Speculative Versioning Cache:

Unifying Speculation and Coherence

Sridhar Gopal
T.N. Vijaykumar™ Jim Smith, Guri Sohi

Multiscalar Project

Computer Sciences Department ‘

University of Wisconsin, Madison

“Electrical and Computer Engineering, Purdue University

Enable a single hardware platform to support ...

svs (svs| [svs] [svs]

1. SMP execution model - e xplicitl y parallel pr ograms

Private L1 coherent caches for high performance

2. Hierar chical e xecution model - sequential pr ograms

* Multiscalar, Trace Processors, Agassiz, Hydra, Stampede, WarpEngine
Memory Renaming or Speculative Versioning required

SVC = CACHE COHERENCE + SPECULATIVE VERSIONING

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 2

Motivation
@ Hierarchical Execution Model

e Hierarchical Execution
e Multiscalar

Speculative Versioning

Unifying Speculation and Coherence
Speculative Versioning Cache (SVC)
Address Resolution Buffer (ARB)
Performance Evaluation

Conclusions

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

Extract P arallelism in Sequential Pr ograms
1. Using Speculation
2. Using Multiple Processors

* Group instructions into tasks, traces or speculation regions
* Employ task level speculation

Sequential Execution Hierarchical Execution

Predict Predict Predict
- R\

AVAY
A
s A B
B
NN

Speculatively execute A and B in parallel

Dependences between A and B?

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

Higher Le vel: Tasks

* |ncorrect control prediction: squash task state and re-execute
* Task completed: commit task state sequentiall y

Lower Le vel: Instructions
Register dependences: Har dware + Software

Memory dependences: Hierar chical har dware

* |Intra-task: Load Store Queue in each processor
* |nter-task: SVC or ARB

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

Motivation

Hierarchical Execution Model

@ Speculative Versioning
* Problem: Guarantee seguential program semantics

* Example execution orders
* Key requirements of a solution

Unifying Speculation and Coherence
Speculative Versioning Cache (SVC)
Address Resolution Buffer (ARB)
Performance Evaluation

Conclusions

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

Program
Order Tasks execute in parallel Time

To T1 To T3

— —

LYJ

Locally ordered

load/store streams (V

Load/Store Order seen by memory system

DIFFERENT Address: Accesses can be reordered

SAME ADDRESS: WHICH ORDERS ARE ALLOWED?

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

Execution Order: Examples

Ld/St to the same address

Program Order
aram > To i Tp T3 Time

BEEm — E DB N !

Execution Orders —

[] No action!
[] Out of order loads okay!

? Buffer green store, Supply correct value

a

? Stores out of order, Write back in order

Blue load is incorrect!

CANNOT REORDER DEPENDENT LOADS AND STORES

O Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

Definition: V ersion of a location

* Each store creates a new version

What should a solution pr ovide?
* Buffer multiple versions and track order
e Supply the correct version for a load
* Detect incorrect loads
* Write back versions in order

Definition: V ersion Or dering List (V OL) of a location

e Execution order of loads and stores

DIRECTORY OF VERSION ORDERING LISTS

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

Speculative V ersioning

* Multiple copies of multiple speculative versions
e Execution order tracked using an ordered list
Multiple Reader Multiple Writer Protocol

Cache Coherence

* Multiple copies of a single version
e Sharers tracked using an unor dered list
Multiple Reader Single Writer Protocol

SVC = CACHE COHERENCE + SPECULATIVE VERSIONING

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 10

Motivation
Hierarchical Execution Model
Speculative Versioning

@ Speculative Versioning Cache (SVC)

e Simple Cache Coherence Protocol
* Base SVC Protocol

* Advanced SVC Protocol

* Examples

Address Resolution Buffer (ARB)

Performance Evaluation

Conclusions

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

11

‘ ‘ Snooping ‘ Bus ‘

Architected Storage Bus Arbiter
Version Control Logic

Extensions to SMP coherent cac he

* Both speculative and committed data
* More state information

* VOL: a pointer in each line

* VCL: maintain VOL on bus reguests

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

/St/BWr\ |C Ic?fgr'\d
C D :
~_ _— D Dirty
BRd/Wb
\ \ / / Ld Load
St Store
BWr/- Ld/BRd St/IBWr BWr/-

BRd BusRead
BWr BusWrite
| Wb Writeback

TALK Cache block size = Load/Store granularity = One word
PAPER Realistic linesize, Cast-outs

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 13

C —cor-

\ Sq/-

Ld/BRd
T~

St/BWr

cowb— D

Sq/- /

St/BW
I/ ~_suBwr

Co/Whb Co: Commit
Sq/- Sqg: Squash
DL: Dirty after Load

Load bit or DL: detect incorrect loads
DL remembers use before definition

* Write back all dirty lines on commit

[Sridhar Gopal, UW-Madison

Invalidate all clean lines on squash

Speculative Versioning Cache February 3, 1998

14

SR/ FI: Flush
¢ D \) |

Examples
| Program Order =
Ty Ty To To T
Newer @Rd/FI 0 1 72 34
s 1. D D Cc (1) D
DL 2. ¢ I ¢ (1) D

* VCL.: Closest older version is Flushed
* Self Loops: Cannot write back speculative versions

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

15

C D

N In: Invalidate
BWr/In
\ Examples
I Program Order ———=
A To T4 T T3 Ty
BWr/In
Older | 1. c¢c @O c c oD
DL 2. ¢ (1) ¢ c DL

* VCL: Copies used by newer tasks Invalidated
DL is also invalidated because of incorrect use

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

16

Write bac k dir ty lines on commit

* New tasks begin after all write backs
* Bottlenec k: Tasks commit sequentially

L] Commit (C) bit

Invalidate c lean lines on commit/squash
* Every task begins with a cold cache
| sTale (T) and Architectural (A) bits

Reference Spreading
* Private caches: Multiple misses to the same data

L1 Snarfing

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

17

Motivation

Hierarchical Execution Model
Speculative Versioning

Unifying Speculation and Coherence

Speculative Versioning Cache (SVC)
Address Resolution Buffer (ARB)

* Previously proposed shared cache solution
Performance Evaluation

Conclusions

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

18

P P P P
N N

Interconnection Network
ARB | |

[T T]- Cache
|

Next Level Memory

* Shared speculative ARB + Shared Cache

- Every load and store incurs interconnect latency
- On commits, speculative versions must be written back

- Allocates space for non-existent versions

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

19

B ARB (3cycle hitt W ARB (1 cycle hit)
B ARB (2 cycle hit) SVC (1 cycle hit)

IPC
LN W A O o

o a WM

gcc perl mgrid fpppp
compress vortex ijpeg apsi turb3d

4-way Multiscalar 2-way 000 superscalar Ps
64KB data cache with 8KB ARB 4x16KB SVC
TRADES-OFF HIT-RATE FOR HIT-LATENCY

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

20

* Unifies speculative versioning and cache coherence

Private cache solution for speculative versioning

Hold both speculative and committed data in one cache
* Decouples write backs from commits

Eliminates unnecessary write backs

Trades-off hit-rate for hit-latency

SVC = CACHE COHERENCE + SPECULATIVE VERSIONING

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

21

CC Committed Clean CD Committed Dirty

|
BRd/—/ PAN T BRd/Wb

BWr/- Sq/- Sq/- BWr/Wb
e N

A e

Col/- Ld/BRd St/BWr Col/-
Ld/BRd St/BWr

Y Y
CcC CD

Explicit pointers necessary to track order among versions
VCL determines the CD line to be written back;
all other CD lines are purged

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 22

SC Stale Clean SCC Stale Committed Clean

B BRd, BWr
B/Stale

/ \
C SC

A=

Co/- B/Stale Co/-

Ld/- Ld/BRd

y /B/Stale\ v
CC SCC

~—

B/Stale

Problem
e All C lines are invalidated when a task commits

Solution
* sTale bit: to distinguish between sTale and clean copies

CC LINES ARE CACHE HITS ON LOADS

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 23

AC Architectural Clean B BRd, BWr

B/Arch
/ \
C AC
\ \\‘\B/Arch//l /
BWr/- Ld/BRd Ld/BRd BWr/-

Ll

* A squashed task could fetch the same data multiple times

Solution
* Architectural bit: to retain architectural versions after a squash

AC LINES ARE CACHE HITS ON LOADS

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

<«— Program Order

Task #

L: Load

0..3: Tasks

Execution time order —

S|0
X/0

W/3 Y/l

X [tTo

Z[2

\Y

S|0
X/0

W/i3 Y/l

Tag S | L | Data V: Valid S: Store
W..Z: Caches State | Data
Program order\
st0, A
s|o \
stl, A X/0
s|3|W/3 Y1 —> S
Idr, A N 212 /
st3, A dr, A
sth, A
dr, A slof
X/0
W/- Y/l S|1 <+ S
Zl/-

[Sridhar Gopal, UW-Madison

Speculative Versioning Cache

X [Llo

Z[2

February 3, 1998

~

‘/stl,A

25

Tag S L Pointer | Data
Task # A7 [es]o
g st0, A /4
= S|3(W/3 Y/5
O st1,A 212
e -
S
5 Idr, A k
o — Idr, A
s st3, A
X/4
dr, A sl3lwiz Y5
Z/2

[Sridhar Gopal, UW-Madison

Speculative Versioning Cache

V:Valid S: Store L:Load C: Commit
X/4
CS|1 — S| 3(WI/3 Y/5
Z[2
\ L|1
X/4
CS|1 — S|3|W/3 Y/5S|5
Z/2
sth, A

February 3, 1998

26

CS|3

CS|-|3

[Sridhar Gopal, UW-Madison

CS|0

X/20
W/23 Y/21

Z[22

Idr, A

CS{w| 0

X/20
W/23 Y/21

Z/22

Idr, A

CS

CS

Speculative Versioning Cache

CS|4

X/20
W/23 Y/21

Z[22

Idr, A

CS|-|4

X/20
W/23 Y/21

Z/22

Idr, A

February 3, 1998

27

[Sridhar Gopal, UW-Madison

S

Y|O

W/3

X/0
Y/1

Z/2

-11

’

CS

Y|O

W/3

X4
Y/5

Z/2

W|1

CS

Speculative Versioning Cache

CS

CS|Y|O0

X/4
WI7 YI5

Z/6
CL[-|1

dr, A

CS|Y|O

X/4
WI7 YIS

Z/6
CLIW|1

dr, A

CS|Z|1

CS|Z|1

February 3, 1998

28

[Sridhar Gopal, UW-Madison

Store

~

CS|Z|1

<

~

CST|Z |1

Speculative Versioning Cache

_ V: Valid S:
Tag C| T| A| Pointer | Data .
C: Commit
ST |Y|O0 \ CST|Y|0O
X/0 X/4
W/3 Y/l S |zZ|1| — W/7 Y/5
Z/2 716
L [-]1 A/ CL|-]1
J] dr, A
CST|Y|O w CST|Y|O
X/4 X/4
W/3 Y/5|CST|z|1| —>> |CcSs|-|3|W/7 YI5
Z/2 716
LT |w|1 k CLT|w|1
dr, A

<[]

February 3, 1998

T: sTale A: Architectural

29

AST |Y|0

X/0

W/3 Y/l

Z[2

AST|Y |0

Idr, A

CSAT|Y|0

X/4
W/3 YI/5

Z[2

CS

X/0

W/3 Y/l

Z[2

-1

Idr, A

CSAT|Y|0

N N 7

X/4
W/3 YI5

Z[2

CST

W/3

X/4
Y/5

Z/2

AL

-1

dr, A

[Sridhar Gopal, UW-Madison

AN TN O

Speculative Versioning Cache

W/3

X/4
Y/5

Z/2

ALT|W|1

February 3, 1998

30

/’CSTYO CST|Y|O

Xl4 X/-
S|[-(3|W/3 Y/l ST |W|1|— W/- Y/l ST [(W|1
k Z/2 ‘/ Z/2 /

Idr, A
Xl4

WI/3 Y/l s |Z
Z/2

N[«

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998

False sharing

* Unnecessary invalidates similar to that for parallel programs

- Worse, these invalidates lead to false squashes

Versioning Bloc k

e Similar to Sub-blocking (Transfer and Address Blocks)
* Definition: Granularity at which speculative versioning is provided
* Replicate only the L and S bits for every versioning block

[Sridhar Gopal, UW-Madison Speculative Versioning Cache February 3, 1998 32

