Efficient Detection of All Pointer and
Array Access Errors

Todd M. Austin (presenting)
Scott E. Breach
Gurindar S. Sohi

Computer Sciences Department
University of Wisconsin — Madison

PLDI 94 1 of 14

Outline I

Memory Access Errors
Motivation

Basic Methodology
Check Optimization
Experimental Evaluation

Summary and Future Work

PLDI 94

2 of 14

‘ Memory Access Errors I

A memory access error is any dereference which

accesses storage outside of the intended referent.

e spatial access error, outside of referent address bounds
e temporal access error, outside of referent lifetime

e intended referent, the memory object used to create the pointer
value (in C, reference created with malloc() or ‘&’)

PLDI 94 3 of 14

‘ Motivation I

e programming errors are costly

e aggravated by abstraction, parallel programming, and
programming in the large

e memory access errors are difficult to find and fix
— arise under exceptional conditions
— difficult to reproduce

— difficult to correlate fault to error

e therefore: need both efficiency and complete coverage

PLDI 94 4 of 14

Safe Pointer Abstractionl

safe pointer value:

capability store

"FOREVER’

value base/size storage class capability
1016 1000/100 |Heap 46
AN
\
; 1000 1100

é malloc/call() free/return/longjmp

storage allocation

Valid Dereference:

(capability € capStore) A (base < value < base + size — sizeof (xvalue))

PLDI 94

5 of 14

Safe Pointer Creation, Manipulation, and UseI

value base/size storage class capability
malloc(sizeof(struct Foo)) ==>|2000 2000/32 |Heap 52
value base/size storage class capability
&p—->next—>status ==>|4032 4032/4 | Local 36
value base/size storage class capability value base/size storage class capability
1010 1000/100 | Heap 46 +6 ==>11016 1000/100 |Heap 46
value base/size storage class capability
deref | 1010 1000/100 | Heap 46 ==> perform access check
PLDI '94 6 of 14

Program Transformations I

C Program

:

Parse/

Semantic Analysis

Implemented with C++ compiler

~ - - — — —

[\

I |
. | . .

Pointer Operator Check Insertion Code Generation :

Conversion Conversi%) |

I |

l

Run-time Compile/Link
Library

Safe Executable

PLDI 94 7 of 14

Requisites of Complete Coveragel

e storage management must be apparent

— systems programmer can assist with API

e pointer constants must be well defined

— NULL, functions, strings are ok, others use API

e object attributes must be preserved
— cannot be manipulated by program
— cannot be lost

— “well behaved” programs can be checked efficiently

PLDI 94 8 of 14

‘ Check Optimization I

A check at a dereference of pointer value v may be elided
at program pointer p if the previous, equivalent check executed

on v has not been invalidated by some program action.

e run-time check optimization
— more flexible, but more run-time overhead
— eliding capability store searches: free counter

— eliding range checks: memoization

e compile-time check optimization
— less flexible, no run-time overhead

— similar to common subexpression elimination

PLDI 94 9 of 14

Execution Overheads I

12
0 e
|=
-
S
c 81 — Tt e
S
5
=
E S T TN
e} —
)
N |
= e o A Y I [e
E
o
Z
0

Uno;:l)t OptI I Unorl)t OptI I Unoplt OptI I Unolljt OptI I UnoE)tOptI I Unopl)t Opt
Anagram Backprop BC Min-Span Partition YACR-2

[] Original Program [__] User Defined Ptr [Spatial Data
[Spatial Checks [] Temporal Data [__] Temporal Checks

PLDI 94 10 of 14

‘ Results I

execution overheads are low enough for development
environments (130-540%), not low enough for in-field releases

greatest slowdown factors:
— check insertion breaks traditional optimizations
— C++ templates are problematic

— safe pointers are not register allocated
run-time optimization of spatial checks is ineffective
run-time optimization of temporal checks works well

text and data size overheads are quite low

PLDI 94

11 of 14

‘Comparison to Other Checking Techniquesl

e How are intended referents tracked?

— “fat” pointers vs. no tracking

e How is the state of active memory represented?

— capability store vs. memory state map

e How is the program instrumented?

— object- vs. source-level

e What optimizations are applied?

— spatial and temporal check optimization

PLDI 94 12 of 14

Summary I

technique capable of detecting ALL memory access errors
source level program transformations

works on existing codes, e.g., those written in C/C++
employs safe pointers — pointer value + referent details

compile- and run-time access check optimization possible

540% overhead for Partition (3.7 insts/deref)

PLDI 94

13 of 14

Current and Future Workl

re-target compiler from C++ to C
compile-time check optimization
run-time check improvements
back-end integration

parallel checking

storage leak detection

interface issues (libraries, system calls, unsafe code)

availability: e-mail austin@cs.wisc.edu

PLDI 94

14 of 14

‘ Temporal Access ErMﬁﬁ@Eﬁﬁplel

[X, X, X, X, NEVER]
[2000, 2000, 10, Heap, 1]

P q capability store
[2000, 2000, 10, Heap, 2]
char *p, *q; " {1}
p = malloc(10); { 11}
q = p+6; .
q; / no error */
free(p);
p = nalloc(lO); { 2}
q; / error!!ll */ !

[value, base, size, storageClass, capability]

PLDI 94 15 of 14

Analyzed Programs I

Program Instructions Insts per Dereference Description
Static | Dynamic Static | Dynamic
Anagram 10.0K 19.4M 106.3 7.6 anagram generator
Backprop 10.8K 122.4M 148.5 8.9 neural net trainer
GNU BC 19.5K 12.2M 15.5 7.6 arbitrary precision calc
Min-Span 11.9K 13.3M 48.7 5.9 min spanning tree comp
Partition 13.5K 21.1M 62.4 3.7 graph partitioning tool
YACR-2 18.5K 546 .2M 37.1 14.0 | VLSI channel router
PLDI '94 16 of 14

‘Comparison to Other Checking Techniquesl

e How are intended referents tracked?
— “fat” pointers (Safe-C, CodeCenter, RTCC, Bce, UW-Pascal)

— intended referents are not tracked (Purify)

e How is the state of active memory represented?
— capability store (Safe-C)
— memory state map (Purify, CodeCenter)
— keys stored in heap node headers (UW-Pascal)
— memory state is not tracked (RTCC, Bcc)

e How is the program instrumented?
— object-level: (Purify)
— source-level /compile-time: (Safe-C, RTCC, Bcc, UW-Pascal)

— run-time: (CodeCenter)

PLDI 94 17 of 14

