
Effective Jump-Pointer Prefetching for
Linked Data Structures

Amir Roth and Guri Sohi

amir,sohi@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
2

Introduction

Problem: Pointer chasing latency
• Especially long latency

Angle: Overlap pointer loads with one another
• Challenge: overcome explicit serialization

New technique: Jump Pointer Prefetching
• Creates parallelism
• Hides arbitrary latency
• Choice of implementation: software, hardware, cooperative

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
3

Problem Overview

What happens:
• Do some w ork with A
• Get addr ess of B from A
- Access B (wait)
- Repeat

Pointer loads:
- Serialized
- Hard to address-predict

→ Hard to overlap w/ each other

l = l->next

l = l->next

B

C

for (l = A; l != NULL; l = l->next)
process(l);

Jump pointer prefetching:
Overlap pointer loads with each other anyway!

next: B
A

next: C
B

next: D
C

Memory / Execution

process(A)

process(B)

Linked Data Structure Traversal:

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
4

Talk Outline

• Intr oduction
• T wo scenarios for pointer load overlapping:

O Unnecessary: scheduling is enough
O Necessary: use jump pointers

• Jump P ointer Prefetching
O Concepts
O Implementations: software, hardware, or cooperative
O Hardware mechanics

• Number s
• Summ ary

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
5

Scenario I: Pointer Load Overlapping is Unnecessary

Work > Latency

Schedule load early
• Get addr ess of B from A
+ Access B, work with A in parallel
• Repeat

Dependent prefetching:
+ Scheduling, not address prediction
• Compiler
• OOO issue (up to windo w size)
• Another mechanism
- Limited latency hiding (1 iteration)

l = l->next

A->next

Deciding Factor: Pointer load latency vs. Iteration Work

BA

l = l->next

B->next CB

l = l->next

C->next DC

l = l->next

D->next ED

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
6

Scenario II: Pointer Load Overlapping is Necessary

Latency > Work

Pointer load latency = 2 iterations
• Scheduling (1 iteration) not enough
• Must o verlap pointer loads with
 one another

Functionality of a solution:
• Addr ess of node 2 hops ahead
+ “Create” access parallelism
- Remember: no address prediction

Use Address Lookup Mechanism!

l = l->next

A->next B

l = l->next

B->next C

l = l->next

C->next D

l = l->next

D->next E

C

D

B

A

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
7

Jump Pointer Prefetching

Jump Pointers:
• Implement addr ess lookup
• Added to e very node
• Situated at home, point to target
• Interval = target - home (2 here)

What happens now:
• Fr om A, get addresses of B,C
+ In parallel: access B, C, work on A
+ Always access 2 iterations ahead

Jump pointer prefetches:
+ Tune interval to hide latency
- Overheads: storage, instructions

next: B
A

jump: C

next: C
B

jump: D

next: D
C

jump: E

next: E
D

jump: F

next: F
E

jump: G

l = l->next D
l->jump E

l = l->next E
l->jump F

l = l->next C
l->jump D

l = l->next B
l->jump C

A

D

C

B

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
8

So far: simple structures
• List, tr ee, etc. (one-level)

More complex: “backbone+ribs”
• List of r ecord pointers
• Jump pointer s for “backbone”
• Ho w to tolerate “rib” latency?

One possibility: do nothing

A More Realistic Example

next: B
A rib: Ar

jump: C

Ar

next: C
B rib: Br

jump: D

Br

next: D
C rib: Cr

jump: E

Cr

next: E
D rib: Dr

jump: F

Dr

next: F
E rib: Er

jump: G

Er

Overlay

Full jumping: jump pointers
+ Full latency tolerance
- More overhead
• W e can do better

jump: Cr

jump: Dr

jump: Er

jump: Fr

jump: Gr

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
10

Another possiblity:
• Launch dependent prefetches from
 completed jump pointer prefetches

• Gotcha: the tw o prefetches are serial
→ Jump pointer must hide two loads
→ Increase interval to 4 iterations

Chain jumping:
+ Same latency hiding as full jumping
+ Less jump pointer overhead

Trade L2 jump pointers for
Dependent Prefetches + L1 Interval

Combining Dependent and Jump Pointer Prefetches

next: B
A rib: Ar

jump: E

Ar

next: C
B rib: Br

jump: F

Br

next: D
C rib: Cr

jump: G

Cr

next: E
D rib: Dr

jump: H

Dr

next: F
E rib: Er

jump: I

Er

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
11

Implementation Space

Software overhead vs. Hardware cost

Dependent prefetching:
• S/W : Greedy Compiler-Based [Luk&Mowry ASPLOS96]
• H/W : Dependence-Based [Roth,Moshovos&Sohi ASPLOS98]

Jump pointer prefetching:
• S/W : History-Pointer [L&M ASPLOS96, this paper]
• H/W : [this paper]

Dependent Prefetches

Software Hardware

Jump Pointer
Prefetches

Software Software Cooperative

Hardware Hardware

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
12

Hardware Jump Pointer Prefetching: Mechanics

Step 1: find “backbone” loads
• learn dependence[ASPLOS98]

Step 2: create jump pointers
• Jump queue: stores N recent
 addresses (N = interval)
• Cr eate jump pointer:

O Home = tail of queue
O Target = current node

Step 3: lookup/prefetch

Inside the hat: next slide

C
Jump queue

B A D

From: ATo: E

E

Tail

1
l = l->nextA B

l = l->nextB C

l = l->nextC D

l = l->nextA B

l = l->nextD E

Mechanisms 2 + 3 in Software = Overhead

2

3

l = l->nextE F

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
13

Hardware Jump Pointer Prefetching: Mechanics II

In Software: with the home node
+ Natural lookup from home node
+ Storage often free (malloc padding)

In Hardware: same thing
• Ho w to tell where padding is?

One solution (ours):
• Softw are hints where padding is
• Har dware uses the padding

O Ex: Padding @ base address + 28

Other solutions/storage possible

Inside the Hat: Where do we put jump pointers?

From: ATo: E

E

l = l->next: 28E F

ST E, [A+28]

l = l->next: 28A B

LD ?, [A+28]

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
14

Experiments

Benchmarks: Olden (pointer-intensive)
• Softw are jump pointer components inserted manually

Simulations: SimpleScalar
• 4-wide super scalar, OOO-issue, 64 instructions in-flight
• 5 stage pipeline
• 64 KB, 32B line, dual-por ted L1 D-Cache, 1 cycle access
• 512KB, 64B line, L2 U-Cache, 10 c ycle access
• 70 c ycle memory latency
• 8 outstanding misses
• 64bit buses (contention modeled)

• Dependence-based prefetching: 256 dependences
• Jump-pointer prefetching: 32 4-interval jump queues

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
15

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

treeadd tsp em3d health mst perimeter power bh bisort voronoi

Numbers

Normalized Execution Times

Hardware JPP
Cooperative JPP
Software JPP
DBP
Base

Memory Latency -72% -83% -55%

Compute Time Overhead +10% +7% 0%

Execution Time -15% -20% -22%

memory latency

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
16

0.0

0.5

1.0

1.5

2.0

2.5

3.0

MemLat=70
Interval=8

MemLat=280
Interval=8

MemLat=280
Interval=16

Tolerating Longer Latencies
Normalized Execution Times (health)

Highlights:
+ MemLat=280 + Hardware JPP: 40% faster than MemLat=70
• Cooper ative JPP: normally -50% execution time

O MemLat=280, Interval=8: -5%
+ MemLat=280, Interval=16: -30%

Hardware JPP
Cooperative JPP
Software JPP
DBP
Base

memory latency

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
17

Summary

Linked Data Structures
• Unpr edictable addresses + Serialized latencies
• Scheduling (DBP) w orks when Latency < Iteration size

Jump Pointer Prefetching
+ Works even when Latency > Iteration size
+ Creates access parallelism where there was none
+ Tunable for long latencies
+ Synergy with scheduling reduces overhead and cost

Effective Jump Pointer Prefetching for Linked Data Structures
© 1999 Amir Roth UW-Madison

Slide
18

Summary II

Three implementations:

Pointer chasing problem: Solved?

Software Cooperative Hardware

Software Overhead high low none(+)

Hardware Cost none(+) low medium

Performance good very good best(+)

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Backup

Loose Ends

Memory bandwidth requirements
• Jump pointer stor es always hit
• Jump pointer lookups almost alw ays hit
• Jump pointer pr efetches very accurate
+ Very low (see paper)

Trees and graphs
+ Queue mechanism still works

Highly dynamic data structures
+ Speedup degrades gracefully

Interaction with loop unrolling
+ Can be made transparent

