Filtering Translation Bandwidth with Virtual Caching

Hongil Yoon
Computer Sciences Department,
University of Wisconsin-Madison
ongal@cs.wisc.edu

Abstract

Heterogeneous computing with GPUs integrated on the same
chip as CPUs is ubiquitous, and to increase programmability
many of these systems support virtual address accesses from
GPU hardware. However, this entails address translation
on every memory access. We observe that future GPUs and
workloads show very high bandwidth demands (up to 4 ac-
cesses per cycle in some cases) for shared address translation
hardware due to frequent private TLB misses. This greatly
impacts performance (32% average performance degradation
relative to an ideal MMU).

To mitigate this overhead, we propose a software-agnostic,
practical, GPU virtual cache hierarchy. We use the virtual
cache hierarchy as an effective address translation bandwidth
filter. We observe many requests that miss in private TLBs
find corresponding valid data in the GPU cache hierarchy.
With a GPU virtual cache hierarchy, these TLB misses can be
filtered (i.e., virtual cache hits), significantly reducing band-
width demands for the shared address translation hardware.
In addition, accelerator-specific attributes (e.g., less likeli-
hood of synonyms) of GPUs reduce the design complexity
of virtual caches, making a whole virtual cache hierarchy
(including a shared L2 cache) practical for GPUs.

Our evaluation shows that the entire GPU virtual cache
hierarchy effectively filters the high address translation band-
width, achieving almost the same performance as an ideal
MMU. We also evaluate L1-only virtual cache designs and
show that using a whole virtual cache hierarchy obtains
additional performance benefits (1.31X speedup on average).

Keywords Virtual caching, Heterogeneous computing, TLB,
Virtual memory, Address translation

“Now at Google

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASPLOS 18, March 24-28, 2018, Williamsburg, VA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4911-6/18/03...$15.00
https://doi.org/10.1145/3173162.3173195

Jason Lowe-Power
Computer Science Department,
University of California, Davis

jlowepower@ucdavis.edu

Gurindar S. Sohi
Computer Sciences Department,
University of Wisconsin-Madison
sohi@cs.wisc.edu

ACM Reference Format:

Hongil Yoon, Jason Lowe-Power, and Gurindar S. Sohi. 2018. Filter-
ing Translation Bandwidth with Virtual Caching. In ASPLOS ’18:
Architectural Support for Programming Languages and Operating
Systems, March 24-28, 2018, Williamsburg, VA, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3173162.3173195

1 Introduction

GPUs integrated onto the same chip as CPUs are now first-
class compute devices. Many of these computational engines
have full support for accessing memory via traditional virtual
addresses (e.g., Heterogeneous System Architecture (HSA)
[1, 2, 28]). This allows programmers to simply extend their
applications to use GPUs without the need to explicitly copy
data or transform pointer-based data structures. Further-
more, GPU programs can execute correctly even if they
depend on specific virtual memory features, like demand
paging or memory-mapped files.

However, virtual memory support requires translating
virtual addresses to physical addresses on every cache ac-
cess. The overhead has significant performance and energy
impact [4, 8, 32, 46]. Conventional CPUs mitigate the over-
head by accessing TLBs prior to or in parallel with cache
lookups. Modern GPU architectures have reflected CPU-style
memory management unit (MMU) [20, 34, 47, 50]. However,
CPU-style MMUs are not effective because of GPU microar-
chitecture and workload differences.

There are three characteristics of GPUs which cause in-
creased virtual memory overheads compared to CPUs. First,
GPUs have many more compute units than most CPUs have
cores (e.g., 40 compute units in an XBOX ONE [14]), which
puts pressure on shared translation resources (e.g., IOMMU
TLBs). Second, GPUs have wide SIMD units. Each compute
unit has many lanes (e.g., 32), and a single static GPU load
or store instruction can issue scatter/gather requests to 10’s
of different addresses. These requests can even be to dif-
ferent virtual memory pages. Furthermore, GPUs are built
to tolerate memory latency by having many execution con-
texts. These execution contexts are like simultaneous multi-
threading (SMT) on CPUs, except GPUs can have up to 40
active contexts compared to 2-8 for CPU cores. Thus, GPUs
can generate much greater memory-level parallelism than
CPUgs, putting considerable pressure on address translation
resources.

This high pressure on GPU translation resources greatly
impacts performance and energy consumption. When using

https://doi.org/10.1145/3173162.3173195
https://doi.org/10.1145/3173162.3173195

a practical translation implementation that has private TLBs,
a large shared IOMMU TLB, and a multi-threaded page table
walker, we observe that future GPUs and workloads suffer
from very high private GPU TLB miss ratios (average 56%)
and high miss rate (more than 4 misses per cycle in some
cases), resulting in a high bandwidth demand of shared ad-
dress translation hardware (e.g., a shared IOMMU TLB). The
workloads experience an average of 32% performance degra-
dation over an ideal GPU MMU. This translation overhead
is higher for emerging GPU applications (e.g., graph-based
workloads) than traditional workloads. The major source of
this overhead is the serialization delays at the shared address
translation hardware due to its limited bandwidth. The band-
width demands on translation hardware will continue to
increase as i) future GPUs integrate more compute units
[6, 14] and ii) future workloads will access hundreds of GBs
of data [4, 20, 38].

To reduce the virtual address translation overhead on
GPUs, we propose a GPU virtual cache hierarchy that
caches data based on virtual addresses instead of physical
addresses. We employ the existing GPU multi-level cache hier-
archy as an effective bandwidth filter of TLB misses, alleviat-
ing the bottleneck of the shared translation hardware. We
take advantage of the property that no address translation
is needed when valid data resides in virtual caches [53]. We
empirically observe that more than 60% of references that
miss in the private GPU TLBs find corresponding data in the
cache hierarchy (i.e., are virtual cache hits). Filtering out the
TLB misses leads to considerable performance benefits.

Virtual caching has been proposed several times to reduce
the translation overheads on CPUs [5, 16, 21, 31, 41, 48, 52].
However, to the best of our knowledge, the efficacy of a GPU
virtual cache hierarchy as a translation bandwidth filter has
not been evaluated, and it is not publically known whether
current GPU products use virtual caching. Furthermore, vir-
tual caching has not been generally adopted, even for CPU
architectures. The main impediment to using virtual caches
for CPUs is virtual address synonyms. One recent study
demonstrates that larger caches exacerbate the synonym
problem [52]. In larger caches, there is longer data residence
time and there is a higher likelihood for synonymous ac-
cesses.

We leverage GPU’s accelerator-specific attributes, such as
few active virtual address spaces and no OS kernel execution
to greatly simplify virtual cache implementation. These at-
tributes reduce the likelihood of synonyms and homonyms
which are the crux of the problems of virtual cache designs.
This easily enables the scope of GPU virtual caching to be
extended to the whole cache hierarchy (private L1s and a
shared L2 caches), and allows us to take advantage of virtual
caching as a bandwidth filter of TLB misses. Including the
shared L2 cache filters more than double the number of TLB

accesses to the shared address translation hardware, com-
pared to virtualizing L1 caches alone (31% with L1 virtual
caches and 66% with both virtual L1 and L2 caches).

These observations lead to our practical virtual cache hi-
erarchy design for the GPU. In our design, all of the GPU
caches—the private L1s and the shared L2—are indexed and
tagged by virtual addresses. We add a new structure, called
a forward-backward table (FBT), to the I/O memory man-
agement unit (IOMMU), that is fully inclusive of the GPU
caches. This structure builds off of previous virtual cache
proposals from the CPU domain and ensures correct execu-
tion of virtual caches for synonyms, TLB shootdown, cache
coherence, etc.

We show that the proposed GPU cache hierarchy (both
L1 and L2 caches) achieves almost the same performance as
an ideal GPU MMU design. We also observe that the entire
GPU virtual cache hierarchy shows more than 30% additional
performance benefits over L1-only GPU virtual cache design.

In this paper:

1. We identify that a major source of GPU address trans-
lation overheads is the high bandwidth demand for
the shared translation hardware (i.e., a shared TLB).

2. We show the efficacy of a GPU virtual cache hierarchy
as an address translation bandwidth filter.

3. We propose a practical, software-agnostic virtual cache
hierarchy for GPUs. Our proposal allows the flexibility
for modern GPUs to keep their unique cache archi-
tectures (e.g., L1 caches without support for cache
probes).

2 Background

In this section, we first discuss the baseline SoC package
design and the baseline GPU address translation. We then
give an overview of virtual caches and their design issues.

2.1 GPU Address Translation

Figure 1 overviews the baseline SoC package. In this paper,
we consider fully coherent CPUs and GPUs with unified
(shared) address space support (e.g., HSA specification [28]).
In current systems, each computational unit (CU) has a pri-
vate TLB, coalescer, and scratchpad. The TLB is consulted
after the per-lane accesses have been coalesced into the min-
imum number of memory requests; it is not consulted for
scratchpad memory accesses. When a private TLB miss oc-
curs, an address translation service request is sent to the I/O
Memory Management Unit (IOMMU) over the interconnec-
tion network. This interconnection network typically has a
high latency. Even though integrated GPUs are not physi-
cally on the PCle bus, IOMMU requests are still issued using
the PCle protocol, which adds transfer latency to TLB miss
requests [22].

The IOMMU consists of a TLB that is shared between all
of the CUs, page table walker (PTW), and page walk cache

L N N N N B BN BN N N J
SoC Package /- ininls s
y DDGPULanesDD 1
CU__CU_ _CU_ U e 1
100000000 00000000 ¢ 00000000 ¢ 00000000
i e o o e

==l lii~—=l lli=—=Ll il

o R | s R e R §
VI £ £ VR I (N
I

Scratch

Coalescer/| pad

A I T T L L I T

L2 cache
L1
[cache

Directory JOMMU .-

- N 0 0 0| -‘

- 1

l l : : Large 1

L2 L2 L2 L2 Shared TLB :

1

1

SN { I | NN N N ey

P: tabl Ik

CPU CPU CPU CPU age table walkeq| :

core core core core i

Page walk 1

cache :

--------'

Figure 1. Overview of baseline SoC package design with a
physical cache hierarchy.

(PWC).! On the IOMMU TLB miss, the PTW accesses the
corresponding page table. The PTW is multi-threaded (e.g.,
supporting 16 concurrent page table walks) to reduce the
high queuing delay due to frequent shared IOMMU TLB
misses [22, 37, 47]. Additionally, the PWC decreases the la-
tency of page table walks by leveraging the locality of page
table accesses (e.g., accesses to page directory entries). Once
the address translation is successfully performed, a response
message is sent back to the GPU. Otherwise, a GPU page
fault occurs and the exception is handled by a CPU.

2.2 Virtual Caching

Virtual caching has been proposed many times for CPU
caches over the past several decades as a way to limit the
impacts of address translation [5, 16, 21, 31, 41, 48, 52]. The
use of virtual caches can lower access latency and energy
consumption of TLB lookups compared to physical caches,
because the virtual to physical address translation is required
only when a cache miss occurs. Virtual caches act to filter TLB
lookups. Furthermore, virtual caches also filter TLB misses
when the virtual caches hold lines for which the matching
translation is not found in the TLB [53].

As the cache hit rate increases, we can expect more TLB
accesses to be filtered. Accordingly, it would make sense to
further extend the scope of virtual caching (i.e., multi-level
virtual cache hierarchy) to take full advantage of these fil-
tering effects, as blocks are more likely to reside longer in

! In this paper, we focus on the IOMMU TLB. However, if the GPU contains
a TLB structure shared by all CUs, it will exhibit characteristics similar to
that of the IOMMU TLB.

CPU 1 core, 3GHz, 64KB D$, 32KB I$, 2MB L2$
GPU 16 CUs, 32 lanes per CU, 700 MHz

L1 GPU Cache per-CU 32KB, write-through no allocate

L2 GPU Cache Shared 2MB, 8 banks, write-back, 128B lines
TLBs 32-entry Per-CU TLBs (4 KB pages)

IOMMU Shared TLB (512-entry or 16K-entry), 16 concur-
rent PTW, and 8KB page-walk cache
DRAM, NoC 192 GB/s, Dance-hall topology in the GPU and

Point-to-point network between the CPU-GPU

Table 1. Simulation configuration details.

lower-level (larger) caches. However, the increase in the life-
time of data in the caches makes the occurrence of synonym
accesses more likely [52], which imposes more overhead for
synonym detection and management to ensure correct op-
eration. This complicates the deployment of virtual caching
for the entire cache hierarchy. However, we find implement-
ing the entire GPU cache hierarchy (L1 and L2 caches) with
virtual addresses is practical in terms of both performance
as well as design complexity as discussed in Section 3.1.

3 Motivation

In this section, we discuss opportunities of a GPU virtual
cache hierarchy. To get the empirical data, we used a full-
system heterogeneous simulator, gem5-gpu [36], which mod-
els all system-level virtual memory operations. We consider
a high-performance integrated CPU-GPU system with a uni-
fied shared address space and coherence among GPU and
CPU caches. Table 1 contains our simulation details.

Our baseline MMU design is based on a recent work pro-
posed by Power et al. [37], and current hardware designs [20,
47]. We evaluate a 32-entry L1 per-CU TLB as a baseline
(Karnagel et al. found a current GPU design had a 16-entry
L1 TLB [20]), but we also evaluate larger per-CU TLBs. We
assume a large shared IOMMU TLB in the GPU that is shared
between all of the CUs; the IOMMU TLB can also be con-
sidered a second-level shared GPU TLB. We assume this
IOMMU TLB can process up to one request per cycle.? We
use 16 page table walkers to handle misses from the IOMMU
TLB [47]. We also have an 8 KB physical cache for the page
table walkers, as prior work found this is important for high-
performance translation [37].

We evaluate workloads from two different benchmark
suites. The Rodinia workloads [12] represent traditional GPU
workloads and are mostly scientific computing algorithms.
We also use Pannotia [11] to evaluate emerging GPU work-
loads. The Pannotia workloads are graph-based and show
less locality than traditional GPU workloads. The Pannotia
benchmark suite comes with multiple versions of algorithms.
We present data for each version of the algorithm separately.
We run all workloads to completion.

ZPower et al. [37] considered infinite bandwidth of the shared [OMMU TLB,
which is unrealistic. They attacked the bandwidth issue of the PTW on the
shared TLB misses.

100%
80% | Pannotia
60% |
40% |
20% |
0%

Per-CU TLB Miss Ratio

o < 0 Q o < 0 Q o < 0 Q o < 0 Q o < 0 Q o < 0 Q o < 0 Q o < 0 Q
o O ~ = a2} V<] ~ = o O ~ = o =] ~ = o O ~ = o o] k=4 o O ~ = o o ~ =
- =4 - [= — =4 - [= - =4 - [= - f= - [=
&= = &= = &= = &= =
£ £ £ £ £ £ £ £
bc color_maxmin color_max fw fw_block mis pagerank pagerank_spmv
o 100% —
S ggy | Rodinia
o
o 60%
= 40%
o
2 20%
3 0%
U o < o0 GJ o < o0 Q o < o0 Q o < 0 Q o < o0 Q o < o0 Q o < o0 Q o < 0 Q
Ej ™| [t} ~ = ™ o ~ b= ™| [t} ~ = ™ o ~ = ™| [t} ~ = ™ o ~ = ™| [t} ~ = ™ o ~ =
a - [=3 - =4 - =3 - =4 - =3 - =4 - =3 - =4
= = = = = = = =
< £ < £ £ £ £ £
kmeans backprop bfs hotspot lud nw pathfinder Average

M TLB Miss and L1$ Hit

B TLB Miss and L2$ Hit

B TLB Miss and L2$ Miss

Figure 2. Breakdown of per-CU TLB miss accesses. Top shows the results of workloads from Pannotia suite (irregular graph
applications). Bottom shows the results of seven workloads from Rodinia suite and the average across all simulated workloads.

3.1 Virtual Cache Hierarchy Opportunities

Observation 1: A large fraction of TLB misses find data in
the GPU data caches.

Figure 2 presents private per-CU TLB miss ratio for 4KB
pages for each benchmark by varying the TLB size. The
results for the infinite size of TLBs indicate demand per-CU
TLB misses. The total height of each bar shows the average
miss ratio for the entire execution of the application. Figure 2
also shows the breakdown of the TLB misses according to
where the valid data is located in the GPU cache hierarchy.
The results indicate that many references that miss in the
per-CU TLB hit in the caches (black bars in the L1 cache and
red bars in the L2 cache).

We notice that the per-CU TLB miss ratio is high; however,
many TLB misses hit in the GPU caches. Only 34% of refer-
ences that miss in the 32-entry per-CU L1 TLB are also L2
cache misses and access main memory (blue bars). An aver-
age of 31% of total per-CU TLB misses find the corresponding
data in private L1 caches (black bars), and an additional 35%
of the total misses hit in a shared L2 virtual cache (red bars).

These hits occur because blocks in the cache hierarchy are
likely to reside longer than the lifetime of the correspond-
ing per-CU TLB entries (see Appendix), and these blocks
are from numerous pages (e.g., 6000 different 4KB pages on
average for our workloads). Thus, using a virtual cache hier-
archy considerably increases address translation reach when
considering locality in the cache hierarchy.

Using virtual caches eliminates TLB misses that find valid
data in the cache hierarchy (66% of TLB misses) since virtual
cache hits do not access the address translation hardware.
Figure 2 shows that even for large per-CU TLBs (128 entries)

about the same percentage (65%) of TLB misses can be filtered
by virtual caches. This behavior is more pronounced for the
emerging graph workloads in the Pannotia suite, and future
workloads with similar access patterns will also benefit from
virtual caches. Additionally, as cache sizes increase more
accesses will hit in the caches, improving the efficacy of a
virtual cache design.

There is a large opportunity for virtual caches to filter TLB
misses as high per-CU L1 TLB miss ratios are common in
GPU applications. One factor contributing to high TLB miss
ratios is memory divergence (i.e., scatter/gather). Even with
large TLBs of 64 and 128 entries, we see frequent per-CU TLB
misses due to high memory divergence (e.g., color_max, fw,
mis, and bf's). For instance, fw averages 9.3 memory accesses
per dynamic memory instruction.

Some applications (e.g., pathfinder and nw) have a high
infinite private TLB miss ratio. Most of these two applica-
tions’ memory accesses are to scratchpad memory which
does not access the TLB (not shown in Figure 2). When these
applications read data from main-memory, there is high mem-
ory divergence due to scatter/gather requests. Thus, we see
a large burst of TLB misses at the beginning and end of each
GPU kernel when loading data into and storing data from
the scratchpad cache. These bursts of TLB misses cause a
high TLB miss ratio, but do not significantly affect perfor-
mance due to the GPU’s ability to hide the extra memory
access latency for these accesses. Future applications (e.g.,
Pannotia) are less likely to use the scratchpad cache given
their input-dependent access pattern.

Observation 2: GPU workloads very frequently access the
IOMMU TLB.

Figure 3 presents IOMMU TLB accesses per cycle (ie.,
per-CU TLB misses for all CUs). We track the number of
accesses in each microsecond interval. Blue bars indicate
the average of events across all sampling periods. Each bar
has a one standard deviation band, and red dots indicate
the maximum of accesses per cycle among samples. For the
results, 32-entry per-CU TLBs are used. The experiment for
this figure assumes that the IOMMU TLB can be accessed
any number of times per cycle, which is impractical. The
results are sorted by the frequency of the accesses.

We observe about one IOMMU TLB access per cycle, on
average. Most workloads show bursts of accesses during
which the IOMMU TLB is accessed more than once per cycle
(refer to the red dots for the maximum accesses). For example,
color_max shows about 25% of sample periods with more
than one IOMMU TLB accesses per cycle. We also observe
that graph-based workloads like Pannotia show much more
frequent per-CU TLB misses than the traditional workloads
because of high memory divergence [11]. The results show
there are impractical bandwidth requirements at the IOMMU
TLB (e.g., more than two accesses per cycle in some cases).

Observation 3: The GPU shows high serialization overhead
at the IOMMU TLB due to its limited bandwidth.

Figure 4 presents the performance overhead of address
translation on the GPU for all simulated workloads, com-
pared to an “IDEAL MMU?” that has infinite capacity per-CU
and JIOMMU TLBs, minimal latency, and infinite IOMMU
TLB bandwidth. The overhead is classified according to two
sources: 1) the page table walk (PTW) overhead on IOMMU
TLB misses and 2) the serialization delay due to request
queuing at the IOMMU TLB. This figure presents the aver-
age performance across all of the workloads evaluated.

For a baseline design (Small IOMMU TLB) that has 32-
entry per-CU TLBs and a 512-entry IOMMU TLB, we see an
average of 1.77X runtime overhead over the “IDEAL MMU”
We also consider a design with a large (16K-entry) IOMMU
TLB (Large IOMMU TLB) to isolate the impact of the seri-
alization delay. We observe that the performance benefits
with a large capacity IOMMU TLB are small, indicating that
the PTW overhead is not a significant factor. This is because
the multi-threaded page table walker with a large page walk
cache effectively hides IOMMU TLB miss latency [37]. The
results suggest that most of the address translation over-
heads are due to serialization at the IOMMU TLB, not
its capacity.

Observation 4: GPU requires impractically high bandwidth
to alleviate the serialization overhead at the IOMMU TLB.

Figure 5 breaks down the performance overheads, com-
pared to the “IDEAL MMU? This figure presents only the
average performance across the workloads showing high

High Translation Bandwidth Workloads

12 5
P a—
10 ‘
v,
U4
<
&
o
[
Q °
w
<1} ° ® .
v
n
3 O
[s}
<<
2 2T X 0w v T X xXx QO c v B I Qv c
c 5 = @ 9 9 = o O c
EH—N_QEEEO E v ot 25 §
= iy c @ a o
7 [x = 2 S
| a0 = © & o S E
~ @ o = € £ < o X
c o o | © o
© o 5 o
s o
Q e
Qo Q
© s}
[}

Figure 3. Analysis of IOMMU TLB access rate. Red dots
indicate the maximum of accesses per cycle among samples.

W (DEAL
IDEAL MMU
Small IOMMU
TLB
Large IOMMU
TLB
0% 50% 100% 150% 200%

Relative Execution Time

Figure 4. GPU address translation overheads for all simu-
lated workloads.

g 200% B IDEAL MMU

= o OSerialization Overhead
§ % 8% 4%

3 100%

%

& 50%

=

& 0%

o 1 2 3 4

Peak Bandwidth (Accesses per cycle)

Figure 5. Impact of the IOMMU TLB bandwidth limit on
the serialization overhead for high translation bandwidth
workloads.

translation bandwidth demands in Figure 3.> We consider a
large capacity (16K-entry) IOMMU TLB to focus solely on
the serialization overheads due to the bandwidth limit. The
performance overheads reduce when the bandwidth of the
IOMMU TLB is increased. However, to limit this overhead a
very high bandwidth TLB is required. It is costly in terms of
both area and power to implement a large high-bandwidth
associative structure like a TLB. Thus, the empirical results
suggest that the primary challenge of GPU address translation
is to provide high bandwidth at the IOMMU TLB.

3 Other workloads are not considered here because their performance is less
affected by the bandwidth limit of the IOMMU TLB. We discuss performance
benefits of the workloads with low bandwidth demands in Section 5.2.

Observation 5: GPUs’ accelerator usage pattern reduces the
likelihood of virtual cache synonym issues.

Others have observed more synonym accesses with larger
virtual caches in CPU cache hierarchies [52]. However, GPUs
are not fully general-purpose compute devices, and there are
three key differences compared to CPUs which reduce the
impact of synonyms in GPU cache hierarchies.

First, as an accelerator, GPUs execute a small number
of applications at a time. Thus, there is usually few active
virtual address spaces, reducing the likelihood of data sharing
among them. Second, GPUs rarely access I/O devices. This
is likely to continue to be true since GPUs are useful for
applications with data parallelism, which I/O device drivers
rarely exhibit. Third, GPUs never execute OS kernel code;
they offload OS function calls to CPUs [22, 24, 43]. This
eliminates most causes of synonym accesses, making the
occurrence of active synonym accesses less likely in a GPU
cache hierarchy than in a CPU cache hierarchy.

3.2 Discussion of Conventional Mechanisms

Before discussing the design details of our virtual cache
hierarchy proposal, we discuss possible questions related to
conventional high-bandwidth translation mechanisms.

Larger (or multi-level) per-CU TLBs: A larger per-CU
TLB would fit working sets of some of our simulated work-
loads. However, even with large TLBs of 128 entries (Fig-
ure 2), some workloads show frequent per-CU TLB misses.
Additionally, even for large TLBs we find a significant frac-
tion of TLB misses can be filtered by a virtual cache hierarchy
(65% for 128-entry TLBs).

Keeping address translation overheads in check when us-
ing a physical cache hierarchy requires adding more TLBs as
the number of CUs increases and increasing the size of the
TLB to cover larger working sets. Future integrated GPUs
will have more CUs [6, 14], and we believe that future work-
loads will access hundreds of GBs of data [4, 20, 38]. These
two trends put increased pressure on GPU address transla-
tion hardware.

Large (or multi-level) per-CU TLB designs for physical
caches increase the power and area overheads of address
translation [7] although they reduce the per-CU TLB miss
rate. For example, consulting highly associative large TLBs
causes hotspots due to high power dissipation [39]. Thus,
the scalability of TLB reach is restricted [19].

Multi-banked (or multi-ported) large IOMMU TLB:
Highly multi-banking the IOMMU TLB, while costly in terms
of complex interconnection and arbitration logic, could in-
crease the bandwidth if bank conflicts are rare [3, 42]. How-
ever, bank conflicts may be more common on a banked TLB
than a banked cache due to using higher order address bits
for bank mapping. In fact, some of our high translation band-
width workloads (e.g., mis, color_max, etc.) show frequent

conflicts. Frequent bank conflicts limit the bandwidth of
multi-banked designs.

Multi-ported designs increase the bandwidth by allowing
multiple simultaneous accesses. However, to support high
bandwidth for a large IOMMU TLB (e.g., 16K entries) with
long access latency, numerous ports are required. More ports
lead to longer access latency [49], which requires extra ports
to satisfy particular high bandwidth demands. In addition,
the design suffers from area overhead due to additional wires
for the ports [3].

Large Pages: Using large pages can effectively reduce
TLB miss overhead [33, 37, 47]. However, they are not a
panacea [4, 30]. Basu et al. show that, for big-memory CPU
workloads (e.g., working sets of about 100 GB), large pages
only slightly reduce the TLB miss overhead [4]. In addition,
large pages do not help workloads with poor locality. Kar-
nagel et al. show that data-intensive workloads with irregular
access patterns lead to high address translation overheads
on GPUs [20].

We may selectively combine these mechanisms. However,
the bandwidth demands will continue to increase as future
GPUs integrate more CUs. The recently released PlayStation
4 Pro console has 36 CUs [6], and the XBOX ONE has 40
CUs [14]. Thus, we need a scalable, efficient way of filtering
the accesses to the shared IOMMU TLB.

3.3 Summary and Rationale of Our Approach

We find the address translation overhead on GPUs is mostly
due to the limited bandwidth of the shared IOMMU TLB. Our
goal is to reduce the number of accesses to this centralized
shared structure. We find that many TLB misses hit in the
GPU caches, and, thus, a virtual cache hierarchy can be an
effective address translation bandwidth filter.

Specifically, we make the following observations:

e Many per-CU L1 TLB misses find valid data in the GPU
cache hierarchy (L1 or L2 cache).

e There are many accesses per cycle to the shared trans-
lation structure, which causes significant serialization
delays and hurts performance.

e The complexities of managing deep virtual cache hi-
erarchies (e.g., synonyms) are unlikely for GPU work-
loads which allows us to extend the GPU virtual cache
hierarchy to large caches increasing its benefits.

These empirical observations suggest that a GPU virtual
cache hierarchy is a promising and effective GPU address
translation filter. As we will establish below, our approach is
a scalable mechanism. Our hardware overhead scales with
capacity of the existing caches, not workload size (which is
scaling much faster [15, 19]).

SoC Package
cu cu cu cu

.

ammn 1

MR
[N Iy |

00000000 { 0000000 § { 00000000 } 00000000 1

= L A — Scratch| g

E i . i . i Coalescer/| pad 1

I 1

) Virtual L1 1

Virtual L2 cache cache 1

]

| T I I I T T 4

—, W N N N N N Ry
Directory IOMMU - ‘I
Small sy
I r . Shared TLB =3 1
a
L2 L2 L2 L2 g 1
Highly-threaded at
Page table walke = L

L1 L1 L1 L1 o

Lo fluffulful] L
CPU CPU CPU CPU P Ik [}
core core core core age wa 1
cache 1
Y

Physical requests
(e.g., probes) from CPU/directory

Figure 6. Proposed GPU virtual cache hierarchy.

4 Practical GPU Virtual Cache Hierarchy

We first set two key requirements to design a practical GPU
virtual cache hierarchy:

1. The proposed GPU virtual cache hierarchy should be
able to efficiently deal with potential issues from vir-
tual memory idiosyncrasies, such as potential virtual
address synonyms, TLB shootdowns, etc., without OS
involvement.

2. The proposed design should be seamlessly integrated
into a modern GPU cache hierarchy, which is different
from a traditional CPU cache hierarchy.

To satisfy the requirements, we base our GPU virtual cache
design on a recent CPU L1 virtual cache design [52] as an
example. Further, we extend the approach for a whole GPU
cache hierarchy (including a shared L2) by changing the
design of the IOMMU. However, we expect that other CPU
virtual cache proposals (Section 6) will achieve similar bene-
fits on GPUs.

Overview of our proposal: Figure 6 illustrates the con-
ceptual design of the proposed virtual cache hierarchy. Differ-
ent from the baseline system (Figure 1), there are no per-CU
TLBs, and the GPU L1 and L2 caches are accessed with virtual
addresses. Address translation is performed via a shared TLB
in the IOMMU only when no corresponding data is found in
the virtual caches. That is, the address translation point is
completely decoupled from the GPU cache hierarchy.

To correctly and efficiently support virtual memory, we
add a forward-backward table (FBT) to the IOMMU. The FBT
is fully inclusive of the virtual caches with an entry for ev-
ery page that is currently cached. The FBT consists of two
parts: backward table and forward table (see Figure 7). First,
the backward table (BT) is primarily a reverse translation

Backward Table (BT) Forward Table (FT)

n bits 35 +2 bits 32 bits
LVPN + Bit Vector q}.f.vereeerennnn, " Log2 #of BT
Permission (Counter) Nbits : entries

Figure 7. Overview of a Forward-Backward Table (FBT).
PPN denotes physical page number, and LVPN denotes lead-
ing virtual page number.

table which provides reverse translations from physical ad-
dresses to virtual addresses. The BT tracks mappings from
a physical address to a unique leading virtual address [52].
The leading virtual address is the first virtual address used
to reference a given physical address and is used to place the
data during the data residence in the virtual caches. We use
this information to detect synonymous accesses and handle
TLB shootdowns. Also, the BT is employed for reverse ad-
dress translations on coherence requests from outside the
virtual cache using physical addresses.

The FBT also contains a forward table (FT). The FT tracks
mappings from a leading virtual address to an index of a
corresponding backward table entry. The FT allows the FBT
to be indexed by both virtual and physical addresses. For-
ward translation information is needed for several operations
including when the virtual caches respond to coherence
requests, on virtual cache evictions, and TLB shootdowns.
As we shall see, the extra index structure of the FT allows
us to perform these operations without a shared TLB miss
and subsequent page table walk. Additionally, with the for-
ward translation information, the FBT can be used as a large
second-level TLB structure.

4.1 Supporting Virtual Memory without OS
Involvement

To handle synonym issues, some virtual cache proposals
[5,9, 10, 25, 31, 41, 53] require OS involvement (e.g., a single
global virtual address space). Doing so restricts not only
design flexibility of OSes but also programmability. Hence,
we believe that virtual cache hierarchy for GPUs need to be
a software transparent technique.

Our proposal supports virtual memory requirements with-
out any OS involvement. The proposal allows GPUs to access
any virtual address that can be accessed by a CPU. We also
effectively and transparently manage the other operations
(e.g., TLB shootdown, synonyms, homonyms, etc.).

Below we describe the details of operations and the ex-
tended structures to support virtual memory. For the sake
of simplicity, we initially assume a system with an inclusive
two-level virtual cache hierarchy. In Section 4.2, we will dis-
cuss some challenges and solutions for modern GPU cache
designs supporting a non-inclusive cache hierarchy.

Virtual Cache Access: For memory requests, a set of
lanes (called shader processors or CUDA cores by NVIDIA)
generate virtual addresses. After the coalescer, the requests
are sent to the L1 virtual cache without accessing a TLB (D
in Figure 6). Unlike a physical cache design, the permissions
of the virtual page are maintained with each cache line, and
the permission check is performed on virtual cache accesses.

On an L1 virtual cache miss, the L2 virtual cache is ac-
cessed with the given virtual address. On a hit in the virtual
cache hierarchy, the valid data is provided to the correspond-
ing CU if the permissions match. On L1 or L2 virtual cache
hits, no address translation overhead is imposed.

Address Translation: When an L2 virtual cache miss
occurs, the request sent to the IOMMU. The virtual to physi-
cal address translation is performed via the shared TLB (@
in Figure 6). The translation is required because the rest of
system is indexed with physical addresses. The permissions
check for the cache miss is also performed at this point.

We observe that, for most shared TLB misses (e.g., 74%
on average), a matching entry is found in the FBT.* Thus,
the FBT can be a second-level TLB. We can search for the
match in the FBT by consulting the FT on the misses. The
actions taken on a shared TLB and FBT miss are the same
as the baseline IOMMU design. If there is no matching ad-
dress translation, a page table walker (PTW) executes the
corresponding page table walk. If the PTW fails to find a
matching PTE, a page fault exception occurs; this exception
is handled by the CPU.

Synonym Detection and Management: To guarantee
the correctness of a program, we need to check whether the
cache miss occurs due to a virtual address synonym. Multiple
virtual addresses (i.e., synonyms) can be mapped to the same
physical address. Hence, it is possible that valid data has
been cached with a different virtual address, and in this case,
the data cached with the other virtual address should be
provided.

To check for synonyms, the BT is consulted with the phys-
ical page number (PPN) obtained by the shared TLB lookup
or the PTW (@ in Figure 6). Each entry has a physical page
number (PPN) as a tag and stores the unique leading virtual
page number (LVPN). Only this unique leading virtual address
is allowed to place and look up data from the physical page in
the virtual caches as long as the entry is valid. Thus, no data
duplications are allowed in the virtual cache hierarchy.

If a valid BT entry is identified for the cache miss, it indi-
cates that some data from the physical page resides in the
virtual cache, and has been cached with the corresponding
leading virtual address. Thus, if the given virtual address for
the cache miss is different from the current leading virtual
address, it is a synonym access. To ensure the correct data,

4 The FBT entries correspond to all of physical pages with cached data
(private L1s and a shared L2 cache). We consider an FBT with 16K entries,
which has the reach of 64MB (Section 4.3).

we replay the virtual cache access with the leading virtual
address. Each BT entry has a bit vector indicating which
lines from a physical page are cached in the virtual caches.
Thus, only addresses that will hit are replayed. If the bit in
the bit vector is clear, the directory is accessed. Once the
valid data is received from the memory, it is cached with the
current leading virtual address and its permissions.

For L2 virtual cache misses, if there is no match in the BT,
a new entry is created for the mapping between its PPN and
the given virtual page, and the given virtual page will be the
leading virtual page for the physical page until it is evicted.
At the same time, a corresponding FT entry is populated.

Synonym accesses with non-leading virtual addresses al-
ways lead to cache misses in the virtual cache hierarchy.
If the same address is accessed multiple times with a non-
leading virtual address, it will miss in the cache and will be
replayed on every access. We do not believe this significantly
affects performance because GPUSs’ accelerator usage pattern
reduces the likelihood of virtual cache synonym issues (Ob-
servation 5). Future GPU systems may show more synonym
accesses, but the overhead can be mitigated by integrating
the concepts of dynamic synonym remapping [52] to our
proposal (Section 4.3).

Cache Coherence between GPUs and CPUs: Cache
coherence requests from a directory or CPU caches use phys-
ical addresses. Hence, a reverse translation (i.e., a physical
address to a current leading virtual address) is performed via
the BT (@ in Figure 6). Then, the request is forwarded to
corresponding GPU caches with the leading virtual address.
When the cache responds with a leading virtual address, it
is translated to the matching physical address via the FT.

Including the BT in the IOMMU has the benefit of pro-
viding an efficient coherence filter for the GPU caches. The
BT is fully inclusive of the GPU caches. Therefore, when a
coherence request is sent to the GPU, the BT can filter any re-
quests to lines that are not cached in the GPU caches. The BT
plays a similar role to the region buffer in the heterogeneous
system coherence protocol [35].

TLB Shootdown and Eviction of FBT Entry: If infor-
mation of a virtual page changes (e.g., permission or page
mapping), the FBT and cache entries corresponding to that
virtual page are no longer valid. In this case, the correspond-
ing FBT entry should be invalidated. This leads to invalida-
tions of data cached with the virtual address from all virtual
caches. While the invalidation is in progress, the FBT entry
is locked and no new requests can be initiated for the virtual
page. All L1 caches are checked and all outstanding L2 cache
misses for the page must be completed before acknowledging
the TLB shootdown. Similarly, when an FBT entry is evicted
(e.g., due to a conflict miss), the same operations need to
be performed. By employing the information of the bit vec-
tor, we can selectively evict only the cached data, reducing
invalidation traffic.

On a single-entry TLB shootdown, we use the FT with
virtual addresses. Once a match is found, we directly access a
matching BT entry with the index pointer. The FT filters TLB
invalidation requests if no match is found. On an all-entry
TLB shootdown, a cache flush is required. The shootdowns
resulting from page mapping or permission changes are
infrequent [5]. Thus, the performance impact is minor.

Eviction of Virtual Cache Lines: When a line is evicted
from the virtual cache, the bit vector information of the corre-
sponding BT entry is updated in order for the BT to maintain
up-to-date inclusive information of the virtual cache. The
FT is consulted to identify the corresponding BT entry, and
we clear the matching bit in the bit vector of the BT entry.

4.2 Integration with a Modern GPU Cache
Hierarchy

We now discuss several other design aspects to be considered
for a practical GPU virtual cache hierarchy.

Read-Write Synonyms: With a virtual cache hierarchy,
it is possible for the sequential semantics of a program to
be violated if there is a proximate read-write synonym ac-
cess [41, 52]. For example, a load may not identify the cor-
responding older store since their virtual addresses differ,
even though their corresponding physical addresses are same.
This load could get the stale value from a virtual cache earlier
than the completion of the store.

Read-write synonyms can result in correctness issues for
GPUs with a virtual cache hierarchy. GPUs do not support
precise exceptions or recovery mechanisms [18, 23, 29, 44].
Therefore, when we detect a read-write synonym at the FBT,
it may be too late to identify and roll back the violating
instruction from the processor pipeline.

We detect all synonymous accesses at the FBT, and conser-
vatively cause a fault when a read-write synonym access is
detected.’ In practice, we believe that read-write synonyms
will rarely cause problems in a GPU virtual cache hierarchy
due to the following reasons:

1. GPUs do not execute any OS kernel operations that
are the major source of read-write synonym accesses.
2. It is possible to have user-mode read-write synonyms,
but there are very few situations where they are used.
3. Even with read-write synonyms, correctness issues oc-
cur only if the aliases are in close temporal proximity.

Although our design simply detects read-write synonyms
and raises an error, if future GPU hardware supports recov-
ery, it is possible to detect and recover from the violation
of sequential semantics. We can use a similar mechanism

SRead-write synonym accesses are detected at the BT. Since the FBT for-
wards all coherence requests from GPUs to a directory, we track whether
any writes have occurred to a cached physical page. The fault is raised when
there is a synonymous access to a physical page that has previously been
written, and vice versa.

as the ASDT [52] and replay the violating synonymous ac-
cess with the leading virtual address obtained from the FBT.
Given GPUs move toward general-purpose computing, it is
possible that recovery and replay hardware may be included
in future GPU architectures [29]. Regardless of the issue
of read-write synonyms, we fully support the much more
common read-only synonym accesses.

Multi-Level Cache with Non-Inclusion Property: In
the previous sections we conceptually explain the opera-
tions with a two-level inclusive cache hierarchy. In practice,
however, modern GPUs employ a non-inclusive hierarchy
[13, 45]. Thus, it is possible for private L1 caches to have data
that does not reside in the shared L2 cache. This complicates
tracking inclusive information of data currently residing in
the private L1 virtual caches in the BT.

In practice, modern GPU L1 caches are not coherent, and
thus we do not have to track the precise information. Instead,
we take a conservative approach. The BT tracks the inclusive
information of data currently cached only in the shared L2
cache with bit vectors. When a virtual page is no longer
valid (e.g., an eviction of FBT entry or TLB shootdown), an
invalidation message is sent to all L1 caches to invalidate all
lines with a matching virtual page address. To avoid walking
the L1 cache tags, we add a small invalidation filter at the L1
caches. Each entry has a virtual page number as a tag and
a counter tracking how many lines from the corresponding
physical page currently reside in the cache. If a match is
found in a filter for the invalidation request, the entire L1
cache is invalidated.

This approach does not require write backs since L1 caches
have no dirty data (i.e., write-through without allocation).
Additionally, this approach has only a minor impact in terms
of performance. This is because first GPU L1 cache hit ratio
is usually low (less than 60% for most of our workloads),
and the events triggering the flushes are highly unlikely, as
TLB shootdowns are rare. Additionally, it is likely that the
corresponding data are already evicted from L1 virtual caches
at the point of an eviction of a corresponding FBT entry with
an adequately provisioned FBT. Thus, the invalidation filter
can eliminate most requests due to most FBT evictions.

4.3 Other Design Aspects of Proposed Design

In this section, we discuss other design aspects of the pro-
posed virtual cache hierarchy.

Future GPU System Support: Future GPU systems will
have more multi-process support like modern CPUs, and
synonyms and homonyms may be more common. To miti-
gate the overhead of handling synonym requests further, the
concepts of dynamic synonym remapping [52] can be easily
integrated to the proposed GPU virtual cache hierarchy. For
active synonym accesses, a remapping from a non-leading
virtual address to the corresponding leading virtual address
can be performed prior to L1 virtual cache lookups. This re-
duces virtual cache misses and the latency/power overheads

due to synonyms. Homonym issues can be easily managed
by employing address space identifier (ASID) information;
each cache line needs to track the corresponding ASID in-
formation. This prevents cache flushes on context switches.

Large Page Support: In our design, supporting larger
pages does not cause any correctness issues. But, it is imprac-
tical to allocate FBT entries for large pages since it requires a
16,384-bit vector to track cached lines from a 2MB page. A bit
vector is simply an optimization to track precise information
about cached lines, enabling selective cache line invalidation.
Thus, instead of using a bit vector, an associated counter can
be employed without any correctness issues. Using a counter
requires walking through lines in the virtual caches until all
of the lines from the page are invalidated.

As an optimization, we can optionally break the large
page into 4KB subpages and use normal FBT entries to track
the large page at a subpage granularity. In this case, there
is no need to preallocate FBT entries for the entire large
page. Instead, we only need to allocate an entry when the
subpage is accessed, saving FBT space on sparsely accessed
large pages.

Area Requirements: To support the proposed design,
each cache line entry needs to be extended to track some
extra information (e.g., virtual tags, permissions), and we
also need to support additional structures, i.e., invalidation
filters for non-inclusive cache hierarchy and an FBT.

The size of the per private L1 invalidation filter is mod-
est, relative to a private L1 cache. For instance, a 32KB L1
cache with 128B lines requires 1KB storage, which is less
than 3% of the L1 cache size. The extra line-level information
(e.g., extra bits for virtual tags and permissions) is about 1%
overhead to the total GPU cache hierarchy when all compo-
nents (e.g., 128B line, physical tags, LRU information, etc.)
are considered. The FBT should be sufficiently provisioned
to avoid potential overhead of cache line invalidations due
to FBT entry evictions. We observe that there are about 6000
different 4KB pages whose data reside in a 2MB L2 cache on
average for our workloads, and few workloads show more
than 12K pages at maximum. We model a 16K-entry BT struc-
ture which is large enough to cover a unique page for every
L2 cache entry. This structure requires about 190KB and
the relevant FT requires 80KB, totaling 270KB. This is about
7.5% overhead to the total GPU cache hierarchy. In prac-
tice, however, an adequately provisioned structure (e.g., with
8K entries) can eliminate most of the invalidation overhead
for our workloads. Additionally, the FBT is not significantly
larger than the large shared IOMMU TLB in current GPUs
(1000s of entries). The FBT is combined with a small (512-
entry) IOMMU TLB (see Figure 6).

5 Evaluation

In this section, we present the effectiveness of our proposal.
We described the details of the evaluation methodology and

M Baseline

W Virtual Cache Hierarchy

Access per Cycle

> 3z %) w o X X [8) [= a4 2 Q v (]
x ¢ 4 s 8 £ 5 B =

E+< g8 e 2 ¢ o EB &8 ¢€ 2 5§ ¥
a) K} X £ @9 g o =
I & < T £ B $ g ¢

< x Lo = E S < 8 2 <
I 8 -

5 5

oo °

© o

o

Figure 8. Bandwidth reduction of IOMMU TLB.

simulated workloads earlier in Section 3. We model 10 cycle
interconnect latency between a GPU L2 cache and FBT, and
5 cycles for FBT lookups. We run both CPU and GPU parts,
but we only report the time that the application executes on
the GPU since we are focusing on the performance of the
GPU address translation.

5.1 Virtual Cache Hierarchy’s Filtering

As discussed in Section 3, a major source of GPU address
translation overhead is the significant serialization at the
shared IOMMU TLB (Figure 4) due to high per-CU TLB miss
rate (Figure 3). Accordingly, the performance benefits will be
directly affected by how effectively the GPU virtual cache hi-
erarchy filters out the shared IOMMU TLB accesses. Figure 8
presents an average of shared IOMMU TLB lookups per cycle
for the baseline and for our proposal, respectively. Each bar
has a one standard deviation band for all sampling periods.
The blue bars for the baseline in this figure correspond to
blue bars in Figure 3.

For most of workloads, we notice significant reductions
compared to the baseline system. We observe less than 0.3
events per cycle on average with our proposal. Some work-
loads show slightly more than one event per cycle; however,
they are rare events (e.g., less than 0.5% of sample periods).
The results suggest that the virtual cache hierarchy is effec-
tive in reducing the load on the shared IOMMU TLB.

Takeaway 1: A GPU virtual cache hierarchy is an efficient
TLB miss bandwidth filter.

5.2 Execution Time Benefits

We classify tested workloads into two groups according to
the translation bandwidth requirement.

High translation bandwidth workloads

Figure 9 shows relative performance compared to an IDEAL
MMU design. We consider two baseline designs by varying
the size of a shared IOMMU TLB (i.e., Baseline 512 and 16K).
We also consider a virtual cache design (VC W/O OPT, orange
bars) with a 512-entry shared IOMMU TLB, and a virtual

M Baseline 512
[Baseline 16K

EIVC W/O OPT
& & & ¢ »
&° & & B VC With OPT
&7 & v &
<7 &
\O R
& v

Figure 9. Performance of high translation bandwidth workloads to an IDEAL MMU (closer to 1.0 is better).

je] 1.0
g 0.8
© D .
£3 0.6
sS 0.4
E = 0.2
w
= 0.0
= (9 .,
= & & ¢ &
2 \e(/’Q °§§ 7
o
& Q &
&
Q’b
[Design [Per-CUTLB [IOMMUTLB | B/W Limit |

IDEAL MMU | Infinite size Infinite size Infinite
Baseline 512 32-entry 512-entry 1 Access/Cycle
Baseline 16K 32-entry 16K-entry 1 Access/Cycle
VC W/O OPT - 512-entry 1 Access/Cycle
VC With OPT - +16K-entry FBT | 1 Access/Cycle

Table 2. Evaluated MMU design configurations.

cache design (VC With OPT, red bars) that employs the FBT
as a second-level TLB. Except for the ideal MMU design, the
shared IOMMU TLB bandwidth is limited to one access per
cycle. Table 2 summarizes the MMU designs.

The baseline with a small shared IOMMU TLB (black bars)
shows an average 42% performance degradation relative to
an IDEAL MMU for high translation bandwidth workloads.
We model a very large shared IOMMU TLB to analyze the
impact of the IOMMU miss overhead.® We notice that doing
so does not alleviate the overhead (gray bars). This suggests
that most performance overheads result from the serializa-
tion at the shared IOMMU TLB due to its limited bandwidth.

A virtual cache hierarchy uses existing caches to filter
translation bandwidth. Our proposal (VC W/O OPT, orange
bars) achieves performance of the IDEAL MMU for most of
these workloads. With a virtual cache hierarchy, the seri-
alization overhead on the shared IOMMU TLB is removed
even with a small shared IOMMU TLB.

Filtering the high bandwidth exposes some page table
walk overhead for two workloads (fw and bfs). Our obser-
vations are in line with the results of a recent study [37].
As described in Section 4.1 (see Address Translation), the
FBT can be employed as a second-level shared IOMMU TLB
(VC With OPT). By consulting the FBT on a small shared
IOMMU TLB miss, we can reduce the page table walk over-
head and achieve almost the same performance as the IDEAL
MMU without any extra area overhead. With similar area
overhead to the large IOMMU TLB, we get much better per-
formance because the virtual cache hierarchy filters the high
translation bandwidth.

®Designers could take this approach because structures in the IOMMU are
less latency constrained.

Figure 10 shows relative speedup of our proposal com-
pared to the baseline design with large (128-entry) fully asso-
ciative per-CU TLBs and a large (16K-entry) shared IOMMU
TLB. Using larger per-CU TLBs reduces bandwidth demands
for the shared IOMMU TLB, showing comparable perfor-
mance for some workloads (e.g., bc, fw_block, and 1lud).
However, using the virtual cache hierarchy shows an aver-
age of about 1.2X speedup over the large per-CU TLBs; large
private TLBs can filter some accesses, but the virtual cache
hierarchy filters more for high translation bandwidth work-
loads. In addition, virtual caches also have the benefits of
reducing the power, energy, and thermal issues of consulting
per-CU TLBs on every memory access [39, 46].

Low translation bandwidth workloads

Our technique shows less benefits for low translation band-

width workloads (kmeans, backprop, hotspot, nw, and pathfinder)

due to low shared IOMMU TLB bandwidth demands. How-
ever, there is no performance degradation.

The rightmost bars (Average(ALL)) in Figure 9 show the
relative performance of all 15 workloads. This shows that
there is high performance degradation on average across
all workloads (about 32%). However, virtual caches achieve
nearly ideal performance.

Takeaway 2: We can achieve considerable performance ben-
efits by filtering accesses to the shared IOMMU TLB through
a GPU virtual cache hierarchy.

5.3 Power and Energy Benefits

We can expect power reduction by not consulting TLBs on
every cache access. In addition, due to the filtering effect of
the virtual cache hierarchy, the IOMMU is less frequently
consulted. We can also reduce GPU L2 lookups by using
the FBT as a coherence filter [35]. Our design increases per-
formance as well, leading to proportional energy benefits.
These potential benefits are not quantified in this paper.

Takeaway 3: We expect considerable energy benefits by
reducing the serialization delay at the shared IOMMU TLB.

g
=}

=
0

=
=]

Speedup to Larger Per-CU TLBs
o
wv

0.0
& 'o& & (é\s \\\,b o \oe,{- <& &\o ,b%e’
K 2 O & &
& Q’b% R v
(b (&) o&/
& &
& C

£,

Figure 10. Comparison with larger per-CU TLBs.

L1-Only VC(32)
L1-Only VC (128)

L1&L2VC

0 0.5 1 1.5 2
Speedup Relative to Baseline 16K

Figure 11. Comparison with L1 virtual cache design.

5.4 L1-only Virtual Caches

We also evaluate the effectiveness of a virtual cache design
with only virtual L1 caches and a physical L2 cache. This
system is similar to previous CPU virtual cache designs.
Figure 11 shows relative speedup, compared to the baseline
physical cache design ("Baseline 16K") for the whole GPU
virtual cache hierarchy (L1 and L2 VC) and two virtual L1
cache designs (L1-only VC). The black bar shows the speedup
of the virtual L1-only design that has a 32 per-CU TLB. We
also consider a larger (128-entry) per-CU TLB (gray bar).

Virtualizing L1 caches alone can also obtain some perfor-
mance benefits (1.35X speedup on average). This is expected
as we found many accesses that miss in per-CU TLBs but hit
in the L1 cache (black bars, Figure 2). By extending the scope
of virtual caches to the whole GPU cache hierarchy, how-
ever, we show more latency and energy benefits. Thirty-five
percent more per-CU TLB misses are filtered out through
the L2 virtual cache (red bars in Figure 2). This leads to fewer
TLB and FBT accesses compared to L1-only designs, which
reduces power consumption. In addition, we can reduce the
design complexity of the GPU cache hierarchy by completely
removing per-CU TLB structures from GPUs.

Takeaway 4: A whole GPU virtual cache hierarchy is com-
pelling relative to L1-only virtual caches in terms of perfor-
mance, power, energy, and design complexity.

6 Related Work

GPU Address Translation: There are some studies that in-
vestigate address translation for the GPU MMU. Power et al.

[37] discussed diverse design aspects for the integration of a
CPU-style MMU into GPUs. Bharath et al. [33] also studied
how to lower the overheads of GPU address translation, but
they more focused on the impact of warp schedule on the
address translation. These previous works mainly focus on
how to support GPU address translation, while we aim to
reduce the overhead of the address translation. Others stud-
ied the overheads of virtual address translation on real GPU
hardware [20, 47]. Kumar et al. proposed Fusion [27], a coher-
ent virtual cache hierarchy for specialized fixed-functional
accelerators to reduce data transfer overhead between the
accelerators in a tile and the host CPU. Koukos et al. consider
an L1-Only VC design for the GPU [26], but do not specif-
ically analyze the performance benefits of virtual caching,
focusing instead on reducing coherence traffic overheads
like the prior work [21].

CPU Virtual Caching: Some proposals take advantage
of reverse mapping (physical to virtual address) table to
deal with synonym accesses in virtual caches. Goodman
[16] proposed dual-tags (virtual and real tags) to efficiently
support reverse translations for cache coherence. Instead of
using a separate reverse translation table, Wang et al. [48]
keep track of back-pointers with each cache line of a physical
L2 cache to identify the corresponding data cached with
synonyms. Kaxiras and Ros [21] introduced simple virtual
cache coherence. It exploits self-invalidation and downgrade
to eliminate the need of reverse translations.

Other techniques require OS involvement to manage vir-
tual address synonyms. Some proposals advocate for elimi-
nating or limiting sharing [9, 10, 17, 25, 51] to prevent syn-
onyms from occurring. Enigma [53] uses virtual to interme-
diate address (IA) translation to avoid synonym problems,
and the whole cache hierarchy employs the IA space. Basu
et al. proposed an opportunistic virtual caching (OVC) for L1
virtual caches by leveraging that accesses with read-write
synonyms are not prevalent [5]. The cache usually uses vir-
tual addresses while physical addresses are used for read-
write synonyms causing data consistency issues in virtual
caches. In a similar vein, Park et al. proposed a hybrid virtual
cache [31]. This also selectively switches between virtual and
physical caching like the OVC, while virtual caching is used
for the entire cache hierarchy. Qui and Dubois proposed a
synonym lookaside buffer (SLB) [40, 41], which enforces the
use of a unique primary virtual address for virtual address
synonyms to avoid synonym issues. The conventional TLBs
are replaced with a small scalable SLB that provides primary
virtual addresses. The technique requires OS involvement to
maintain mappings primary addresses and other synonyms.

We take advantage of several features of previous CPU
virtual cache designs for our proposal. However, we focus on
integrating virtual caching into a GPU cache hierarchy by
keeping the flexibility of the GPU’s unique cache architecture
without any software involvement.

7 Conclusion

Address translation support on GPUs is important to support
flexible programmability. However, especially for emerging
GPU workloads, highly divergent memory accesses put con-
siderable pressure on address translation hardware. We show
that many of these shared TLB accesses can be eliminated by
using a virtual cache hierarchy. We present a practical and
software transparent design of virtual caching for the entire
GPU cache hierarchy. This virtual cache hierarchy filters
most of the shared TLB accesses, achieving almost the same
performance as an ideal MMU.

Although we focused solely on GPUs in this work, we
believe that other on-die accelerators that use virtual ad-
dresses may want to consider using a virtual cache hierarchy.
Other accelerators will likely have similar characteristics to
GPUs (e.g., less likelihood of synonyms and offloading OS
function to CPUs), making them amenable to virtual caching.
We believe these GPUs, and potentially other co-processing
units, finally provide an environment where virtual caches
are both practical and beneficial.

Acknowledgements

This work was supported in part by funding from the William
F. Vilas Trust Estate (Vilas Research Professor), the Univer-
sity of Wisconsin Foundation (John P. Morgridge Profes-
sor), the Wisconsin Alumni Research Foundation, and the
National Science Foundation (grants CCF-1617824 and CCF-
1533885). The authors thank the anonymous reviewers for
their insightful feedback, and Gagan Gupta, Mark D. Hill,
David A. Wood, Mikko H. Lipasti, Karu Sankaralingam, Marc
Orr, Arkaprava Basu, Abhishek Bhattacharjee, and Jan Vesely
for their helpful comments and discussions.

Appendix
Figure 12 shows that blocks in the cache hierarchy are likely
to reside longer than the lifetime of the corresponding per-
CU TLB entries. This figure shows the relative lifetime of
pages in each level of the cache hierarchy and the TLB. The
bf's workload is considered for this analysis, but other work-
loads show similar patterns. The black line indicates the
residence time of TLB entries. The other two lines show the
active lifetime of data in L1 caches (blue line) and L2 shared
cache (red line); the active lifetime is defined as the period
between when data is cached and when it is last accessed.
We notice that 90% of TLB entries are evicted after 5000 ns.
However, 40% of data in L1 caches (@) and 60% of data in a
shared L2 cache (@) are still actively used. Thus, accesses
to such data hit in the cache hierarchy but are highly likely
to miss in the TLB. In these cases, a virtual cache hierarchy
is an effective TLB miss filter.

Also, there is a noticeable gap between two lines for caches,
suggesting that data not in L1 caches is frequently found

100% ror
90% 5
80%
o 70%
&
o 60%
g (1]
s 50%
<
S 40%
“é 30% —o— Per-CU TLB Entry
20% =—Data in L1 Cache
10% == Data in L2 Cache
0% . . .
0 10000 20000 30000 40000

Lifetime of pages (ns)

Figure 12. Relative lifetime of active pages in each level of
the cache hierarchy and the per-CU TLB: bfs workload.

in a larger L2 cache. This supports our observation in Fig-
ure 2; the red bar is larger than the black bar for many
workloads such as color_max, fw_block, mis, pagerank,
pagerank_spmv, bfs, and lud. Thus, extending the scope of
virtual caches to the L2 shared cache helps to filter out more
TLB misses.

References

[1] [n. d]. AMD and HSA. ([n. d.]). Retrieved Accessed:
2017-12-09 from http://www.amd.com/en-us/innovations/software-
technologies/hsa

[2] [n. d.]. The ARM CoreLink CCI-550 Cache Coherent Intercon-

nect. ([n. d.]). Retrieved Accessed: 2017-12-09 from https:

//developer.arm.com/products/system-ip/corelink-interconnect/

corelink-cache-coherent-interconnect-family/corelink-cci-550

Todd M. Austin and Gurindar S. Sohi. 1996. High-bandwidth Ad-

dress Translation for Multiple-issue Processors. In Proceedings of the

23rd Annual International Symposium on Computer Architecture (ISCA

’96). ACM, New York, NY, USA, 158-167. https://doi.org/10.1145/

232973.232990

Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and

Michael M. Swift. 2013. Efficient Virtual Memory for Big Memory

Servers. In Proceedings of the 40th Annual International Symposium on

Computer Architecture (ISCA ’13). ACM, New York, NY, USA, 237-248.

https:/doi.org/10.1145/2485922.2485943

Arkaprava Basu, Mark D. Hill, and Michael M. Swift. 2012. Reducing

Memory Reference Energy with Opportunistic Virtual Caching. In

Proceedings of the 39th Annual International Symposium on Computer

Architecture (ISCA ’12). IEEE Computer Society, Washington, DC, USA,

297-308. http://dl.acm.org/citation.cfm?id=2337159.2337194

Benjie Batanes. 2016. PS4 Pro Specs: How Does It Fare

Against Xbox Project Scorpio? Which One Is Better? (No-

vember 2016). Retrieved Accessed: 2017-12-09 from

http://www.itechpost.com/articles/50922/20161107/ps4-pro-
specs-fare-against-xbox-project-scorpio-one-better.htm

A. Bhattacharjee. 2017. Preserving Virtual Memory by Mitigating the

Address Translation Wall. IEEE Micro 37, 5 (September 2017), 6-10.

https://doi.org/10.1109/MM.2017.3711640

Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi. 2011.

Shared Last-level TLBs for Chip Multiprocessors. In Proceedings of the

2011 IEEE 17th International Symposium on High Performance Computer

Architecture (HPCA ’11). IEEE Computer Society, Washington, DC,

USA, 62-63. http://dl.acm.org/citation.cfm?id=2014698.2014896

[3

—

[4

—

[5

—

(6

—

[7

—

8

—

http://www.amd.com/en-us/innovations/software-technologies/hsa
http://www.amd.com/en-us/innovations/software-technologies/hsa
https://developer.arm.com/products/system-ip/corelink-interconnect/corelink-cache-coherent-interconnect-family/corelink-cci-550
https://developer.arm.com/products/system-ip/corelink-interconnect/corelink-cache-coherent-interconnect-family/corelink-cci-550
https://developer.arm.com/products/system-ip/corelink-interconnect/corelink-cache-coherent-interconnect-family/corelink-cci-550
https://doi.org/10.1145/232973.232990
https://doi.org/10.1145/232973.232990
https://doi.org/10.1145/2485922.2485943
http://dl.acm.org/citation.cfm?id=2337159.2337194
http://www.itechpost.com/articles/50922/20161107/ps4-pro-specs-fare-against-xbox-project-scorpio-one-better.htm
http://www.itechpost.com/articles/50922/20161107/ps4-pro-specs-fare-against-xbox-project-scorpio-one-better.htm
https://doi.org/10.1109/MM.2017.3711640
http://dl.acm.org/citation.cfm?id=2014698.2014896

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21

—

[22]

(23]

Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D.
Lazowska. 1994. Sharing and Protection in a Single-address-space
Operating System. ACM Trans. Comput. Syst. 12, 4 (Nov. 1994), 271-
307. https://doi.org/10.1145/195792.195795

Jeffrey S. Chase, Henry M. Levy, Edward D. Lazowska, and Miche
Baker-Harvey. 1992. Lightweight Shared Objects in a 64-bit Operating
System. In Conference Proceedings on Object-oriented Programming
Systems, Languages, and Applications (OOPSLA *92). ACM, New York,
NY, USA, 397-413. https://doi.org/10.1145/141936.141969

Shuai Che, Bradford M. Beckmann, Steven K. Reinhardt, and Kevin
Skadron. 2013. Pannotia: Understanding irregular GPGPU graph appli-
cations. In Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), 2013 IEEE International Symposium on. IEEE,
185-195.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark
suite for heterogeneous computing. In Workload Characterization, 2009.
IISWC 2009. IEEE International Symposium on. IEEE, 44-54.

Xuhao Chen, Li-Wen Chang, Christopher I. Rodrigues, Jie Lv, Zhiying
Wang, and Wen-Mei Hwu. 2014. Adaptive Cache Management for
Energy-Efficient GPU Computing. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-47).
IEEE Computer Society, Washington, DC, USA, 343-355. https://
doi.org/10.1109/MICRO.2014.11

Ian Cutress. 2017. Hot Chips: Microsoft Xbox One X Scorpio En-
gine Live Blog. (August 2017). Retrieved Accessed: 2017-12-13
from https://www.anandtech.com/show/11740/hot-chips-microsoft-
xbox-one-x-scorpio-engine-live-blog-930am-pt-430pm-utc

Koen De Bosschere, Albert Cohen, Jonas Maebe, and Harm Munk.
2015. HiPEAC Vision. (2015).

James R. Goodman. 1987. Coherency for Multiprocessor Virtual
Address Caches. SIGPLAN Not. 22, 10 (Oct. 1987), 72-81. https:
//doi.org/10.1145/36205.36186

Mark Hill, Susan Eggers, Jim Larus, George Taylor, Glenn Adams, B. K.
Bose, Garth Gibson, Paul Hansen, Jon Keller, Shing Kong, Corinna Lee,
Daebum Lee, Joan Pendleton, Scott Ritchie, David A. Wood, Ben Zorn,
Paul Hilfinger, Dave Hodges, Randy Katz, John Ousterhout, and Dave
Patterson. 1986. Design Decisions in SPUR. Computer 19, 11 (Nov.
1986), 8-22. https://doi.org/10.1109/MC.1986.1663096

Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Bene-
dict R. Gaster, Mark D. Hill, Steven K. Reinhardt, and David A. Wood.
2014. Heterogeneous-race-free Memory Models. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’14). ACM, New York, NY,
USA, 427-440. https://doi.org/10.1145/2541940.2541981

Bruce Jacob. 2009. The Memory System: You Can’T Avoid It, You Can’T
Ignore It, You Can’T Fake It. Morgan and Claypool Publishers.

Tomas Karnagel, Tal Ben-Nun, Matthias Werner, Dirk Habich, and
Wolfgang Lehner. 2017. Big Data Causing Big (TLB) Problems:
Taming Random Memory Accesses on the GPU. In Proceedings of
the 13th International Workshop on Data Management on New Hard-
ware (DAMON °’17). ACM, New York, NY, USA, Article 6, 10 pages.
https://doi.org/10.1145/3076113.3076115

Stefanos Kaxiras and Alberto Ros. 2013. A New Perspective for Efficient
Virtual-cache Coherence. In Proceedings of the 40th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’13). ACM, New
York, NY, USA, 535-546. https://doi.org/10.1145/2485922.2485968
Andy Kegel, Paul Blinzer, Arka Basu, and Maggie Chan. 2016. Vir-
tualizing IO through IO Memory Management Unit. (2016). Re-
trieved Accessed: 2017-12-09 from http://pages.cs.wisc.edu/~basu/
iscajommututorial/ IOMMUTUTORIALASPLOS2016.pdf

Hyesoon Kim. 2012. Supporting Virtual Memory in GPGPU With-
out Supporting Precise Exceptions. In Proceedings of the 2012 ACM

SIGPLAN Workshop on Memory Systems Performance and Correctness
(MSPC ’12). ACM, New York, NY, USA, 70-71. https://doi.org/10.1145/

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

2247684.2247698

Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel,
Amir Wated, and Mark Silberstein. 2014. GPUnet: Networking Ab-
stractions for GPU Programs. In Proceedings of the 11th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI’14).
USENIX Association, Berkeley, CA, USA, 201-216. http://dl.acm.org/
citation.cfm?id=2685048.2685065

Eric J. Koldinger, Jeffrey S. Chase, and Susan J. Eggers. 1992. Archi-
tecture Support for Single Address Space Operating Systems. In Pro-
ceedings of the Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS V). ACM,
New York, NY, USA, 175-186. https://doi.org/10.1145/143365.143508
Konstantinos Koukos, Alberto Ros, Erik Hagersten, and Stefanos Kaxi-
ras. 2016. Building Heterogeneous Unified Virtual Memories (UVMs)
Without the Overhead. ACM Trans. Archit. Code Optim. 13, 1, Article
1 (March 2016), 22 pages. https://doi.org/10.1145/2889488
Snehasish Kumar, Arrvindh Shriraman, and Naveen Vedula. 2015. Fu-
sion: Design Tradeoffs in Coherent Cache Hierarchies for Accelerators.
In Proceedings of the 42nd Annual International Symposium on Com-
puter Architecture (ISCA ’15). ACM, New York, NY, USA, 733-745.
https://doi.org/10.1145/2749469.2750421

George Kyriazis. 2012. Heterogeneous system architecture: A technical
review. AMD Fusion Developer Summit (2012).

Jaikrishnan Menon, Marc De Kruijf, and Karthikeyan Sankaralingam.
2012. iGPU: Exception Support and Speculative Execution on GPUs. In
Proceedings of the 39th Annual International Symposium on Computer
Architecture (ISCA ’12). IEEE Computer Society, Washington, DC, USA,
72-83. http://dl.acm.org/citation.cfm?id=2337159.2337168

Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. 2002. Prac-
tical, Transparent Operating System Support for Superpages. SIGOPS
Oper. Syst. Rev. 36, SI (Dec. 2002), 89-104. https://doi.org/10.1145/
844128.844138

Chang Hyun Park, Taekyung Heo, and Jaechyuk Huh. 2016. Efficient
Synonym Filtering and Scalable Delayed Translation for Hybrid Virtual
Caching. In Proceedings of the 43th Annual International Symposium on
Computer Architecture (ISCA ’16). IEEE Computer Society, Washington,
DC, USA.

Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek
Bhattacharjee. 2012. CoLT: Coalesced Large-Reach TLBs. In Proceed-
ings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-45). IEEE Computer Society, Washington,
DC, USA, 258-269. https://doi.org/10.1109/MICRO.2012.32
Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014. Archi-
tectural Support for Address Translation on GPUs: Designing Mem-
ory Management Units for CPU/GPUs with Unified Address Spaces.
In Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’14). ACM, New York, NY, USA, 743-758. https://doi.org/10.1145/
2541940.2541942

Jason Power. 2017. Inferring Kaveri’s Shared Virtual Memory
Implementation. (July 2017). Retrieved Accessed: 2017-12-
09 from http://www.lowepower.com/jason/inferring-kaveris-shared-
virtual-memory-implementation.html

Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M.
Beckmann, Mark D. Hill, Steven K. Reinhardt, and David A. Wood. 2013.
Heterogeneous system coherence for integrated CPU-GPU systems.
In Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-46). ACM, 457-467.

Jason Power, Joel Hestness, Marc Orr, Mark Hill, and David Wood.
2014. gem5-gpu: A Heterogeneous CPU-GPU Simulator. Com-
puter Architecture Letters 13, 1 (Jan 2014). https://doi.org/10.1109/
LCA.2014.2299539

Jason Power, Mark D. Hill, and David A. Wood. 2014. Supporting
x86-64 address translation for 100s of GPU lanes. In Proceedings of the

https://doi.org/10.1145/195792.195795
https://doi.org/10.1145/141936.141969
https://doi.org/10.1109/MICRO.2014.11
https://doi.org/10.1109/MICRO.2014.11
https://www.anandtech.com/show/11740/hot-chips-microsoft-xbox-one-x-scorpio-engine-live-blog-930am-pt-430pm-utc
https://www.anandtech.com/show/11740/hot-chips-microsoft-xbox-one-x-scorpio-engine-live-blog-930am-pt-430pm-utc
https://doi.org/10.1145/36205.36186
https://doi.org/10.1145/36205.36186
https://doi.org/10.1109/MC.1986.1663096
https://doi.org/10.1145/2541940.2541981
https://doi.org/10.1145/3076113.3076115
https://doi.org/10.1145/2485922.2485968
http://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf
http://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf
https://doi.org/10.1145/2247684.2247698
https://doi.org/10.1145/2247684.2247698
http://dl.acm.org/citation.cfm?id=2685048.2685065
http://dl.acm.org/citation.cfm?id=2685048.2685065
https://doi.org/10.1145/143365.143508
https://doi.org/10.1145/2889488
https://doi.org/10.1145/2749469.2750421
http://dl.acm.org/citation.cfm?id=2337159.2337168
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/844128.844138
https://doi.org/10.1109/MICRO.2012.32
https://doi.org/10.1145/2541940.2541942
https://doi.org/10.1145/2541940.2541942
http://www.lowepower.com/jason/inferring-kaveris-shared-virtual-memory-implementation.html
http://www.lowepower.com/jason/inferring-kaveris-shared-virtual-memory-implementation.html
https://doi.org/10.1109/LCA.2014.2299539
https://doi.org/10.1109/LCA.2014.2299539

(38]

(39]

(40

=

[41

—

[42]

[43]

(45]

2014 IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA ’14). IEEE, 568—-578.

Jason Power, Yinan Li, Mark D. Hill, Jignesh M. Patel, and David A.
Wood. 2015. Toward GPUs Being Mainstream in Analytic Processing:
An Initial Argument Using Simple Scan-aggregate Queries. In Proceed-
ings of the 11th International Workshop on Data Management on New
Hardware (DaMoN’15). ACM, New York, NY, USA, Article 11, 8 pages.
https://doi.org/10.1145/2771937.2771941

Kiran Puttaswamy and Gabriel H. Loh. 2006. Thermal Analysis of a
3D Die-stacked High-performance Microprocessor. In Proceedings of
the 16th ACM Great Lakes Symposium on VLSI (GLSVLSI "06). ACM,
New York, NY, USA, 19-24. https://doi.org/10.1145/1127908.1127915
Xiaogang Qiu and Michel Dubois. 2001. Towards virtually-addressed
memory hierarchies. In Proceedings of the 2001 IEEE 7th International
Symposium on High Performance Computer Architecture (HPCA 01).
51-62. https://doi.org/10.1109/HPCA.2001.903251

Xiaogang Qiu and Michel Dubois. 2008. The Synonym Lookaside
Buffer: A Solution to the Synonym Problem in Virtual Caches. IEEE
Trans. Comput. 57, 12 (Dec. 2008), 1585-1599. https://doi.org/10.1109/
TC.2008.108

Jude A. Rivers, Gary S. Tyson, Edward S. Davidson, and Todd M. Austin.
1997. On High-bandwidth Data Cache Design for Multi-issue Pro-
cessors. In Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO-30). IEEE Computer Society,
Washington, DC, USA, 46-56. http://dl.acm.org/citation.cfm?id=
266800.266805

Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2013.
GPUfs: Integrating a File System with GPUs. In Proceedings of the
18th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’13). ACM, New York, NY,
USA, 485-498. https://doi.org/10.1145/2451116.2451169
Abhayendra Singh, Shaizeen Aga, and Satish Narayanasamy. 2015.
Efficiently Enforcing Strong Memory Ordering in GPUs. In Proceedings
of the 48th International Symposium on Microarchitecture (MICRO-
48). ACM, New York, NY, USA, 699-712. https://doi.org/10.1145/
2830772.2830778

Inderpreet Singh, Arrvindh Shriraman, Wilson W. L. Fung, Mike
O’Connor, and Tor M. Aamodt. 2013. Cache Coherence for GPU

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

Architectures. In Proceedings of the 2013 IEEE 19th International Sym-
posium on High Performance Computer Architecture (HPCA ’13). IEEE
Computer Society, Washington, DC, USA, 578-590. https://doi.org/
10.1109/HPCA.2013.6522351

Avinash Sodani. 2011. Race to Exascale: Opportunities and Challenges
(MICRO 2011 Keynote talk).

J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattacharjee. 2016.
Observations and opportunities in architecting shared virtual memory
for heterogeneous systems. In 2016 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). 161-171.
https://doi.org/10.1109/ISPASS.2016.7482091

W. H. Wang, J.-L. Baer, and H. M. Levy. 1989. Organization and Per-
formance of a Two-level Virtual-real Cache Hierarchy. In Proceed-
ings of the 16th Annual International Symposium on Computer Ar-
chitecture (ISCA ’89). ACM, New York, NY, USA, 140-148. https:
//doi.org/10.1145/74925.74942

Neil H. E. Weste and Kamran Eshraghian. 1985. Principles of CMOS VLSI
Design: A Systems Perspective. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

H. Wong, M. M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos.
2010. Demystifying GPU microarchitecture through microbench-
marking. In 2010 IEEE International Symposium on Performance Anal-
ysis of Systems Software (ISPASS). 235-246. https://doi.org/10.1109/
ISPASS.2010.5452013

D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill, and J. M. Pendleton. 1986.

An In-cache Address Translation Mechanism. In Proceedings of the
13th Annual International Symposium on Computer Architecture (ISCA

’86). IEEE Computer Society Press, Los Alamitos, CA, USA, 358-365.
http://dl.acm.org/citation.cfm?id=17407.17398

H. Yoon and G. S. Sohi. 2016. Revisiting virtual L1 caches: A practi-
cal design using dynamic synonym remapping. In Proceedings of the
2016 IEEE 21st International Symposium on High Performance Com-
puter Architecture (HPCA ’16). 212-224. https://doi.org/10.1109/
HPCA.2016.7446066

Lixin Zhang, Evan Speight, Ram Rajamony, and Jiang Lin. 2010.
Enigma: Architectural and Operating System Support for Reducing
the Impact of Address Translation. In Proceedings of the 24th ACM
International Conference on Supercomputing (ICS ’10). ACM, New York,
NY, USA, 159-168. https://doi.org/10.1145/1810085.1810109

https://doi.org/10.1145/2771937.2771941
https://doi.org/10.1145/1127908.1127915
https://doi.org/10.1109/HPCA.2001.903251
https://doi.org/10.1109/TC.2008.108
https://doi.org/10.1109/TC.2008.108
http://dl.acm.org/citation.cfm?id=266800.266805
http://dl.acm.org/citation.cfm?id=266800.266805
https://doi.org/10.1145/2451116.2451169
https://doi.org/10.1145/2830772.2830778
https://doi.org/10.1145/2830772.2830778
https://doi.org/10.1109/HPCA.2013.6522351
https://doi.org/10.1109/HPCA.2013.6522351
https://doi.org/10.1109/ISPASS.2016.7482091
https://doi.org/10.1145/74925.74942
https://doi.org/10.1145/74925.74942
https://doi.org/10.1109/ISPASS.2010.5452013
https://doi.org/10.1109/ISPASS.2010.5452013
http://dl.acm.org/citation.cfm?id=17407.17398
https://doi.org/10.1109/HPCA.2016.7446066
https://doi.org/10.1109/HPCA.2016.7446066
https://doi.org/10.1145/1810085.1810109

	Abstract
	1 Introduction
	2 Background
	2.1 GPU Address Translation
	2.2 Virtual Caching

	3 Motivation
	3.1 Virtual Cache Hierarchy Opportunities
	3.2 Discussion of Conventional Mechanisms
	3.3 Summary and Rationale of Our Approach

	4 Practical GPU Virtual Cache Hierarchy
	4.1 Supporting Virtual Memory without OS Involvement
	4.2 Integration with a Modern GPU Cache Hierarchy
	4.3 Other Design Aspects of Proposed Design

	5 Evaluation
	5.1 Virtual Cache Hierarchy's Filtering
	5.2 Execution Time Benefits
	5.3 Power and Energy Benefits
	5.4 L1-only Virtual Caches

	6 Related Work
	7 Conclusion
	References

