Globally Precise-restartable Execution of Parallel Programs

Gagan Gupta

Srinath Sridharan

Gurindar S. Sohi

University of Wisconsin-Madison

gagang@cs.wisc.edu

Abstract

Emerging trends in computer design and use are likely to make ex-
ceptions, once rare, the norm, especially as the system size grows.
Due to exceptions, arising from hardware faults, approximate com-
puting, dynamic resource management, etc., successful and error-
free execution of programs may no longer be assured. Yet, design-
ers will want to tolerate the exceptions so that the programs execute
completely, efficiently and without external intervention.

Modern computers easily handle exceptions in sequential pro-
grams, using precise interrupts. But they are ill-equipped to han-
dle exceptions in parallel programs, which are growing in preva-
lence. In this work we introduce the notion of globally precise-
restartable execution of parallel programs, analogous to precise-
interruptible execution of sequential programs. We present a soft-
ware runtime recovery system based on the approach to handle
exceptions in suitably-written parallel programs. Qualitative and
quantitative analyses show that the proposed system scales with
the system size, especially when exceptions are frequent, unlike
the conventional checkpoint-and-recovery method.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Parallel programming; D.3.4 [Programming Languages]:
Processors - Run-time environments; D.4.5 [Operating Systems):
Reliability - Checkpoint/restart, Fault-tolerance

General Terms Design, Experimentation, Measurement, Perfor-
mance, Reliability

Keywords Deterministic Multithreading, Precise Exceptions

1. Introduction

Evolving technology continually places new demands on computer
system designers. As designers address challenges in one aspect of
the system, they often impact another, and on occasion create new
opportunities. This then evokes further response from them, per-
petuating the cycle. Figure 1 summarizes some key recent trends.
For example, in the past, when Moore’s law and Dennard scaling
improved processor performance, software automatically reaped
the benefits. But once Dennard scaling slowed down, program-
mers could no longer assume continued improvements. Vendors
responded to the Dennard scaling slowdown with multicores, re-
quiring programmers to adapt with parallel programs.Deterministic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

PLDI 14, June9 - 11 2014, Edinburgh, United Kingdom.

Copyright © 2014 ACM 978-1-4503-2784-8/14/06. .. $15.00.
http://dx.doi.org/10.1145/2594291.2594306

sridhara@cs.wisc.edu

sohi@cs.wisc.edu

Trends —— Implications —— Designers’ — Implications — Designers’

of Trends Response for Software Response
Moore’s law, ILP, Frequency Performance __,None
Dennard ___, Fast, dense 7 scaling scales
scaling transistors . -
" Multicores _pfgauglns Ear
Den'nard Performance e prog execution
scaling slows = scaling slows g € terogeneous N
ystems ecialize .
down down nge —__Compiler,
Run hardware . libraries
i <
Mobile Energy near operatin, i 5
platforms constraints margins Computation] &
scheduling I
Shared Uncertain Resource i 2
platforms resources Management Computation | >— ??
. errors s
Moore’s Unreliable Approximate S
law transistors Computing Incomplete 1]
programs S
Fault recovery &

Figure 1. Impact of key technology trends on computer sys-
tems. Moore’s law prevails, but Dennard scaling has slowed down.
Hence, hardware no longer scales performance automatically, has
multiple computational resources, is more unreliable, and is energy
constrained. In response, programs need to be parallel, utilize re-
sources efficiently, tolerate failures and conserve energy. Conse-
quently, discretionary exceptions will likely be the norm in parallel
programs.

execution was then proposed to simplify the resulting parallel pro-
gramming challenges [6-8, 28, 35].

Looking ahead, new techniques to conserve energy, improve
performance, and manage resources are emerging. These tech-
niques will give rise to discretionary exceptions, designer-permitted
events that may alter the program’s prescribed execution. As paral-
lel programming proliferates, these trends will likely make frequent
discretionary exceptions the norm in parallel programs. Neverthe-
less, designers will desire programs that execute as intended, as if
an exception, especially a discretionary exception, never occurred.

Present approaches handle exceptions in a parallel program by
periodically checkpointing its state. Upon exception, they recover
to a prior error-free state and resume the program, losing all work
completed since. A plethora of hardware [3, 34, 37, 43] and soft-
ware [10, 11, 15, 27, 30, 39, 46] approaches, striking trade-offs
between complexity and overheads, have been proposed in the liter-
ature (Table 1: rows 1, 2). Our qualitative analysis shows that their
checkpointing and recovery processes will be too inefficient to han-
dle frequent exceptions. In fact, they lack the scalability needed for
future, increasingly larger systems. The question then arises, how
will designers respond to the frequent discretionary exceptions in
an efficient and programmer-oblivious manner?

In one response to this emerging challenge, we take inspiration
from precise interruptible processors. Modern processors execute a
sequential program’s instructions in parallel, yet handle exceptions
efficiently. They exploit the implicit order between the program’s

[] Proposal [[Recovery Design | Chkpt. Cost | Rec. Cost [Scalable | Deterministic | Det. Cost |
1| Rebound[3], ReVivel/O[34], ReVive[37], SafetyNet[43] Yes Hardware High High No No N/A
2| [10,11,15], [[301, [39, 46] User code Software High High No No N/A
3| DMP[13], RCDC[14], Calvin[24] No Hardware N/A N/A N/A Yes High
4 | dOS|[7], CoreDet[6], Grace[8], DTHREADS[28], Kendo[35] No Software N/A N/A N/A Yes High
5| GPRS (this work) Full program | Software Low Low Yes Yes Low

Table 1. Summary of related work. Some proposals (rows 1, 2) handle exceptions, but are not deterministic. They incur high checkpoint
(Chkpt.) and recovery (Rec.) costs, and may not scale with the system size. Others (rows 3, 4) are deterministic, but do not handle exceptions,
and can incur high costs (Det.). GPRS handles exceptions by making the execution deterministic, scalably and at lower overheads.

instructions to readily create a consistent architectural state when
exceptions occur. This allows them to precisely recover from the
exception and quickly restart the program with a minimum loss of
work. Analogously, we propose globally precise-restartable exe-
cution of parallel programs. We impart a total order to a parallel
program’s computations and effect its deterministic execution, en-
abling low overhead and scalable exception handling.

Researchers have proposed several hardware and software tech-
niques to execute a parallel program deterministically (Table 1:
rows 3, 4). Although they list exception handling as one use of
such an execution, they neither explore its implementation nor the
related challenges. Of these, hardware proposals add considerable
complexity [13, 14, 24]. Although software proposals [6-8, 28, 35]
do not require special hardware, they may not handle arbitrary pro-
grams efficiently. We overcome these shortcomings in our work.

We draw from the past work on recovery and other areas, and
introduce new features to build a globally precise-restartable re-
covery system (GPRS) for shared memory systems. Our goal is to
preclude the need for complex hardware since future systems will
rely primarily on software to handle exceptions [12, 32]. Hence we
developed GPRS as a software runtime system. GPRS is also OS-
agnostic. GPRS exploits program characteristics and user annota-
tions to minimize overheads and achieve scalability. It incorporates
the following novel aspects:

e GPRS applies the precise interrupt principles at the scale of
multiprocessors. It introduces a notion of selective restart, in
which not all computations, but only those that are affected are
restarted, making GPRS scalable.

e GPRS exploits the synchronization points in data race-free pro-
grams to localize the impact of exceptions to a minimum num-
ber of program’s computations.

e GPRS combines checkpointing and log-based approaches to
minimize recovery overheads.

e GPRS achieves efficient deterministic execution by judiciously
dividing program threads into sub-threads and employing a
balance-aware schedule to execute them.

e GPRS is a fully-functional recovery system, operational on
stock multiprocessors. It can handle exceptions in user code,
third-party libraries, system calls, as well as itself.

We evaluated GPRS by applying it to recover from non-fatal
exceptions in standard Pthreads parallel benchmarks. Experiments
conducted on a 24 context multiprocessor system showed that
GPRS outperformed the conventional checkpoint-and-recovery
method. Importantly, it withstood frequent exceptions and scaled
with the system size, whereas the conventional method did not,
validating our qualitative analysis.

The paper is organized as follows. §2 examines sources of
exceptions, the challenges and cost of processing them. It describes
our model for globally precise-restartable execution. §3 presents
the design and operational details of GPRS. Our experiments and
the evaluation results are presented in §4. In §5 we put our work in
the context of other related work, before concluding in §6.

2. A Case for Globally Precise-restartable
Execution

2.1 Impact of Trends on Program Execution

As mobile and cloud platforms grow in popularity, and device sizes
shrink, designers face energy and resource constrained, unreliable
systems (Figure 1). Proposals being made to address these chal-
lenges can impact a program’s execution, even terminally. Mini-
mizing this impact will make these proposals practical. We analyze
these proposals by dividing them into three broad categories.

Managing resources to save cost or energy can impact a pro-
gram’s execution. Shared systems, e.g., Amazon’s EC2 [2] and mo-
bile platforms [1], can abruptly terminate a program, even without
notifying the user. Systems are now incorporating heterogeneous
resources with disparate energy/performance profiles. To maximize
benefits, dynamic scheduling of computations on these resources
will be desirable [9]. One can also envision scheduling computa-
tions, even interrupting and re-scheduling currently executing com-
putations, on the “best” available resource as the resources become
available dynamically.

Further, emerging programming models can impact the pro-
gram execution. Disciplined approximate computing [40], a re-
cent research direction, permits hardware to inaccurately perform
programmer-identified operations in a bid to save time and/or en-
ergy [17, 18]. Emerging proposals provide a software framework
to compute approximately but with a guaranteed quality of service,
by re-computing when errors are egregious [5]. In the future one
can imagine integrating approximate hardware with such a soft-
ware framework for even more benefits. Interestingly, some pro-
posals tolerate hardware faults by admitting computation errors in
a class of error-tolerant applications such as multimedia, data min-
ing, etc., while ensuring that the programs run to completion [26].

Finally, hardware design can impact the execution. Faults due
to soft (transient) errors, hard (permanent) errors and process vari-
ations can cause programs to crash or compute incorrectly on in-
creasingly unreliable hardware [25].Hardware designers are em-
ploying techniques to manage energy consumption [22, 23] and de-
vice operations [45], which can lead to frequent timing, voltage and
thermal emergencies. Like faults, these techniques can also affect
the execution. Moreover, growing system sizes makes the systems
more vulnerable to such vagaries.

In all of the above scenarios the program execution may be
viewed as one interrupted by discretionary exceptions. These are
exceptions that the system allows, in bargain for other benefits,
such as energy savings. If these exceptions can be tolerated, effi-
ciently, and oblivious to the programmer, designers can effect such
and perhaps yet undiscovered tradeoffs. In fact, a similar trend en-
sued in uniprocessors when precise interruptibility provided a low
overhead means to tolerate frequent exceptions. Once introduced,
designers exploited the capability to permit high frequency discre-
tionary exceptions arising from predictive techniques, for net gains
in performance. For example, techniques to predict branch out-
comes, memory dependences, cache hits, data values, etc., relied
on precise interrupts to correct the execution when they mispre-

Computation Threads Threads
Exception » \ ’
site
Detection
Errors —* latency
Exception e s =
reported

Data communication

(a) (b) ()

Figure 2. (a) Latency to detect and report an exception. (b) A local
exception affects an individual computation. (¢) A global exception
affects multiple computations.

dicted. Hence we believe that recovering from exceptions in paral-
lel programs and resuming the execution efficiently, and transpar-
ently, will be highly desirable in the future.

2.2 Exceptions

Recovering from exceptions is complicated by two factors. The first
is the delay between the time an exception occurs and it is reported,
which can range from one to many cycles (Figure 2(a)). For exam-
ple, it may take tens of cycles to detect a voltage emergency [23],
or an entire computation to detect errors in results [5]. The sec-
ond, more pertinent to parallel programs, is due to the dispersal
of a parallel program’s state among multiple processors. To study
the complexity, we categorize exceptions into two types: local and
global. Local exceptions, e.g., page faults, impact only an individ-
ual thread, and can be handled locally without affecting other con-
current threads (Figure 2(b)). Local exceptions are often handled
by using precise interrupts in modern processors [23].Global ex-
ceptions, in contrast, may impact multiple threads simultaneously,
e.g., a hardware fault that corrupts a thread whose results are con-
sumed by other threads before the fault is reported (Figure 2(c)).
Due to the inter-thread communication in parallel programs and
the system-wide impact of global exceptions, global exceptions are
complex to handle, and hence are this work’s main focus.

2.3 Recovery from Global Exceptions

The traditional method to recover from a global exception is to
periodically checkpoint the program’s state during its execution,
often on stable storage. Upon exception, the most recent possi-
ble, error-free consistent architectural state is constructed from the
checkpoint, effectively rolling back the execution. The program is
then resumed from this point. There are three main types of such
checkpoint-and-recovery (CPR) methods: coordinated, uncoordi-
nated, and quasi-synchronous [16, 29]. Of the three, coordinated
CPR has gained popularity in shared memory systems since it is
relatively simple and guarantees recovery at relatively lower over-
heads. Hence we consider coordinated CPR here.

Parallel programs are characterized by nondeterministic concur-
rent threads that may communicate with each other. Hence, the ex-
ecution needs to be quiesced to take a checkpoint of the state that is
consistent with a legal execution schedule of the program up to the
checkpoint [16]. A consistent checkpoint is essential for the pro-
gram to restart and execute correctly. The lost opportunity to per-
form work, i.e., the loss of parallelism, during the CPR processes
effectively penalizes the performance. Hence, CPR schemes incur
a checkpoint penalty, P,, every time they checkpoint, and a restart
penalty, P, when they restart from an exception.

To checkpoint, prevailing software approaches [10, 11, 15, 30,
39, 46] first impose a barrier on all threads, and then record their
states (Figure 3(a)). A second barrier is used to ensure that a thread
continues the execution only after all others have checkpointed,

to prevent the states they are recording from being modified. The
checkpoint penalty (F.) is proportional to the average time each
context spends coordinating at the two barriers, ., recording its
state, ts, and the checkpointing frequency. Ignoring actual mecha-
nisms and assuming contexts can record concurrently, in an n con-
text system, for a checkpoint interval of ¢ sec, P, = % ‘n-(te+ts).

To restart an excepted program, the program is stopped and the
last checkpoint is restored (Figure 3(b)). In this case the potential
loss of parallelism arises from the work lost since the last check-
point, i.e., over the interval ¢, and from the wait time, ¢.,, to restore
the state. Therefore, the total restart delay, t, = t 4 t,,, and for a
rate of e exceptions/sec, the restart penalty P, =n - e - t,.

Recent hardware proposals can reduce the two penalties by
involving only those threads (n.) that communicated with each
other during a given checkpoint interval, in the checkpoint and
recovery processes [3, 37]. Hence in their case, P. = % ‘N (te+
n% - t5) (all threads still record the state), and P = nc - € - tr.

We believe that as exceptions become frequent, the restart
penalty will become critical. Intuitively, if exceptions occur at
a rate faster than checkpoints, the program will never complete.
Hence, for a program to successfully complete, it is essential that
n-e-t, <n,ie,e < i The hardware proposals can improve this
toe < - % Decreasing P, by simply increasing the checkpoint
frequency, i.e., decreasing ¢, will increase P., and hence may be
unsuitable for high frequency discretionary exceptions.

We believe that an online system that can quickly repair the af-
fected program state, with minimum impact on the unaffected parts
of the program, analogous to the precise interrupts in microproces-
sors, will be needed when exceptions are frequent. Hence, for a
practical and efficient solution, all factors of checkpoint and restart
penalties need to be reduced.

2.4 An Efficient Approach to Frequent Exception Recovery

To build a practical and efficient exception recovery system for
frequent discretionary exceptions we target all the related over-
heads: the discarded work, the checkpoint frequency, the coordina-
tion time, the recording time, and the restart process. For this pur-
pose we formulate a globally-precise exception model. We present
the model, its key design aspects, and overhead tradeoffs here. In
the next section we describe an actual system design based on it.

To formulate the globally-precise exception model, we take a
fundamentally different view of the parallel program execution, and
make three logical changes.

1. Order Computations. Ignoring threads for the moment, ideally,
when an exception occurs, only the affected computations, i.e., the
excepted computation and those which may have consumed the er-
roneous results produced by it, should be squashed and restarted.
For example, in Figure 3(c), if only computation C consumes the
data produced by B, when B excepts only B and C need restart,
without affecting A. Parallel programs permit arbitrary and nonde-
terministic communication between computations, making it dif-
ficult to identify the precise dynamic producer-consumer relation-
ships between them. Hence CPR schemes take the conservative ap-
proach of discarding all computations after an exception.

To overcome the limitations of nondeterminism we impart a
logical order to the program’s computations, although they may
execute concurrently (Figure 3(d)), an approach similar to recent
proposals on deterministic execution [6, 8, 28, 35]. The implicit
order precludes communication from “younger” computations to
“older” computations. Hence, an affected computation cannot cor-
rupt older computations. When an exception occurs, undoing the
effects of the excepted computation and all younger to it results in
a program state that is consistent with the execution. The state is
“precise”, reflecting execution of all older computations and none

Threads Threads Threads
A A B§ c§ B B
Y A
A C £
wv
§ t °
= ¢ B D E F D\, E F
3 BN
£
] Restore ¢ C
= state w — Sub-thread boundary
g [NNNNNNNNNNNNNNNY Data communication Sequence
(a) (b) (c) (d) (e) (f) (8)

Figure 3. (a) Conventional checkpoint-and-recovery. (b) Restart penalty. (c) Inter-thread communication. (d) Ordered computations. (e)
Creating and ordering sub-threads. (f) Inefficient sub-thread boundaries. (g) Sub-thread boundaries at communication points.

of the younger ones, analogous to the state a precise-interruptible
processor creates upon exception. Hence we term such an execu-
tion, globally precise-restartable.

For exception recovery, a globally precise-restartable execution
can reduce the restart penalty, as compared to CPR, since not all
computations, but only the excepted and younger computations
need be discarded. The ordering further enables the desired selec-
tive restart of only the affected producer-consumer computations,
and not of other unrelated older or younger computations. This
minimizes the amount of discarded work. This is also analogous
to re-executing only an excepted instruction and its dependent in-
structions in superscalar processors, e.g., a load that misses in the
cache but was presumed to have hit, without squashing all in-flight
instructions.

Selective restart potentially reduces the restart penalty to P =
e - t, (assuming that the average computation size is ¢ and time t,,
is taken to reinstate its state), since only the excepted computation
may need to restart and the unaffected computations need not stall.
This also enables an online system that can continuously respond
to frequent discretionary exceptions while minimizing the impact
on the program’s unaffected parts. For a program to now success-
fully complete, e - t, < n,ie., e < ﬁ Thus selective restart is
potentially nx more exception-tolerant than the conventional CPR
(e < l) and n. X more tolerant than the recent hardware proposals
(e< > —) making it more effective in parallel systems.

An alternatlve to imposing an order on computations is to per-
mit the nondeterministic execution but record the dynamic order
between the computations at run time. The recorded order can also
be used to perform the selective restart. The choice between deter-
ministic and nondeterministic approaches has implications on the
implementation and the actual use. For example, nondeterministic
order may complicate the design when exceptions occur in the im-
plementation mechanisms (§3.2). In another example, deterministic
order may give the desired repeatability more readily than nonde-
terministic order for memoization-based approximate computing.
On the other hand, deterministic order can degrade performance
(§3.2). Still, deterministic ordering has broader applicability, as is
noted by others [8, 35]. Hence, in this work we implement de-
terministic ordering, but overcome the performance issue it poses
(8§3.2). We explore techniques for the two approaches and the re-
lated tradeoffs in future work.

2. Create Sub-threads. Next, we apply an order to the threads.
A naive approach could order the threads themselves, which may
serialize the execution. Moreover, the restart penalty will be too
large, given the granularity of threads. Hence we logically divide
the threads into finer-grained sub-threads. We then view the sub-
threads to be ordered across the threads, effectively creating a
total order. Figure 3(e) shows one example of how threads may be

divided into sub-threads, with a round-robin order, A-B-C-D-E-F.
Note that this order is one legal schedule of a parallel program’s
execution. This prevents the serialization of the execution and the
impact on the restart penalty.

The sub-threads are logically created at communication points
in the threads, thus restricting the communication to sub-thread
boundaries. Checkpoints are taken at the start of sub-threads. This
yields two benefits. First, it helps to localize an exception’s impact.
For example, in Figure 3(f), an exception in sub-thread A forces
restart of B and E, whether they consumed A’s erroneous data or
not. By restructuring the boundaries, as shown in Figure 3(g), only
the newly created F need restart, localizing the impact.

Finer-grained sub-threads increase the checkpoint frequency
(reduce t), further reducing the restart penalty, P., but increase the
checkpoint penalty, P.. The second advantage of checkpointing at
the sub-thread boundary is that at that time no other sub-thread can
be communicating with it. This eliminates the need to coordinate
(tc), entirely, reducing P, to % -n - ts (average sub-thread size is t).

Although the model reduces the checkpoint and restart penal-
ties, it introduces a new penalty when applying the deterministic
order and housekeeping for selective restart. When a context en-
forces order on a sub-thread and checkpoints its state, it can delay
the sub-thread’s actual execution (to be seen in §3). If the aver-
age delay is ¢, the total penalty of the globally precise-restartable
model, Py = % -n - ty. As we show in the evaluation, the overall
benefits of the model far outweigh this penalty.

Incidentally, creating fine-grained sub-threads allows us to em-
ploy a task-style scheduler to balance the load in the system, yield-
ing orthogonal performance benefits.

A key aspect of the model is to identify the data communica-
tion points in the program. The model’s present implementation
assumes that programs use standard APIs and are data race-free,
or contain user annotated data race-prone regions. We discuss this
aspect further in §3.

3. Perform Application-level Checkpointing. Finally, we reduce
the recording overhead, ¢, by resorting to application-level check-
pointing, which can dramatically reduce the checkpoint sizes [10].
Instead of taking a brute-force checkpoint of the system’s entire
state [27] or the entire program [15, 39], only the state needed
for the program’s progress is recorded. Often, instead of saving
data, data can be easily re-computed, especially if the compu-
tation is idempotent [38]. Several compiler proposals automate
application-level checkpointing [11, 30]. Alternatively, the user’s
intimate knowledge of the program can be exploited for this pur-
pose by requiring the user to annotate the program. Our current
implementation takes the latter approach.

While the above principles enable a responsive and efficient
recovery model for discretionary exceptions, it presents several

Program threads Computation status

Checkpointed state Sub-thread ID
Sub-thread AN e

Generator : =
Sub-threads "~ |:>

Reorder List + History Buffer

Restart

Sub-thread Pool Engine

— —> | (REX)

Write-Ahead Log

Order Enforcer

Deterministic Execution |:> Sub-thread Scheduler
Engine (DEX)
[

System Exceptions

Figure 4. GPRS System Architecture.

design challenges. We next describe these challenges and how one
embodiment of the model, GPRS, addresses them while automating
the recovery mechanisms.

3. GPRS Design and Implementation

The globally precise-restartable recovery system, GPRS, is imple-
mented as a C/C++ run-time library. The library currently works
with the Pthreads APIs and gcc/g++ interfaces for atomic op-
erations, although it can be easily extended to other APIs. We
present an overview of the GPRS architecture, followed by its de-
sign details. GPRS is an extensive system and presents many design
choices. We visit some key choices in the description.

3.1 Architecture Overview

Figure 4 shows the block diagram of GPRS. GPRS interposes be-
tween a parallel program and the underlying system. It manages
the program’s execution, the program’s state, and shepherds the ex-
ecution to completion when exceptions, discretionary or otherwise,
arise during the program or from the system itself.

GPRS comprises two main components: the Deterministic Exe-
cution Engine (DEX), and the Restart Engine (REX). The DEX is
analogous to the out-of-order execution engine in superscalar pro-
cessors. It intercepts the program at run time and creates the sub-
threads, unbeknownst to the programmer. It orders the sub-threads,
records their state and schedules their execution. Trivially ordering
the sub-threads can severely impact the program’s performance, as
we show below. DEX uses a novel scheme that respects the pro-
gram’s parallelism pattern to minimize this impact.

Discretionary exceptions can not only affect the user code and
functions invoked from it, but also GPRS’s own mechanisms. For
example, a fault due to voltage emergency can corrupt GPRS op-
erations, which can ultimately corrupt the user program. GPRS is
uniquely capable of handling exceptions in its own operations. For
this purpose GPRS records its operations in a log, instead of check-
pointing its state. It leverages the sub-thread ordering to optimize
this process, another novel aspect of GPRS.

The REX tracks the completion of sub-threads and responds
when exceptions arise. REX is analogous to the misprediction and
precise exception handling logic in microprocessors. It reconstructs
the program’s error-free state and that of the GPRS, using the
recorded state and the operation log. It then instructs the DEX to
resume the execution from this reconstructed “safe” point.

The DEX communicates with the REX through a reorder list
and a history buffer, which holds the recorded state and sub-thread

STO g

STO g

STO
Create thread T Create thread I l
I T STl
ST1 § § SIZ sT1 g g SIZ l
% Lock Lock T % Lock Lock T sT2
ST3 ST4 ST3 ST4 ST3
1 Unlock UnIockT Unlock Unlock l
sTS sT6 SI“
Join thread { Join thread ST5
ST7 ST5
(@) (b) (c)

Figure 5. (a) Creating and ordering sub-threads. (b) Optimized
sub-threads. (c) Sub-thread order.

information. GPRS also uses a load-balancing scheduler, popular-
ized by others [19], to farm the sub-threads for execution.

3.2 Deterministic Execution Engine (DEX)

The DEX intercepts all dynamic instances of Pthreads API calls
and gcc/g++ atomic operations invoked from the user program. It
replaces each call type with its own logic, much like other deter-
ministic execution proposals [28, 35], to create and manage the or-
dered sub-threads. Currently GPRS does not support non-standard,
home-spun atomic operations, which are otherwise discouraged
practices. Nonetheless, GPRS provides a conservative alternative
to handle them, as described later.

Creating Sub-threads. As the program executes, a sub-thread
generator creates a pool of sub-threads (Figure 4). The start of
the program initiates the first sub-thread. Subsequent calls to cre-
ate threads, terminate threads, atomic operations, and invoke criti-
cal sections cause the sub-thread generator to logically divide the
threads into sub-threads. In general, each such call signifies the end
of the preceding sub-thread and the start of new sub-thread(s). For
example, as Figure 5(a) shows, when pthread_create is invoked,
the sub-thread generator terminates the parent sub-thread STO, cre-
ates a sub-thread ST1 from the parent thread, and creates another
sub-thread ST1 from the newly forked thread. When ST1 invokes
a critical section, e.g., by using pthread mutex_lock, the sub-
thread generator terminates ST1 and creates a new sub-thread, ST3,
starting from the call. Appropriate actions are similarly performed
for the other API calls. Note that a sub-thread is not the same as
an OS thread, although both maintain similar data structures, e.g.,
stacks.

Our experiments showed that the critical sections in programs
are typically very small. Hence the benefit of creating sub-threads
at both Pthreads 1ock and unlock points, e.g., ST3 and ST5 in Fig-
ure 5(a), did not offset the ordering overhead. Hence we optimized
the design to not create a new sub-thread at the unlock points. The
critical section and the succeeding code are assigned to the same
sub-thread, e.g., ST3 and STS in Figure 5(a) are assigned to ST3
in Figure 5(b). We also logically flattened nested critical sections
into the outermost critical section. The sub-thread generator tracks
the lock and unlock calls. When a lock is encountered before an
unlock matching the preceding lock, it is subsumed in the enclos-
ing critical section; no new sub-thread is created.

Other logical sub-thread divisions are also possible, for e.g.,
based on the dynamic instruction count [6, 35]. We found our
scheme to be simpler and adequate.

Ordering Sub-threads. Once created, an order enforcer (Figure 4)
assigns a deterministic order to the sub-threads and submits them

Read (THO) Compress (TH1) Compress (TH2)

S s S

Read block Wait for FIFO lock Wait for FIFO lock

Wait for FIFO lock Dequeue block Dequeue block
Enqueue block Unlock Unlock

Unlock Compress Compress

S S S

Figure 6. Logical view of Pbzip2’s read and compress threads.

for execution in that order. To order the sub-threads, a simple
scheme would be the round-robin order, based on the order of each
sub-thread’s parent thread in the program text, e.g., as shown in Fig-
ure 5(c) for the sub-threads in Figure 5(b). If a sub-thread arrives at
a synchronization point before the logically preceding sub-threads
arrive at their synchronization points, the sub-thread will pause un-
til it is its turn to proceed. DTHREADS uses a similar scheme by
passing a global token across the threads at the synchronization
points [28]. Such an order, however, can severely impact the pro-
gram’s performance.

Often programmers carefully orchestrate a parallel program’s
execution to maximize performance. A common technique is to dis-
tribute work evenly among the threads. More complex techniques
keep threads busy by ensuring that the threads obtain data with min-
imum delay. A simple round-robin schedule can neutralize such
techniques.

For example, consider the popular high performance imple-
mentation of Pbzip2 [20]. It reads data blocks from an input file,
one at a time, compresses them concurrently, and writes the re-
sults to an output file, creating a logical pipeline between the three
types of operations. It launches one read thread, multiple compress
threads, and one write thread for balanced work distribution. The
read thread communicates data to the compress threads through a
lock-protected FIFO. The compress threads communicate similarly
with the write thread via another FIFO. Figure 6 shows the read
(THO) and compress (TH1, TH2) sub-threads that execute itera-
tively (the write thread in not shown). They access the FIFO in a
critical section implemented using conditional wait-signaling.

Figure 7(a) shows Pbzip2’s execution, in time epochs, using the
round-robin order, THO-TH1-TH2. Recall that the order is being
enforced at the FIFO access critical section. In epoch t0, THO reads
a block from the file, and since it is its turn, it enqueues the block
in the FIFO, and passes the global token to THI1. Next, in epoch
tl, THI1 accesses the FIFO, dequeues the block, passes the token
to TH2, and begins work on the block in t2. Meanwhile, in t1 THO
reads the next file block, which it can enqueue in the FIFO only
when its turn arrives next. In epoch t2, TH2 accesses the FIFO, but
finds it empty, and passes the token back to THO. THO now puts
the block in the FIFO in t3, and passes the token to TH1. THI1,
however will access the FIFO only when it completes its current
work, in t5, at which point it will dequeue the block, and pass the
token to TH2. Meanwhile, TH2, waits for its turn at the FIFO, and
when it gets the turn, in t6, it will once again find the FIFO empty.
This process repeats, in which THO reads a block that only TH1 can
access, starving all other compress threads, essentially serializing
the execution. A similar construct exists between the compress
threads and the write thread, leading to a similar bottleneck. Thus
the round-robin order will be grossly inefficient. Kendo [35] and
CoreDet [6] use a slightly different scheme, but also attempt to give
all threads equal opportunity, resulting in unused cycles.

The above scenario arises because the round-robin scheme de-
feats the program’s original execution plan by introducing an ar-
tificial order. It dissolves the parallel pipeline structure, and by
regimenting the communication, creates an imbalance in the work

division among the threads. To overcome the artificial order lim-
itations we use a balance aware ordering schedule, analogous to
dataflow execution used in out-of-order processors to overcome the
sequential order limitations. A formal approach to automatically
find the best balance-aware schedule is a subject of our ongoing
research. We present two schemes, basic and weighted, currently
implemented in the DEX.

The DEX divides the program’s threads into thread groups,
where each group represents a computation type. For example, in
the above case, the read thread is assigned to one group, the com-
press threads to another, and the write thread to yet another. The
DEX assigns order to the threads hierarchically. First, a round-robin
schedule is used for threads within a group, since all threads per-
form the same type of computation. Next, across the groups, an
order reflecting the programmer-enforced balance and communi-
cation structure, is assigned. In the basic scheme, the DEX assigns
a uniform round-robin order to the groups.

Figure 7(b) shows Pbzip2’s execution using the basic balance-
aware order (ignore the write thread). In epoch t0, group 0, and
within group 0, THO receives the token. It enqueues the block in
the FIFO, and passes the token to group 1 in t1. Within group 1,
THI1 receives the token, upon which it dequeues the block, passes
the token back to group 0 and not TH2, and begins its own work.
At t2, THO in group O, being the only context in the group, receives
the token, enqueues another block in the FIFO, and passes the
token to group 1. In t3, this time, TH2 and not TH1 receives the
token, upon which it dequeues the block from FIFO and receives
the work to perform. This process then repeats, permitting all stages
of the program’s original pipeline structure to proceed concurrently,
analogous to dataflow execution, overcoming the artificial ordering.

In the more advanced, weighted scheme, threads within a group
receive the round-robin order, but across the groups, critical groups
are given more “weight”. Threads in groups with higher weight
receive more turns at the execution. For example, the early stages of
a pipeline can be weighted higher so that they can produce enough
data to keep the downstream stages busy. In the case of Pbzip2
(not shown), THO may receive the token multiple times before it is
passed to TH1 and TH2, to achieve an effect similar to Figure 7(b).

Thus, the balance-aware schemes provide mechanisms to re-
store the program’s original workload balance and dataflow.

Although compiler techniques may be used to identify the par-
allelism patterns [21], GPRS currently takes the input from the pro-
grammer. The pthread_create API was extended to pass a group
ID to which the new thread is assigned. This input is enough for the
basic scheme. To employ the weighted scheme, the group’s weight
can also be specified through the API.

Managing the Program State. Once the DEX assigns an order to
a sub-thread, it inserts an entry for the sub-thread into the reorder
list (ROL), signifying its order among the currently in-flight sub-
threads (Figure 4). The ROL is analogous to a reorder buffer (ROB)
in superscalar processors. Before a sub-thread is finally submitted
for execution, the DEX records the state necessary to restart the
sub-thread. It checkpoints the sub-thread’s call stack, the processor
registers, and any data the sub-thread may modity, i.e., its mod set.
This state is maintained in a history buffer (Figure 4). GPRS also
logs the dynamic identity of any lock(s) the sub-thread may have
acquired or the atomic variable it may have accessed, as an alias for
the shared data the sub-thread accesses. This information is used
during recovery (§3.4).

Several approaches may be taken to identify a sub-thread’s
mod set. Compiler techniques [10], or copy-on-write scheme may
be used. GPRS presently requires the programmer to provide the
checkpointing functions through the Pthreads APIs.

Third Party, I/O, and OS Functions. User programs often com-
prise third party, I/O and system functions. These functions pose

THO FIFO Read wait for FIFO | | Read FIFO Read FIFO Read FIFO Read FIFO
Access block FIFO / Access \b{ock Access \ block Access block [Access block Access
{
wait for FIFO [,| FIFO wait for FIFO FIFO
TH1 FIFO Access }L:ompress Access \ Compress \ FIFO Access Compress Access Compres:
. FIFO X FIFO . \ FIFO Fl
TH2 wait for FIFO Access wait for FIFO Access wait for FIFO Access Compress
t0 t1 t2 t3 t4 t5 e time t0 t1 t2 t3 t4 t5 t6 time
(a) (b)

Figure 7. Pbzip2 execution. (a) Round-robin order serializes the execution. (b) Balance-aware order restores the parallelism.

unique challenges to recovery and restart since GPRS must have
access to their mod sets and the ability to re-execute them, which
may not always be the case.

Since GPRS uses application-level checkpointing, if the user
provides the checkpointing functions for the third party and system
functions, they can be handled just like user functions. If a func-
tion’s mod set is unknown and the user identifies the function to
GPRS, GPRS can strictly serialize its execution by ensuring that
all preceding sub-threads complete execution before it, and no sub-
sequent sub-threads execute concurrently, relying on local recovery
if an exception occurs.

To widen its utility, GPRS implements its own version of the
more commonly used system functions, the memory allocator and
the file I/O calls. It automatically handles exceptions (described
below) in these functions, with no further input from the user.

Restarting I/O operations can pose a challenge if they need
to be re-performed. A certain class of I/O operations, e.g., file
read and writes, can be made idempotent [41], which GPRS does.
Such operations can be simply re-executed. For non-idempotent
operations, e.g., network I/O, GPRS resorts to sequential execution,
similar to handling functions with unknown mod sets.

The output-commit problem, which requires that only non-
erroneous data be committed to the (non-idempotent) output, is
overcome by waiting for the exception-detection latency before
committing the data to output [42].

Managing the Runtime State. The GPRS runtime employs data
structures and sophisticated concurrency algorithms in its own op-
erations. These data structures include work queues, lock queues,
memory allocator lists, the ROL, and other book-keeping struc-
tures. The concurrent algorithms operate at very fine granularities.
Applying conventional CPR to the runtime will lead to the same
problem that it is attempting to solve. Instead we take advantage of
the created order, and a write-ahead-logging (WAL) technique, in-
spired by the Aries recovery mechanism of DBMS [33], to recover
the internal state of GPRS (§3.4).

We note that each runtime operation is performed on behalf of
a sub-thread. Hence we assign the operation the associated sub-
thread’s order. Before operating on a runtime structure, each GPRS
context independently logs the operation along with its unique ID,
to the WAL, which is maintained on error-free stable storage.

3.3 Load-balancing Scheduler

The DEX submits the sub-threads for execution to a load balancing
sub-thread scheduler (Figure 4). When a program begins execution
the scheduler creates a pool of OS threads, one per hardware con-
text. These threads actively seek work, minimizing the idle time.
Sub-threads form a unit of work for these threads, and due to their
granularity lend themselves well to the load-balancing function.

3.4 Restart Engine (REX)

The REX plays two roles in GPRS. It tracks the sub-threads’
execution and recovers from exceptions.

Retiring Sub-threads. GPRS maintains all the information needed
to rollback and restart a sub-thread only as long as it is needed,
after which it retires the sub-thread. A sub-thread can retire when,
(1) its execution completes without raising any exceptions, and (ii)
it is the oldest in-flight sub-thread, i.e., an exception in another
sub-thread cannot cause its rollback. When a sub-thread completes
without exception, the REX records its status in its corresponding
ROL entry. The REX continually monitors the ROL head, which
holds the entry of the oldest sub-thread not yet retired. When the
ROL-head entry completes exception-free, the corresponding sub-
thread is retired by removing the entry from the ROL and deleting
the sub-thread’s checkpointed state.

Precise Recovery from Exceptions.

REX provides several exception recovery options depending on
the use case and system capabilities. REX can recover precisely
from the sub-thread boundary, or if the exception-detection latency
permits, precisely from the instruction boundary. It can also per-
form hybrid recovery, combining selective restart and CPR, for pro-
grams not written suitably for the model. The REX recovery code
typically executes on the excepted processor, like an interrupt ser-
vice routine. We describe the basic recovery mechanism and build
on it to describe selective restart and hybrid recovery.

Basic Recovery. In the basic recovery, REX first constructs the
precise architectural state. When a sub-thread excepts, the REX
halts its execution, records its status in its ROL entry and waits
for it to reach the ROL head. During its ROL monitoring, when the
REX detects an excepted entry at the head, it temporarily pauses
the program by halting all executing sub-threads. It restores the
architectural state modified by the younger sub-threads, using their
checkpointed state, in the reverse ROL order, effectively squashing
their execution. This constructs the program’s precise architectural
state up to the excepted sub-thread.

The REX then restores the GPRS data structures using the WAL
logs. In general, to restore the runtime’s precise state, GPRS walks
the logs in the reverse order and undoes the operations performed
for the squashed sub-threads. This restores the data structures to
reflect the operations performed up to the excepting sub-thread.
The logs are pruned as the sub-threads retire to keep their sizes
bounded.

If the system can raise instruction-precise exceptions, REX re-
lies on precise-interruptible microprocessors to create the precise
architectural state. Since a sub-thread executes as a unit on a pro-
cessor, the processor executing the excepted sub-thread contains
the precise state up to the excepted instruction. With the state
of other sub-threads unrolled as above, the system now reflects
instruction-precise execution of the program, and may be restarted
from here.

If the detection latency makes the exception imprecise, REX
can perform sub-thread-precise restart, by squashing the excepting
sub-thread in addition to the above rollback.

If the precise excepting sub-thread cannot be identified for any
reason, it is always safe to discard all sub-threads in the ROL, undo
their modifications, and restart the execution from the ROL head.

Selective Restart. To achieve selective restart, the basic recovery
scheme is modified slightly. When a sub-thread excepts, the REX
pauses the program’s execution without waiting for the sub-thread
to reach the ROL head. It walks the ROL to identify younger
“dependent” sub-threads, ones that acquired the same lock(s) or
used the same atomic variable as the excepting sub-thread. It then
restores the architectural state modified by only the affected sub-
threads, and restores any affected internal data structures. Once
the state is restored, all unaffected sub-threads resume while the
affected sub-threads restart. Thus selective restart is achieved.

Hybrid Recovery. If a program contains data races or uses non-
standard APIs in some sections, GPRS can employ a hybrid re-
covery scheme. GPRS can apply CPR in such a section and se-
lective restart in other parts of the program. To apply CPR, GPRS
relies on the user to enclose the section between GPRS provided
start_cpr and end_cpr calls, and provide a checkpointing func-
tion for the section through start_cpr. During the execution,
when a start_cpr is invoked, the ensuing execution is treated as a
sub-thread and any further sub-threading is stopped. A subsequent
end_cpr call signals the end of such a section, and sub-thread cre-
ation resumes. Exception recovery remains the same as before.

3.5 Other Design Issues

Data Races. Since GPRS relies on standard APISs, it requires pro-
grams to be data race-free. Data races are problematic, in general.
Hence emerging programming language standards, e.g., C++ and
Java, are advocating date race-free programs. In fact, we consider
data races to be exceptions. Many tools can detect data races. GPRS
can be combined with an exception-raising race detector [44] to
avoid data races altogether in a program execution. The GPRS
scheduling policy can be changed to execute the detected race-
prone sub-threads sequentially. We are currently exploring hard-
ware/software techniques to automatically handle data races in
GPRS.

Other Limitations. Presently, GPRS cannot support transient ex-
ternal events, e.g., interrupts and signals, during restart, although
they can be handled by using methods others have identified [42].

Other Applications. Although here we have considered recovery
from non-fatal exceptions, GPRS can be easily extended to also
handle fatal exceptions such as permanent hardware faults.

4. Experimental Evaluation

To evaluate our approach we tested GPRS using standard paral-
lel benchmark programs running on a stock multiprocessor system.
We “raised” exceptions during program runs and applied GPRS to
handle them. We assessed the overheads introduced by the GPRS
mechanisms, its checkpointing and restart penalties, its effective-
ness in handling exceptions, and its scalability, as compared with
the conventional CPR method.

To exercise the different aspects of GPRS we chose a mix
of programs that exhibit different characteristics: computation
sizes, use of synchronization primitives, and critical section sizes
(columns 2-4, in Table 2). Critical sections in the standard par-
allel benchmarks are typically small. Hence we included RE [4],
a network packet processing program, which uses relatively larger
critical sections. Pthreads versions of the programs were used. They

were compiled using gcc 4.6.1, with the -03 and march=corei7-avx

options. Experiments were conducted on a 2-way hyperthreaded, 6-
core, two-socket (total of 24 contexts) Intel Xeon E5-2420 (Sandy
Bridge; 32KB each, L1 I and D, 256KB private L2 caches per core;

Programs Comp.| Sync. Crit. Exec. Sub- # Sub-
size op. size time thread | threads
freq. (s) size
@ 2) 3 @ [©) 6 ()

Barnes-Hut Large | Low N/A 41.70 | Med. 75076
Blackscholes Large | Low N/A 112.89 | Med. 100002
Canneal Small | Med. Small 6.93 Small 6272
Swaptions Large | Low N/A 57.27 | Large 130
Histogram Small | Low N/A 0.22 | Small 26
Pbzip2 Med. High Small 17.89 | Med. 42269
Dedup Small | High Small 73.71 Small 1377855
RE Med. Med. Med. 7.70 | Med. 102
‘WordCount Small | Low N/A 1.44 | Small 54
Reverselndex || Small | Med. Small 3.37 Small 78430

Table 2. Programs and their relative characteristics. (1) Bench-
mark; (2) Default computation size; (3) Frequency of synchroniza-
tion operations; (4) Critical section size; (5) Pthreads execution
time for large inputs on 24 contexts; (6) Sub-thread size in GPRS;
(7) Total fine-grained sub-threads created by GPRS.

15MB shared L3 cache) machine. It ran the Linux 2.6.32 kernel.
We report execution times and overheads based on the wall-clock
time obtained from linux for the entire programs. Large inputs were
used for all programs. Results shown include any file and other I/O
the programs perform, and are averages over ten runs. Column 5 in
Table 2 gives the baseline, 24-thread Pthreads execution time.

System Assumptions. We assumed that mechanism(s) exist in the
system to raise exceptions. In an approximate computing frame-
work, this could simply be a call from the user code to GPRS.
In a fault tolerance system, the system may detect hardware faults
using one of many prevailing techniques [31, 42] and report the
excepted context to GPRS. Irrespective of the use case, we emu-
lated this by launching an additional thread in the programs. The
thread uses Pthreads signals to periodically signal GPRS and ran-
domly designate one hardware context as excepted. We conserva-
tively assumed an exception detection latency of 400,000 cycles (as
have others [43]) to amplify the GPRS overheads. We also assumed
stable storage is available to maintain the runtime logs. Recovery
from a corrupt stable-storage, exceptions that cannot be attributed
to a context, and system-level policies, e.g., handling permanent,
repeating or non-recoverable failures are beyond this work’s scope.
We stress-tested GPRS under various exception rates, without em-
phasizing the probability distribution of the exceptions.

Program Sub-threads. All the programs we used take the number
of system contexts as an input and fork as many threads. By de-
fault, Barnes-Hut, Blackscholes, Swaptions, Histogram, and Word
Count divide work equally among data-parallel threads. For these
programs GPRS treated each forked thread as a sub-thread. Pbzip2,
Dedup, RE, and Canneal use critical sections in their threads. GPRS
created sub-threads at their synchronization points (fork, join, lock,
unlock, barrier, and signal-waiting operations). Reverse Index uses
both, threads with critical sections and data-parallel threads; GPRS
created the sub-threads accordingly.

GPRS Overheads.

Result 1. Balance-aware GPRS imposes modest basic overheads,
15.49% on average (harmonic), but up to 44.03% in case of Pbzip2
due to its large number of synchronization operations and tasks of
uneven sizes.

Figure 8(a) highlights the basic GPRS overheads (P, = %-wtg,
t = checkpointing interval, n = number of contexts, t; = order-
ing+ROL management costs). It shows execution time of programs
relative to the Pthreads baseline (marked by the horizontal line).
The programs in this graph use default computation sizes, result-
ing in coarse-grain sub-threads, which we use to study the basic
overheads before using the actual fine-grain sub-threads. The graph

18 11.14
£ 16
E
'g 14 5
£, '-h (G-B-OR
2 n b u J o HG-R-OR
a 1
o HG-B-
£os G-B-ROL
—_ & p-/-i
305 P-/-CH
B G-B-
04 G-B-CH

KA o L 0° O o) Q \ TR\ S+ o
R 00 @ &\02\09,@ Qoi® ed® Q;é(,o" 2o
\: (¢)

5 L S 2 0
%,6(0@3(\‘(5 & ‘_)Q\’b & e\‘e(s

(a) GPRS overheads using default computation sizes.

18 11.14
£ 16
c14
B OG-B-OR
2 { ﬂlﬂ il Jﬂ
g . e o | . o B G-R-OR
o B G-B-
2os G-B-ROL
o @ p-/-
506 P-/-CH
BG-B-
0.4 G-B-CH
S

\Y o o & \3 2R\
e o (2 ek a0 & et W
&% oot ed Y e‘se\a

AN LR
oS (/’A“ 39{\ . X0’) <
BN WO I

(b) GPRS overheads using finer grained computations.

Figure 8. GPRS overheads. Legend: System-Ordering-Overhead: System (G = GPRS, P = Pthreads); Ordering (B = balance-aware, R =
round-robin, / = none); Overhead (OR = ordering, ROL = OR+ROL management, CH = OR+ROL+checkpointing). HM = Harmonic mean.

shows the cumulative overheads from the successive GPRS mech-
anisms: ordering (round-robin and balance-aware) and ROL man-
agement, and from the checkpoint penalty.

The overheads of enforcing order between a program’s threads
depend on the ordering policy, its frequency, and the time spent
waiting for turns. In general, the round-robin ordering overhead (G-
R-OR bars) is negligible for all programs except Pbzip2, Dedup,
RE, and Reverse Index. The other six programs simply fork and
join threads. The threads already have to wait at join points, making
it convenient to create and order the sub-threads at the same time, at
a small additional cost, if any. However, when the order is applied
at the synchronization points in addition to the fork and join points,
the load imbalance between the sub-threads penalizes performance,
e.g., 10.9% in the case of RE and 12.1% for Reverse Index.

The round-robin order severely degrades Pbzip2’s performance.
As discussed in §3.2, it serializes the execution, resulting in an over-
head of 1014.4%. When the basic balance-aware schedule was ap-
plied to Pbzip2, by passing the thread-group information to GPRS,
the overhead dropped to 34.14% (G-B-OR bars). Pbzip2 comprises
a large number of uneven-sized sub-threads and hence its relatively
higher overheads. Applying the advanced schedule, by weighting
the read, compress, and write thread-groups in the ratio 4:4:1, fur-
ther reduced the overhead to 11.22% (not shown). This ratio was
found by trial and error.

Dedup, another data compression program, is similar to Pbzip2
in its pipeline structure, but exhibits different characteristics. It uses
five pipeline stages. The first reads a large block of data from
a file. From this single block, the second stage creates smaller
chunks that the following two stages operate on in parallel. Dedup’s
execution is dominated by the fifth sequential stage (file output),
which remains the only running thread for the majority of the
duration. Hence Dedup scales poorly. Further, GPRS creates 1.38M
Dedup sub-threads, resulting in a 32.16% overhead (G-R-OR).
Despite the large number of sub-threads the overheads are not
higher because the very fine-grained sub-threads do not create an
ordering imbalance, unlike in Pbzip2. The basic balance-aware
schedule only marginally reduced the overhead to 29.7% (G-B-
OR). Other schedules did not fare better. Since one sub-thread from
the first stage can create work for multiple downstream threads, and
the individuals sub-threads are too small, the round-robin schedule
did not create an imbalance in the first place.

On average (harmonic), the round-robin schedule introduces
14.01% overhead (HM G-R-OR) and the basic balance-aware
schedule reduces it to 5.92% (HM G-B-OR). Since a more for-
mal approach to determine balance-aware schedules was out of this
work’s scope the remaining experiments assume the basic scheme.

Tracking the sub-threads in the ROL is another source of over-
heads, which is proportional to the total number of sub-threads

created. On an average (harmonic), ROL management increases
GPRS mechanism overheads to Py = 15.49% (G-B-ROL). Dedup,
Barnes-Hut, Blackscholes, Reverse Index, and Pbzip2 create a large
number of sub-threads (column 7, Table 2) and hence incur higher
overheads (maximum of 44.03% for Pbzip2). Pthreads programs,
of course, incur no ordering or ROL overheads (not shown).

Result 2. The checkpointing penalty of conventional CPR (P-CPR)
is higher than GPRS due to the use of global barriers.

The checkpointing penalty is proportional to the amount and
frequency of the checkpointed data. To reduce the data size, we
used application-level checkpointing. It was applied to both P-
CPR and GPRS. We added the necessary checkpointing function
at synchronization points. These functions were easily coded in
most cases, by replicating the existing computation loops to make
deep copies of the data. Blackscholes, Dedup, Histogram, and Re-
verse Index checkpoint relatively large amounts of data, followed
by Barnes-Hut and Canneal. Most sub-threads in Pbzip2 and RE
are idempotent, a property we exploited to minimize their check-
pointed data. Reverse Index, Dedup and Pbzip2 allocate and deal-
locate memory in their sub-threads, which add to the GPRS logging
overheads. The GPRS also logs the necessary state and information
for file I/O operations (almost all programs read from files and three
also write to files).

In Barnes-Hut, Blackscholes, Swaptions, Histogram and Word
Count, the fork and join points provide convenient spots to check-
point data for both P-CPR and GPRS. GPRS created sub-threads
and checkpointed data in Reverse Index, Canneal and RE at the
synchronization points. We emulated P-CPR in Reverse Index,
Canneal and RE using barriers. For these eight programs both
GPRS and P-CPR used the same checkpointing frequency. The last
two bars (P-/-CH and G-B-CH) in Figure 8(a) show the cumulative
overhead, including the checkpointing penalty. On average (har-
monic), these eight programs incur an overhead of 17.35% in P-
CPR and 9.37% in GPRS (not shown).

Dedup and Pbzip2 use a large of number synchronization oper-
ations. Emulating P-CPR in these cases, using barriers as often as
GPRS checkpoints (at the start of each sub-thread), overwhelmed
their execution. Hence, we applied the barrier at the rate of 1/s for
Pbzip2 and 5/s for dedup (but did not alter the frequency in GPRS).
In Pbzip2, due to uneven work sizes, barriers prove more expen-
sive than GPRS (58.23% versus 50.49%), despite the large dispar-
ity between the checkpoint frequencies. In contrast, Dedup’s small
work sizes and a single long thread kept the CPR overheads rela-
tively lower, 26.31%, as compared with 49.37% for GPRS. Dedup
presents an example where GPRS overheads can be higher, due to
a large number of small sub-threads.

Overall, on average P-CPR’s checkpointing penalty was 21.35%
(HM P-/-CH) as compared with the cumulative 15.63% of GPRS

=
)

DNC

m
=
)}

Ti

o=
[FEE AN

Op-fine

| 1

o \e©
5" X0
‘?ﬁ‘(\e g\?’dﬁc <

Relative Execution

o o 9o
A O ®

> a
0 W
C)

w3-9 c oNc oNc oNc oNc oNc oNc oNc oNc oNc oiNc

£

=34 /s o005

§29 1Lp/s

K=

324 02/ S/snpys @ P-CPR-L

219 s Ysla/s L 2/sldss

w19 175|857 B GPRS-L

g /s 1o/s 1/s

£14 iy ifs OP-CPR-H

209 } } H H B GPRS-H
0.4

A @ o o ob AR & aeb ot
< N O W o W
0 a0 S 0B O o O&C‘: (o

VT 0 2
S
07 & °
%a(%\'a(} [SUSANESA: ?\ee

Figure 9. Pthreads and GPRS performance using finer-grained
computations. DNC = did not complete.

(HM G-B-CH), even though GPRS checkpointed more often for
Dedup and Pbzip2. Interestingly, P-CPR’s penalty (P. = 1 - n -
(te + ts), tc = thread coordination cost, ts = state recording
cost) was worse than GPRS despite the ordering and ROL over-
heads of GPRS. This is because P-CPR uses a full barrier before
checkpointing, whereas GPRS can checkpoint when the sub-thread
is created. Barriers can severely impact performance, especially for
larger number of threads and uneven work sizes. In GPRS, order-
ing causes a sub-thread to wait for the preceding sub-thread(s), but
not for all sub-threads. Hence, the benefits of ordering, which elim-
inates the checkpointing coordination, outweigh the overheads in-
curred to implement it, i.e., 4 < te.

Lastly, application level-checkpointing minimizes the state to
be saved, i.e., minimizes ts.

Result 3. Due to sub-threads the overall GPRS overheads are much
lower than the conventional CPR.

Next we exploit the finer-grained sub-threads in GPRS. The
sub-threads in Pbzip2, Dedup, RE, and Reverse Index sub-threads,
created at the synchronization points, are already fine-grained.
For programs that do not communicate often, we created finer-
grained computations by simply launching more threads using the
command line argument. Histogram and Word Count already use
very small-sized threads. Hence we launched more threads only
in Barnes-Hut, Blackscholes, Swaptions, and Canneal. Column 7
in Table 2 shows the total number of sub-threads created in all
the programs. Naively creating more threads in Pthreads programs
can degrade their performance due to resource contention. Of the
four programs, we see this in the case of Barnes-Hut and Blacksc-
holes (Figure 9). While Barnes-Hut degrades by 20%, Blackscholes
did not complete (DNC in the figure) in a reasonable amount of
time. The load-balancing scheduler (not the same as the round-
robin or balance-aware schedule) in GPRS, however, takes advan-
tage of the finer-grained sub-threads and yields better performance.
On an average (harmonic) this improves the GPRS execution time
by 26.64% (Figure 9) over the baseline Pthreads .

Figure 8(b) shows the execution time using the fine-grained
GPRS sub-threads, relative to the Pthreads baseline (column 5, Ta-
ble 2). We do not compare with fine-grained Pthreads since fine-
grained Pthreads is never better than the baseline (Figure 9). Data
for Histogram, Dedup, Pbzip2, RE, Word Count, and Reverse In-
dex are the same as the coarse-grain data. Despite creating a large
number of sub-threads and hence potentially increasing the man-
agement overheads, the overhead trends seen in the coarser-grained
experiments still held. Further, the GPRS load-balancing scheduler
exploited the finer-grained sub-threads to widen the overall check-
pointing overhead gap between P-CPR and GPRS to 21.13% (P-
/-CH and G-B-CH HM bars) for the implemented checkpoint fre-
quencies. Note that the GPRS execution time is now the same as
baseline Pthreads, despite the overheads.

Figure 10. Recovery at different exception rates using conven-
tional CPR and GPRS. DNC = did not complete.

Handling exceptions using conventional CPR and GPRS.

Result 4. GPRS substantially outperforms the conventional CPR
(P-CPR) and proves just as effective even when P-CPR fails.

We now examine the recovery capabilities of GPRS and com-
pare them with P-CPR.

Canneal uses non-standard APIs to synchronize in its main
computations. Hence GPRS cannot be applied without altering
the program. However, to emulate P-CPR we had added Pthreads
barriers and the checkpointing functions. We used GPRS to apply
hybrid recovery to Canneal, performing selective restart in the
checkpointing region of the code and applying P-CPR to the main
computations. In all other programs GPRS applied selective restart.

Figure 10 shows the execution time relative to the baseline
Pthreads (column 5, Table 2), at two different, low and high, excep-
tion rates. The exception rates are listed above each pair of P-CPR
and GPRS bars. Whether a program completes is influenced by the
sub-thread sizes and the exception rate, as expected. Large sub-
threads can tolerate relatively smaller rate of exceptions. For exam-
ple, sub-threads in Swaptions are large (even when fine-grained).
If the exceptions prevent the sub-threads from completing, the pro-
gram fails to complete. Hence we picked the rates of 0.02/s (low)
and 0.033/s (high) to study Swaptions. In contrast, sub-threads in
Dedup, Histogram, Canneal, and Reverse Index are smaller, and
hence can tolerate higher rates of exceptions. We picked exceptions
rates of 5/s (low) and 10/s (high) to study them. We used exception
rates of 1/s and 5/s for Barnes-Hut and Blackscholes, 1/s and 2/s for
Pbzip2, 2/s and 4/s for RE, and 1/s and 3/s for Word Count. Swap-
tions’ GPRS execution time was lower than the Pthreads baseline
despite exceptions due to the fine-grain sub-threads (Figure 9).

For low enough exception rates, P-CPR completes the execu-
tion (P-CPR-L), and so does GPRS (GPRS-L). However, GPRS is
55.44% more efficient, on an average (harmonic), in handling ex-
ceptions at the individual chosen rates. Next we increased the ex-
ception rate, by a factor ranging from 1.65 % to 5x (listed above the
GPRS-H bars). In all the cases, P-CPR failed to complete, whereas
GPRS completed since it reduces the restart penalty by discard-
ing only affected work. Moreover, GPRS incurred an average addi-
tional cost of only 20.70%. The overall GPRS benefits accrue from
the reduced checkpoint and restart penalties.

Scalability.

Result 5. GPRS scales proportionately with the system size
whereas conventional CPR (P-CPR) does not.

As the exception rate grows, the amount of work discarded and
hence the restart penalty grows. Beyond a certain rate, for a given
computation size, the program will not complete since the same
computations keep getting discarded, as seen for high exception
rates in Figure 10. We stressed the two approaches to test this limit.

We show the results for Pbzip2, representative of a more generic
case, here. Figures 11(a) and 11(b) plot the exception rates (X axis)

P-CPR: Tolerating Exceptions (Pbzip2) GPRS: Tolerating Exceptions (Pbzip2) ¥ B2|p2l;l'|cpP;;|ng RateGPRS
A400 400 Contexts | Exceptions/s | Exceptions/s
2350 -1 g 350 -1
8300 5 2300) 24 1.32 31.25
€ 250 £ 250 20 1.28 22.72
= 200 4 200 4 16 13 17.86
£ 150 8 £ 150 8 12 1.43 17.24
] 3 100 : -
§100 12 % 50 = il 12 8 1.41 11.36

¥ w
w50 T — 16 0 16 4 1.76 5.62
OomommNmooffzo CXAILINBRE8L8T —20 2 1.41 4.03
R R ddddNm<gggg) '
. -—24 —24 1 1.17 1.92
Exception Rate (per sec)

(a)

Exception Rate (per sec)
(b)

(c)

Figure 11. Exception tolerance of conventional CPR (P-CPR) and GPRS at different exception rates, from 1 to 24 contexts. (a) P-CPR
applied to Pbzip2. (b) GPRS applied to Pbzip2. (c) Pbzip2 tipping rate.

for P-CPR and GPRS, respectively, and the execution time (Y axis)
of Pbzip2, from 1 to 24 contexts. The restart penalty, and hence the
execution time increases with the fault rate until the tipping rate,
also tabulated separately in Figure 11(c), when the program cannot
be completed. For P-CPR (Figure 11(c), 2nd column) this point
is around a single exception rate for all contexts, ~1.5/sec (1.17
to 1.76), as expected from our analysis (e < i, e = exception
rate, t, = restart delay). The tipping rate variations in P-CPR as
the context-count varies arise from the artifacts of the machine’s
microarchitecture and the experimental setup.

In contrast to P-CPR, for GPRS the tipping rate scales with
the number of contexts (Figure 11(c), 3rd column), from 1.92 to
31.25 exceptions/sec, going from 1 to 24 contexts. This scaling
arises from selective restart, as we analyzed in §2 (e < t%), thus
validating its efficacy. Also note that for n = 1, both P-CPR and
GPRS have the same tipping rate, (~1.5/sec), as also predicted
by the analysis. Similar trends hold for other programs, albeit at
different tipping rates and scalability.

In summary, the above results, based on a real machine, demon-
strate that global precise-restart helps to reduce exception handling
overheads. The results also show selective restart’s tolerance to
high exception rates where the conventional method fails.

5. Related Work

We achieve globally precise-restartable execution of parallel pro-
grams and use it to handle global discretionary exceptions, whereas
related work, in general, focuses on a subset of our work’s objec-
tives and is not precise-restartable. Table 1 summarizes the related
work. Here we discuss the work more closely related to ours.
Fault tolerance based on hardware and software checkpoint-
and-recovery (CPR) techniques is a much studied subject. CPR has
also been used to manage resources in cloud servers [46]. Most pro-
posals, if not all, take the conventional nondeterministic view of a
parallel program, unlike our ordered view. Different proposals trade
off design complexity with various overheads. Software propos-
als [10, 11, 15, 30, 39] preclude the need for special hardware. They
use periodic program-wide barriers to perform system-level [27], or
application-level, or hybrid checkpoints [30]. These schemes, how-
ever, may not be scalable, as we analyzed in section 2. They do not
explore handling exceptions in system calls or in their own opera-
tions. Our scheme is also software-based and uses application-level
checkpointing, but scales and has a wider scope of recovery.
Hardware proposals [3, 34, 37, 43] add considerable system
complexity, but can handle exceptions at lower overheads than
software system like ours. Some of them also reduce the check-
point and restart penalties [3, 37] but not to the extent of selective
restart. A hardware thread-level speculation-based proposal pro-
vides checkpoint-and-rollback mechanism to debug programs [36].
Its notion of partially ordered transactions is similar to our notion

of ordered sub-threads. However, its checkpoint size is constrained
by the cache capacity. Its application to handle global exceptions
was not explored and its suitability for the purpose is unclear.

Several deterministic execution proposals for conventional par-
allel programs have been made in recent years. Hardware pro-
posals add considerable complexity, and surprisingly high over-
heads [13, 14, 24]. Software proposals also incur similar over-
heads [6-8, 28, 35]. Grace works with fork-join type programs [8].
DTHREADS [28], CoreDet [6], and Kendo [35] work with more
generic programs, but do not take the parallelism pattern into ac-
count when creating the order. As we discussed in §3.2, certain
types of programs may incur very high overheads in these schemes.
DTHREADS can automatically handle data race-prone programs.
Our model can handle data races with help from the user or a dy-
namic data race detector. Our balance-aware ordering can handle
generic programs more efficiently. None of the deterministic pro-
posals actually explore exception handling.

6. Conclusion and Future Work

Techniques to conserve energy and enhance performance in future
systems will give rise to discretionary exceptions. These exceptions
will frequently interrupts programs. Yet, for the techniques to be
effective the exceptions will have to be tolerated, efficiently and
automatically. Global discretionary exceptions, in particular, pose
challenges in parallel systems.

To handle global exceptions we proposed globally precise-
restartable execution of parallel programs, analogous to the pre-
cise interruptible execution of sequential programs. We presented
a software runtime prototype of the approach to handle global ex-
ceptions in suitably-written parallel programs. The runtime makes
the program’s execution deterministic, and overcomes the perfor-
mance impact of determinism, to be efficient and scalable. Our
experiments on a commodity multiprocessor system showed that
the runtime easily handled frequent exceptions whereas the con-
ventional method failed. The results quantitatively confirmed our
qualitative analysis of the model’s performance.

We are currently exploring ways to apply the model to more
generic, specifically data race-prone parallel programs, and deter-
ministic/nondeterministic schemes to make it more efficient.

Global precise-restartability can be applied to a wide range of
applications, e.g., computer forensics, fault tolerance, debugging,
etc. Precise interrupts, once introduced, enabled new capabilities
in microprocessors, enhancing their utility. We believe that global
precise-restartability can bring similar benefits to parallel systems.

Acknowledgments

This material is based upon work supported, in part, by the Na-
tional Science Foundation under Grant CCF-0963737. Any opin-

ions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the view of the National Science Foundation.

References

[1] “Activities. Android Developr’s Guide,”
http://developer.android.com/guide/components/activities.html.

[2] “Amazon EC2 spot instances,” http://aws.amazon.com/ec2/spot- in-
stances/.

[3] R. Agarwal, P. Garg, and J. Torrellas, “Rebound: Scalable checkpoint-
ing for coherent shared memory,” ISCA, 2011, pp. 153-164.

[4] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy
in network traffic: Findings and implications,” SIGMETRICS, 2009,
pp. 37-48.

[5] W. Baek and T. M. Chilimbi, “Green: A framework for support-
ing energy-conscious programming using controlled approximation,”
PLDI, 2010, pp. 198-209.

[6] T.Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman, “Core-
Det: A compiler and runtime system for deterministic multithreaded
execution,” ASPLOS, 2010, pp. 53-64.

[7] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble, “Deterministic process
groups in dOS,” OSDI, 2010, pp. 1-16.

[8] E. D. Berger, T. Yang, T. Liu, and G. Novark, “Grace: Safe multi-
threaded programming for C/C++,” OOPSLA, 2009, pp. 81-96.

[9] E. Blagojevic, C. Iancu, K. Yelick, M. Curtis-Maury, D. S. Nikolopou-
los, and B. Rose, “Scheduling dynamic parallelism on accelerators,”
CCF, 2009, pp. 161-170.

[10] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and
P. Stodghill, “Recent advances in checkpoint/recovery systems,”
IPDPS, 2006, pp. 8-

[11] G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and M. Schulz,
“Application-level checkpointing for shared memory programs,” AS-
PLOS, 2004, pp. 235-247.

[12] N. P. Carter, et al., “Runnemede: An architecture for ubiquitous high-
performance computing,” HPCA, 2013, pp. 198-209.

[13] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP: Deterministic
shared memory multiprocessing,” ASPLOS, 2009, pp. 85-96.

[14] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman, “RCDC:
A relaxed consistency deterministic computer,” ASPLOS, 2011, pp.
67-78.

[15] J. Duell, P. Hargrove, and E. Roman, “The Design and Implementation
of Berkeley Lab’s Linux Checkpoint/Restart,” Future Technologies
Group, White paper, 2003.

[16] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surv., vol. 34, no. 3, pp. 375-408, Sep. 2002.

[17] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” ASPLOS, 2012,
pp. 301-312.

[18] ——, “Neural acceleration for general-purpose approximate pro-
grams,” MICRO, 2012, pp. 449-460.

[19] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of
the Cilk-5 multithreaded language,” PLDI, 1998, pp. 212-223.

[20] J. Gilchrist, “Parallel data compression with bzip2,”
http://compression.ca/pbzip2/.

[21] M. Gupta and E. Schonberg, “Static analysis to reduce synchronization
costs in data-parallel programs,” POPL, 1996, pp. 322-332.

[22] M. S. Gupta, J. A. Rivers, P. Bose, G.-Y. Wei, and D. Brooks, “Tribeca:
Design for PVT variations with local recovery and fine-grained adap-
tation,” MICRO, 2009, pp. 435-446.

[23] M. Gupta, K. Rangan, M. Smith, G.-Y. Wei, and D. Brooks, “DeCoR:
A delayed commit and rollback mechanism for handling inductive
noise in processors,” HPCA, Feb 2008, pp. 381-392.

[24] D. R. Hower, P. Dudnik, M. D. Hill, and D. A. Wood, “Calvin:
Deterministic or not? Free will to choose,” HPCA, 2011, pp. 333-334.

[25] “Semiconductor Industry Association (SIA), Design, International
Roadmap for Semiconductors, 2011 edition.” http://public.itrs.net.

[26] X.Liand D. Yeung, “Exploiting application-level correctness for low-
cost fault tolerance.” J. Instruction-Level Parallelism, vol. 10, 2008.

[27] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny, “Checkpoint
and Migration of UNIX Processes in the Condor Distributed Process-
ing System,” University of Wisconsin, Madison, Technical Report CS-
TR-1997-1346, Apr. 1997.

[28] T. Liu, C. Curtsinger, and E. D. Berger, “DTHREADS: efficient deter-
ministic multithreading,” SOSP, 2011, pp. 327-336.

[29] D. Manivannan and M. Singhal, “Quasi-synchronous checkpointing:
Models, characterization, and classification,” IEEE Trans. Parallel
Distrib. Syst., vol. 10, no. 7, pp. 703-713, Jul. 1999.

[30] D.Marques, G. Bronevetsky, R. Fernandes, K. Pingali, and P. Stodghil,
“Optimizing checkpoint sizes in the C3 system,” IPDPS, 2005, pp.
226.1-.

[31] A. Meixner, M. E. Bauer, and D. Sorin, “Argus: Low-cost, compre-
hensive error detection in simple cores,” MICRO, 2007, pp. 210-222.

[32] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou,
F. Clermidy, and D. Dutoit, “Platform 2012, a many-core computing
accelerator for embedded socs: Performance evaluation of visual ana-
lytics applications,” DAC, 2012, pp. 1137-1142.

[33] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“Aries: A transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging,” ACM Trans.
Database Syst., vol. 17, no. 1, pp. 94-162, Mar. 1992.

[34] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas, “Re-
Vivel/O: efficient handling of I/O in highly-available rollback-
recovery servers,” HPCA, Feb 2006, pp. 200-211.

[35] M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo: Efficient deter-
ministic multithreading in software,” ASPLOS, 2009, pp. 97-108.

[36] M. Prvulovic and J. Torrellas, “ReEnact: Using thread-level specula-
tion mechanisms to debug data races in multithreaded codes,” ISCA,
2003, pp. 110-121.

[37] M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cost-effective ar-
chitectural support for rollback recovery in shared-memory multipro-
cessors,” ISCA, 2002, pp. 111-122.

[38] G. Ramalingam and K. Vaswani, “Fault tolerance via idempotence,”
POPL, 2013, pp. 249-262.

[39] M. Rieker, J. Ansel, and G. Cooperman, “Transparent user-level
checkpointing for the native posix thread library for linux,” The Int.
Conf. on Parallel and Distrib. Process. Techn. and Appl., Jun 2006.

[40] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general
low-power computation,” PLDI, 2011, pp. 164-174.

[41] R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon, “Inno-
vations in internetworking,” C. Partridge, Ed., ch. Design and Imple-
mentation of the Sun Network Filesystem, pp. 379-390.

[42] D. J. Sorin, “Fault tolerant computer architecture,” Synthesis Lectures
on Computer Architecture, vol. 4, no. 1, pp. 1-104, 2009.

[43] D.J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood, “SafetyNet:
Improving the availability of shared memory multiprocessors with
global checkpoint/recovery,” ISCA, 2002, pp. 123-134.

[44] B. P. Wood, L. Ceze, and D. Grossman, “Low-level detection of
language-level data races with LARD,” ASPLOS, 2014, pp. 671-686.

[45] G. Yan, X. Liang, Y. Han, and X. Li, “Leveraging the core-level com-
plementary effects of PVT variations to reduce timing emergencies in
multi-core processors,” ISCA, 2010, pp. 485-496.

[46] S.Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot instances
via checkpointing in the Amazon Elastic Compute Cloud,” CLOUD,
July 2010, pp. 236-243.

