
Adapting to Intermittent Faults in Future Multicore Systems

Philip M. Wells, Koushik Chakraborty, Gurindar S. Sohi

Computer Sciences Department

University of Wisconsin, Madison

{pwells, kchak, sohi}@cs.wisc.edu

1 Intermittent Faults

As technology continues to scale, future multicore pro-

cessors become more susceptible to a variety of hardware

failures. In particular, intermittent faults, are expected to be-

come especially problematic [1, 2]. A circuit is susceptible

to intermittent faults when manufacturing process variation

or in-progress wear-out causes the parameters (e.g., resis-

tance, threshold voltage, etc.) of devices within the circuit

to vary beyond design expectations [2]. This susceptibility,

combined with certain operating conditions, such as ther-

mal hot-spots and voltage fluctuations, can result in timing

errors — even if these temperatures and voltages, for exam-

ple, are well within the specified “acceptable” margins.

Unlike transient faults, which disappear quickly, or per-

manent faults, which persist indefinitely, the occurrence of

intermittent faults is bursty in nature. Depending on the

cause, these bursts of frequent faults can last from several

cycles to several seconds or more, effectively rendering a

core useless during this time.

2 Adapting to Intermittent Faults

For this work, we assume suitable techniques are avail-

able for detection and recovery from intermittent faults,

and focus on the necessity of adapting to the dynamically

changing resource availability caused by these faults. We

investigate three existing adaptation techniques, across a

range of intermittent fault durations, and demonstrate their

different implications for software. The techniques are 1)

using spare cores, 2) pausing execution on a temporarily

faulty core without notifying the OS, and 3) asking the OS

to reconfigure itself to not use the faulty core. To remedy

drawbacks of first three, we propose a fourth technique: us-

ing a thin hardware/firmware virtualization layer to manage

an overcommitted system — one where the OS is configured

to use more virtual processors than the number of currently

available physical cores. To facilitate virtualizing unmod-

ified Solaris, we use hardware spin detection [3] and fast

thread migration.

3 Results Summary

Across a range of fault durations, reserving one or more

cores as spares has little impact on performance during

faults, but high fault-free cost. The viability of the two

other existing techniques depends upon the fault duration.

For short (<1ms) faults, we show that simply pausing ex-

ecution on the core is possible. On the other hand, OS re-

configuration is inappropriate, since Solaris requires several

milliseconds to stop using a processor — and requires that

processor to continue to function properly in the meantime.

The situation reverses for longer duration faults. For

faults of 10ms, OS reconfiguration does incur a 12–55%

overhead on an 8-core system, since all cores are involved in

bringing one offline, but this overhead is amortized as fault

durations increase. For these longer faults, however, we

demonstrate that simply pausing a core is no longer attrac-

tive, as the the effects are not isolated to the paused core. In

fact, for two workloads, more than half the remaining pro-

cessors are prevented from making forward progress within

1ms, and within 12ms, no processors are making progress.

We show that a thin virtualization layer, including hard-

ware spin detection and fast thread migration, can grace-

fully degrade performance during periods of overcommit-

ment due to intermittent faults. Of the four, this technique

is applicable across the widest range of fault durations, and

is the only technique which holds overheads to less than

1% in all experiments. This technique also achieves stable

and predictable performance, maintains fairness among vir-

tual processors, has only moderate complexity, and supports

legacy OS and application software.

References

[1] S. Borkar, T. Karnik, J. Tschanz, A. Keshavarzi, and V. De.

Parameter variations and impact on circuits and microarchi-

tecture. In DAC, 2003.
[2] C. Constantinescu. Intermittent faults in VLSI circuits. In

SELSE, 2007.
[3] P. M. Wells, K. Chakraborty, and G. S. Sohi. Hardware sup-

port for spin management in overcommitted virtual machines.

In PACT, 2006.


