Why Multiscalar?

o

%ﬂlur

Guri Sohi

Wisconsin Multiscalar Project
University of Wisconsin — Madison
URL: http://www.cs.wisc.edu/~mscalar

4 Outline N

* The Problem

* Processing basics and wish lists
* Options for high performance

* The multiscalar model

* Performance results

* Concluding remarks

_ /

Guri Sohi B Why Multiscalar? Slide

-

The Problem

Software: create static image of
dynamic computation

Hardware: recreate dynamic computation
from static representation and
carry out computation

Guri Sohi B Why Multiscalar?

Slide

-

_

Processing Hardware: Big Picture

~

e Start with a static representation of a
program PROGRAM

* Sequence through the program to generate
the dynamic stream of operations

® Use single PC to walk through static
representation?

* Execute operations in dynamic stream
* Schedule operations for execution
* Execute operations
e Communicate values

Guri Sohi B Why Multiscalar?

/ Basic Issues

* Sequencing
* Scheduling
* Operation execution

* Operand communication

-

Guri Sohi B Why Multiscalar?

Slide

4 The Big Question

~

* How do we sequence, schedule, execute, and communicate
in a more powerful manner?

* Powerful =
* a large variety of applications
* time efficient
® space efficient
* power efficient?
® etc.

_

Guri Sohi B Why Multiscalar?

Slide

//7 Target: 10 IPC \\

* Sequence through static program and establish a large
instruction window (100s of instructions)

* Maintain a large window

* Sequence through program and initiate at least 10
operations into this window per cycle

* Schedule for execution at least 10 operations per cycle

* Provide lots of storage for inter-operation communications

N /

Guri Sohi B Why Multiscalar? Slide

// Options \\

* Sequencing: single (wide) vs. multiple

* Scheduling: central vs. distributed

* Operation execution: not much choice; provide requisite
bandwidth

* Operand communication: central vs. distributed storage

N /

Guri Sohi B Why Multiscalar? Slide

-

Sequencing/Scheduling Options

~

Static Dynamic

— e

Single Sequencer

Static Dynamic

—jil
—l

-

Multiple Sequencers

Guri Sohi

B Why Multiscalar?

Slide

-

Engineering Considerations

~

_

* Now throw in engineering into the big picture

* What is desirable from the engineering viewpoint?
® Hardware wish list
® Software wish list

Guri Sohi

B Why Multiscalar?

Slide
10

(Hardware Wish List

* Simplify engineering (design, verification, testing)
® Use of simple, regular hardware structures
® clock speeds comparable to single-issue processors
® “Locality” of interconnect
® Easy growth path from one generation to next
® reuse existing processing cores
* No centralized bottlenecks

N

Guri Sohi B Why Multiscalar?

Slide
11

(The “Hardware-Influenced” Solution

* Take current generation processor
* Replicate some parts, share others
* Have next generation processor

¢ Different units can sequence, schedule, etc. in parallel

BUT, the software problem

.

Guri Sohi B Why Multiscalar?

Slide
12

-

The Software Problem

~

N

* Can't always break up program into “independent” chunks
(i.e., multiple sequencers) statically

® control dependences
* data dependences (especially ambiguous ones)
® also load balance

e Can’'t map program onto rigid hardware model

Guri Sohi B Why Multiscalar?

Slide
13

-

Software Wish List

.

* Simplify engineering
® Don’t force “rigid model”
® Don’t ask for guarantees
* Don’t expect software to track hardware
® Others

Guri Sohi B Why Multiscalar?

slide
14

4 Hardware/Software Cooperation N

* Take “mostly sequential”’ static program

* When in doubt, speculate

dynamically

o

* Use speculation to overcome dependence limitations

* Break up program into “potentially independent” chunks

Guri Sohi B Why Multiscalar?

Slide
15

4 Sequencing

\

* Unraveling the operations to be executed
dynamically

* Use 2-level sequencing
® sequence high level in task-sized steps
® sequence within task
® vectors?

* Use control flow speculation to increase
seqguencing power

® overcome “stalls”

o

PROGRAM

Guri Sohi B Why Multiscalar?

Slide
16

Scheduling

\

o

* Use multiple schedulers to improve
scheduling power

* Use data dependence speculation to
overcome scheduling limitations
- ambiguous dependences
* Use value speculation to overcome
scheduling limitations
- true dependences

* Use memoization to avoid re-doing work

- true dependences

PROGRAM

Guri Sohi B Why Multiscalar?

Slide
17

/

Operand Communication

* Values bound to registers and memory
* Values created speculatively

* Storage
* where should values be buffered?

* Synchronization
® operation uses value of latest producer

e Communication
¢ forwarding created value to (future)
consumers

* Create and exploit localities to reduce/
simplify interconnect!

PROGRAM

Guri Sohi B Why Multiscalar?

Slide
18

Multiscalar Paradigm

~

N

* Break sequencing process into two steps
* Sequence through static representation in task-sized steps
® Sequence through each task in conventional manner

* Split large instruction window into ordered tasks

* Assign a task to a simple execution engine; exploit ILP by
overlapping execution of multiple tasks

* Use separate PCs to sequence through separate tasks

* Maintain the appearance of a single-PC sequencing
through the static representation

* Use control and data dependence speculation

Guri Sohi B Why Multiscalar?

Slide
19

-

What is a Task?

.

* A portion of the static representation resulting in a
contiguous portion of the dynamic instruction stream

- part of a basic block
- basic block

- multiple basic blocks
- loop iteration

- entire loop

- procedure call, etc.

Guri Sohi B Why Multiscalar?

Slide
20

-

o

Multiscalar Big Picture: Basics

~

PROGRAM

@ predict predl ct

PROC
UNIT

PROC PROC
UNIT UNIT
1 2

3

Guri Sohi

B Why Multiscalar?

Slide
21

-

Multiscalar Big Picture: Hardware

~

SEQUENCER

MEMORY DISAMBIGUATION
CACHE HIERARCHY

Guri Sohi

B Why Multiscalar?

Slide
22

-

Register Values \

.

* Each core works out of its “local” register file
* Multiple register files act like separate “renamed” files

* Each register file contains register state at a particular time
in the (speculative) execution of a program

Guri Sohi B Why Multiscalar? Slide
23

-

Memory Values \

_

* Storage
* Synchronization
e Communication

* \/ersions

Guri Sohi B Why Multiscalar? Slide
24

/ Traditional Memory Interface: Load Store Queue \

Instr Addr Data

Tail
A store 200 66
load 100 - Arranged by
Program Store 5 " PROGRAM ORDER
Order
load 200 - Searched using
store 200 ? ADDRESS
Head

Memory Dependence Speculation

e Multiple Versions

- /

Guri Sohi B Why Multiscalar? Slide
25

/ Memory System |: Address Resolution Buffer \

Program Order

Y

PUO PU1 PU 2 PU 3
store ? ?
load 200 --
store 200 55 load 100 -- |store 200 66

Addr Data L S Data LS Data LS Data L S

200 55 01 00 00 66 01
100 00 00/ 121 10 0 o‘>
One ARB line

* Arranged by ADDRESS; Searched using PROGRAM ORDER

« Each line buffers multiple versions

» Committed versions are written back immediately

_ /

Guri Sohi B Why Multiscalar? Slide
26

-

Memory System II: Speculative Versioning Cache \

N

Program Order

Y

PUO PU1 PU 2 PU3
store ? ?

load 100 --

Addr Data State Next
| | [200 44 cs |

Cache 0 One SVC line Cache 1

Cache 2 Cache 3
100 121 L - | |

Maintains a linked list of versions; PU #s used as pointers

Each line buffers only one version

Committed versions written back only when necessary

B Why Multiscalar? Slide
27

-

Scheduling Memory Operations \

.

¢ Data dependence speculation is the default
*® predict no dependences

* Improving accuracy of data dependence prediction
- akin to branch prediction for control dependences

* Track history of dependence mis-speculations
* small number of static dependence pairs
* exhibit temporal locality

* Use history for future data dependence speculation/
synchronization decisions

B Why Multiscalar? Slide
28

4 Example: Problem

* Process stream of tokens
* Create entry in list for new token

* Use information in list to process token

- /

Slide
29

Guri Sohi B Why Multiscalar?

4 Example: C Code N

for (indx = 0; indx < BUFSIZE; indx++) {
/* get the symbol for which to search */
symbol = SYMVAL (buffer[indx]);

/* do a linear search fo rthe symbol in the list */
for (list = listhd; list; list = LNEXT(list) {
/* if symbol already present, process entry */
if (symbol == LELE(list)) {
process(list);
break;
}

}

/* if symbol not found, add it to the tail */
if (!list) {
addlist(symbol);

_ /

Guri Sohi B Why Multiscalar? Slide
30

Example

-

* Each task is a complete list search

* Searches are usually independent and parallel
* Multiscalar can assume they are always independent

* Branches that separate tasks are predictable

* Branches within a task unlikely to be 100% predictable

* Superscalar/VLIW unlikely to be able to overlap
processing of different tokens

Guri Sohi

B Why Multiscalar?

Slide
31

Example: Executable

Targ Spec Branch, Branch
Targl OUTER
Targ2 OUTERFALLOUT
Create mask $4,$8,$17,$20,$23
OUTER:
addu $20, $20, 16
Id $23, SYMVAL-16($20)
move $17, $21
beq $17, $0, SKIPINNER
INNER:
Id $8, LELE($17)
bne $8, $23, SKIPCALL
move $4, $17
jal process
j INNERFALLOUT
SKIPCALL:
Id $17, NEXTLIST($17)
bne $17, $0, INNER
INNERFALLOUT:
release $8, $17
bne $17, $0, SKIPINNER
move $4, $23
jal addlist
SKIPINNER:
release $4
bne $20, $16, OUTER
OUTERFALLOUT:

_

2
[}

° 2
s @
5 g

2]
F
F
F

Stop
Always

Going from one
generation to
another could
leave binary
untouched!

Guri Sohi

B Why Multiscalar?

Slide
32

4 Binary Compatibility Options

* Multiscalar-specific information (task successors, create
masks, forward bits, stop bits) is available in a binary

* Recover information at run time
* “Low” performance but run ordinary binaries

* Binary to binary translation

® Better performance by including some optimizations
e Compiler

® Best performance, but needs recompilation

Regardless, binary from one multiscalar generation to
another can remain the same

-

Guri Sohi B Why Multiscalar?

Slide
33

Performance: SPECINnt95

6
4/2/1 W 4/2/4]
g || 821 8/2/4m B
4/4/1 B8 4/4/8 1
t'ru
S 3 [] m
°
)
)
o
n 2
l i
0
0.95 0.87 0.94 0.96 0.92
m88ksim gcc compress ijpeg perl

_

/

Guri Sohi B Why Multiscalar?

Slide
34

/

Performance: SPECfp95)

Speedup =)

o

8
4/2/1 M 4/2/4 12
! 8/2/Lm 8/2/4M ||
6
5
4
3
2
1
0
1.00 0.98 1.00 1.00 0.98 0.97 0.99
swim hydro2d mgrid applu turb3d apsi fpppp /
Guri Sohi B Why Multiscalar? Slide

35

Comparison with Multiprocessors N

Attributes Multiprocessor Multiscalar
Speculative task initiation No/Difficult Yes
Multiple flows of control Yes Yes
Task determination Static Static (possibly dynamic)
Software guarantee of inter-task Required? Not required
control independence
Software knowledge of inter-task Required? Not required
data dependences
Inter-task sync. Explicit Implicit/Explicit
Inter-task communication Through memory Through registers and
Through messages memory
Register space Distinct for PEs Common for PEs
Memory space Common Common for PEs
Distinct

o

Guri Sohi

B Why Multiscalar?

Slide
36

(Why Not Multiscalar? \

* Programs can be (statically) parallelized easily

* Hardware replication not desirable
® interconnect not an issue (copper?)
¢ centralized designs easier to design/validate
* centralized designs easier to test

N /

Guri Sohi B Why Multiscalar? Slide
37

(Concluding Remarks \

* Future microarchitectures will be decentralized (operation
execution, operand communication, scheduling,
seqguencing)

¢ Multiscalar model enables distributed execution of a
sequential (or parallel) program

* Beginning of a new generation of microarchitectures
- much works remains to be done

- _J

Guri Sohi B Why Multiscalar? Slide
38

Related Projects \

N

¢ Stanford HYDRA

* CMU STAMPede

* Minnesota Superthreaded
* Waikato WARP engine

® Washington SMT

* MIT M-machine

* MIT RAW

® Michigan HPS

* CMU Superflow

¢ lllinois IMPACT

Guri Sohi B Why Multiscalar? Slide
39

-

Acknowledgments \

.

Thanks to:
Faculty: Jim Smith, Chuck Kime

Former/Current Students/visitors: Manoj Franklin, Scott Breach,
T. N. Vijaykumar, Dionisios Pnevmatikatos, Andreas Moshovos,
Todd Austin, Eric Rotenberg, Quinn Jacobson, Jeremy Williamson,
Paul Thayer, Selim Bilgin, Matt Kupperman, Subramanya Sastry;,
Amir Roth, Sridhar Gopal, Matt Mergener, Craig Zilles, Atsushi
Okamura, Anand Kamannavar, Padmaja Nandula.

for helping to conceive, develop, realize, and refine the
multiscalar vision

Thanks to: DARPA, NSF, Intel for funding the efforts

Guri Sohi B Why Multiscalar? Slide
40

