
ternational Symposium on Computer Architectiay 1999.

[5] J.Dennis and D. Misunas. A preliminary architecture for a basic
dataflow processor. lfProc. 2nd International Symposium on
Computer Architecturgpages 126-132, Jan. 1975. [27]

[6] P.Dubey, K. O'Brien, K. O'Brien, and C. Barton. Single-Pro-
gram Speculative Multithreading (SPSM) Architecture: Com-
piler-Assisted Fine-Grained Multithreading. IRroc. 1995
Conference on Parallel Architectures and Compilation Tech- [28]
niques pages 109-121, Jun. 1995.

[71  J. Emer. Simultaneous Multithreading: Multiplying Alpha’s
Performance. Microprocessor Forum, Oct. 1999. [29]

[8] A.Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow Analy-
sis of Branch Mispredictions and Its Application to Early Reso-
lution of Branch Outcomes. InProc. 31st International
Symposium on Microarchitectyrpages 59—-68, Dec. 1998.

[9] M. Franklin. The Multiscalar ArchitecturePhD thesis, Univer-

sity of Wisconsin-Madison, Madison, W1 53706, Nov. 1993.

J. Gurd, C. Kirkham, and |. Watson. The Manchester prototype

dataflow computerCommunications of the ACN28(1):34-52,

(30]

[10]

Jan. 1985.

R. lannucci. Toward a Dataflow/von Neumann Hybrid Archi-
tecture. InProc. 15 International Symposium on Computer Ar-
chitecture pages 131-140, May 1988.

A. Moshovos and G. Sohi. Streamlining Inter-Operation Com-
munication via Data Dependence PredictionPhoc. 30th In-
ternational Symposium on Microarchitectungages 235-245,
Dec. 1997.

K. Olukotun, B. Nayfeh, L.Hammond, K.Wilson, and
K. Chang. The Case for a Single-Chip Multiprocessotac.
7th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systepages 2—11, Oct.
1996.

G. Papadopoulos and D. Culler. Monsoon: An Explict Token-
Store Architecture. IrProc. 17th International Symposium on
Computer Architecturgpages 82-91, Jul. 1990.

E. Rotenberg, S. Bennett, and J. Smith. Trace Cache: A Low La-
tency Approach to High Bandwidth Instruction Fetching. In
Proc. 29th International Symposium on Microarchitectyrag-

es 24-35, Dec. 1996.

A. Roth, A.Moshovos, and G. Sohi. Dependence Based
Prefetching for Linked Data Structures.mnoc. 8th Conference

on Architectural Support for Programming Languages and Op-
erating Systemgages 115-126, Oct. 1998.

A. Roth, A. Moshovos, and G. Sohi. Improving Virtual Func-
tion Call Target Prediction via Dependence-Based Pre-Compu-
tation. In Proc. 1999 Internation Conference on
Supercomputingpages 356364, Jun. 1999.

A. Roth and G. Sohi. Register Integration: A Simple and Effi-
cent Implementation of Squash Re-Use Piroc. 33rd Annual
International Symposium on Microarchitectuiec. 2000.

A. Roth and G. Sohi. Speculative Data-Driven Multithreading.
Technical Report CS-TR-00-1414, University of Wisconsin,
Madison, Mar. 2000.

A. Roth and G. Sohi. Speculative Data Driven Sequencing for
Imperative Programs. Technical Report CS-TR-00-1411, Uni-
versity of Wisconsin, Madison, Feb. 2000.

J. Smith. Decoupled Access/Execute Computer Architecture. In
Proc. 9th International Symposium on Computer Architecture
Jul. 1982.

G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar Processors.
In Proc. 22nd International Symposium on Computer Architec-
ture, pages 414-425, Jun. 1995.

Y. Song and M. Dubois. Assisted Execution. Technical Report
#CENG 98-25, Department of EE-Systems, University of
Southern California, Oct. 1998.

S. Srinivasan and A. Lebeck. Load Latency Tolerance in Dy-
namically Scheduled Processors. Pnoc. 31st International
Symposium on Microarchitectyrpages 148-159, Nov. 1998.

J. Steffan and T. Mowry. The Potential for Using Thread Level
Data-Speculation to Facilitate Automatic Parallelization. In
Proc. 4th International Symposium on High Performance Com-
puter ArchitectureFeb. 1998.

D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm.

Exploiting Choice: Instruction Fetch and Issue on an Imple-

mentable Simultaneous Multithreading ProcessoPrirc. 23rd

International Symposium on Computer Architeciupages

191-202, May 1996.

D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Mul-

tithreading: Maximizing On-Chip Parallelism. Rroc. 22nd In-

ternational Symposium on Computer Architectysages 392—

403, Jun. 1995.

S. Wallace, B. Calder, and D. Tullsen. Threaded Multiple Path

Execution. InProc. 25th International Symposium on Computer

Architecture pages 238-249, Jun. 1998.

W. Yamamoto and M. Nemirovsky. Increasing Superscalar Per-

formance Through Multistreaming. IRroc. 1995 Conference

on Parallel Architectures and Compilation Techniqudsin.

1995.

C. Zilles and G. Sohi. Understanding the Backward Slices of

Performance Degrading Instructions.Rroc. 27th Internation-

al Symposium on Computer Architectupages 172-181, Jun.
000.

12



	Mispredicted branches and loads that miss in the cache cause the majority of retirement stalls ex...
	In DDMT, critical computations are annotated so that they can execute standalone. When the proces...
	We simulate an implementation of DDMT on top of a simultaneous multithreading (SMT) processor and...
	1 Introduction
	2 Working Example
	3 Data-Driven Thread Selection
	3.1 Measuring Utility of Data-Driven Threads
	3.2 Extracting Threads from a Program Trace

	4 Hardware Implementation
	4.1 Life Cycle of a Data Driven Thread
	4.2 Integration

	5 Performance Evaluation
	5.1 Methodology
	5.2 Targeting Cache Misses
	5.3 Targeting Branch Mispredictions
	5.4 Sequencing and Integration Contributions

	6 Related Work
	7 Summary and Future Work

