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Introduction

Problem: Pointer chasing latency
•  Especially long latency

Angle: Overlap pointer loads with one another
•  Challenge: overcome explicit serialization

New technique: Jump Pointer Prefetching
•  Creates parallelism
•  Hides arbitrary latency
•  Choice of implementation: software, hardware, cooperative
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Problem Overview

What happens:
•  Do some w ork with A
•  Get addr ess of B from A
-  Access B (wait)
-  Repeat

Pointer loads:
-  Serialized
-  Hard to address-predict

→ Hard to overlap w/ each other

l = l->next

l = l->next

B

C

for (l = A; l != NULL; l = l->next)
process(l);

Jump pointer prefetching:
Overlap pointer loads with each other anyway!

next:  B
A

next:  C
B

next:  D
C

Memory / Execution

process(A)

process(B)

Linked Data Structure Traversal:
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Talk Outline

•  Intr oduction
•  T wo scenarios for pointer load overlapping:

O Unnecessary: scheduling is enough
O Necessary: use jump pointers

•  Jump P ointer Prefetching
O Concepts
O Implementations: software, hardware, or cooperative
O Hardware mechanics

•  Number s
•  Summ ary
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Scenario I: Pointer Load Overlapping is Unnecessary

Work > Latency

Schedule load early
•  Get addr ess of B from A
+ Access B, work with A in parallel
•  Repeat

Dependent prefetching:
+ Scheduling, not address prediction
•  Compiler
•  OOO issue (up to windo w size)
•  Another mechanism
-  Limited latency hiding (1 iteration)

l = l->next

A->next

Deciding Factor: Pointer load latency vs. Iteration Work

BA

l = l->next

B->next CB

l = l->next

C->next DC

l = l->next

D->next ED
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Scenario II: Pointer Load Overlapping is Necessary

Latency > Work

Pointer load latency = 2 iterations
• Scheduling (1 iteration) not enough
•  Must o verlap pointer loads with
   one another

Functionality of a solution:
•  Addr ess of node 2 hops ahead
+ “Create” access parallelism
-  Remember: no address prediction

Use Address Lookup Mechanism!

l = l->next

A->next B

l = l->next

B->next C

l = l->next

C->next D

l = l->next

D->next E

C

D

B

A
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Jump Pointer Prefetching

Jump Pointers:
•  Implement addr ess lookup
•  Added to e very node
• Situated at home, point to target
• Interval = target - home (2 here)

What happens now:
•  Fr om A, get addresses of B,C
+ In parallel: access B, C, work on A
+ Always access 2 iterations ahead

Jump pointer prefetches:
+ Tune interval to hide latency
-  Overheads: storage, instructions

next: B
A

jump: C

next: C
B

jump: D

next: D
C

jump: E

next: E
D

jump: F

next: F
E

jump: G

l = l->next D
l->jump E

l = l->next E
l->jump F

l = l->next C
l->jump D

l = l->next B
l->jump C

A

D

C

B
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So far: simple structures
•  List, tr ee, etc. (one-level)

More complex: “backbone+ribs”
•  List of r ecord pointers
•  Jump pointer s for “backbone”
•  Ho w to tolerate “rib” latency?

One possibility: do nothing

A More Realistic Example

next:  B
A rib: Ar

jump:  C

Ar

next:  C
B rib: Br

jump:  D

Br

next:  D
C rib: Cr

jump:  E

Cr

next:  E
D rib: Dr

jump:  F

Dr

next:  F
E rib: Er

jump:  G

Er



Overlay

Full jumping: jump pointers
+ Full latency tolerance
-  More overhead
•  W e can do better

jump: Cr

jump: Dr

jump: Er

jump: Fr

jump: Gr
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Another possiblity:
•  Launch dependent prefetches from
   completed jump pointer prefetches

•  Gotcha: the tw o prefetches are serial
→ Jump pointer must hide two loads
→ Increase interval to 4 iterations

Chain jumping:
+ Same latency hiding as full jumping
+ Less jump pointer overhead

Trade L2 jump pointers for
Dependent Prefetches + L1 Interval

Combining Dependent and Jump Pointer Prefetches

next:  B
A rib: Ar

jump:  E

Ar

next:  C
B rib: Br

jump:  F

Br

next:  D
C rib: Cr

jump:  G

Cr

next:  E
D rib: Dr

jump:  H

Dr

next: F
E rib: Er

jump:  I

Er
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Implementation Space

Software overhead vs. Hardware cost

Dependent prefetching:
•  S/W : Greedy Compiler-Based [Luk&Mowry ASPLOS96]
•  H/W : Dependence-Based [Roth,Moshovos&Sohi ASPLOS98]

Jump pointer prefetching:
•  S/W : History-Pointer [L&M ASPLOS96, this paper]
•  H/W : [this paper]

Dependent Prefetches

Software Hardware

Jump Pointer
Prefetches

Software Software Cooperative

Hardware Hardware
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Hardware Jump Pointer Prefetching: Mechanics

Step 1: find “backbone” loads
• learn dependence[ASPLOS98]

Step 2: create jump pointers
• Jump queue: stores N recent
   addresses (N = interval)
•  Cr eate jump pointer:

O Home = tail of queue
O Target = current node

Step 3: lookup/prefetch

Inside the hat: next slide

C
Jump queue

B A D

From: ATo: E

E

Tail

1
l = l->nextA B

l = l->nextB C

l = l->nextC D

l = l->nextA B

l = l->nextD E

Mechanisms 2 + 3 in Software = Overhead

2

3

l = l->nextE F
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Hardware Jump Pointer Prefetching: Mechanics II

In Software: with the home node
+ Natural lookup from home node
+ Storage often free (malloc padding)

In Hardware: same thing
•  Ho w to tell where padding is?

One solution (ours):
•  Softw are hints where padding is
•  Har dware uses the padding

O Ex: Padding @ base address + 28

Other solutions/storage possible

Inside the Hat: Where do we put jump pointers?

From: ATo: E

E

l = l->next: 28E F

ST E, [A+28]

l = l->next: 28A B

LD ?, [A+28]
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Experiments

Benchmarks: Olden (pointer-intensive)
•  Softw are jump pointer components inserted manually

Simulations: SimpleScalar
•  4-wide super scalar, OOO-issue, 64 instructions in-flight
•  5 stage pipeline
•  64 KB, 32B line, dual-por ted L1 D-Cache, 1 cycle access
•  512KB, 64B line, L2 U-Cache, 10 c ycle access
•  70 c ycle memory latency
•  8 outstanding misses
•  64bit buses (contention modeled)

• Dependence-based prefetching: 256 dependences
• Jump-pointer prefetching: 32 4-interval jump queues
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Numbers

Normalized Execution Times

Hardware JPP
Cooperative JPP
Software JPP
DBP
Base

Memory Latency -72% -83% -55%

Compute Time Overhead +10% +7% 0%

Execution Time -15% -20% -22%

memory latency
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MemLat=70
Interval=8

MemLat=280
Interval=8

MemLat=280
Interval=16

Tolerating Longer Latencies
Normalized Execution Times (health)

Highlights:
+ MemLat=280 + Hardware JPP: 40% faster than MemLat=70
•  Cooper ative JPP: normally -50% execution time

O MemLat=280, Interval=8: -5%
+ MemLat=280, Interval=16: -30%

Hardware JPP
Cooperative JPP
Software JPP
DBP
Base

memory latency
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Summary

Linked Data Structures
•  Unpr edictable addresses + Serialized latencies
•  Scheduling (DBP) w orks when Latency < Iteration size

Jump Pointer Prefetching
+ Works even when Latency > Iteration size
+ Creates access parallelism where there was none
+ Tunable for long latencies
+ Synergy with scheduling reduces overhead and cost
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Summary II

Three implementations:

Pointer chasing problem: Solved?

Software Cooperative Hardware

Software Overhead high low none(+)

Hardware Cost none(+) low medium

Performance good very good best(+)
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Backup

Loose Ends

Memory bandwidth requirements
•  Jump pointer stor es always hit
•  Jump pointer lookups almost alw ays hit
•  Jump pointer pr efetches very accurate
+ Very low (see paper)

Trees and graphs
+ Queue mechanism still works

Highly dynamic data structures
+ Speedup degrades gracefully

Interaction with loop unrolling
+ Can be made transparent


