
Speculative Versioning Cache:

Unifying Speculation and Coherence

Sridhar Gopal

T.N. Vijaykumar✝, Jim Smith, Guri Sohi

Multiscalar Project

Computer Sciences Department

University of Wisconsin, Madison

✝Electrical and Computer Engineering, Purdue University

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 2

Motiv ation

Enable a single hardware platform to support ...

1. SMP execution model - e xplicitl y parallel pr ograms

Private L1 coherent caches for high performance

2. Hierarchical e xecution model - sequential pr ograms

• Multiscalar, Trace Processors, Agassiz, Hydra, Stampede, WarpEngine

Memory Renaming or Speculative Versioning required

SVC = CACHE COHERENCE + SPECULATIVE VERSIONING

PPPP

SV$ SV$ SV$ SV$

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 3

Outline

Motivation

Hierarchical Execution Model

• Hierarchical Execution

• Multiscalar

Speculative Versioning

Unifying Speculation and Coherence

Speculative Versioning Cache (SVC)

Address Resolution Buffer (ARB)

Performance Evaluation

Conclusions

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 4

Hierar chical Ex ecution Model

Extract P arallelism in Sequential Pr ograms
1. Using Speculation

2. Using Multiple Processors

• Group instructions into tasks, traces or speculation regions

• Employ task level speculation

BA

Hierarchical Execution

Predict Predict Predict

A

B

Sequential Execution

A, B: Tasks

Speculatively execute A and B in parallel

Dependences between A and B?

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 5

Hierar chical Ex ecution: Multiscalar

Higher Le vel: Tasks

• Incorrect control prediction: squash task state and re-execute

• Task completed: commit task state sequentiall y

Lower Level: Instructions

Register dependences: Har dware + Software

Memor y dependences: Hierar chical har dware

• Intra-task: Load Store Queue in each processor

• Inter -task: SVC or ARB

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 6

Outline

Motivation

Hierarchical Execution Model

Speculative Versioning

• Problem: Guarantee sequential program semantics

• Example execution orders

• Key requirements of a solution

Unifying Speculation and Coherence

Speculative Versioning Cache (SVC)

Address Resolution Buffer (ARB)

Performance Evaluation

Conclusions

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 7

Speculative Versioning: Problem

DIFFERENT Address: Accesses can be reordered

SAME ADDRESS: WHICH ORDERS ARE ALLOWED?

3TTT1 2T0

Order Time

Load/Store

Tasks execute in parallel

load/store streams
Locally ordered

Program

Order seen by memory system

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 8

Execution Order: Examples

CANNOT REORDER DEPENDENT LOADS AND STORES

T T

Ld/St to the same address

T

Execution Orders

2 310
Program Order T

S L

?

✘

?

✔

✔ SL L

S LS L

S LS L

S LL S

S LS L

S

S L S L

No action!

Out of order loads okay!

is incorrect!

S

Time

Blue load

L

Stores out of order, Write back in order

Buffer green store, Supply correct value

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 9

Speculative V ersioning: Solution

Definition: V ersion of a location

• Each store creates a new version

What should a solution pr ovide?

• Buffer multiple versions and track order

• Supply the correct version for a load

• Detect incorrect loads

• Write back versions in order

Definition: V ersion Or dering List (V OL) of a location

• Execution order of loads and stores

DIRECTORY OF VERSION ORDERING LISTS

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 10

Unification

Speculative V ersioning

• Multiple copies of multiple speculative versions

• Execution order tracked using an ordered list

Multiple Reader Multiple Writer Protocol

Cache Coherence

• Multiple copies of a single version

• Sharers tracked using an unor dered list

Multiple Reader Single Writer Protocol

SVC = CACHE COHERENCE + SPECULATIVE VERSIONING

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 11

Outline

Motivation

Hierarchical Execution Model

Speculative Versioning

Speculative Versioning Cache (SVC)

• Simple Cache Coherence Protocol

• Base SVC Protocol

• Advanced SVC Protocol

• Examples

Address Resolution Buffer (ARB)

Performance Evaluation

Conclusions

✘
✘

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 12

Speculative V ersioning Cac he

Extensions to SMP coherent cac he

• Both speculative and committed data

• More state information

• VOL: a pointer in each line

• VCL: maintain VOL on bus requests

Snooping Bus

SV$
P P P P

Architected Storage Bus Arbiter
Version Control Logic

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 13

Simplified SMP Cac he Coherence

TALK Cache block size = Load/Store granularity = One word

PAPER Realistic linesize, Cast-outs

BusRead
BusWrite
Writeback

Invalid

Load

D

Wb

C Clean

St

BWr
I

Store

BRd

Dirty

Ld

D
C
I

Ld/BRd St/BWr

St/BWr

BWr/- BWr/-

BRd/Wb

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 14

Base SVC Design: Pr ocessor Requests

• Load bit or DL: detect incorrect loads

• DL remembers use before definition

• Write back all dirty lines on commit

• Invalidate all clean lines on squash

Sq: Squash
Co: Commit

DL: Dirty after Load

C

DL

I

D

Ld/BRd St/BWr

St/BWr

Sq/-Sq/-
Co/- Co/Wb

Co/Wb
Sq/-

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 15

BusRead: Suppl ying the Correct V ersion

• VCL: Closest older version is Flushed

• Self Loops: Cannot write back speculative versions

3

Program Order

T

Examples

4

I

I

T0 T1 T2 T

CI DC

Fl: Flush

D C DD
BRd/Fl

/BRd

Newer
1.

Fl

2.

DC

I

DL

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 16

BusWrite: Detecting Incorrect Loads

• VCL: Copies used by newer tasks Invalidated

• DL is also invalidated because of incorrect use

T

I

4

I

In: Invalidate

Examples

DL

Program Order

T0 T1 T2 T3

CC C

CC1.

2.

C DOlder

/

/

InBWr

BWr In

C D

I

DL

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 17

Base Design Pr ob lems and Solutions

Write bac k dir ty lines on commit

• New tasks begin after all write backs

• Bottlenec k: Tasks commit sequentially

➔ Commit (C) bit

Invalidate c lean lines on commit/squash

• Every task begins with a cold cache

➔ sTale (T) and Architectural (A) bits

Reference Spreading

• Private caches: Multiple misses to the same data

➔ Snarfing

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 18

Outline

Motivation

Hierarchical Execution Model

Speculative Versioning

Unifying Speculation and Coherence

Speculative Versioning Cache (SVC)

Address Resolution Buffer (ARB)

• Previously proposed shared cache solution

Performance Evaluation

Conclusions

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 19

Shared Cac he Solution: ARB

• Shared speculative ARB + Shared Cache

- Every load and store incurs interconnect latency

- On commits, speculative versions must be written back

- Allocates space for non-existent versions

ARB
Interconnection Network

Cache

Next Level Memory

P P P P

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 20

Performance Evaluation: SPEC95

4-way Multiscalar 2-way ooo superscalar Ps

64KB data cache with 8KB ARB 4x16KB SVC

TRADES-OFF HIT-RATE FOR HIT-LATENCY

1

2

3

4

5

6

compress

gcc
vortex

perl
ijpeg

mgrid
apsi

fpppp
turb3d

IP
C

ARB (3 cycle hit)

ARB (2 cycle hit)

ARB (1 cycle hit)

SVC (1 cycle hit)

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 21

Speculative V ersioning Cac he

• Unifies speculative versioning and cache coherence

• Private cache solution for speculative versioning

• Hold both speculative and committed data in one cache

• Decouples write backs from commits

• Eliminates unnecessary write backs

• Trades-off hit-rate for hit-latency

SVC = CACHE COHERENCE + SPECULATIVE VERSIONING

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 22

Decoupling Commit from Write backs

Explicit pointers necessary to track order among versions

VCL determines the CD line to be written back;

all other CD lines are purged

St/BWrLd/BRd

Committed DirtyCDCommitted CleanCC

Sq/-Sq/-

Co/- Co/-Ld/BRd St/BWr

/
/-
-

/
/Wb
Wb

CC

C

I

D

CD

BWr BWr
BRdBRd

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 23

Keeping Cac he Warm: After Commits

Problem
• All C lines are invalidated when a task commits

Solution
• sTale bit: to distinguish between sTale and clean copies

CC LINES ARE CACHE HITS ON LOADS

BWr,
Stale Committed CleanSC

Co/- Co/-

Ld/- Ld/BRd

/

/

/

/Stale

Stale

Stale

Stale

B

B

B

B

C

CC

SC

SCC

B
Stale Clean SCC

BRd

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 24

Keeping Cac he Warm: After Squashes

Problem
• A squashed task could fetch the same data multiple times

Solution
• Architectural bit: to retain architectural versions after a squash

AC LINES ARE CACHE HITS ON LOADS

, BWrAC

I

C

Ld/BRd Ld/BRd
Sq/-

BWr/-BWr/-

BRdArchitectural Clean

AC

B

/

/B

B

Arch

Arch

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 25

Base SVC Design: Examples

Task #
0 st 0, A

st 1, A

st 3, A

ld r, A

3

2

1

st 5, A5

ld r, A6

P
ro

gr
am

 O
rd

er

V: Valid S: Store L: LoadTag SV DataL

State Data

Z/2

X/0
W/3 Y/1

Z/2

X/0
W/3 Y/1

Execution time orderProgram order

W..Z: Caches 0..3: Tasks

S 0

S

S 0

L

ld r, A

st 1, A

S 1

S 0

L

S 0

X/0
Y/1

Z/2

X/0
W/3 Y/1W/-

Z/-

0

0

1S

3 3S

S 3

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 26

Adv. SVC Design I: Efficient Commits

0CS

0CS

CSW/3 Y/5
Z/2

X/4
3S1S 3

L 1

ld r, A

CSW/3 Y/5
Z/2

X/4
3S1S 3

Z/2

X/4
W/3 Y/5

Z/2

X/4
W/3 Y/5

S 5

st 5, A

Task #
0 st 0, A

st 1, A

st 3, A

ld r, A

3

2

1

st 5, A5

ld r, A6

P
ro

gr
am

 O
rd

er
V: Valid L: LoadS: Store C: CommitTag S LV DataPointerC

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 27

Multiple Committed Versions

✓

CS 4

W/23 Y/21
X/20

Z/22
CS 3

CS 0

W/23 Y/21
X/20

Z/22
CS 3

W

- X

-

W/23 Y/21

0CS

3CS
Z/22

X/20
W/23 Y/21

4CS

3CS
Z/22

X/20

ld r, A ld r, A

ld r, A ld r, A

✗

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 28

Adv. SVC Design II: Stale Copies

Z/2

X/0

ld r, A

W/3 Y/1 S 1Z 1

S 0Y 0Y

1 1L - -

X/4

Z/2

ld r, A

CS0Y Y 0

1 1L W

Y/5W/3 CS1Z Z3 1-

CS Z

CL

CS

W/7
X/4

Y/5
Z/6

CS

X/4
Y/5 CSS 3-

Z/6
W/7CS

CLW ✗

✓

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 29

Adv. SVC Design II: sTale bit
S: Store

T: sTale

L: Load

A: ArchitecturalC: Commit

V: Valid
Tag S LV C Pointer DataT A

Z/2

X/0

ld r, A

W/3 Y/1

1L

X/4

Z/2

ld r, A

Y/5W/3

- 1

Z 1S

ST Y 0

Z 1

CST 0

Z 1CST

1

Z 1

Y 0

CST

- 3

Y 0Y

W 1

-

X/4
Y/5

Z/6
W/7 CS

CL

CSTY/5
X/4

S 3-

LT W

Z/6
W/7CS

CLT ✗

✓

CST

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 30

Adv. SVC Design II: Architectural Copies

Z/2

X/0
W/3 Y/1

Z/2

X/0
W/3 Y/1S 1-

0YAST

1

L - 1

S Z

AST Y 0

ld r, A

Z/2

X/4
W/3 Y/5

Z/2

X/4
W/3 Y/5 CS 1

0YCSAT

AL 1

-

-

Z/2

X/4
W/3 Y/5S - 3

Z/2

X/4
W/3 Y/5- CSTS 3

0YCSAT

ALT W 1

W 1

ld r, A

ld r, A

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 31

Adv. SVC Designs: Task Squashes

X/4
Y/1

Z/2
W/3 1S Z

L - 1

Z/2
W/3 Y/1 1

CST Y 0

1S -
X/4

Y/1
Z/2

Y 0CST

ST ST WW3

ld r, A

W/-
X/-

 Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 32

SVC Design: Realistic Linesiz e

False sharing

• Unnecessary invalidates similar to that for parallel programs

- Worse, these invalidates lead to false squashes

Versioning Bloc k

• Similar to Sub-blocking (Transfer and Address Blocks)

• Definition: Granularity at which speculative versioning is provided

• Replicate only the L and S bits for every versioning block

