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Motivation

• Wide, homogeneous superscalar will not scale well
O Longer wires increase delay
O Smaller feature sizes accentuate wire delays

➞ Potentially slow clock

• Performance ∝ (IPC × Clock speed)

• Study microarchs that maximize (IPC × Clock speed)

Complexity-Effective Superscalar Microarchitectures
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Motivation (cont’d.)

• Simple to measur e IPC
O trace-driven simulation counting cycles

• Har d to measure complexity
O full implementation to be accurate

• Need simple models f or
O quantifying complexity
O identifying complexity trends

Quantifying Complexity of Superscalar Processors
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Outline

• Motiv ation
• Measur ing complexity

O Our approach
O Two case studies: wakeup and bypass logic
O Overall delay results

• Complexity-ef fective microarchitectures
O Dependence-based microarchitecture
O Other clustered microarchitectures

• Conclusions
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Our approach

• Concentr ate on key pipeline structures
O delay is a function: issue width, window size
O primarily dispatch and issue-related
O broadcast operations over long wires

• De velop simple delay models
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Baseline superscalar model
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Key structures

STRUCTURE DELAY

Fetch logic f(IW)
Rename logic f(IW)

Window wakeup logic f(IW,WINSIZE)
Window select logic f(WINSIZE)

Bypass logic f(IW)
Register file f(IW)

Cache ~f(IW)
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IW - Issue Width

WINSIZE - Window Size
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Methodology

• Repr esentative CMOS circuit
O ISSCC proceedings
O DEC engineers

• Optimize cir cuit
O transistor sizing
O reducing fan-in
O transistor reordering to speed critical path

• Expr ess delay as function of IW and WINSIZE
• Spice sim ulate for 0.8µm, 0.35µm, 0.18µm techs
• V erify model predictions match simulations
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Outline

• Motiv ation
• Measuring complexity

O Our approach
O Two case studies: wakeup and bypass logic
O Overall delay results

• Complexity-ef fective microarchitectures
O Dependence-based microarchitecture
O Other clustered microarchitectures

• Conclusions
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Window wakeup logic

• Br oadcast result tags to waiting instructions
• Compar e result tags against source operand tags

= =OR = = OR

opd tagR rdyRopd tagLrdyL

opd tagR rdyRopd tagLrdyL

tagIW tag1

WINSIZE insts
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Window wakeup logic (cont’d.)

• At least linear in windo w size
• Issue width has gr eater impact
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Window wakeup logic (cont’d.)

• W ire delays do not scale as well as logic delays

0.8µm 0.35µm 0.18µm
0

500

1000

1500

W
A

KE
U

P 
D

EL
A

Y 
(P

S)
LOGIC DELAY

WIRE DELAY

64-entry window, 8-way



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
13

Bypass logic

• Result wir e length increases linearly with issue width
• Delay incr eases quadratically with wire length
➞ Bypass delay ∝ IW2
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Overall delay results

• Bypass delays do not scale with f eature size
• Bypass delays: m ajor problem in future designs
• W indow logic is the next most critical
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Outline

• Motiv ation
• Measur ing complexity
• Complexity-Ef fective microarchitectures

O Dependence-based microarchitecture
O Other clustered microarchitectures
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Dependence-based microarchitecture

• Replace windo w with FIFOs
O Dependent instructions steered to each FIFO
O Window logic monitors FIFO heads only

• Cluster ed to reduce bypass delay (similar to 21264)
O extra cycle for bypassing across clusters
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Example of steering - 4-way machine
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Performance results - IPCs

• W orst IPC degradation: 12% m88ksim, 9% compress
due to slow (2-cycle) inter-cluster bypasses

• But, based on windo w delay, clock can be 25% faster
Performance ∝ (IPC × Clock speed) !
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Performance results - Normalized Instructions Per Sec.

• P erforms better for all benchmarks
• Net perf ormance improvements: 10% to 22%

Average performance improvement: 16%
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Other clustered microarchitectures
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Performance results - IPCs

• Execution steer ing achieves high IPCs
but steering is in critical issue path

• Random steer ing consistently performs worst
17% to 26% IPC degradation
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Performance results - Normalized Instructions Per Sec

• Dependence-based micr oarch performs best
• Random steer ing performs worse even w/ fast clock
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Conclusions

• Cycle time is a cr ucial performance factor
• Detailed modeling essential

• Bypasses ar e critical performance issue
clustering can help considerably

• Then, windo w logic is critical
dependence-based processors can reduce
window complexity

clustering + dependence-based == wide issue + fast clock
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Backup

How good are your circuits?

• Based on design published b y microprocessor vendors
ISSCC proceedings, DEC engineers
Studied alternatives for some structures

• Man y circuit tricks can be used to optimize the circuits
relative delay times should be accurate enough
more interested in relationships, trends

Hard problem: study only a first effort in the direction
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Backup

What about other structures?

• Fr ont end stages
O Pipeline at the cost of

increased mispredict penalty
3% IPC degradation per front-end stage
more bypass paths

• Caches
Size L1 to fit in a cycle
Pipeline

• Register s
Pipeline
Tullsen et. al. report only 2% degradation in IPC
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Backup

Using buffers to reduce wire delays

• Y es, buffers can reduce delay
but delay is still at least linear
buffers add delay and consume power

• W ires with multiple drivers need bidirectional buffers
not easy to switch direction fast enough

• Quadr atic increase in delay can still result
O e.g. window wakeup logic delay

increases at least linearly with issue width
increases at least linearly with window size

• The pr oblem only resurfaces at a smaller feature size
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Steering logic complexity

• Can be done in par allel with rename
• Might need an extr a pipestage

3% IPC degradation per front-end stage
• Cache steer ing information?


