Cooperative Cache Partitioning for Chip Multiprocessors

Jichuan Chang and Gurindar S. Sohi
Computer Sciences Department
University of Wisconsin-Madison

ABSTRACT

This paper present€ooperative Cache Partitioning (CCP) to
allocate cache resources among threads concurrentlyngirom
CMPs. Unlike cache partitioning schemes that use a singléagp
partition repeatedly throughout a stable program phase? @&
solves cache contention with multiple time-sharing parts. Time-
sharing cache resources among partitions allows eachhthgas
thread to speed up dramatically in at least one partitionrigidy
shrinking other threads’ capacity allocations, while iopng fair-
ness by giving different partitions equal chance to exedQtelity-
of-Service (Qo0S) is guaranteed over the long term by orciuiisg
the shrink and expansion of each thread’s capacity acrottqrzs

to bound the average slowdown. Time-sharing based cache par

titioning is further integrated with CMP cooperative cawhi[6]

to exploit the benefits of LRU-based latency optimizatiomkich

leads to a simplified partitioning algorithm and better parfance
for workloads that do not benefit from cache partitioning.

We evaluate the effectiveness of CCP by simulating a 4-core

CMP running all combinations of 7 representative SPEC2@02h-
marks. For workloads that can benefit from cache partitignin
CCP achieves up to 60%, and on average 12%, better perfoeman
than the exhaustive search of optimal static partitions.er@l
CCP provides the best results on almost all evaluation osefoir
different cache sizes.

Categoriesand Subject Descriptors: B.3.2 [Memory Structures]:

Design Styles — Cache memory, C.4 [Performance of Systems] —

Design studies
General Terms: Algorithm, Design, Management, Performance

Keywords: Multiple time-sharing partitions, cooperative cache par-
titioning, CMP, fairness, QoS

1. INTRODUCTION

With an increasing number of processor cores being intedrat
onto a single chip, chip multiprocessors (CMPSs) requirecietffit
organization and management of the on-chip cache resotmces
provide fast data accesses for concurrently running tisreak
efficiently use the aggregate cache capacity, most CMP propo
als share cache resources between threads via either allpgic
shared cache [14, 1, 39, 43] or private caches augmenteccath
pacity sharing policies [35, 8, 6, 2]. However, under highawzity
pressure, conventional LRU-based sharing policies caeset-
tive interference between threads, leading to thrashihgufffair-
ness [20] and lack of Quality-of-Service (QoS) [18] (e.@.guar-

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ICS 07, June 18-20, 2007, Seattle, WA USA.

Copyright 2007 ACM 978-1-59593-768-1/07/000655.00.

antee in providing certain baseline performance). Interfee iso-
lation for fairness and QoS is important for CMPs as they aeslu
in consolidated servers, shared computing clusters, edelleslys-
tems, and other platforms, where meeting these requiranieat
important as improving overall throughput. Without hardevao-
lutions, their remedy can complicate the task of operatysgesns
and server administration. In contrast to unconstrainedlisty, a
private cache design avoids inter-thread interferencedesign-
time partition of the aggregate capacity between process@s.
This design is simple, fair and guarantees QoS, but oftearénc
many more expensive off-chip misses for thread mixes witf no
uniform caching requirements.

To match the perceived requirements of different threadié?C
cache partitioning schemes orchestrate cache allocaiibmvore
flexible, usually heterogeneous partitions [38, 20, 42,218,17,
27, 29, 11, 10]. Despite their differences in metrics, medras,
and policies, prior partitioning schemes have two commaratr
teristics: (1) they use a single spatial partition repdgtégadough-
out a stable program phase; and (2) compared with LRU-based ¢
pacity sharing, they control the partitioning overhead agarse-

c grained cache management: allocating large capacity famitsng

epochs (e.g., 64KB chunks for 5M-cycle epochs [29]). Conse-
quently, prior proposals share two limitations. ({dimited func-
tionality. None of the previous proposals addresses all CMP caching
requirements, including thrashing avoidance, fairnegsavement,
QoS guarantee and priority support, partially due to thiécdity of
satisfying multiple, often conflicting, goals in a singlecha parti-
tion. (2) Limited scope of application. Cache partitioning can
only outperform LRU-based latency-reducing schemes foneso
multiprogrammed workloads. An attempt to solely use cadre p
titioning can cause sub-optimal performance for worklcéas do
not experience destructive inter-thread interference.

Our proposed solutiorGooper ative Cache Partitioning (CCP),
has two aspects to address the two limitations, respegtiétst,
CCP introduces Multiple Time-sharing Partitions (MTP)rgirove
throughput and fairness while maintaining QoS. Specificatich
MTP partition improves at least one thrashing thread’sughput
by temporarily shrinking the capacity of other threads. Byet
sharing cache resources among multiple unfair partitibasfavor
different threads, the problems of fairness improvemedtior-
ity support are translated into well-studied time-shaniagource
management problems. Fairness can thus be improved byggivin
different threads equal opportunity to speed up, whilerfisican
be supported by allocating different percentages of tineeslto
different partitions. The MTP partitioning algorithm fher guar-
antees QoS over the long term by using partitions that, oragee
can bound each thread’s slowdown against the equal paitijo
baseline. Comparing with the best single spatial partibesed
scheme without QoS constraints, MTP achieves up to 60%, and
on average 12%, better performance for workloads that caefive
from cache partitioning.

Depending on whether destructive inter-thread interfezesx-

ists or not, a workload can either prefer cache partitiomngRU-
based sharing. In order to combine their strengths, thenseas-
pect of CCP is to integrate MTP with CMP Cooperative Caching
(CC) [6], an LRU-based caching optimization. The completagn
advantages of MTP and CC are combined by dividing the total ex
ecution epochs into those controlled by either MTP or CCoatc
ing to the fraction of threads that can benefit from each ofnthe
The integrated scheme is shown to achieve robust perforerfanc
both workloads with and without destructive inter-threateifer-
ence. Furthermore, having CC as the default policy can iyrthe
MTP partitioning algorithm by focusing only on threads wiinge
speedup potentials, leading to a heuristic-based algotitiat can
be practically implemented.

The rest of the paper is organized as follows. Section 2 define
the metrics for CMP cache partitioning, overviews cacheitiam-
ing proposals, and classifies benchmarks based on theidigpee
characteristics. We detail in Sections 3 and 4 the two aspmEct
our approach: MTP and its integration with CC. Our evaluatio
methodology and results are presented in Section 5. Relaigd
is discussed in Section 6 and we conclude in Section 7.

2. BACKGROUND AND DEFINITIONS

To simplify later discussion, this section provides backgnd in-
formation on CMP cache partitioning and workload charasties,
as well as defines metrics to evaluate different cachingigsli

2.1 CMP Multiprogramming Metrics

To compare the effectiveness of CMP caching schemes foi-mult
programming, we first need to find proper metrics to summahiee
overall performance, fairness and QoS results for a threfaetiile.

A multiprogrammed workload’s throughput can be simply mea-
sured as the sum of per-thread throughput (i.e., IPC for aukw
loads), but quantifying QoS and fairness can be hard, andresg
an understanding of these notions in the context of CMP ogchi

Our notions of performance, fairness and QoS are based on two

principles: (1) proportional-share resource allocatiod) Pareto
efficiency. The first principle states that QoS and fairnesshieved
when the shared resource is divided among sharers in propdot
their priorities or weights [41, 4, 40, 34]Using proportional-share
allocation to maintain the baseline fairness, the secoimtipte
further improve performance (efficiency) by allowing digpor-
tional sharing if it helps some sharers without hurting thieecs.
These principles have been used to define min-max fairngss [3
which has wide applications in computer networks and sdheglu
policies (e.g., Generalized Processor Sharing [26]).

2.1.1 QoSMetric

QoS is the ability to provide a thread with guaranteed baseli
performance (corresponding to a specific resource parlitie-
gardless of the load placed on the shared resource from other
scheduled threads [40]. We usgual-share cache allocation to
define the performance bottom line for QoS, which correspond
to the special case of proportional-sharing when all thsezale
the same priority. Notice that equal-priority has been ioiiy
assumed by previous fair caching proposals [20, 42, 16]evhir
MTP scheme can also support threads with different pridety
els (refer to Section 3.3). This baseline can be implemeeitber
by uniform-sized private caches or an equal partitioninglatred
cache capacity between on-chip cores, and it guaranteeb®o0S

1Contention in other shared resources, especially the mesyst
tem, can also cause destructive interference. Here we fmttise
impact of destructive interference occurring in the lasel CMP
caches, assuming a fair memory system as proposed in [25].

cause all threads get the same capacity and thus can ach&ve t
same performance across different schedules. The eqaid-ahk
location baseline also provides intuitive QoS results tdtipno-
cessor users because it corresponds to traditional madggsors
with private caches. For similar reasons, Yeh and Reinmah [4
use this baseline implemented by private caches. Here wthase
even partitioning of a shared cache as our baseline becaose m
existing cache partitioning schemes assume a shared cache.

The QoS metric is thus defined as the sum of per-thread slow-
downs (as negative percentages) over this baseline. Safd&,as
25], we claim a caching scheme can guarantee QoS if this mea-
surement is bounded within a user-defined threshold (e580).-
Other ways of measuring QoS exist (e.g., reporting the mamxim
slowdown or the number of threads that violate QoS), but vee us
the total slowdown because it captures the behavior of ttieeen
workload and thus is a more stringent criteria.

0S(scheme) = S #%PP in(0, 1LCilscheme)
1=1

IPC;(base)
2.1.2 Fair Speedup Metric

According to the principle of Pareto efficiency, CMP caching
schemes should further improve performance while maiirtgin
fairness, if uneven resource allocation can speed up soreadh
over the equal-share allocation baseline without hurtthgis. Now
we consider how to measure the scale of performance impreavem
for co-scheduled threads.

Summarizing the overall performance of multiple benchraark
(co-scheduled threads in our context) has been an extgnsige
cussed topic [32, 19]. We adopt prior wisdom and defineRie
Speedup (FS) metric to quantify the overall performance of co-
scheduled threads. FS is calculated as the harmonic measr-of p
thread speedups over the equal-share allocation baseline.

I1PC;(base)
IPC;(scheme)

FS(scheme) = #app/ S FEPP

Using harmonic mean of speedups, FS measures the execution
time reduction against a baseline cache configuration #sann-
bles traditional multiprocessors (so higher FS is bette®)is also a
fair metric because using the harmonic mean (instead ofuimees
used by [42]) rewards uniform speedups and penalizes slongo
which corresponds to the principle of Pareto efficiency.

The notion of fair speedup is similar to the fair slowdown riost
proposed by Kim et al. [20], which is measured against a sing|
thread execution baseline where one thread has exclusivefus
all cache resources. Such a baseline is borrowed from SMT pro
cessors [33], where it corresponds to the single-threadutixs
mode that allocates all execution and cache resources ti@eel.
However, single-thread execution in a CMP will waste theanaj
ity of execution resources. Instead, we choose to use thal-equ
share allocation baseline because it has better resoutizatidn
by supporting multiple concurrently running threads andqrens
similarly as in traditional multiprocessors. For the saraason,
two other SMT performance metrics using a single-threadexe
tion baseline—weighted speedup [33] (or WS, which is the sfim
speedups) and harmonic mean of speedups [22]—are not used.

2.1.3 Metrics Comparison

The choice of evaluation metrics has a significant impact on
CMP caching policies. Below we use two examples to demaiestra
the differences between caching schemes that optimizéfferaht
metrics.

2According to the power-mean inequality, the harmonic meam o
vector is maximized when all elements have the same value.

‘I:Iartl:lvpr%ws f*fFS}»

S2r |
k=l
(9}
& —_
’ ———4
i »»—~»—~»——»——»—» |
0 [] |
(A) Unfair ©Far

Figure 1: FSvs. WSfor Two Example Schemes

Figure 1 shows the per-thread speedups of benchnaarksand
vpr using two partitioning schemes (2 threads sharing a 2MB L2
cache). Scheme (A) maximizes weighted speedup (WS) byniipl
the performance oér t , however, its fair speedup (FS) measure-
ment is worse than the baseline (FS = 1) due to unfair peathre
speedups. On the other hand, the fair scheme (B) optimized FS
the cost of a lowered WS result because the low-speedupdtisea
given a more fair cache allocation. This example shows th)aE$
optimization has the side effect of avoiding unfair cachi(®) a
scheme that optimizes FS may hurt the WS or IPC results, aed vi
versa, due to different optimization tradeoffs.

|

| Metrics || Scheme A] <=> | Scheme B
[Speedups] 0.76/0.76/3.18/3.18 [1.97/1.97/1.97/1.97

IPC 052 | == |[052
WS 242 | == | 242

QoS -52% < 0%
FS 128 < 2.00

Table 1. Performance Comparison Using Different Metrics

Table 1 compares the performance of two partitioning sclseme
for workloadart-art-art-art (aco-schedule of 4 copies of
art). Scheme A optimizes WS and throughput without consider-
ing its implications on fairness and QoS, while Scheme B dions
simultaneously optimize FS and maintain QoS. If only corimgar
throughput and WS results, the two schemes have the same per
formance (shown aialic in Table 1). However, our QoS and FS
metrics (marked abold in Table 1) reveal that Scheme A cannot
guarantee QoS while Scheme B can, and Scheme B achieves bett
fairness and execution time than A. This example shows tiat o
QoS and FS metrics are able to distinguish whether a scheme ca
maintain QoS and fairness, but the WS and IPC metrics cannot.

e

ment [31]). Assuming a set-associative cache, way partitgal-
locates cache resources in units of cache ways (each waygtie
same number of cache sets). This mechanism can be implainente
with a modified cache replacement policy to ensure that theen

of blocks used by a thread at a cache set level does not extseed i
way quota.

Cache partitioning proposals differ mainly in their optiaiion
goals and partitioning policies, which are compared in &bl To
avoid exhaustive search, cache partitioning algorithneshesuris-
tics to prioritize capacity allocation according to the sniate and
speedup characteristics of co-scheduled threads. Urniiteparti-
tioning algorithms that select the best single spatialifiamt(SSP)
for a given epoch, the proposed MTP scheme selects multgste p
titions and allows them to be enforced in a time-sharing regnn
possibly across multiple epochs within a stable prograns@ha

Because cache partitioning schemes are often coarseedrain
they are amenable to not only online simulation, but alsaneffl
analysis [21, 20, 16]. To do offline analysis, we first gatherp
formance profiles for all possible (benchmark, capacitylob
nations. Comparing against each benchmark’s baseline WeC,
can calculate the per-thread speedups for all (benchmayplacity)
combinations and use them to calculate metrics such as Fand/S
QoS. For a given metric, we construct the candidate cachitiqar
space for each workload and exhaustively search in thetiparti
space for the optimal result. Compared with online simatgtof-
fline analysis is idealized because (1) it uses accurateurerasnt
information and (2) it searches for all possible partitiomkich can
be too slow to be practically implemented.

Due to its idealized nature, offline analysis can be used 1o es
timate the performance upper bounds for given cache panitity
policies. We will use this approach to demonstrate the adgan
of our proposed MTP policy over prior cache partitioningesties,
and avoid the need to compare against realistic implementabf
prior proposals. We will also compare the offline analysssites of
MTP with online simulation results of LRU-based cachingesoles
to identify the limitation of cache partitioning schemesowéver,
our final scheme CCP, which integrates MTP with CC, will bd-eva
uated using a practical implementation, online measuréméor-
mation, and execution-driven simulation results.

2.3 Benchmark Characteristics

To summarize, using QoS and FS metrics together, we can mea-

sure a caching scheme’s effectiveness in improving pedaona,
fairness and QoS. We will report results using the FS and QoS
metrics in this paper, but also provide WS and IPC resulthién t
evaluation section for comparison.

2.2 Cache Partitioning Background

CMP cache partitioning schemes generally work in repetitiy
cles, each consisting of three steps: (1) measurementa@lign-
ing, and (3) enforcement. The first step is to measure anchasti
each thread’s performance (in terms of miss rate or IPC)dor c
didate cache partitions. Then this information is used terdeine
the next cache partition to reach a given optimization goaé new
partition will be enforced in the next execution epoch, whiew
measurement will be gathered and used in the subsequeescycl
Measurement information can be gathered via profiling [&], 1
LRU stack hit position counting [42], monitoring [37], or migmic
set sampling [29]. This step can incur space or executioa tiver-
head, while inaccurate information can lead to sub-optipaati-
tioning decisions.

Most prior proposals use coarse-graingdy partitioning [7,
38] as the basic mechanism to enforce a cache partition ¢éth
exceptions of STATSHARE [27] and cache-level-quota erdorc

Different cache partitioning schemes should be comparied as
wide range of multiprogrammed workloads to evaluate theifqs-
mance robustness. In this paper, we assume a CMP with 4 single
threaded cores and consider all 210 4-thread multiprogiaghm
combinations (repetition allowed) from 7 SPEC benchniarks

Figure 2 shows the performance of 7 SPEC benchmarks under
different cache allocations. The IPC data are gatheredyusi
core CMP with 4MB 16-way total L2 cache. With way partitiogin
cache resources are allocated in 256KB chunks. The eqaed-sh
allocation baseline (marked as the vertical line) is forhetiread
to use 1MB cache. At least 1 way is allocated to each threath Wi
three other cores on-chip, this leaves 13 walyBs € 16 — 3 « 1),
or 3.25MB, as the maximum capacity for one thread to haves Thi
figure shows that our selected benchmarks have a wide varfiety
working set sizes and IPC curve shapes, therefore their ic@mb
tions are able to generate a wide range of workload behaviors

Figure 3 breaks the IPC curve af t into three distinctive re-
gions as more capacity is allocated: (1) pre-working-sgtore

SWith repetition, the number ok” combinations selected frolv
objects isCﬁ}”K’l. Therefore, selecting 4-thread combinations
from 7 benchmarks can generatg™*~'=210 workloads.

Optimization goals

Policies (threadswith allocation priority)

Liu et al. [21]
Suh et al. [38]

Fair Sharing [20]
Fast and Fair [42]

CQoS [18]

Maximize throughput
Minimize miss rate

QoS

0OS-managed [31], STATSHARE [27] Open
Utility-based [29]

Maximize WS

Minimize slowdown difference
Maximize Y speedup under QoS

Static partitioning

Greedy (thread with best marginal miss reducti
Greedy (thread with most extra misses)
Greedy (thread with best speedup)

Generic framework, open policies

Generic model/mechanism, open policies
Lookahead (thread with best marginal utility)
Iterative (threads with high speedups)

n)

Table2: Comparing CMP Cache Partitioning Policies

MTP | Maximize FS under QoS
0.5r e .
o ——apsi
0.4t /A;""'éﬁ S A A —— twolf
i —4—vpr
o 03 1 | *gee
o o —=—ammp
0.2 — 1 art
,x”// B -t -+ -
0.1 —+ —+ ";j,,,%ﬁt— oAt - mef

1 2 3 45 6 7 8 9 1011 1213

Number

of cache ways

Figure2: IPC Curves

0.25¢

0.2r
o 0.15¢
a8
- 01r
,%/4@**6

region 3 il

0.05¢-

region 2

|
I
I
I
|
I
region 1 ;

01 2 3 4 5 6 7 8 9
Number of cache ways

Figure3: IPC of art

10 11 12 13

(from 1 way to 4 way) represents gradual speedups beforerthe p
gram’s working set starts to fit into cache; (2) in-workirgj-se-
gion (from 5 way to 7 way) indicates dramatic throughput éases
when the working set can be partly cached; (3) post-workielg-
region (starting from 7 way) shows saturated performanisz tie
working set is fully cached. Except for benchmarks whosekwor
ing sets are beyond the capacity of the on-chip cache (ireama-
ing threads), most threads demonstrate IPC curves thaistafis
regions with distinct slopes, albeit with different cactomfigura-
tions. According to which region intersects with the egstadre
allocation (which is dependent on both thread characieristd
cache configuration), we classify these threads into 3 oty

e Supplier threads: These threads can supply some or all of
their equal-share capacity for other threads while stiie-
ing the same level of performance as using all cache resaurce
They include threads with very small working sets (ea@si
andgcc whose working set sizes are less than 1MB) and
streaming threads (e.gsW mandf acer ec which are not
included in Figure 2).

e Senditivethreads: vpr andt wol f are benchmarks whose
in-working-set regions are divided by the line of equalrsha
capacity. The performance of such programs changes signif-
icantly over the baseline as cache size varies, therefdie ju
cious cache partitioning is needed when they are co-sceedul
with other threads.

e Thrashing threads: art, anmp andncf are benchmarks
whose in-working-set regions are beyond their equal-share
capacity. These threads usually slow down gradually with
reduced capacity, but can speed up dramatically when a cer-
tain amount of extra capacity is allocated.

A similar classification can be found in [29], according t@ th
benefit of increased capacity (or utility). Our classifioatis dif-
ferent by separating thrashing threads from sensitivaattgeboth
called high-utility programs in [29] because they can spgedith
more capacity.

3. MULTIPLETIME-SHARING PARTITIONS

Prior CMP cache patrtitioning policies use the best singltipa
tion to achieve their optimization goals. However, it is atrinsi-
cally hard problem to satisfy multiple goals (e.g., thropgt fair-
ness and QoS) with a single partition when conflicts exiswben
competing threads. In this section we introduce the notfdviud-
tiple Time-sharing Partitions (MTP) to resolve such cotsliover
longer terms. Below we detail the development of MTP as we add
support for different caching requirements.

3.1 Thrashing Avoidance

We first discuss when cache partitioning is needed by exaini
when destructive interference occurs. Starting with theaéghare
allocation baseline, if this configuration can satisfy thehing re-
quirements of every co-scheduled thread, then cache ipaitig
is not needed because little inter-thread interferencet®exiCache
partitioning is needed only if some threads experiencestiing
with their current capacity allocations. These threads$ atiempt
to acquire extra cache resources from each other and froer oth
threads, which leads to performance, fairness and QoSegmsbl

Thrashing is a classic virtual memory management problgm [9
and can be avoided by reducing the multiprogramming levakerw
the number of competing threads is reduced to a point that the
working sets can be cached simultaneously, they can all mechm
faster. In the context of CMP caching, the number of co-scleeti
threads is fixed by the operating system, but cache paititiozen
intentionally manage capacity contention by unfairly @tag some
thrashing threads to make room for other thrashing threads.

Consider partitioning a 4MB 16-way L2 cache between 4 co-
scheduled copies air t . With the equal-share allocation of a 1IMB
L2 cache,art has a low IPC of 0.066 due to thrashing (over 50
off-chip misses per thousand instructions) as previousbn in
Figure 3. As more cache resources are allocated, its thpotigh
increases quickly and reaches a saturating point of 0.2C5ni#h
1.75MB capacity. At this point, thrashing can be avoided Zor
threads by unfairly allocating to each of them 1.75MB catyaci
and starving the other threads each with a 256KB cache (PO} |
This partition doubles the total throughp0tZ15+2+0.05%2=0.52,
which is two times 00.066 « 4=0.264), but is unfair to the threads
being starved.

3.2 Fairness|Improvement

Cache partitioning between 4 copiesaift is an example of
the throughput-fairness dilemma. When the available caapac-
ity cannot simultaneously satisfy the working set requieats of
multiple large threads, a compromise has to be made withimgées

spatial partition. In this example, fair partitions causeashing for
all threads, while thrashing avoidance requires unfaitifpaming.
Existing cache partitioning schemes all face this dileminoe dif-
fer in the way they trade off between throughput and fairness

We resolve this dilemma by learning from a similar example in

game theory [12]. Consider two officemates who commute tio the
workplace: efficiency is doubled when they carpool, but itiis
fair because the driver invests more effort and money. Not ca
pooling is a fair strategy, but is also inefficient. In redéJisuch

management primitive to the high-level software by focgsin the
determination and enforcement of multiple unfair partisio

As priority specification and interpretation are usuallndocted
by end-users and operating systems, we leave the develbpmen
evaluation of priority algorithms for future work and assithe co-
scheduled threads have the same priority for the rest ofaherp

3.4 QoS Guarantee

QoS can be guaranteed either in a real-time manner, or ozer th

games are played daily by the same players who often improve long term to meet different thread's timing requirementseaR

both performance and fairness by “taking turns” to drive wirey
carpool. We adopt the same cooperative policy to simultasigo
improve throughput and fairness with multiple time-shgnarti-
tions (MTP). Instead of using a single partition that is eitfow-
throughput or unfair, multiple unfair but high-throughmatrtitions
are selected and given equal opportunity to be used.
Specifically, individual threads are coordinated to shank ex-
pand their cache allocations in different cache partitioéthin
a partition, the spare capacity collected from shrinkingdlas is
used by expanding threads, and different threads are eggand
different partitions. As a thrashing thread goes througtinkh
ing and expanding partitions, its average throughput camibeh
better than its baseline throughput. This is because aHimgs
thread’s baseline performance is already low by definitiand
shrinking capacity usually causes insignificant slowdovidow-
ever, the thread can achieve dramatic speedup in expandlitig p
tions (when the allocated cache can hold its working set) and
average, the speedup in one expanding partition is oftee than
what is needed to compensate the slowdowns in multiplelghgn
partitions. Overall, the workload’s fair speedup (FS) ipioved
because all expandable threads get a fair chance to speedup.
(A) SSP-based fair scheme (B) SSP-based fast scheme (C) MTP-based scheme
IPC=0.26, WS=1.23, FS=1.00 IPC = 0.52, WS=2.42, FS=1.22 IPC=0.52, WS=2.42, FS=1.97
1 ‘ 2 1 ‘ 2 ‘34 ‘ 1 ‘ 2 ‘3‘4‘

ERET |

&)

ol = [« H

1 4/

Time-sharing

1‘2‘ 3 ‘ 4

: A

Time Spatial partitioning
Figure 4. Cache Partitioning Optionsfor art-art-art-art

Figure 4 compares three cache partitioning schemes foriégop

of art . Single spatial partition (SSP) based schemes A and B pro-

vide the most fair and fast partitions, respectively. BazedTP,

scheme C can both maintain the same level of fairness as schem

A (by equalizing per-thread speedups) and achieve the sahe h
throughput (IPC=0.52) and weighted speedup (WS=2.42)wfrse

B. Such improvement is reflected by its high FS result (97% and
61% higher than scheme A and B, respectively), but can be over

looked if we only compare the IPC or WS results.

3.3 Priority Support

MTP extends the option of cache partitioning from the single

dimension of space-sharing into two-dimensional timerislgebe-

tween spatial partitions. The time-sharing optimizatian be ap-
plied to any proportional-sharing resource partition basgthus

supporting priority if the priority levels of co-schedulgdeads are
reflected in the baseline.

Priority can also be supported through time-sharing. btste
of giving different threads equal opportunity to speeduiffed
ent time-sharing priorities can be assigned to differefaiuparti-
tions to deliver differentiated levels of performance. Bese time-
sharing based priority support has been well understoodnajpie-

mented by operating systems [15, 41], MTP can serve as tlmecac

time QoS is needed only by certain programs (e.g., real-tioeo
playback), and is not needed for many other programs. Fanexa
ple, users of SPEC-like programs are most concerned abmlit to
execution time, and thus long-term QoS, often measuredmaay
millions of cycles.

To guarantee real-time QoS, fast and fair partitioning [A2]
serves for each threadgaiar anteed partition, which is the min-

imum amount of cache space required to achieve the same level

of performance as using the equal-share cache allocationhe¥
speedup can be obtained by intelligently partitioning theain-

ing space. However, because only supplier threads (defimed i
Section 2.3) can have their guaranteed partitions smdi&er the
equal-share capacity, the cache partitioning algorithoftisn left
with a limited amount of space to optimize, resulting in loac
performance compared with schemes under no QoS constraints

Single spatial partition (SSP) based cache partitionimgises

experience the same problem even for threads that requiye on
long-term QoS. Because the same spatial partition is ugeshte
edly throughout a stable program phase, these schemes dave t
guarantee long-term QoS by guaranteeing QoS within eveilyeca
partition. In contrast, MTP’s cooperative shrink/expanoddel can
be used to guarantee long-term QoS with little loss of peréorce.
To meet the QoS requirement, the MTP partitioning algoritiow
uses multiple partitions to maximize FS, under the constriiat
each thread’s average throughput across multiple pansitis no
worse than the equal-share baseline throughput.

To demonstrate MTP’s advantage in guaranteeing long-tes8) Q
Figure 5 compares SSP and MTP based cache partitioning sshem
that optimize FS under different QoS requirements: withQas
(SSR.ogos and MTR,4q0s), real-time QoS (SS&»s and MTR-.gos),
and long-term QoS (MTRg,.s). These results are obtained from
an offline analysis to show the performance potential of a&alid
MTP.00s implementation. In Sections 4 and 5, we will develop
and evaluate its practical implementation.

2(
1.9.
1.8¢
QoS threshold
1.7 -
a Under MTP__ _, -01
2 1O 20% of th “QDSM d
@ % of the workloads
(%) S
(%’. 150 % | have FS values >= 1.36. o —0.15 Vi -
=14 noQoS -
' i -0.2 MTPI[
13% 3 QoS
~ % + SSP._ i
1.2 -0.25 noQo 4
e - MTP
| QoS
1.1 L SR R | I ssp
1 i | -0.3 Qos
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

(A) Percentage of Workloads (FS) (B) Percentage of Workloads (QoS)

Figure5: Comparing SSP and MTP Schemes

For each scheme, we plot the percentage of workloads that can
achieve various metric values. These curves are essgni@iaH
mulative Distribution Functions (CDF) being transposetiitsat a
higher curve indicates a better performing scheme. For plam
Figure 5(A), each point (X%, Y) on the MTRy,s curve indicates

that, X% of workloads have FS measurements equal to or |laege t
(>) value Y. Notice that for the same type of QoS guarantee, the
ideal SSP scheme can never outperform the ideal MTP becamuse s
gle spatial partitioning is a special case in the MTP modéiictv

is also empirically shown in the figure.

Figure 5(A) only shows 4 distinct curves for 5 schemes bexaus
MTP.00s and MTR..q0s have almost the same FS results. Sim-
ilarly, the curves of the QoS guaranteeing schemes ovenl&ni
ure 5(B). Figure 5 further shows that (1) SSBos and MTR,,qos
can not bound per-thread slowdown within the user-spedifiexsh-
old (-5% in this paper); (2) SSRs and MTR-.q,s are the worst
performing policies (their curves overlap for workloadsiwesmaller
FS values), indicating that real-time QoS guarantee cariggser-
formance optimization; and (3) MTf.s can maintain long-term
QoS while achieving almost the same performance as the best p
forming scheme MTR,qos.

For its performance and QoS benefits, we now use MJJ2 as
the representative MTP policy in the rest of the paper, ambige
it as MTP. MTP can support real-time QoS by simply reserving
guaranteed partitions for real-time threads and optirgittie other
threads with the remaining capacity.

3.5 Summary

MTP is a high-level cache partitioning policy that extensse
ing proposals with time-sharing multiple cache partitiondTP
addresses four cache partitioning requirements: (1) higsis
avoided by unfair allocation within a partition; (2) faisgis im-
proved with fair time-sharing between unfair partitionsttieach
favors a different subset of co-scheduled threads; (3Yiprioan
be supported with either prioritized proportional-shaasdiines or
unfair time-sharing; and (4) different types of QoS can bargu
anteed by bounding per-thread slowdown within each pamtitir
across multiple partitions.

With multiple epochs in one iteration, MTP takes longer tagtd
to phase/scheduling changes. MTP (and most partitionimgraes)
cannot promptly adapt to frequent, irregular changes tsectheir
prediction of future execution relies on stable phases. uni-
frastructure (Solaris-based full-system simulator), Wweesve sta-
ble thread-scheduling and repetitive phase changes. Gense
works for such changes by using longer epochs (20M-cyabeis) t
clude multiple phases, whose aggregate behavior is stablegh
for cache partitioning.

MTP can be implemented in different ways. A hardware-only
solution is transparent but less flexible, especially aterang pri-
ority support. Cooperation between hardware and softwiiores
hardware to collect measurement and enforce partitionigg-d
sions, and software to schedule partitions to meet higbHle-
quirements. This section used offline analysis results toae
strate the advantages of MTP without considering impleatent
details. Next we will present a practical, heuristic-baS€lP par-
titioning algorithm by exploiting the benefits of CMP Cooative
Caching (CC) [6].

4. INTEGRATING MTPWITH CC

This section addresses another limitation of existing egudr-
titioning proposals—inadequacy for workloads that arel wep-
ported by LRU-based latency optimizations, where cachttioar
ing can hurt. We propose a new hybrid scheme, CooperativeeCac
Partitioning (CCP), that combines the advantages of MTFGiME
Cooperative Caching (CC) [6]. Below, we motivate the need fo
the integration by showing the complementary advantag&&Tét
and CC on different workloads. We then develop a simple enlin
heuristic to select MTP partitions based on the differemtrabter-

istics of MTP and CC, and extend the CC design to implement the
hybrid scheme.

4.1 Motivation

Figure 6 compares the FS and QoS results of MTP with two
LRU-based caching schemes: CC and shared cache, usingrthe sa
aggregate cache size and associativity. We use scatter tolot
reveal the correlation between the best performing schemds
workload characteristics. To show the advantages of MTPGd
over shared cache, we normalize the FS values against tteg bet
results provided by MTP and CC (i.e., Max[FS(MTP), FS(CQC)])
The 210 workloads are also clustered into two groups accgti
whether MTP outperforms CC (i.e., FS(MTPFS(CC)).

N 0

= PASt N iR R e e
GLaf \ oty X T
) o K R i

L s

- x X .

£ 0,05 Zmr e <
s M . \
@ X x !
£ %) Vs ’ '
] o -0.1 X Y
s © P !
e T . o :
® !)
N 07 -0.15(! Y
< ! 1
£ + MTP 1 .
206 CcC L 1
P Shared .- ’
o are 02 Mo de e .

FS(MTP)>FS(CC) FS(MTP)<FS(CC) FS(MTP)>FS(CC) FS(MTP)<FS(CC)
(A Fs (B) QoS

Figure 6: Comparing MTP with CC and Shared Cache. Each
point on the X-axis representsa workload, and the correspond-
ing Y-values arethe measured results of the three schemes.

Focusing on the regions highlighted by the dotted rectangle
several observations can be made from Figure 6. First, Eig)
shows that only a small number of dots (10%) are above 1 and
fewer (3%) are above 1.1, indicating that a shared cachearily
performs both MTP and CC infrequently and insignificantlgcS
ond, MTP only provides better performance than CC for 32%ef t
workloads, indicating the limited effectiveness of caclagtiion-
ing over CC for many workloads. Third, for workloads that &fin
less from MTP, CC is almost always the best performing scheme
(Figure 6(A)) and can guarantee QoS (Figure 6(B)), showlreg t
complementary strengths of MTP and CC.

These observations imply that we can choose the best perform
ing scheme (in both FS and QoS) for a given workload accoriding
whether FS(MTP)FS(CC): if MTP provides better FS result than
CC, then MTP is very likely to perform the best; otherwise, IEC
the best choice. Therefore, a hybrid scheme that integhdfeé3
and CC can potentially provide the best performance for atkw
loads by simply choosing the better scheme for any given lwack
Below we analyze the reasons for CC and MTP’s performance ad-
vantages, in order to achieve such an integration.

4.1.1 Advantagesof CC

Two major reasons contribute to CC’s performance advantage
over MTP: (1) latency optimization over shared cache andR)-
based fine-grained cache sharing. The first reason is un@ue t
CC—itis the only private cache based CMP caching proposl th
approximates global LRU replacement for multiprogrammecdka
loads; the second is supported by both CC and a shared cache.

CC reduces the average cache access latency by keepingdishre
data set locally in the processor’s private L2 cache. Duatolop
wire delay, local cache access latencies are much lowerrdran
mote access latencies. Comparing with a shared cache watere d
are distributed evenly across all banks, and a large fractfd_2
accesses are to remote banks, CC has the advantage ofregrvici

most L2 accesses locally. For threads whose working setb&an
mostly satisfied by a private cache, such reduced L2 cachredias
often translate into higher performance.

Similar to a shared cache, CC supports LRU-based capaeity sh
ing by (1) allowing a local cache’s victim block to be placeda
randomly picked peer cache (called spill in [6]), and (2) rapp
imating global LRU replacement for multiprogrammed woeds
via the combination of local LRU and global spill/reuse bigt CC
differs from a shared cache in that it allocates capacitpitiog to
the local thread’s L2 reference stream and the remote thré2d
miss streams, which are first filtered by their local L2 caches

T T

P

| +

A R BERrE R

- - —art 4

—+—apsi
+ apsi

bt e
et e

LBt b
: e

OO N
—
+-

T ECT

g
i
550

o

Allocated cacapcity
(number of cache ways)

B= N w

500
Time (million cycles)

Figure7: Cache Allocation for art - art - apsi - apsi

An LRU-based policy can provide near-optimal cache aliocat
for many workloads [36]. Figure 7 shows the amount of cache al
located by CC for individual threads ar t - art - apsi - apsi .

CC shows spatial fine-grained sharing by allocating on ayee65
ways and 1.5 ways of capacity &t andapsi to better fit their
capacity requirements, while way partitioning schemes aaly
allocate capacity in units of cache ways (the best partitibo-
cates 6 ways to eachirt and 2 ways to eachpsi). Temporal
fine-grained sharing occurs during simulation time 500 0 53 -

lion cycles, wherapsi enters a phase that needs more capacity.
CC adapts to this change swiftly without explicit phase kiag
support or cache repartitioning. Due to spatial fine-grdigkar-
ing, art achieves 34% better speedup than way partitioning. The
throughput ofapsi is also slightly improved due to temporal fine-
grained sharing (even though its average cache capaciowir |
than way partitioning). This example also shows that CCjmbée

of managing workloads whose aggregate working set size stigde
exceeds the total cache capacity, by dynamically balaneath
individual thread’s cache allocation.

Programs with highly non-uniform associativity demand®as
different cache sets [30] can also benefit from fine-graimedisg.
For example, althoughnmp has a working set size of 1.5MB (or
6 cache ways), it can further speed up by 2X when the assatyati
requirements of certain hot sets are satisfied by a 16-wagalbn.

4.1.2 Heuristicsfor MTP to Outperform CC

We now try to discover the characteristics of the worklodm t
can achieve better performance with MTP than with CC. Suel-ch
acteristics will then be used to develop a simple heuristimte-
grate MTP with CC.

To simplify discussion, we first assume that within one grofip
MTP partitions, a thread always uses the same capétityand
in all of its expanding partitions and the same capa€ity,in in
all shrinking partitions, thus achieving the same speefip@and
slowdown Sd repeatedly. Offline analysis results show that this
assumption has almost no performance impact on MTP. Wesfurth
filter out supplier threads by allocating their guaranteadifons
to them, and allocate the remaining space among other thread

600

shrinking partitions. The other way for a thread to achigueesiup
using MTP, without a largé&p, is to have a modestp, but a steep
speedup curve and a gradual slowdown curve, so that thegpeed
accumulated in multiple expanding partitions exceed thedbwn

in one shrinking partition. However, achieving a mod>along
with a steep speedup curve requires only a small amount of ext
capacity, in which case CC is likely to achieve the same tfiee
cause the LRU policy is better at fine-turning cache alloratd
achieve speedups (example shown in Figure 7).

The above analysis suggests that the common case for MTP to
outperform CC is to have at least one thrashing thread, déeted
by whether its speedufip in one expanding partition is larger than
the total slowdown accumulated in shrinking partitions.rédthe
Sp andSd values are dependent on both the thread’s IPC curve and
the available capacity (which further depends on capatitgaed
to co-scheduled threads). The test of a thrashing thredbevilsed
as the partitioning heuristic for MTP.

The common case also explains why CC can guarantee QoS
when its FS value is better than MTP (Figure 6(B)). A QoS viola
tion occurs in CC only when a thread’s private cache is ovesbd
by blocks replaced from other threads (or spilled block$. [Ble-
cause CC'’s private cache has the same capacity as the équel-s
baseline used to define thrashing, the aggressive spiflipies the
existence of high miss rates and thus thrashing threadseftine,
for workloads that prefer CC, the spilling should not be to@sive
to affect QoS, otherwise thrashing will occur and cause MY Bet
preferred.

4.2 Cooperative Cache Partitioning

We now develop Cooperative Cache Partitioning (CCP), ai$ténsr
based hybrid cache allocation scheme that integrates MIRG/G.
CCP consists of three components: (1) a heuristic-baseiti@ar
ing algorithm to determine the MTP partitions, (2) a weighsed
integration policy to decide when to use MTP and CC, and (3J-mo
ifications to the baseline CC design to enforce fine-grairethe
partitioning decisions.

4.2.1 CCP Partitioning and Weighting Heuristics

Before MTP partitioning, CCP first gathers each thread’s L2
cache miss rates under candidate cache allocations, asdhese
to estimate the IPC curve. Miss rates are collected in ouulsim
tor in dedicated, online sampling epochs where each thedas t
turns to use the maximum amount of cache. We use LRU stack
hit counters to estimate miss rates under all possible casbe-
ciativities to reduce sampling overhead. Although suclrioead
can be avoided with the recently proposed UMON online sargpli
mechanism [29], we include it in our evaluation results.

Using IPC estimations, each thread’s guaranteed partffam
real-time QoS guarantee) can be calculated. CCP alsolimisa
each thread'€’.,pqnaq t0 the minimum capacity needed to achieve
the highest speedup, aid},.i» to the minimum capacity that can
ensure long-term QoS when cooperating Withpqna. A thread
is a supplier thread if it€xinx and guaranteed partition are the
same.

The CCP partitioning algorithm (shown in Table 3) then nasur
a set of MTP partitions that are likely to outperform CC, gsihe
test of a thrashing thread as a simple heuristic. This dlyorhas
the following three steps: (1) filtering out supplier threaghich

To guarantee QoS and improve performance using MTP, eachcannot benefit from cache partitioning; (2) determine MTRipa

thread’s total speedup has to exceed its total slowdownaglegst

tions that each favors one thrashing thread by starving ttinash-

one thread should have a much larger total speedup. Thisecan b ing threads with theilCsp.inr Capacity; (3) for MTP partitions

achieved in two ways. The first way is to have a thrashing threa
whose dramati&’p can compensate the total slowdown in multiple

where one expanding thread can not use all the remaining spac
expand other threads to further increase speedup. We \gitfrithe

Inputs: capacity C, thread set TS, sample results (IPC][i][c], gntred partitions g[i]);

Outputs: expanded[i], MTP partitions MTP[p][i];

[fThread i's capacity in partition p */

[* Step 1: Filter out supplier threads*/

Identify supplier threads SupplierTS, subtract their fiijn C;

[* Step 2: Determinethe set of thrashing threads ThrashTS*/

[* init stable = false; ThrashTS=TS-SupplierTS; */
while (ThrashTS is non-empty and !stable)
stable=true;
foreach thread EThrashTS

Ceazpandli]=i’s capacity usage when other threads use tli&if,i»x[j];
stable &= thrashingest(i, size(ThrashTS¥,czpandli], Cshrinklil);

[* Step 3: Merge multiple expanding threads*/

[* init p = 0; expanded][i] = false; MTP[pP][1€ snrink[il; */

foreach thread EThrashTS, p++
foreach thread j, start from i, in circular order

MTP[p][j] += minimal remaining capacity for j to achieve itest speedup;

if (MTPIpI[j] >Cezpanalil) expanded[j]=true;

[*Expanded in MTP */

thrashing_test(i, nump, expand, shrink)

/Key heuristic */

if (IPCJi][expand]-IPC[i][base]>> (nump-1)*(IPC[i][base]-IPCJi][shrink]¥ eturn true; /* large speedup */
Cshrinkli]=0[i]; C=C-g[i]; remove i from ThrashTSreturn false;

Table 3: CCP Partitioning Algorithm

steps (2) and (3) in detail because step (1) is rather stfaigiard.

augmented with 2 bits to indicate its owner thread ID. Eacthea

Step (2) determines the set of thrashing threads by removing maintains 4 counters to reflect the numbers of blocks usedffiey-d
threads whose speedups are not large enough to guarangge lon ent threads. By periodically exchanging capacity usageindtion

term QoS. Each candidate thread is tested by the funthicash-

between caches, CCP can monitor the capacity usage ofetiffer

ing_test, to see whether its speedup in one expanding partition can threads. With such information, CCP maintains quota bylldisa

compensate for the total slowdown accumulated in otheinfshr
ing) partitions. The threads that fail thierashing_test are as-
signed with their guaranteed partitions and removed fragrctm-
didate set, which will reduce the number of candidate pantt the
amount of remaining capacity and possibly remaining caatdil

ing over-quota threads to spill and disabling spills intdenquota
threads.

5. EVALUATION AND RESULTS

We evaluate the effectiveness of different cache allonaohemes

Ceazpana and speedups. Such tests are repeated until one of the twousing Virtutech Simics-based [23] full-system simulatidine cache

termination conditions is satisfied: (1) the candidate semnpty,
or (2) all candidate threads pass the test. This step is gie@e to
terminate because each round of tests either reduces ttelatn
set size which leads to condition (1) in a finite number of step
satisfies condition (2).

After step (2), it is possible that in an MTP partition, the ex
panding thread does not need all the spare space provideithdry o
shrinking threads. Step (3) merges multiple expandabkatis in
such a partition to further increase speedup. To be fairathe-
rithm expands different sets of threads in different piarti.

This algorithm returns a set of MTP partitions and a veeigranded.
A thread: benefits from MTP if it is allocated with'e ; pqna Capac-
ity in at least one partitionefcpanded]i] is true), otherwise it is
likely to benefit from CC. This observation leads to the CCte-in
gration heuristic: the execution time is broken into epaoasaged
by either MTP or CC, weighted by how many threads can benefit
from them respectively. FaV co-scheduled threads, iff of them
can be expanded by MTP partitions, then CCP will use MTP for
every M out of N epochs and use CC for other epochs. A special
case is when no thread is expanded because step (2) canremyind
MTP partitions, in which case CC should be used throughceit th
execution.

4.2.2 Extending CC to Enforce Capacity Quota

To enforce MTP partitions, CCP modifies the baseline CC de-
sign to monitor each thread’s capacity usage and maintaiaoiiy
quota by throttling spill-based capacity sharing. For araleated
4-core CMP (assuming single-threaded cores), every cdobk is

and memory simulator is derived from Ruby, which is part & th
GEMS toolset [24]. A single-issue, in-order processor nhasle
used, which allows us to simulate all 210 multiprogrammedkwo
loads. We choose this methodology because, under the same si
ulation time, simulating a wide range of workload combioas
allows us to recognize the limitations of different appitoes on
different workloads, which could have been missed by sitmda

a few combinations with a more detailed processor model.

Table 4 lists the relevant configuration parameters usediin o
simulations. The same total capacity and associativityuaeel for
shared cache (both with and without way partitioning) and B/€
use the reference input sets for the selected SPEC benchreark
cept forar t which uses the train inpdt.All benchmarks are fast
forwarded by 800M instructions to bypass program inititian,
and simulated for 700M cycles.

We compare the online simulation results of realistic CCP im
plementation with offline analysis results of ideal cachdipan-
ing policies (e.g., MTP). Because the ideal MTP implemeéoiat
results were shown to be the performance upper bound ofrexist
cache partitioning schemes in Section 3, we do not compaie CC
with realistic implementations of prior partitioning pragals.

We first compare CCP with its two baseline schemes CC and
MTP in terms of FS, followed by comparison between CCP with

“Art with reference input is a streaming (thus supplier) thread.
We do not include streaming threads because cache parigion
for them is very simple: their IPCs don’t change with L2 cache
allocations, so we can simply allocate the minimal capdgity., 1
cache way) to them.

Parameters

4-core, single-issue, in-order
128-byte

32KB, 2-way, 2-cycle
sequential tag/data access, 15 cycles tptal
Point-to-point, 5-cycle per-hop latency
300 cycles total

MOSI-based directory protocols

1MB per-core private cache, 4-way
1MB per-bank capacity, 4 banks, 16-way

Component
Processorg

Block size
L1 I/D caches
L2 caches
On-chip interconnec
Main Memory
Coherence

CC
shared cachg

Table 4: Processor and Memory System Parameters

idealized offline analysis results on other metrics—Qo8uph-
put and weighted speedup. Lastly, we evaluate the perfarenan
robustness of CCP by halving the total cache size.

5.1 Effectiveness of CCP

In Section 4, MTP was shown to be better than CC for only a
subset of workloads. Since the ideal MTP implementatiomerep
sents the best cache partitioning results, we now refer tkloads
that prefer CC over MTP as workloads where cache partitgpnin
could hurt performance, and the other workloads as worlkldaalt
need the help of cache partitioning. Figure 8 compares tHerpe
mance of CCP (realistic) with MTP (ideal) and CC (realistic)
both classes of workloads. Only FS results are reportedulseca
both CCP and MTP can guarantee QoS.

2f 1.6
18l K" MTP
o x o
S > S —CC
S . © 1.4,
g 16) % g7 I~ & < CCP
& |\ M & -
. .
‘E 1.4 \,,\\ % = 12 -~
w T w \
1.2 N R —
W S 1 \

; '~
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
(A) Workloads preferring MTP (B) Workloads preferring CC

Figure8: Comparing M TP, CC and CCP'sFS Results

1 + IPCopt 0fF = 1.4 35
2} WSopt W“ - i Mo
val| - MTP O L2f 3%
CCP [-0.2 - 1
1.6} 03 i 251 N8
EN -0. 0.8 e S
14l | 2 %&
&.,,% = -0.4 |1 o6 Eﬁk u
12] -05 W04 318 '
|
1 0.2 1
0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100%
(AYFS (B) QoS (C) Throughput (D)ws

Figure9: Resultsof Multiple Metricsfor Workloads that Need
Cache Partitioning (32% of All Workloads) for 4MB Cache

For the first two metrics (FS and QoS), MTP and CCP are both
significantly better than IPS; and WS,;. This is because the
SSP-based schemes, when their goals conflict with fairneds a
QoS requirements, often optimize by favoring only a subdet o
threads while sacrificing the performance of other threaHer
IPC and WS metrics, both IRG; and WS,,,; are better, although
the gap between different schemes are much smaller thargin Fi
ure 9(A) and Figure 9(B). As illustrated in Section 2.1.3&am-
ples, this is because schemes optimizing for WS, IPC and #S ha
different tradeoffs between performance and fairness.

| I WSopt] IPCopt] shared [l cC [l CCP|
13 0 14

13

-0.05 13

12

12

-0.1

1.15 12

11
-0.15 11 11

1.05

1
PAR LRU ALL
(D) WS

1 U
PAR LRU ALL
(C) Throughput

14
PAR LRU ALL
(A)FS

PAR LRU ALL
(B) Qos

Figure 10: Average Improvement for 4MB L2 Cache
Figure 10 summarizes the average improvement of \W8C, ¢,

shared cache, CC and CCP over the equal-share baselind-for di
ferent metrics. The average improvements are calculategbas

Same as in Figure 5, we use transposed CDF curves to show theometric means of per-workload improveméntsThe results are

percentage of workloads that can achieve various levelgidbp
mance. Here, a higher curve indicates a better scheme Igeitaus
achieves better FS measurements across different fraatiothe
workloads, and the gaps between curves correspond to tvéarp
mance differences.

Figure 8(A) shows that when cache partitioning is needed? CC

summarized over three groups of workloads: “PAR” represent
workloads that prefer cache partitioning, “LRU” coverseativork-
loads, while “ALL” includes all workload combinations. Thfig-

ure shows that for workloads preferring cache partitior(iPgR),

CCP performs much better than a shared cache and CC, while
achieving similar or much better results than the two cace p

achieves comparable performance as MTP (the gap between CCRitioning schemes. Considering workloads that prefer Liiged

and MTP curves is small), and much better FS values than GC (th

sharing (LRU) and all workloads (ALL), CCP provides the best

gap between CCP and CC is much larger). The performance dif- average results on all reported metrics.

ference between CCP and MTP reflects the difference betwaen o
practical partitioning heuristic and a less realistic,ioéf| exhaus-
tive search of MTP partitions. For workloads where cacheipar
tioning hurts, Figure 8(B) shows that CCP performs sligbtster

or the same as CC and significantly better than MTP. Togeliegr t
demonstrate that CCP effectively combines the strengthsothf
MTP and CC.

5.2 Resultsof Different Metrics

5.3 Resultsfor a2MB L2 Cache

Now we evaluate the robustness of CCP when the total L2 cache
capacity is reduced to 2MB. The reduction of cache size niyt on
increases capacity contention between threads, but ailsesaome
benchmarks to switch their categories (e.g., from supptiezads
to sensitive threads, or from sensitive threads to thrgsthireads)
so the performance of CCP can be tested under new scenarios.

Figure 11 uses transposed CDF plots to compare 4 cache par-

Besides FS, C.MP caching performance can also be evaluatedtitioning schemes (IP:, WS,,:, MTP and CCP) on workloads
using other metrics. We use transposed CDF plots to compare,at need cache partitioning. CCP again achieves comgafe

CCP (realistic) and MTP (ideal) against two single spatgtifion
(SSP) based schemes IRCand WS, which optimize offline
for throughput and weighted speedup, respectively. Fogush
workloads that need cache partitioning, Figure 9 comp#€s,l.,
WS,,t, MTP and CCP over 4 different metrics: (A) fair speedup,
(B) QoS, (C) throughput, and (D) weighted speedup.

and QoS results as the ideal MTP implementation and outpesfo
the two SSP-based partitioning schemes. This shows thetrodas

5Q0S results are summarized using the arithmetic mean becaus
the QoS measurements of many workloads are zero, whichsause
the average results to be the same (zero) with geometricsnean

of CCP’s heuristic-based partitioning algorithm. In teraofdair- monitors, “shadow tags” are used to measure the benefit afidnav

ness and throughput tradeoff, the weighted speedup res0tsP one extra cache way.
and CCP are similar to IPG; and WS, while their throughput Kim et al. [20] emphasized the importance of fair CMP caching
results are 10% lower. Again, QoS constraint and fair speegu and proposed a set of fairness metrics as their goal of qgiion.

timization are the two reasons that cause MTP and CCP’s lower lyer [18] motivated the importance of QoS guarantee andriprio
throughput, while IPG,; and WS, can achieve better throughput tization with a general QoS framework. Yeh and Reinman [42]
without satisfying such constraints. focused on throughput improvement with QoS guarantee and ex
ploited the latency advantage of a NUCA design. Their notibn

50 7 'J;ggg: oF— Laf guaranteed partition is adopted in this paper. Rafique gHland
14l | - P S A1 € Petoumenos et al. [27] proposed spatially fine-graineditjoert
1a] —F [oos o ing support, which is supported in CCP by throttling coofieea
N -0.1 |1 os sharing activities. Hsu et al. [16] studied various paotithg met-
12 R I rics and policies, and recognized the difficulties of impngvboth
R RE W 04 1% throughput and fairness. CCP is the only partitioning psgpehat
1 o, oz B : simultaneously optimizes throughput, fairness, and Qo& feide
0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100% range Of WOfklO&d Combinationsl
(A) FS (B) QoS (C) Throughput (D)ws

) Beside capacity optimization, CMP caching proposals atso r
Figure 11: WS,,, MTP and CCP on Workloads that Need duce on-chip access latency. CCP combines the strengtitbé ca
Cache Partitioning (40% of All Workloads) with 2MB Cache partitioning with such fine-grained latency reduction opsations
Figure 12 compares the average improvements of varioussshe via the integration of MTP and CC [6]. MTP can also be integglat
over the equal-share baseline. Due to higher cache comenti with other private cache based latency optimizations [B&ha do
more workloads now prefer cache partitioning (increaseahf82% not support global LRU replacement. Planas et al. [28] pledi
to 40%). The performance of a shared cache also drops signifi-a model to explain cache partitioning speedups over LRl&das
cantly and comes close to the equal-share baseline perficema fine-grained sharing.
In contrast, CCP still consistently outperforms other scbe for CCP also borrows heavily from virtual memory management re-
workloads where cache partitioning can hurt. However, the g search. Verghese et al. [40] recognized the need for pesdioce
between cache partitioning schemes and CCP (as well as @) is isolation for SMP-based systems, and proposed mecharogms-t

duced because, due to capacity pressure, latency optiomzain- vide isolation under heavy load while allowing sharing unlitght
tributes less to the overall speedup. Averaged over all 24w load. CCP aims to support a broader sense of performanee isol
loads, CCP achieves the best results on almost all metricg§e tion that also balances between partitioning and sharirte if-
for throughput, where CCP is 1% lower than 15§). tegration between MTP and CC resembles WSClock [5], a paging
(W WSopt [JIPCopt [Jshared B CC NI CCP) algorithm that integrates working-set based partitiomiitt glopal
0 125 LRU replacement. CCP also uses other well-known operatisag s
112 o2 115 tem techniques such as thrashing avoidance and time-ghsmrired
11 ' L2 resource management, but differs from software-only selsdi3]
1.08 004 115 11 that manage cache sharing solely in the operating system.
1.06 -0.06
1.1
104 -0.08 o5 105 7. CONCLUSION
102 01 Current cache partitioning schemes have limited functigna
1"PAR LRU ALL PARLRU ALL " PARLRU ALL © PARLRU ALL and applicability because they can only support a subseti C
AFs (8 QoS (C) Throughput EIws caching requirements, and they can not compete with LRé¢bas
Figure 12: Average Improvement for 2MB L2 Cache latency-reducing caching schemes (e.g., CC) for many wadd.
To answer these challenges, this paper introduces Muliphe-
6. RELATED WORK sharing Partitions (MTP) to simultaneously improve thiopgt and
Cooperative cache partitioning is closely related to CMéhea fairness while guaranteeing QoS. MTP is further integratét
partitioning research. Stone et al. [36] studied the probdé par- CMP Cooperative Caching (CC) to exploit its latency optianiz
titioning cache capacity between different referenceastie and tions. The resulting Cooperative Cache Partitioning (C&Peme
identified LRU as the near-optimal policy for their workl@acsuh is evaluated and shown to provide the best overall perfocamawner
et al. [38, 37] first applied way partitioning to shared CMRlus, 210 combinations of 7 representative SPEC2000 benchmarks u
using in-cache monitoring mechanism and marginal gaindpae der different cache sizes. For a 4-core CMP with 4MB L2 cache,
titioning algorithm to reduce off-chip misses. Recentlyr€shi and CCP on average improves performance (measured by fairgpgeed

Patt [29] proposed UMON sampling mechanism to provide more by 12% and throughput by 4.5%, respectively, comparingregai
precise measurement and lookahead partitioning to hanoite-w the best static partitioning schemes optimizing fair sppednd
loads with non-convex miss rate curves. The UMON mechanism throughput, respectively, while maintaining long-termSQo

can be combined with CCP to improve miss rate measurement and CCP takes a first step in balancing partitioning-based dgpac
adapt to fine-grained program phase changes. Dybdahl dt1dl. [optimizations and LRU-based latency optimizations for tipub-
extended way partitioning by overbooking cache capacitado grammed workloads. Future research is needed to extend CCP
count for non-uniform per-set requirements, and evaluigsexffec- to better adapt to phase/scheduling changes, as well apporsu
tiveness using private L1/L2 caches with a shared L3 caclgp- D large-scale CMPs and CMPs with SMT cores. For environments
dahl and Stenstrom [10] also proposed an adaptive shanedépr that prefer higher throughput over execution time redugtiair-
partitioning scheme to both avoid inter-thread interfeeeand ex- ness, and QoS guarantee, CCP can also be modified to usee singl
ploit the locality benefits of private caches. Their pastitng al- unfair partition that only optimizes throughput, which Isaleft as
gorithm is essentially the same as in [38], but instead afache future work.

8. ACKNOWLEDGEMENTS

The authors thank Philip Wells, Koushik Chakraborty, Saisa
tosh Balakrishnan, Matthew Allen and Vikas Garg for helmfig-
cussion and proofreading. We also thank Jim Smith and Kyke Ne
bit for their valuable comments on the selection of bassliaed (23]
metrics, and the anonymous reviewers for their commentscigp
thanks to Philip Wells who first suggested time-sharing dasehe [24]
partitioning.

This research is supported in part by NSF grants CCR-0311572
and CNS-0551401, funds from the John P. Morgridge Chair in |55
Computer Science, and the University of Wisconsin Grad8ateol
(a WARF Named Professorship). Sohi has a significant finhncia
interest in Sun Microsystems. The views expressed hereinatr
necessarily those of the National Science Foundation.

[22]

[27]
9. REFERENCES
[1] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatz$k Qadeer, [28]

B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: Al8ealachitecture
Based on Single-Chip Multiprocessing.Pnoceedings of the 27th Annual

International Symposium on Computer Architecture (ISCA-27), 2000. 29]
[2] B. M. Beckmann, M. R. Marty, and D. A. Wood. ASR: Adaptivel&ctive

Replication for CMP Caches. Iroceedings of the 39th Annual International

Symposium on Microarchitecture (MICRO-39), 2006. [30]

[3] D. Bertsekas and R. Gallagé&rata Networks (2nd ed.). Prentice-Hall, 1992.

[4] J.Bruno, E. Gabber, BDzden, and A. Silberschatz. The Eclipse Operating
System: Providing Quality of Service via Reservation DamalnUSENIX [31]
1998 Annual Technical Conference, 1998.

[5] R.W.Carrand J. L. Hennessy. WSClock - a Simple and Hifedlgorithm
for Virtual Memory Management. IRroceedings of the 8th ACM Symposium

on Operating Systems Principles (SOSP-8), 1981. [32]
[6] J.Changand G. S. Sohi. Cooperative Caching for Chip igigtessors. In
Proceedings of the 33th Annual International Symposium on Computer [33]

Architecture (ISCA-33), 2006.
[7] D. T. Chiou.Extending the Reach of Microprocessors: Column and Curious
Caching. PhD thesis, MIT, 1999.

[8] Z.Chishti, M. D. Powell, and T. N. Vijaykumar. OptimizinReplication, [34]
Communication and Capacity Allocation in CMPs Rroceedings of the 32nd
Annual International Symposium on Computer Architecture (ISCA-32), 2005.
P. J. Denning. Thrashing: Its Causes and PreventioAFI?S 1968 Fall Joint
Computer Conference, volume 33, pages 915-922, 1968. [35]
H. Dybdahl and P. Stenstrom. An Adaptive Shared/PeNiCA Cache
Partitioning Scheme for Chip Multiprocessors Aroceedings of the 13th
International Symposium on High-Performance Computer Architecture
(HPCA-13), 2007. [36]
H. Dybdabhl, P. Stenstrom, and L. Natvig. A Cache-PariitAware
Replacement Policy for Chip Multiprocessors AGM 2006 Conference on [37]
High Performance Computing (HiPC-13), 2006.
R. Fagin and J. H. Williams. A fair carpool schedulingadithm.IBM Journal
of Research and Development, 27(2):133-139, 1983.
A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum.d?sréince Of [38]
Multithreaded Chip Multiprocessors And Implications Fquedating System
Design. INUSENIX 2005 Annual Technical Conference, 2005. [39]
[14] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. ChendeK. Olukotun.
The Stanford Hydra CMREEE Micro, 20(2):71-84, 2000.
J. L. Hellerstein. Achieving service rate objectiveithilecay usage [40]
schedulingl EEE Transaction of Software Engineering, 19(8), 1993.
[16] L.R.Hsu, S. K. Reinhardt, R. lyer, and S. Makineni. Conmist, Utilitarian,

and Capitalist Cache Policies on CMPs: Caches as a SharediResIn

Proceedings of the 15th International Conference on Parallel Architecture and [41]

Compilation Techniques (PACT-15), 2006.
[17] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. KieckA NUCA
Substrate for Flexible CMP Cache SharingPiroceedings of the 19th ACM [42]
International Conference on Supercomputing (ICS-19), 2005.
R. lyer. CQoS: a Framework for Enabling QoS in Sharedhiea®f CMP
Platforms. InProceedings of the 18th ACM International Conference on [43]
Supercomputing (ICS-18), 2004.
[19] L. K. John. More on Finding a Single number to Indicatee€all Performance
of a Benchmark Suites GARCH Computer Architecture News, 32(1), 2004.
S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharingd Rartitioning in a
Chip Multiprocessor Architecture. IRroceedings of the 13th International
Conference on Parallel Architecture and Compilation Techniques (PACT-13),
2004.
[21] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizihe Last Line of

Defense before Hitting the Memory Wall for CMPs.Pnoceedings of the 10th

[9

[10

[11

[12

113

[15

[18

[20

International Symposium on High-Performance Computer Architecture
(HPCA-10), 2004.

K. Luo, J. Gummaraju, and M. Franklin. Balancing Thrbpgt and Fairness in
SMT Processors. IRroceedings of the 2001 | EEE International Symposium on
Performance Analysis of Systems and Software (ISPASS-2001), 2001.

P. Magnusson, M. Christensson, J. Eskilson, D. Forsgge Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. SinAdsull System
Simulation Platforml EEE Computer, 35(2):50-58, Feb 2002.

M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M.UXA. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifate General
Execution-driven Multiprocessor Simulator (GEMS) Totl<eomputer
Architecture News, 2005.

K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smithr Raieuing Memory
Systems. IrProceedings of the 39th Annual International Symposium on
Microarchitecture (MICRO-39), 2006.

26] A. K. Parekh and R. G. Gallager. A Generalized ProceSå Approach to

Flow Control in Integrated Services Networks: the Singbelen CaselEEE
Transaction of Networks, 1(3):344-357, 1993.

P. Petoumenos, G. Keramidas, H. Zeffer, S. Kaxiras, Ertdagersten.
STATSHARE: A Statistical Model for Managing Cache Sharitig Decay. In
Second Annual Workshop on Modeling, Benchmarking and Smulation (MoBS
2006), 2006.

M. M. Planas, F. Cazorla, A. Ramirez, and M. Valero. Eiping Dynamic
Cache Partitioning Speed Up&EE Computer Architecture Letters, 6(1), 2007.
M. K. Qureshi and Y. N. Patt. Utility-Based Cache Paotiing: A
Low-Overhead, High-Performance, Runtime Mechanism ttitRer Shared
Caches. IrProceedings of the 39th Annual International Symposium on
Microarchitecture (MICRO-39), 2006.

M. K. Qureshi, D. Thompson, and Y. N. Patt. The V-way Cacchemand
Based Associativity via Global ReplacementRroceedings of the 32nd
Annual International Symposium on Computer Architecture (ISCA-32), 2005.
N. Rafique, W.-T. Lim, and M. Thottethodi. Architectliupport for
Operating System-Driven CMP Cache ManagemenRrbteedings of the 15th
International Conference on Parallel Architecture and Compilation Techniques
(PACT-15), 2006.

J. E. Smith. Characterizing Computer Performance wiglingle Number.
Communication of ACM, 31(10), 1988.

A. Snavely and D. M. Tullsen. Symbiotic Jobschedulingd Simultaneous
Multithreaded Processor. Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOSIX), 2000.

A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic gaheduling with
priorities for a simultaneous multithreading processoProceedings of 2002
ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, 2002.

E. Speight, H. Shafi, L. Zhang, and R. Rajamony. Adagthexhanisms and
Policies for Managing Cache Hierarchies in Chip Multiprssers. In
Proceedings of the 32nd Annual Inter national Symposium on Computer
Architecture (ISCA-32), 2005.

H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitiegiof cache memory.
|EEE Transaction of Computers, 41(9):1054-1068, 1992.

G. E. Suh, S. Devadas, and L. Rudolph. A New Memory MaiipScheme
for Memory-aware Scheduling and Partitioning.Aroceedings of the 8th
International Symposium on High-Performance Computer Architecture
(HPCA-8), 2002.

G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Partitgof Shared Cache
Memory.Journal of Supercomputing, 28(1):7-26, 2004.

J. M. Tendler, J. S. Dodson, J. S. F. Jr.,, H. Le, and B. &iofr IBM Power4
system microarchitecturéBM Journal of Research and Devel opment,
46(1):5-26, 2002.

B. Verghese, A. Gupta, and M. Rosenblum. Performanakation: Sharing and
Isolation in Shared-memory Multiprocessors Rroceedings of the 8th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VII1), 1998.

C. A. Waldspurger. Lottery and stride scheduling: & proportional-share
resource management. Technical Report MIT/LCS/TR-66Wi@&ge, MA,
USA, 1995.

T.Y. Yeh and G. Reinman. Fast and Fair: Data-stream iQuafl Service. In
Proceedings of the 2005 International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES 05), 2005.

M. Zhang and K. Asanovic. Victim Replication: Maximigj Capacity while
Hiding Wire Delay in Tiled CMPs. IrProceedings of the 32nd Annual
International Symposium on Computer Architecture (1ISCA-32), 2005.

