
Cooperative Cache Partitioning for Chip Multiprocessors

Jichuan Chang and Gurindar S. Sohi
Computer Sciences Department
University of Wisconsin-Madison

ABSTRACT
This paper presentsCooperative Cache Partitioning (CCP) to
allocate cache resources among threads concurrently running on
CMPs. Unlike cache partitioning schemes that use a single spatial
partition repeatedly throughout a stable program phase, CCP re-
solves cache contention with multiple time-sharing partitions. Time-
sharing cache resources among partitions allows each thrashing
thread to speed up dramatically in at least one partition by unfairly
shrinking other threads’ capacity allocations, while improving fair-
ness by giving different partitions equal chance to execute. Quality-
of-Service (QoS) is guaranteed over the long term by orchestrating
the shrink and expansion of each thread’s capacity across partitions
to bound the average slowdown. Time-sharing based cache par-
titioning is further integrated with CMP cooperative caching [6]
to exploit the benefits of LRU-based latency optimizations,which
leads to a simplified partitioning algorithm and better performance
for workloads that do not benefit from cache partitioning.

We evaluate the effectiveness of CCP by simulating a 4-core
CMP running all combinations of 7 representative SPEC2000 bench-
marks. For workloads that can benefit from cache partitioning,
CCP achieves up to 60%, and on average 12%, better performance
than the exhaustive search of optimal static partitions. Overall,
CCP provides the best results on almost all evaluation metrics for
different cache sizes.

Categories and Subject Descriptors: B.3.2 [Memory Structures]:
Design Styles – Cache memory, C.4 [Performance of Systems] –
Design studies

General Terms: Algorithm, Design, Management, Performance

Keywords: Multiple time-sharing partitions, cooperative cache par-
titioning, CMP, fairness, QoS

1. INTRODUCTION
With an increasing number of processor cores being integrated

onto a single chip, chip multiprocessors (CMPs) require efficient
organization and management of the on-chip cache resourcesto
provide fast data accesses for concurrently running threads. To
efficiently use the aggregate cache capacity, most CMP propos-
als share cache resources between threads via either a logically
shared cache [14, 1, 39, 43] or private caches augmented withca-
pacity sharing policies [35, 8, 6, 2]. However, under high capacity
pressure, conventional LRU-based sharing policies cause destruc-
tive interference between threads, leading to thrashing [9], unfair-
ness [20] and lack of Quality-of-Service (QoS) [18] (e.g., no guar-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’07, June 18-20, 2007, Seattle, WA USA.
Copyright 2007 ACM 978-1-59593-768-1/07/0006 ...$5.00.

antee in providing certain baseline performance). Interference iso-
lation for fairness and QoS is important for CMPs as they are used
in consolidated servers, shared computing clusters, embedded sys-
tems, and other platforms, where meeting these requirements is as
important as improving overall throughput. Without hardware so-
lutions, their remedy can complicate the task of operating systems
and server administration. In contrast to unconstrained sharing, a
private cache design avoids inter-thread interference viadesign-
time partition of the aggregate capacity between processorcores.
This design is simple, fair and guarantees QoS, but often incurs
many more expensive off-chip misses for thread mixes with non-
uniform caching requirements.

To match the perceived requirements of different threads, CMP
cache partitioning schemes orchestrate cache allocation with more
flexible, usually heterogeneous partitions [38, 20, 42, 18,21, 17,
27, 29, 11, 10]. Despite their differences in metrics, mechanisms,
and policies, prior partitioning schemes have two common charac-
teristics: (1) they use a single spatial partition repeatedly through-
out a stable program phase; and (2) compared with LRU-based ca-
pacity sharing, they control the partitioning overhead viacoarse-
grained cache management: allocating large capacity unitsfor long
epochs (e.g., 64KB chunks for 5M-cycle epochs [29]). Conse-
quently, prior proposals share two limitations. (1)Limited func-
tionality. None of the previous proposals addresses all CMP caching
requirements, including thrashing avoidance, fairness improvement,
QoS guarantee and priority support, partially due to the difficulty of
satisfying multiple, often conflicting, goals in a single cache parti-
tion. (2) Limited scope of application. Cache partitioning can
only outperform LRU-based latency-reducing schemes for some
multiprogrammed workloads. An attempt to solely use cache par-
titioning can cause sub-optimal performance for workloadsthat do
not experience destructive inter-thread interference.

Our proposed solution,Cooperative Cache Partitioning (CCP),
has two aspects to address the two limitations, respectively. First,
CCP introduces Multiple Time-sharing Partitions (MTP) to improve
throughput and fairness while maintaining QoS. Specifically, each
MTP partition improves at least one thrashing thread’s throughput
by temporarily shrinking the capacity of other threads. By time-
sharing cache resources among multiple unfair partitions that favor
different threads, the problems of fairness improvement and prior-
ity support are translated into well-studied time-sharingresource
management problems. Fairness can thus be improved by giving
different threads equal opportunity to speed up, while priority can
be supported by allocating different percentages of time slices to
different partitions. The MTP partitioning algorithm further guar-
antees QoS over the long term by using partitions that, on average,
can bound each thread’s slowdown against the equal partitioning
baseline. Comparing with the best single spatial partitionbased
scheme without QoS constraints, MTP achieves up to 60%, and
on average 12%, better performance for workloads that can benefit
from cache partitioning.

Depending on whether destructive inter-thread interference ex-

ists or not, a workload can either prefer cache partitioningor LRU-
based sharing. In order to combine their strengths, the second as-
pect of CCP is to integrate MTP with CMP Cooperative Caching
(CC) [6], an LRU-based caching optimization. The complementary
advantages of MTP and CC are combined by dividing the total ex-
ecution epochs into those controlled by either MTP or CC, accord-
ing to the fraction of threads that can benefit from each of them.
The integrated scheme is shown to achieve robust performance for
both workloads with and without destructive inter-thread interfer-
ence. Furthermore, having CC as the default policy can simplify the
MTP partitioning algorithm by focusing only on threads withlarge
speedup potentials, leading to a heuristic-based algorithm that can
be practically implemented.

The rest of the paper is organized as follows. Section 2 defines
the metrics for CMP cache partitioning, overviews cache partition-
ing proposals, and classifies benchmarks based on their speedup
characteristics. We detail in Sections 3 and 4 the two aspects of
our approach: MTP and its integration with CC. Our evaluation
methodology and results are presented in Section 5. Relatedwork
is discussed in Section 6 and we conclude in Section 7.

2. BACKGROUND AND DEFINITIONS
To simplify later discussion, this section provides background in-

formation on CMP cache partitioning and workload characteristics,
as well as defines metrics to evaluate different caching policies.

2.1 CMP Multiprogramming Metrics
To compare the effectiveness of CMP caching schemes for multi-

programming, we first need to find proper metrics to summarizethe
overall performance, fairness and QoS results for a thread schedule.
A multiprogrammed workload’s throughput can be simply mea-
sured as the sum of per-thread throughput (i.e., IPC for our work-
loads), but quantifying QoS and fairness can be hard, and requires
an understanding of these notions in the context of CMP caching.

Our notions of performance, fairness and QoS are based on two
principles: (1) proportional-share resource allocation and (2) Pareto
efficiency. The first principle states that QoS and fairness is achieved
when the shared resource is divided among sharers in proportion to
their priorities or weights [41, 4, 40, 34]1. Using proportional-share
allocation to maintain the baseline fairness, the second principle
further improve performance (efficiency) by allowing dispropor-
tional sharing if it helps some sharers without hurting the others.
These principles have been used to define min-max fairness [3],
which has wide applications in computer networks and scheduling
policies (e.g., Generalized Processor Sharing [26]).

2.1.1 QoS Metric
QoS is the ability to provide a thread with guaranteed baseline

performance (corresponding to a specific resource partition) re-
gardless of the load placed on the shared resource from otherco-
scheduled threads [40]. We useequal-share cache allocation to
define the performance bottom line for QoS, which corresponds
to the special case of proportional-sharing when all threads have
the same priority. Notice that equal-priority has been implicitly
assumed by previous fair caching proposals [20, 42, 16], while our
MTP scheme can also support threads with different prioritylev-
els (refer to Section 3.3). This baseline can be implementedeither
by uniform-sized private caches or an equal partitioning ofshared
cache capacity between on-chip cores, and it guarantees QoSbe-

1Contention in other shared resources, especially the memory sys-
tem, can also cause destructive interference. Here we focuson the
impact of destructive interference occurring in the last-level CMP
caches, assuming a fair memory system as proposed in [25].

cause all threads get the same capacity and thus can achieve the
same performance across different schedules. The equal-share al-
location baseline also provides intuitive QoS results to multipro-
cessor users because it corresponds to traditional multiprocessors
with private caches. For similar reasons, Yeh and Reinman [42]
use this baseline implemented by private caches. Here we usethe
even partitioning of a shared cache as our baseline because most
existing cache partitioning schemes assume a shared cache.

The QoS metric is thus defined as the sum of per-thread slow-
downs (as negative percentages) over this baseline. Same as[42,
25], we claim a caching scheme can guarantee QoS if this mea-
surement is bounded within a user-defined threshold (e.g., -5%).
Other ways of measuring QoS exist (e.g., reporting the maximum
slowdown or the number of threads that violate QoS), but we use
the total slowdown because it captures the behavior of the entire
workload and thus is a more stringent criteria.

QoS(scheme) =
P#app

i=1 min(0, IPCi(scheme)
IPCi(base)

− 1)

2.1.2 Fair Speedup Metric
According to the principle of Pareto efficiency, CMP caching

schemes should further improve performance while maintaining
fairness, if uneven resource allocation can speed up some threads
over the equal-share allocation baseline without hurting others. Now
we consider how to measure the scale of performance improvement
for co-scheduled threads.

Summarizing the overall performance of multiple benchmarks
(co-scheduled threads in our context) has been an extensively dis-
cussed topic [32, 19]. We adopt prior wisdom and define theFair
Speedup (FS) metric to quantify the overall performance of co-
scheduled threads. FS is calculated as the harmonic mean of per-
thread speedups over the equal-share allocation baseline.

FS(scheme) = #app/
P#app

i=1
IPCi(base)

IPCi(scheme)

Using harmonic mean of speedups, FS measures the execution
time reduction against a baseline cache configuration that resem-
bles traditional multiprocessors (so higher FS is better).FS is also a
fair metric because using the harmonic mean (instead of the sum as
used by [42]) rewards uniform speedups and penalizes slowdowns2,
which corresponds to the principle of Pareto efficiency.

The notion of fair speedup is similar to the fair slowdown metrics
proposed by Kim et al. [20], which is measured against a single-
thread execution baseline where one thread has exclusive use of
all cache resources. Such a baseline is borrowed from SMT pro-
cessors [33], where it corresponds to the single-thread execution
mode that allocates all execution and cache resources to onethread.
However, single-thread execution in a CMP will waste the major-
ity of execution resources. Instead, we choose to use the equal-
share allocation baseline because it has better resource utilization
by supporting multiple concurrently running threads and performs
similarly as in traditional multiprocessors. For the same reason,
two other SMT performance metrics using a single-thread execu-
tion baseline—weighted speedup [33] (or WS, which is the sumof
speedups) and harmonic mean of speedups [22]—are not used.

2.1.3 Metrics Comparison
The choice of evaluation metrics has a significant impact on

CMP caching policies. Below we use two examples to demonstrate
the differences between caching schemes that optimize for different
metrics.

2According to the power-mean inequality, the harmonic mean of a
vector is maximized when all elements have the same value.

(A) Unfair (B) Fair
0

1

2

3

S
pe

ed
up

art vpr WS FS

Figure 1: FS vs. WS for Two Example Schemes

Figure 1 shows the per-thread speedups of benchmarksart and
vpr using two partitioning schemes (2 threads sharing a 2MB L2
cache). Scheme (A) maximizes weighted speedup (WS) by tripling
the performance ofart, however, its fair speedup (FS) measure-
ment is worse than the baseline (FS = 1) due to unfair per-thread
speedups. On the other hand, the fair scheme (B) optimizes FSat
the cost of a lowered WS result because the low-speedup thread is
given a more fair cache allocation. This example shows that (1) FS
optimization has the side effect of avoiding unfair caching, (2) a
scheme that optimizes FS may hurt the WS or IPC results, and vice
versa, due to different optimization tradeoffs.

Metrics Scheme A <=> Scheme B

Speedups 0.76/0.76/3.18/3.18 1.97/1.97/1.97/1.97

IPC 0.52 == 0.52
WS 2.42 == 2.42

QoS -52% < 0%
FS 1.28 < 2.00

Table 1: Performance Comparison Using Different Metrics
Table 1 compares the performance of two partitioning schemes

for workloadart-art-art-art (a co-schedule of 4 copies of
art). Scheme A optimizes WS and throughput without consider-
ing its implications on fairness and QoS, while Scheme B aimsto
simultaneously optimize FS and maintain QoS. If only comparing
throughput and WS results, the two schemes have the same per-
formance (shown asitalic in Table 1). However, our QoS and FS
metrics (marked asbold in Table 1) reveal that Scheme A cannot
guarantee QoS while Scheme B can, and Scheme B achieves better
fairness and execution time than A. This example shows that our
QoS and FS metrics are able to distinguish whether a scheme can
maintain QoS and fairness, but the WS and IPC metrics cannot.

To summarize, using QoS and FS metrics together, we can mea-
sure a caching scheme’s effectiveness in improving performance,
fairness and QoS. We will report results using the FS and QoS
metrics in this paper, but also provide WS and IPC results in the
evaluation section for comparison.

2.2 Cache Partitioning Background
CMP cache partitioning schemes generally work in repetitive cy-

cles, each consisting of three steps: (1) measurement, (2) partition-
ing, and (3) enforcement. The first step is to measure and estimate
each thread’s performance (in terms of miss rate or IPC) for can-
didate cache partitions. Then this information is used to determine
the next cache partition to reach a given optimization goal.The new
partition will be enforced in the next execution epoch, while new
measurement will be gathered and used in the subsequent cycles.
Measurement information can be gathered via profiling [20, 16],
LRU stack hit position counting [42], monitoring [37], or dynamic
set sampling [29]. This step can incur space or execution time over-
head, while inaccurate information can lead to sub-optimalparti-
tioning decisions.

Most prior proposals use coarse-grainedway partitioning [7,
38] as the basic mechanism to enforce a cache partition (withthe
exceptions of STATSHARE [27] and cache-level-quota enforce-

ment [31]). Assuming a set-associative cache, way partitioning al-
locates cache resources in units of cache ways (each way having the
same number of cache sets). This mechanism can be implemented
with a modified cache replacement policy to ensure that the number
of blocks used by a thread at a cache set level does not exceed its
way quota.

Cache partitioning proposals differ mainly in their optimization
goals and partitioning policies, which are compared in Table 2. To
avoid exhaustive search, cache partitioning algorithms use heuris-
tics to prioritize capacity allocation according to the miss rate and
speedup characteristics of co-scheduled threads. Unlike prior parti-
tioning algorithms that select the best single spatial partition (SSP)
for a given epoch, the proposed MTP scheme selects multiple par-
titions and allows them to be enforced in a time-sharing manner,
possibly across multiple epochs within a stable program phase.

Because cache partitioning schemes are often coarse-grained,
they are amenable to not only online simulation, but also offline
analysis [21, 20, 16]. To do offline analysis, we first gather per-
formance profiles for all possible (benchmark, capacity) combi-
nations. Comparing against each benchmark’s baseline IPC,we
can calculate the per-thread speedups for all (benchmark, capacity)
combinations and use them to calculate metrics such as FS, WSand
QoS. For a given metric, we construct the candidate cache partition
space for each workload and exhaustively search in the partition
space for the optimal result. Compared with online simulation, of-
fline analysis is idealized because (1) it uses accurate measurement
information and (2) it searches for all possible partitions, which can
be too slow to be practically implemented.

Due to its idealized nature, offline analysis can be used to es-
timate the performance upper bounds for given cache partitioning
policies. We will use this approach to demonstrate the advantage
of our proposed MTP policy over prior cache partitioning schemes,
and avoid the need to compare against realistic implementations of
prior proposals. We will also compare the offline analysis results of
MTP with online simulation results of LRU-based caching schemes
to identify the limitation of cache partitioning schemes. However,
our final scheme CCP, which integrates MTP with CC, will be eval-
uated using a practical implementation, online measurement infor-
mation, and execution-driven simulation results.

2.3 Benchmark Characteristics
Different cache partitioning schemes should be compared using a

wide range of multiprogrammed workloads to evaluate their perfor-
mance robustness. In this paper, we assume a CMP with 4 single-
threaded cores and consider all 210 4-thread multiprogramming
combinations (repetition allowed) from 7 SPEC benchmarks3.

Figure 2 shows the performance of 7 SPEC benchmarks under
different cache allocations. The IPC data are gathered using a 4-
core CMP with 4MB 16-way total L2 cache. With way partitioning,
cache resources are allocated in 256KB chunks. The equal-share
allocation baseline (marked as the vertical line) is for each thread
to use 1MB cache. At least 1 way is allocated to each thread. With
three other cores on-chip, this leaves 13 ways (13 = 16 − 3 ∗ 1),
or 3.25MB, as the maximum capacity for one thread to have. This
figure shows that our selected benchmarks have a wide varietyof
working set sizes and IPC curve shapes, therefore their combina-
tions are able to generate a wide range of workload behaviors.

Figure 3 breaks the IPC curve ofart into three distinctive re-
gions as more capacity is allocated: (1) pre-working-set region

3With repetition, the number ofK combinations selected fromN
objects isCN+K−1

K . Therefore, selecting 4-thread combinations
from 7 benchmarks can generateC7+4−1

4 =210 workloads.

Optimization goals Policies (threads with allocation priority)
Liu et al. [21] Maximize throughput Static partitioning
Suh et al. [38] Minimize miss rate Greedy (thread with best marginal miss reduction)

Fair Sharing [20] Minimize slowdown difference Greedy (thread with most extra misses)
Fast and Fair [42] Maximize

P

speedup under QoS Greedy (thread with best speedup)
CQoS [18] QoS Generic framework, open policies

OS-managed [31], STATSHARE [27] Open Generic model/mechanism, open policies
Utility-based [29] Maximize WS Lookahead (thread with best marginal utility)

MTP Maximize FS under QoS Iterative (threads with high speedups)

Table 2: Comparing CMP Cache Partitioning Policies

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

Number of cache ways

IP
C

apsi
twolf
vpr
gcc
ammp
art
mcf

Figure 2: IPC Curves

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

region 1
region 2

region 3

Number of cache ways

IP
C

Figure 3: IPC of art

(from 1 way to 4 way) represents gradual speedups before the pro-
gram’s working set starts to fit into cache; (2) in-working-set re-
gion (from 5 way to 7 way) indicates dramatic throughput increases
when the working set can be partly cached; (3) post-working-set
region (starting from 7 way) shows saturated performance after the
working set is fully cached. Except for benchmarks whose work-
ing sets are beyond the capacity of the on-chip cache (i.e., stream-
ing threads), most threads demonstrate IPC curves that consist of
regions with distinct slopes, albeit with different cache configura-
tions. According to which region intersects with the equal-share
allocation (which is dependent on both thread characteristic and
cache configuration), we classify these threads into 3 categories.

• Supplier threads: These threads can supply some or all of
their equal-share capacity for other threads while still achiev-
ing the same level of performance as using all cache resources.
They include threads with very small working sets (e.g.,apsi
andgcc whose working set sizes are less than 1MB) and
streaming threads (e.g.,swim andfacerec which are not
included in Figure 2).

• Sensitive threads: vpr andtwolf are benchmarks whose
in-working-set regions are divided by the line of equal-share
capacity. The performance of such programs changes signif-
icantly over the baseline as cache size varies, therefore judi-
cious cache partitioning is needed when they are co-scheduled
with other threads.

• Thrashing threads: art, ammp andmcf are benchmarks
whose in-working-set regions are beyond their equal-share
capacity. These threads usually slow down gradually with
reduced capacity, but can speed up dramatically when a cer-
tain amount of extra capacity is allocated.

A similar classification can be found in [29], according to the
benefit of increased capacity (or utility). Our classification is dif-
ferent by separating thrashing threads from sensitive threads, both
called high-utility programs in [29] because they can speedup with
more capacity.

3. MULTIPLE TIME-SHARING PARTITIONS
Prior CMP cache partitioning policies use the best single parti-

tion to achieve their optimization goals. However, it is an intrinsi-
cally hard problem to satisfy multiple goals (e.g., throughput, fair-
ness and QoS) with a single partition when conflicts exist between
competing threads. In this section we introduce the notion of Mul-
tiple Time-sharing Partitions (MTP) to resolve such conflicts over
longer terms. Below we detail the development of MTP as we add
support for different caching requirements.

3.1 Thrashing Avoidance
We first discuss when cache partitioning is needed by examining

when destructive interference occurs. Starting with the equal-share
allocation baseline, if this configuration can satisfy the caching re-
quirements of every co-scheduled thread, then cache partitioning
is not needed because little inter-thread interference exists. Cache
partitioning is needed only if some threads experience thrashing
with their current capacity allocations. These threads will attempt
to acquire extra cache resources from each other and from other
threads, which leads to performance, fairness and QoS problems.

Thrashing is a classic virtual memory management problem [9],
and can be avoided by reducing the multiprogramming level: when
the number of competing threads is reduced to a point that their
working sets can be cached simultaneously, they can all run much
faster. In the context of CMP caching, the number of co-scheduled
threads is fixed by the operating system, but cache partitioning can
intentionally manage capacity contention by unfairly starving some
thrashing threads to make room for other thrashing threads.

Consider partitioning a 4MB 16-way L2 cache between 4 co-
scheduled copies ofart. With the equal-share allocation of a 1MB
L2 cache,art has a low IPC of 0.066 due to thrashing (over 50
off-chip misses per thousand instructions) as previously shown in
Figure 3. As more cache resources are allocated, its throughput
increases quickly and reaches a saturating point of 0.215 IPC with
1.75MB capacity. At this point, thrashing can be avoided for2
threads by unfairly allocating to each of them 1.75MB capacity,
and starving the other threads each with a 256KB cache (0.05 IPC).
This partition doubles the total throughput (0.215∗2+0.05∗2=0.52,
which is two times of0.066 ∗ 4=0.264), but is unfair to the threads
being starved.

3.2 Fairness Improvement
Cache partitioning between 4 copies ofart is an example of

the throughput-fairness dilemma. When the available cachecapac-
ity cannot simultaneously satisfy the working set requirements of
multiple large threads, a compromise has to be made within a single

spatial partition. In this example, fair partitions cause thrashing for
all threads, while thrashing avoidance requires unfair partitioning.
Existing cache partitioning schemes all face this dilemma,but dif-
fer in the way they trade off between throughput and fairness.

We resolve this dilemma by learning from a similar example in
game theory [12]. Consider two officemates who commute to their
workplace: efficiency is doubled when they carpool, but it isun-
fair because the driver invests more effort and money. Not car-
pooling is a fair strategy, but is also inefficient. In real life, such
games are played daily by the same players who often improve
both performance and fairness by “taking turns” to drive when they
carpool. We adopt the same cooperative policy to simultaneously
improve throughput and fairness with multiple time-sharing parti-
tions (MTP). Instead of using a single partition that is either low-
throughput or unfair, multiple unfair but high-throughputpartitions
are selected and given equal opportunity to be used.

Specifically, individual threads are coordinated to shrinkand ex-
pand their cache allocations in different cache partitions. Within
a partition, the spare capacity collected from shrinking threads is
used by expanding threads, and different threads are expanded in
different partitions. As a thrashing thread goes through shrink-
ing and expanding partitions, its average throughput can bemuch
better than its baseline throughput. This is because a thrashing
thread’s baseline performance is already low by definition,and
shrinking capacity usually causes insignificant slowdown.How-
ever, the thread can achieve dramatic speedup in expanding parti-
tions (when the allocated cache can hold its working set) and, on
average, the speedup in one expanding partition is often more than
what is needed to compensate the slowdowns in multiple shrinking
partitions. Overall, the workload’s fair speedup (FS) is improved
because all expandable threads get a fair chance to speedup.

(A) SSP-based fair scheme (B) SSP-based fast scheme (C) MTP-based scheme

IPC=0.26, WS=1.23, FS=1.00 IPC = 0.52, WS=2.42, FS=1.22 IPC=0.52, WS=2.42, FS=1.97

1 2 3 4

2 31 4

3 41 2

41 2 3

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Spatial partitioning

T
im

e
-s

h
a
ri

n
g

Time

Figure 4: Cache Partitioning Options for art-art-art-art

Figure 4 compares three cache partitioning schemes for 4 copies
of art. Single spatial partition (SSP) based schemes A and B pro-
vide the most fair and fast partitions, respectively. Basedon MTP,
scheme C can both maintain the same level of fairness as scheme
A (by equalizing per-thread speedups) and achieve the same high
throughput (IPC=0.52) and weighted speedup (WS=2.42) of scheme
B. Such improvement is reflected by its high FS result (97% and
61% higher than scheme A and B, respectively), but can be over-
looked if we only compare the IPC or WS results.

3.3 Priority Support
MTP extends the option of cache partitioning from the single

dimension of space-sharing into two-dimensional time-sharing be-
tween spatial partitions. The time-sharing optimization can be ap-
plied to any proportional-sharing resource partition baseline, thus
supporting priority if the priority levels of co-scheduledthreads are
reflected in the baseline.

Priority can also be supported through time-sharing. Instead
of giving different threads equal opportunity to speedup, differ-
ent time-sharing priorities can be assigned to different unfair parti-
tions to deliver differentiated levels of performance. Because time-
sharing based priority support has been well understood andimple-
mented by operating systems [15, 41], MTP can serve as the cache

management primitive to the high-level software by focusing on the
determination and enforcement of multiple unfair partitions.

As priority specification and interpretation are usually conducted
by end-users and operating systems, we leave the development and
evaluation of priority algorithms for future work and assume the co-
scheduled threads have the same priority for the rest of the paper.

3.4 QoS Guarantee
QoS can be guaranteed either in a real-time manner, or over the

long term to meet different thread’s timing requirements. Real-
time QoS is needed only by certain programs (e.g., real-timevideo
playback), and is not needed for many other programs. For exam-
ple, users of SPEC-like programs are most concerned about total
execution time, and thus long-term QoS, often measured overmany
millions of cycles.

To guarantee real-time QoS, fast and fair partitioning [42]re-
serves for each thread aguaranteed partition, which is the min-
imum amount of cache space required to achieve the same level
of performance as using the equal-share cache allocation. Further
speedup can be obtained by intelligently partitioning the remain-
ing space. However, because only supplier threads (defined in
Section 2.3) can have their guaranteed partitions smaller than the
equal-share capacity, the cache partitioning algorithm isoften left
with a limited amount of space to optimize, resulting in lowered
performance compared with schemes under no QoS constraints.

Single spatial partition (SSP) based cache partitioning schemes
experience the same problem even for threads that require only
long-term QoS. Because the same spatial partition is used repeat-
edly throughout a stable program phase, these schemes have to
guarantee long-term QoS by guaranteeing QoS within every cache
partition. In contrast, MTP’s cooperative shrink/expand model can
be used to guarantee long-term QoS with little loss of performance.
To meet the QoS requirement, the MTP partitioning algorithmnow
uses multiple partitions to maximize FS, under the constraint that
each thread’s average throughput across multiple partitions is no
worse than the equal-share baseline throughput.

To demonstrate MTP’s advantage in guaranteeing long-term QoS,
Figure 5 compares SSP and MTP based cache partitioning schemes
that optimize FS under different QoS requirements: withoutQoS
(SSPnoQoS and MTPnoQoS), real-time QoS (SSPQoS and MTPrtQoS),
and long-term QoS (MTPltQoS). These results are obtained from
an offline analysis to show the performance potential of an ideal
MTPltQoS implementation. In Sections 4 and 5, we will develop
and evaluate its practical implementation.

0% 20% 40% 60% 80% 100%
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(A) Percentage of Workloads (FS)

F
ai

r
S

pe
ed

up Under MTP
ltQoS

,

20% of the workloads
have FS values >= 1.36.

0% 20% 40% 60% 80% 100%

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

(B) Percentage of Workloads (QoS)

Q
oS

QoS threshold

MTP
noQoS

MTP
ltQoS

SSP
noQoS

MTP
rtQoS

SSP
QoS

Figure 5: Comparing SSP and MTP Schemes

For each scheme, we plot the percentage of workloads that can
achieve various metric values. These curves are essentially Cu-
mulative Distribution Functions (CDF) being transposed, so that a
higher curve indicates a better performing scheme. For example in
Figure 5(A), each point (X%, Y) on the MTPltQoS curve indicates

that, X% of workloads have FS measurements equal to or large than
(≥) value Y. Notice that for the same type of QoS guarantee, the
ideal SSP scheme can never outperform the ideal MTP because sin-
gle spatial partitioning is a special case in the MTP model, which
is also empirically shown in the figure.

Figure 5(A) only shows 4 distinct curves for 5 schemes because
MTPltQoS and MTPnoQoS have almost the same FS results. Sim-
ilarly, the curves of the QoS guaranteeing schemes overlap in Fig-
ure 5(B). Figure 5 further shows that (1) SSPnoQoS and MTPnoQoS

can not bound per-thread slowdown within the user-specifiedthresh-
old (-5% in this paper); (2) SSPQoS and MTPrtQoS are the worst
performing policies (their curves overlap for workloads with smaller
FS values), indicating that real-time QoS guarantee can restrict per-
formance optimization; and (3) MTPltQoS can maintain long-term
QoS while achieving almost the same performance as the best per-
forming scheme MTPnoQoS.

For its performance and QoS benefits, we now use MTPltQoS as
the representative MTP policy in the rest of the paper, and denote
it as MTP. MTP can support real-time QoS by simply reserving
guaranteed partitions for real-time threads and optimizing the other
threads with the remaining capacity.

3.5 Summary
MTP is a high-level cache partitioning policy that extends exist-

ing proposals with time-sharing multiple cache partitions. MTP
addresses four cache partitioning requirements: (1) thrashing is
avoided by unfair allocation within a partition; (2) fairness is im-
proved with fair time-sharing between unfair partitions that each
favors a different subset of co-scheduled threads; (3) priority can
be supported with either prioritized proportional-share baselines or
unfair time-sharing; and (4) different types of QoS can be guar-
anteed by bounding per-thread slowdown within each partition or
across multiple partitions.

With multiple epochs in one iteration, MTP takes longer to adapt
to phase/scheduling changes. MTP (and most partitioning schemes)
cannot promptly adapt to frequent, irregular changes because their
prediction of future execution relies on stable phases. In our in-
frastructure (Solaris-based full-system simulator), we observe sta-
ble thread-scheduling and repetitive phase changes. Our scheme
works for such changes by using longer epochs (20M-cycles) to in-
clude multiple phases, whose aggregate behavior is stable enough
for cache partitioning.

MTP can be implemented in different ways. A hardware-only
solution is transparent but less flexible, especially considering pri-
ority support. Cooperation between hardware and software allows
hardware to collect measurement and enforce partitioning deci-
sions, and software to schedule partitions to meet high-level re-
quirements. This section used offline analysis results to demon-
strate the advantages of MTP without considering implementation
details. Next we will present a practical, heuristic-basedMTP par-
titioning algorithm by exploiting the benefits of CMP Cooperative
Caching (CC) [6].

4. INTEGRATING MTP WITH CC
This section addresses another limitation of existing cache par-

titioning proposals—inadequacy for workloads that are well sup-
ported by LRU-based latency optimizations, where cache partition-
ing can hurt. We propose a new hybrid scheme, Cooperative Cache
Partitioning (CCP), that combines the advantages of MTP andCMP
Cooperative Caching (CC) [6]. Below, we motivate the need for
the integration by showing the complementary advantages ofMTP
and CC on different workloads. We then develop a simple online
heuristic to select MTP partitions based on the different character-

istics of MTP and CC, and extend the CC design to implement the
hybrid scheme.

4.1 Motivation
Figure 6 compares the FS and QoS results of MTP with two

LRU-based caching schemes: CC and shared cache, using the same
aggregate cache size and associativity. We use scatter plots to
reveal the correlation between the best performing schemesand
workload characteristics. To show the advantages of MTP andCC
over shared cache, we normalize the FS values against the better
results provided by MTP and CC (i.e., Max[FS(MTP), FS(CC)]).
The 210 workloads are also clustered into two groups according to
whether MTP outperforms CC (i.e., FS(MTP)>FS(CC)).

FS(MTP)>FS(CC) FS(MTP)<FS(CC)

0.6

0.7

0.8

0.9

1

1.1

(A) FS
F

S
 n

or
m

al
iz

ed
 to

 M
ax

[F
S

(M
T

P
),

 F
S

(C
C

)]

FS(MTP)>FS(CC) FS(MTP)<FS(CC)
−0.2

−0.15

−0.1

−0.05

0

(B) QoS

Q
oS

MTP
CC
Shared

Figure 6: Comparing MTP with CC and Shared Cache. Each
point on the X-axis represents a workload, and the correspond-
ing Y-values are the measured results of the three schemes.

Focusing on the regions highlighted by the dotted rectangles,
several observations can be made from Figure 6. First, Figure 6(A)
shows that only a small number of dots (10%) are above 1 and
fewer (3%) are above 1.1, indicating that a shared cache onlyout-
performs both MTP and CC infrequently and insignificantly. Sec-
ond, MTP only provides better performance than CC for 32% of the
workloads, indicating the limited effectiveness of cache partition-
ing over CC for many workloads. Third, for workloads that benefit
less from MTP, CC is almost always the best performing scheme
(Figure 6(A)) and can guarantee QoS (Figure 6(B)), showing the
complementary strengths of MTP and CC.

These observations imply that we can choose the best perform-
ing scheme (in both FS and QoS) for a given workload accordingto
whether FS(MTP)>FS(CC): if MTP provides better FS result than
CC, then MTP is very likely to perform the best; otherwise, CCis
the best choice. Therefore, a hybrid scheme that integratesMTP
and CC can potentially provide the best performance for all work-
loads by simply choosing the better scheme for any given workload.
Below we analyze the reasons for CC and MTP’s performance ad-
vantages, in order to achieve such an integration.

4.1.1 Advantages of CC
Two major reasons contribute to CC’s performance advantage

over MTP: (1) latency optimization over shared cache and (2)LRU-
based fine-grained cache sharing. The first reason is unique to
CC—it is the only private cache based CMP caching proposal that
approximates global LRU replacement for multiprogrammed work-
loads; the second is supported by both CC and a shared cache.

CC reduces the average cache access latency by keeping a thread’s
data set locally in the processor’s private L2 cache. Due to on-chip
wire delay, local cache access latencies are much lower thanre-
mote access latencies. Comparing with a shared cache where data
are distributed evenly across all banks, and a large fraction of L2
accesses are to remote banks, CC has the advantage of servicing

most L2 accesses locally. For threads whose working sets canbe
mostly satisfied by a private cache, such reduced L2 cache latencies
often translate into higher performance.

Similar to a shared cache, CC supports LRU-based capacity shar-
ing by (1) allowing a local cache’s victim block to be placed in a
randomly picked peer cache (called spill in [6]), and (2) approx-
imating global LRU replacement for multiprogrammed workloads
via the combination of local LRU and global spill/reuse history. CC
differs from a shared cache in that it allocates capacity according to
the local thread’s L2 reference stream and the remote threads’ L2
miss streams, which are first filtered by their local L2 caches.

400 450 500 550 600
1

2

3

4

5

6

7

Time (million cycles)

A
llo

ca
te

d
ca

ca
pc

ity
(n

um
be

r
of

 c
ac

he
 w

ay
s)

art
art
apsi
apsi

Figure 7: Cache Allocation for art-art-apsi-apsi
An LRU-based policy can provide near-optimal cache allocation

for many workloads [36]. Figure 7 shows the amount of cache al-
located by CC for individual threads inart-art-apsi-apsi.
CC shows spatial fine-grained sharing by allocating on average 6.5
ways and 1.5 ways of capacity toart andapsi to better fit their
capacity requirements, while way partitioning schemes canonly
allocate capacity in units of cache ways (the best partitionallo-
cates 6 ways to eachart and 2 ways to eachapsi). Temporal
fine-grained sharing occurs during simulation time 500 to 530 mil-
lion cycles, whenapsi enters a phase that needs more capacity.
CC adapts to this change swiftly without explicit phase tracking
support or cache repartitioning. Due to spatial fine-grained shar-
ing, art achieves 34% better speedup than way partitioning. The
throughput ofapsi is also slightly improved due to temporal fine-
grained sharing (even though its average cache capacity is lower
than way partitioning). This example also shows that CC is capable
of managing workloads whose aggregate working set size modestly
exceeds the total cache capacity, by dynamically balancingeach
individual thread’s cache allocation.

Programs with highly non-uniform associativity demands across
different cache sets [30] can also benefit from fine-grained sharing.
For example, althoughammp has a working set size of 1.5MB (or
6 cache ways), it can further speed up by 2X when the associativity
requirements of certain hot sets are satisfied by a 16-way allocation.

4.1.2 Heuristics for MTP to Outperform CC
We now try to discover the characteristics of the workloads that

can achieve better performance with MTP than with CC. Such char-
acteristics will then be used to develop a simple heuristic to inte-
grate MTP with CC.

To simplify discussion, we first assume that within one groupof
MTP partitions, a thread always uses the same capacityCexpand

in all of its expanding partitions and the same capacityCshrink in
all shrinking partitions, thus achieving the same speedupSp and
slowdownSd repeatedly. Offline analysis results show that this
assumption has almost no performance impact on MTP. We further
filter out supplier threads by allocating their guaranteed partitions
to them, and allocate the remaining space among other threads.

To guarantee QoS and improve performance using MTP, each
thread’s total speedup has to exceed its total slowdown, andat least
one thread should have a much larger total speedup. This can be
achieved in two ways. The first way is to have a thrashing thread
whose dramaticSp can compensate the total slowdown in multiple

shrinking partitions. The other way for a thread to achieve speedup
using MTP, without a largeSp, is to have a modestSp, but a steep
speedup curve and a gradual slowdown curve, so that the speedups
accumulated in multiple expanding partitions exceed the slowdown
in one shrinking partition. However, achieving a modestSp along
with a steep speedup curve requires only a small amount of extra
capacity, in which case CC is likely to achieve the same effect be-
cause the LRU policy is better at fine-turning cache allocation to
achieve speedups (example shown in Figure 7).

The above analysis suggests that the common case for MTP to
outperform CC is to have at least one thrashing thread, determined
by whether its speedupSp in one expanding partition is larger than
the total slowdown accumulated in shrinking partitions. Here the
Sp andSd values are dependent on both the thread’s IPC curve and
the available capacity (which further depends on capacity allocated
to co-scheduled threads). The test of a thrashing thread will be used
as the partitioning heuristic for MTP.

The common case also explains why CC can guarantee QoS
when its FS value is better than MTP (Figure 6(B)). A QoS viola-
tion occurs in CC only when a thread’s private cache is overlyused
by blocks replaced from other threads (or spilled blocks [6]). Be-
cause CC’s private cache has the same capacity as the equal-share
baseline used to define thrashing, the aggressive spilling implies the
existence of high miss rates and thus thrashing threads. Therefore,
for workloads that prefer CC, the spilling should not be too invasive
to affect QoS, otherwise thrashing will occur and cause MTP to be
preferred.

4.2 Cooperative Cache Partitioning
We now develop Cooperative Cache Partitioning (CCP), a heuristic-

based hybrid cache allocation scheme that integrates MTP with CC.
CCP consists of three components: (1) a heuristic-based partition-
ing algorithm to determine the MTP partitions, (2) a weight-based
integration policy to decide when to use MTP and CC, and (3) mod-
ifications to the baseline CC design to enforce fine-grained cache
partitioning decisions.

4.2.1 CCP Partitioning and Weighting Heuristics
Before MTP partitioning, CCP first gathers each thread’s L2

cache miss rates under candidate cache allocations, and uses them
to estimate the IPC curve. Miss rates are collected in our simula-
tor in dedicated, online sampling epochs where each thread takes
turns to use the maximum amount of cache. We use LRU stack
hit counters to estimate miss rates under all possible cacheasso-
ciativities to reduce sampling overhead. Although such overhead
can be avoided with the recently proposed UMON online sampling
mechanism [29], we include it in our evaluation results.

Using IPC estimations, each thread’s guaranteed partition(for
real-time QoS guarantee) can be calculated. CCP also initializes
each thread’sCexpand to the minimum capacity needed to achieve
the highest speedup, andCshrink to the minimum capacity that can
ensure long-term QoS when cooperating withCexpand. A thread
is a supplier thread if itsCshrink and guaranteed partition are the
same.

The CCP partitioning algorithm (shown in Table 3) then returns
a set of MTP partitions that are likely to outperform CC, using the
test of a thrashing thread as a simple heuristic. This algorithm has
the following three steps: (1) filtering out supplier threads which
cannot benefit from cache partitioning; (2) determine MTP parti-
tions that each favors one thrashing thread by starving other thrash-
ing threads with theirCshrink capacity; (3) for MTP partitions
where one expanding thread can not use all the remaining space,
expand other threads to further increase speedup. We will describe

Inputs: capacity C, thread set TS, sample results (IPC[i][c], guaranteed partitions g[i]);
Outputs: expanded[i], MTP partitions MTP[p][i]; /*Thread i’s capacity in partition p */
/* Step 1: Filter out supplier threads */
Identify supplier threads SupplierTS, subtract their g[i]from C;

/* Step 2: Determine the set of thrashing threads ThrashTS */
/* init stable = false; ThrashTS=TS-SupplierTS; */
while (ThrashTS is non-empty and !stable)

stable=true;
foreach thread i∈ThrashTS

Cexpand[i]=i’s capacity usage when other threads use theirCshrink[j];
stable &= thrashingtest(i, size(ThrashTS),Cexpand[i], Cshrink[i]);

/* Step 3: Merge multiple expanding threads */
/* init p = 0; expanded[i] = false; MTP[p][j]=Cshrink[j]; */
foreach thread i∈ThrashTS, p++

foreach thread j, start from i, in circular order
MTP[p][j] += minimal remaining capacity for j to achieve itsbest speedup;
if (MTP[p][j]≥Cexpand[j]) expanded[j]=true; /*Expanded in MTP */

thrashing test(i, nump, expand, shrink) /*Key heuristic */
if (IPC[i][expand]-IPC[i][base])≥(nump-1)*(IPC[i][base]-IPC[i][shrink])return true; /* large speedup */
Cshrink[i]=g[i]; C=C-g[i]; remove i from ThrashTS;return false;

Table 3: CCP Partitioning Algorithm

steps (2) and (3) in detail because step (1) is rather straightforward.
Step (2) determines the set of thrashing threads by removing

threads whose speedups are not large enough to guarantee long-
term QoS. Each candidate thread is tested by the functionthrash-
ing test, to see whether its speedup in one expanding partition can
compensate for the total slowdown accumulated in other (shrink-
ing) partitions. The threads that fail thethrashing test are as-
signed with their guaranteed partitions and removed from the can-
didate set, which will reduce the number of candidate partitions, the
amount of remaining capacity and possibly remaining candidates’
Cexpand and speedups. Such tests are repeated until one of the two
termination conditions is satisfied: (1) the candidate set is empty,
or (2) all candidate threads pass the test. This step is guaranteed to
terminate because each round of tests either reduces the candidate
set size which leads to condition (1) in a finite number of steps, or
satisfies condition (2).

After step (2), it is possible that in an MTP partition, the ex-
panding thread does not need all the spare space provided by other
shrinking threads. Step (3) merges multiple expandable threads in
such a partition to further increase speedup. To be fair, thealgo-
rithm expands different sets of threads in different partitions.

This algorithm returns a set of MTP partitions and a vectorexpanded.
A threadi benefits from MTP if it is allocated withCexpand capac-
ity in at least one partition (expanded[i] is true), otherwise it is
likely to benefit from CC. This observation leads to the CCP inte-
gration heuristic: the execution time is broken into epochsmanaged
by either MTP or CC, weighted by how many threads can benefit
from them respectively. ForN co-scheduled threads, ifM of them
can be expanded by MTP partitions, then CCP will use MTP for
everyM out of N epochs and use CC for other epochs. A special
case is when no thread is expanded because step (2) cannot findany
MTP partitions, in which case CC should be used throughout the
execution.

4.2.2 Extending CC to Enforce Capacity Quota
To enforce MTP partitions, CCP modifies the baseline CC de-

sign to monitor each thread’s capacity usage and maintain capacity
quota by throttling spill-based capacity sharing. For our evaluated
4-core CMP (assuming single-threaded cores), every cache block is

augmented with 2 bits to indicate its owner thread ID. Each cache
maintains 4 counters to reflect the numbers of blocks used by differ-
ent threads. By periodically exchanging capacity usage information
between caches, CCP can monitor the capacity usage of different
threads. With such information, CCP maintains quota by disallow-
ing over-quota threads to spill and disabling spills into under-quota
threads.

5. EVALUATION AND RESULTS
We evaluate the effectiveness of different cache allocation schemes

using Virtutech Simics-based [23] full-system simulation. The cache
and memory simulator is derived from Ruby, which is part of the
GEMS toolset [24]. A single-issue, in-order processor model is
used, which allows us to simulate all 210 multiprogrammed work-
loads. We choose this methodology because, under the same sim-
ulation time, simulating a wide range of workload combinations
allows us to recognize the limitations of different approaches on
different workloads, which could have been missed by simulating
a few combinations with a more detailed processor model.

Table 4 lists the relevant configuration parameters used in our
simulations. The same total capacity and associativity areused for
shared cache (both with and without way partitioning) and CC. We
use the reference input sets for the selected SPEC benchmarks, ex-
cept forart which uses the train input.4 All benchmarks are fast
forwarded by 800M instructions to bypass program initialization,
and simulated for 700M cycles.

We compare the online simulation results of realistic CCP im-
plementation with offline analysis results of ideal cache partition-
ing policies (e.g., MTP). Because the ideal MTP implementation
results were shown to be the performance upper bound of existing
cache partitioning schemes in Section 3, we do not compare CCP
with realistic implementations of prior partitioning proposals.

We first compare CCP with its two baseline schemes CC and
MTP in terms of FS, followed by comparison between CCP with

4Art with reference input is a streaming (thus supplier) thread.
We do not include streaming threads because cache partitioning
for them is very simple: their IPCs don’t change with L2 cache
allocations, so we can simply allocate the minimal capacity(e.g., 1
cache way) to them.

Component Parameters
Processors 4-core, single-issue, in-order
Block size 128-byte

L1 I/D caches 32KB, 2-way, 2-cycle
L2 caches sequential tag/data access, 15 cycles total

On-chip interconnect Point-to-point, 5-cycle per-hop latency
Main Memory 300 cycles total

Coherence MOSI-based directory protocols
CC 1MB per-core private cache, 4-way

shared cache 1MB per-bank capacity, 4 banks, 16-way

Table 4: Processor and Memory System Parameters

idealized offline analysis results on other metrics—QoS, through-
put and weighted speedup. Lastly, we evaluate the performance
robustness of CCP by halving the total cache size.

5.1 Effectiveness of CCP
In Section 4, MTP was shown to be better than CC for only a

subset of workloads. Since the ideal MTP implementation repre-
sents the best cache partitioning results, we now refer to workloads
that prefer CC over MTP as workloads where cache partitioning
could hurt performance, and the other workloads as workloads that
need the help of cache partitioning. Figure 8 compares the perfor-
mance of CCP (realistic) with MTP (ideal) and CC (realistic)on
both classes of workloads. Only FS results are reported because
both CCP and MTP can guarantee QoS.

0% 25% 50% 75% 100%
1

1.2

1.4

1.6

1.8

2

F
ai

r
S

pe
ed

up

(A) Workloads preferring MTP
0% 25% 50% 75% 100%
1

1.2

1.4

1.6

F
ai

r
S

pe
ed

up

(B) Workloads preferring CC

MTP
CC
CCP

Figure 8: Comparing MTP, CC and CCP’s FS Results
Same as in Figure 5, we use transposed CDF curves to show the

percentage of workloads that can achieve various levels of perfor-
mance. Here, a higher curve indicates a better scheme because it
achieves better FS measurements across different fractions of the
workloads, and the gaps between curves correspond to their perfor-
mance differences.

Figure 8(A) shows that when cache partitioning is needed, CCP
achieves comparable performance as MTP (the gap between CCP
and MTP curves is small), and much better FS values than CC (the
gap between CCP and CC is much larger). The performance dif-
ference between CCP and MTP reflects the difference between our
practical partitioning heuristic and a less realistic, offline, exhaus-
tive search of MTP partitions. For workloads where cache parti-
tioning hurts, Figure 8(B) shows that CCP performs slightlybetter
or the same as CC and significantly better than MTP. Together they
demonstrate that CCP effectively combines the strengths ofboth
MTP and CC.

5.2 Results of Different Metrics
Besides FS, CMP caching performance can also be evaluated

using other metrics. We use transposed CDF plots to compare
CCP (realistic) and MTP (ideal) against two single spatial partition
(SSP) based schemes IPCopt and WSopt, which optimize offline
for throughput and weighted speedup, respectively. Focusing on
workloads that need cache partitioning, Figure 9 compares IPCopt,
WSopt, MTP and CCP over 4 different metrics: (A) fair speedup,
(B) QoS, (C) throughput, and (D) weighted speedup.

0% 50% 100%
1

1.2

1.4

1.6

1.8

2

(A) FS
0% 50% 100%

0.2

0.4

0.6

0.8

1

1.2

1.4

(C) Throughput
0% 50% 100%
1

1.5

2

2.5

3

3.5

(D) WS
0% 50% 100%

−0.5

−0.4

−0.3

−0.2

−0.1

0

(B) QoS

 IPCopt
WSopt
MTP
CCP

Figure 9: Results of Multiple Metrics for Workloads that Need
Cache Partitioning (32% of All Workloads) for 4MB Cache

For the first two metrics (FS and QoS), MTP and CCP are both
significantly better than IPCopt and WSopt. This is because the
SSP-based schemes, when their goals conflict with fairness and
QoS requirements, often optimize by favoring only a subset of
threads while sacrificing the performance of other threads.For
IPC and WS metrics, both IPCopt and WSopt are better, although
the gap between different schemes are much smaller than in Fig-
ure 9(A) and Figure 9(B). As illustrated in Section 2.1.3’s exam-
ples, this is because schemes optimizing for WS, IPC and FS have
different tradeoffs between performance and fairness.

PAR LRU ALL
1

1.05

1.1

1.15

1.2

1.25

1.3

(A) FS
PAR LRU ALL

1

1.1

1.2

1.3

(C) Throughput
PAR LRU ALL

1

1.1

1.2

1.3

1.4

(D) WS

PAR LRU ALL

−0.2

−0.15

−0.1

−0.05

0

(B) QoS

WSopt IPCopt shared CC CCP

Figure 10: Average Improvement for 4MB L2 Cache

Figure 10 summarizes the average improvement of WSopt, IPCopt,
shared cache, CC and CCP over the equal-share baseline for dif-
ferent metrics. The average improvements are calculated asge-
ometric means of per-workload improvements5. The results are
summarized over three groups of workloads: “PAR” represents
workloads that prefer cache partitioning, “LRU” covers other work-
loads, while “ALL” includes all workload combinations. This fig-
ure shows that for workloads preferring cache partitioning(PAR),
CCP performs much better than a shared cache and CC, while
achieving similar or much better results than the two cache par-
titioning schemes. Considering workloads that prefer LRU-based
sharing (LRU) and all workloads (ALL), CCP provides the best
average results on all reported metrics.

5.3 Results for a 2MB L2 Cache
Now we evaluate the robustness of CCP when the total L2 cache

capacity is reduced to 2MB. The reduction of cache size not only
increases capacity contention between threads, but also causes some
benchmarks to switch their categories (e.g., from supplierthreads
to sensitive threads, or from sensitive threads to thrashing threads)
so the performance of CCP can be tested under new scenarios.

Figure 11 uses transposed CDF plots to compare 4 cache par-
titioning schemes (IPCopt, WSopt, MTP and CCP) on workloads
that need cache partitioning. CCP again achieves comparable FS
and QoS results as the ideal MTP implementation and outperforms
the two SSP-based partitioning schemes. This shows the robustness

5QoS results are summarized using the arithmetic mean because
the QoS measurements of many workloads are zero, which causes
the average results to be the same (zero) with geometric means.

of CCP’s heuristic-based partitioning algorithm. In termsof fair-
ness and throughput tradeoff, the weighted speedup resultsof MTP
and CCP are similar to IPCopt and WSopt, while their throughput
results are 10% lower. Again, QoS constraint and fair speedup op-
timization are the two reasons that cause MTP and CCP’s lower
throughput, while IPCopt and WSopt can achieve better throughput
without satisfying such constraints.

0% 50% 100%
1

1.1

1.2

1.3

1.4

1.5

(A) FS

0% 50% 100%
0.2

0.4

0.6

0.8

1

1.2

1.4

(C) Throughput
0% 50% 100%

1.5

2

2.5

3

3.5

(D) WS
0% 50% 100%

−0.2

−0.15

−0.1

−0.05

0

(B) QoS

IPCopt
WSopt
MTP
CCP

Figure 11: WSopt, MTP and CCP on Workloads that Need
Cache Partitioning (40% of All Workloads) with 2MB Cache

Figure 12 compares the average improvements of various schemes
over the equal-share baseline. Due to higher cache contention,
more workloads now prefer cache partitioning (increased from 32%
to 40%). The performance of a shared cache also drops signifi-
cantly and comes close to the equal-share baseline performance.
In contrast, CCP still consistently outperforms other schemes for
workloads where cache partitioning can hurt. However, the gap
between cache partitioning schemes and CCP (as well as CC) isre-
duced because, due to capacity pressure, latency optimization con-
tributes less to the overall speedup. Averaged over all 210 work-
loads, CCP achieves the best results on almost all metrics (except
for throughput, where CCP is 1% lower than IPCopt).

PAR LRU ALL
1

1.02

1.04

1.06

1.08

1.1

1.12

(A) FS
PAR LRU ALL

1

1.05

1.1

1.15

1.2

1.25

(C) Throughput
PAR LRU ALL

1

1.05

1.1

1.15

(D) WS

WSopt IPCopt shared CC CCP

PAR LRU ALL

−0.1

−0.08

−0.06

−0.04

−0.02

0

(B) QoS

Figure 12: Average Improvement for 2MB L2 Cache

6. RELATED WORK
Cooperative cache partitioning is closely related to CMP cache

partitioning research. Stone et al. [36] studied the problem of par-
titioning cache capacity between different reference streams, and
identified LRU as the near-optimal policy for their workloads. Suh
et al. [38, 37] first applied way partitioning to shared CMP caches,
using in-cache monitoring mechanism and marginal gain based par-
titioning algorithm to reduce off-chip misses. Recently Qureshi and
Patt [29] proposed UMON sampling mechanism to provide more
precise measurement and lookahead partitioning to handle work-
loads with non-convex miss rate curves. The UMON mechanism
can be combined with CCP to improve miss rate measurement and
adapt to fine-grained program phase changes. Dybdahl et al. [11]
extended way partitioning by overbooking cache capacity toac-
count for non-uniform per-set requirements, and evaluatedits effec-
tiveness using private L1/L2 caches with a shared L3 cache. Dyb-
dahl and Stenstrom [10] also proposed an adaptive shared/private
partitioning scheme to both avoid inter-thread interference and ex-
ploit the locality benefits of private caches. Their partitioning al-
gorithm is essentially the same as in [38], but instead of in-cache

monitors, “shadow tags” are used to measure the benefit of having
one extra cache way.

Kim et al. [20] emphasized the importance of fair CMP caching,
and proposed a set of fairness metrics as their goal of optimization.
Iyer [18] motivated the importance of QoS guarantee and priori-
tization with a general QoS framework. Yeh and Reinman [42]
focused on throughput improvement with QoS guarantee and ex-
ploited the latency advantage of a NUCA design. Their notionof
guaranteed partition is adopted in this paper. Rafique et al.[31] and
Petoumenos et al. [27] proposed spatially fine-grained partition-
ing support, which is supported in CCP by throttling cooperative
sharing activities. Hsu et al. [16] studied various partitioning met-
rics and policies, and recognized the difficulties of improving both
throughput and fairness. CCP is the only partitioning proposal that
simultaneously optimizes throughput, fairness, and QoS for a wide
range of workload combinations.

Beside capacity optimization, CMP caching proposals also re-
duce on-chip access latency. CCP combines the strength of cache
partitioning with such fine-grained latency reduction optimizations
via the integration of MTP and CC [6]. MTP can also be integrated
with other private cache based latency optimizations [35, 2] that do
not support global LRU replacement. Planas et al. [28] provided
a model to explain cache partitioning speedups over LRU-based
fine-grained sharing.

CCP also borrows heavily from virtual memory management re-
search. Verghese et al. [40] recognized the need for performance
isolation for SMP-based systems, and proposed mechanisms to pro-
vide isolation under heavy load while allowing sharing under light
load. CCP aims to support a broader sense of performance isola-
tion that also balances between partitioning and sharing. The in-
tegration between MTP and CC resembles WSClock [5], a paging
algorithm that integrates working-set based partitioningwith global
LRU replacement. CCP also uses other well-known operating sys-
tem techniques such as thrashing avoidance and time-sharing based
resource management, but differs from software-only schemes [13]
that manage cache sharing solely in the operating system.

7. CONCLUSION
Current cache partitioning schemes have limited functionality

and applicability because they can only support a subset of CMP
caching requirements, and they can not compete with LRU-based
latency-reducing caching schemes (e.g., CC) for many workloads.
To answer these challenges, this paper introduces MultipleTime-
sharing Partitions (MTP) to simultaneously improve throughput and
fairness while guaranteeing QoS. MTP is further integratedwith
CMP Cooperative Caching (CC) to exploit its latency optimiza-
tions. The resulting Cooperative Cache Partitioning (CCP)scheme
is evaluated and shown to provide the best overall performance over
210 combinations of 7 representative SPEC2000 benchmarks un-
der different cache sizes. For a 4-core CMP with 4MB L2 cache,
CCP on average improves performance (measured by fair speedup)
by 12% and throughput by 4.5%, respectively, comparing against
the best static partitioning schemes optimizing fair speedup and
throughput, respectively, while maintaining long-term QoS.

CCP takes a first step in balancing partitioning-based capacity
optimizations and LRU-based latency optimizations for multipro-
grammed workloads. Future research is needed to extend CCP
to better adapt to phase/scheduling changes, as well as to support
large-scale CMPs and CMPs with SMT cores. For environments
that prefer higher throughput over execution time reduction, fair-
ness, and QoS guarantee, CCP can also be modified to use a single
unfair partition that only optimizes throughput, which is also left as
future work.

8. ACKNOWLEDGEMENTS
The authors thank Philip Wells, Koushik Chakraborty, Saisan-

tosh Balakrishnan, Matthew Allen and Vikas Garg for helpfuldis-
cussion and proofreading. We also thank Jim Smith and Kyle Nes-
bit for their valuable comments on the selection of baselines and
metrics, and the anonymous reviewers for their comments. Special
thanks to Philip Wells who first suggested time-sharing based cache
partitioning.

This research is supported in part by NSF grants CCR-0311572
and CNS-0551401, funds from the John P. Morgridge Chair in
Computer Science, and the University of Wisconsin GraduateSchool
(a WARF Named Professorship). Sohi has a significant financial
interest in Sun Microsystems. The views expressed herein are not
necessarily those of the National Science Foundation.

9. REFERENCES
[1] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,

B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: A Scalable Architecture
Based on Single-Chip Multiprocessing. InProceedings of the 27th Annual
International Symposium on Computer Architecture (ISCA-27), 2000.

[2] B. M. Beckmann, M. R. Marty, and D. A. Wood. ASR: Adaptive Selective
Replication for CMP Caches. InProceedings of the 39th Annual International
Symposium on Microarchitecture (MICRO-39), 2006.

[3] D. Bertsekas and R. Gallager.Data Networks (2nd ed.). Prentice-Hall, 1992.
[4] J. Bruno, E. Gabber, B.̈Ozden, and A. Silberschatz. The Eclipse Operating

System: Providing Quality of Service via Reservation Domains. InUSENIX
1998 Annual Technical Conference, 1998.

[5] R. W. Carr and J. L. Hennessy. WSClock - a Simple and Effective Algorithm
for Virtual Memory Management. InProceedings of the 8th ACM Symposium
on Operating Systems Principles (SOSP-8), 1981.

[6] J. Chang and G. S. Sohi. Cooperative Caching for Chip Multiprocessors. In
Proceedings of the 33th Annual International Symposium on Computer
Architecture (ISCA-33), 2006.

[7] D. T. Chiou.Extending the Reach of Microprocessors: Column and Curious
Caching. PhD thesis, MIT, 1999.

[8] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing Replication,
Communication and Capacity Allocation in CMPs. InProceedings of the 32nd
Annual International Symposium on Computer Architecture (ISCA-32), 2005.

[9] P. J. Denning. Thrashing: Its Causes and Prevention. InAFIPS 1968 Fall Joint
Computer Conference, volume 33, pages 915–922, 1968.

[10] H. Dybdahl and P. Stenstrom. An Adaptive Shared/Private NUCA Cache
Partitioning Scheme for Chip Multiprocessors. InProceedings of the 13th
International Symposium on High-Performance Computer Architecture
(HPCA-13), 2007.

[11] H. Dybdahl, P. Stenstrom, and L. Natvig. A Cache-Partition Aware
Replacement Policy for Chip Multiprocessors. InACM 2006 Conference on
High Performance Computing (HiPC-13), 2006.

[12] R. Fagin and J. H. Williams. A fair carpool scheduling algorithm.IBM Journal
of Research and Development, 27(2):133–139, 1983.

[13] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Performance Of
Multithreaded Chip Multiprocessors And Implications For Operating System
Design. InUSENIX 2005 Annual Technical Conference, 2005.

[14] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and K. Olukotun.
The Stanford Hydra CMP.IEEE Micro, 20(2):71–84, 2000.

[15] J. L. Hellerstein. Achieving service rate objectives with decay usage
scheduling.IEEE Transaction of Software Engineering, 19(8), 1993.

[16] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Communist, Utilitarian,
and Capitalist Cache Policies on CMPs: Caches as a Shared Resource. In
Proceedings of the 15th International Conference on Parallel Architecture and
Compilation Techniques (PACT-15), 2006.

[17] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. A NUCA
Substrate for Flexible CMP Cache Sharing. InProceedings of the 19th ACM
International Conference on Supercomputing (ICS-19), 2005.

[18] R. Iyer. CQoS: a Framework for Enabling QoS in Shared Caches of CMP
Platforms. InProceedings of the 18th ACM International Conference on
Supercomputing (ICS-18), 2004.

[19] L. K. John. More on Finding a Single number to Indicate Overall Performance
of a Benchmark Suite.SIGARCH Computer Architecture News, 32(1), 2004.

[20] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partitioning in a
Chip Multiprocessor Architecture. InProceedings of the 13th International
Conference on Parallel Architecture and Compilation Techniques (PACT-13),
2004.

[21] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing the Last Line of
Defense before Hitting the Memory Wall for CMPs. InProceedings of the 10th

International Symposium on High-Performance Computer Architecture
(HPCA-10), 2004.

[22] K. Luo, J. Gummaraju, and M. Franklin. Balancing Throughput and Fairness in
SMT Processors. InProceedings of the 2001 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS-2001), 2001.

[23] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics:A Full System
Simulation Platform.IEEE Computer, 35(2):50–58, Feb 2002.

[24] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s General
Execution-driven Multiprocessor Simulator (GEMS) Toolset. Computer
Architecture News, 2005.

[25] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair Queuing Memory
Systems. InProceedings of the 39th Annual International Symposium on
Microarchitecture (MICRO-39), 2006.

[26] A. K. Parekh and R. G. Gallager. A Generalized ProcessorSharing Approach to
Flow Control in Integrated Services Networks: the Single-node Case.IEEE
Transaction of Networks, 1(3):344–357, 1993.

[27] P. Petoumenos, G. Keramidas, H. Zeffer, S. Kaxiras, andE. Hagersten.
STATSHARE: A Statistical Model for Managing Cache Sharing via Decay. In
Second Annual Workshop on Modeling, Benchmarking and Simulation (MoBS
2006), 2006.

[28] M. M. Planas, F. Cazorla, A. Ramirez, and M. Valero. Explaining Dynamic
Cache Partitioning Speed Ups.IEEE Computer Architecture Letters, 6(1), 2007.

[29] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. InProceedings of the 39th Annual International Symposium on
Microarchitecture (MICRO-39), 2006.

[30] M. K. Qureshi, D. Thompson, and Y. N. Patt. The V-way Cache: Demand
Based Associativity via Global Replacement. InProceedings of the 32nd
Annual International Symposium on Computer Architecture (ISCA-32), 2005.

[31] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural Support for
Operating System-Driven CMP Cache Management. InProceedings of the 15th
International Conference on Parallel Architecture and Compilation Techniques
(PACT-15), 2006.

[32] J. E. Smith. Characterizing Computer Performance witha Single Number.
Communication of ACM, 31(10), 1988.

[33] A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for a Simultaneous
Multithreaded Processor. InProceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IX), 2000.

[34] A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic jobscheduling with
priorities for a simultaneous multithreading processor. In Proceedings of 2002
ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, 2002.

[35] E. Speight, H. Shafi, L. Zhang, and R. Rajamony. AdaptiveMechanisms and
Policies for Managing Cache Hierarchies in Chip Multiprocessors. In
Proceedings of the 32nd Annual International Symposium on Computer
Architecture (ISCA-32), 2005.

[36] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of cache memory.
IEEE Transaction of Computers, 41(9):1054–1068, 1992.

[37] G. E. Suh, S. Devadas, and L. Rudolph. A New Memory Monitoring Scheme
for Memory-aware Scheduling and Partitioning. InProceedings of the 8th
International Symposium on High-Performance Computer Architecture
(HPCA-8), 2002.

[38] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Partitioning of Shared Cache
Memory.Journal of Supercomputing, 28(1):7–26, 2004.

[39] J. M. Tendler, J. S. Dodson, J. S. F. Jr., H. Le, and B. Sinharoy. IBM Power4
system microarchitecture.IBM Journal of Research and Development,
46(1):5–26, 2002.

[40] B. Verghese, A. Gupta, and M. Rosenblum. Performance Isolation: Sharing and
Isolation in Shared-memory Multiprocessors. InProceedings of the 8th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VIII), 1998.

[41] C. A. Waldspurger. Lottery and stride scheduling: Flexible proportional-share
resource management. Technical Report MIT/LCS/TR-667, Cambridge, MA,
USA, 1995.

[42] T. Y. Yeh and G. Reinman. Fast and Fair: Data-stream Quality of Service. In
Proceedings of the 2005 International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES’05), 2005.

[43] M. Zhang and K. Asanovic. Victim Replication: Maximizing Capacity while
Hiding Wire Delay in Tiled CMPs. InProceedings of the 32nd Annual
International Symposium on Computer Architecture (ISCA-32), 2005.

