
Improving Virtual-Function-Call
Target Prediction

via Dependence-Based Pre-Computation

Amir Roth, Andreas Moshovos and Guri Sohi

amir,sohi@cs.wisc.edu
moshovos@ece.nwu.edu

Computer Sciences Department
University of Wisconsin-Madison

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
2

Introduction

Goal: Reduce branch/target mispredictions

Idea: Dependence-Based Pre-Computation
• Supplement conventional prediction
• Pre-compute selected targets/branch outcomes

O Identify instructions that compute targets/branches
O Speculatively pre-execute these instruction sequences
O Use results as predictions

• This work: Virtual-Function-Call (V-Call) targets
O Proof of concept
+ Simple implementation

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
3

Overview: Problem and Technique

They rely on expressed correlation (which may not exist)
• Local: a[i]->valid == TRUE using a[i-1]->valid == TRUE?
• Global: a[i]->valid == TRUE using i < ASIZE?

No Correlation? Use Pre-Computation
• Identify br anch computation: a[i]->valid == TRUE
• Using a,i as inputs, pre-compute and store the result
• Use stor ed result as a prediction
+ No correlation necessary!

for (i = 0; i < ASIZE; i++)
if (a[i]->valid == TRUE)

print(a[i]);

Why do conventional predictors mispredict?

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
4

Talk Outline

• Intr oduction
• V irtual Function Calls (V-Calls)
• Dependence-Based Pr e-Computation
• Number s
• Summ ary

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
5

Virtual Function Calls (V-Calls)

Use: Polymorphism (C++/Java)
• Multiple dynamic function tar gets from single static call site
• Object type selects tar get at runtime

for (i = 0; i < ASIZE; i++)
if (a[i]->Valid())

a[i]->Print();

class Base
virtual int Valid();
virtual void Print();

class Derived : Base
int Valid();
void Print(); a[0]->Base::Valid()

a[0]->Base::Print()

a[1]->Derived::Print()
a[1]->Derived::Valid()

C++ types Statically: one call site

Dynamically: multiple targets

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
6

BTB’s (Branch Target Buffers) don’t work
- Single target per static call (need multiple)

Correlated (path-based) BTB’s are better
• T arget history index [Driesen&Hoelzle ISCA97,98]

Conventional V-Call Target Prediction

- Local: a[i]->Valid() using a[i-1]->Valid()? No (different object)
+ Global 1: a[i]->Print() using a[i]->Valid()? Yes (same object)
- Global 2: a[i]->Valid() using a[i-1]->Print()? No (different object)

There is room for improvement!

for (i = 0; i < ASIZE; i++)
if (a[i]->Valid())

a[i]->Print();

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
7

Dependence-Based Pre-Computation

Idea: Watch the program and imitate

Three step process:
 1. Identify and cache relevant instruction sequences
 2. Speculatively instantiate with appropriate inputs
 3. Match pre-computed results with predictions (challenge)

Why V-Calls?
+ Simple dependence chain makes steps 1+2 easy

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
8

Pre-Computation Mechanics

1. Isolate relevant instructions
• Build inter nal representation
• W ork backwards from call
• Track dependences (names)

2. Pre-Compute
• Star t from a[i]
• Unr oll representation
• Mor e? [ASPLOS 98]

3. Use Pre-Computation
• Buf fer pre-comp result
• Pic k up stored result

a[0]
a[0]->Valid()

a[0]->Print()

a[1]
a[1]->Valid()

a[1]->Print()

a[i] a[i]->Valid()

a[1]->Print()

a[i]->Print()a[i]

Internal Rep

a[i] a[i]->Valid()
a[i]->Print()a[i]

Internal Rep

Buffer

Executing
Program

1

2

3

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
9

One Problem

Pre-computation wins? Great

Prediction wins? Problems

1. Ineffectiveness/Waste
• Late pr e-comps don’t help
• Pr e-computed for nothing

2. Introduced Mispredictions
• a[1]->Print() may mess up

a[2]->Print() prediction

Pre-computation and fetch/prediction are in a race

a[1]
a[1]->Valid()

a[1]->Print()

a[2]
a[2]->Valid()

a[2]->Print()

a[1]->Print()

a[i] a[i]->Valid()
a[i]->Print()a[i]

Internal Rep

Buffer

Executing
Program

2

1

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
10

Preventing Introduced Mispredictions

Mechanism
• T ag pre-comp with a[i] seq#
• Pr e-comp good if seq# is

 most recent for a[i]

How it works
• a[1]->Print() pre-comp seq# is

 a[1]
• At a[2]->Print() prediction time,

 most recent seq# is a[2]
• Pr e-comp with seq# a[1] stale

 (use BTB)

 (see paper for more details)

Idea: Invalidate a[1] pre-comps when a[2] is fetched

a[1]
a[1]->Valid()

a[1]->Print()

a[2]
a[2]->Valid()

a[2]->Print()

a[1]->Print()

a[i] a[i]->Valid()
a[i]->Print()a[i]

Internal Rep

Buffer

Executing
Program

a[1]

a[2]

#

last#

??
BTB

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
11

Ineffectiveness: Lookahead Pre-Computations

Mechanism
• a[i] usually address predictable
• Using &a[i-1], predict &a[i]
• Launch a[i]->Valid()
• Incor porate into seq# scheme

 (see paper)

Two schemes
• Lookahead: address prediction
• Simple: no address prediction

Problem: Not enough distance from a[i] to a[i]->Valid()
Idea: Exploit distance from a[i-1] to a[i]->Valid()

a[1]
a[1]->Valid()

a[1]->Print()

a[2]
a[2]->Valid()

a[2]->Valid()

a[i] a[i]->Valid()
a[i]->Print()a[i]

Internal Rep

Buffer

Executing
Program

a[2]
#

Addr
Pred &a[2]

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
12

Experiments

Benchmarks: OOCSB (C++)

Simulations: SimpleScalar [MIPS, GCC]
• 4-wide super scalar, 5-stage pipe
• Speculativ e OOO-issue, 64 instructions in-flight
• 64 KB L1 D-Cache, 512KB L2 U-Cache
• Br anches: 8K-entry combined 10-bit GSHARE + 2-bit counters
• T arget prediction:

O BTB: 2K-entry, 4-way associative
O PATH: BTB + 2K-entry, DM, 2-level BTB, 3 target history

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
13

0%

20%

40%

60%

coral deltablue eqn idl ixx lcom porky richards troff

Numbers: BTB base predictor
Misprediction Rates

BTB

BTB + Lookahead
BTB + Simple

richards, eqn, lcom, porky, troff:
+ Simple handles long distance cases (a[i]->Print())
+ Lookahead handles short distance cases (a[i]->Valid())

others:
- Simple: short distances, lookahead: unpredictable addresses

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
14

0%

10%

20%

30%

coral deltablue eqn idl ixx lcom porky richards troff

Numbers: PATH base predictor
Misprediction Rates (NOTE: change in scale)

overall:
• PATH handles correlated cases (a[i]->Print())

richards, eqn, troff:
+ Lookahead helps uncorrelated (a[i]->Valid())

PATH

PATH + Lookahead
PATH + Simple

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
15

Numbers: Explanations

What about overall performance?
• V -Call rate low in absolute terms (1 per 200-1000 instructions)
• P erformance improves by 0-2%

Sometimes (coral) more harm than good
• Lookahead pr e-computation relies on address prediction
• Wr ong address prediction? Wrong pre-computation
+ Not common

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
16

Summary

Dependence-Based Pre-Computation
+ Can be used to augment branch/target prediction
+ Succeeds where statistical correlated prediction fails

• Similar technique pr efetches linked structures [ASPLOS98]
 (where statistical address prediction also fails)

Closely related
• Br anch Flow Window [Farcy et.al., MICRO98]

Can be generalized to handle all branches

