
The Use of Multithreading for
Exception Handling

Craig Zilles, Joel Emer*, Guri Sohi

University of Wisconsin - Madison

*Compaq - Alpha Development Group

International Symposium on Microarchitecture - 32

November, 1999



 Guri Sohi 2

Overview

reclaim lost
p pelined, out-of-

DLERS

R

The Use of Multithreading for Exception Handling - Craig Zilles, Joel Emer, and
International Symposium on Microarchitecture - 32, November 1999

Extensions to a multithreaded processor to 
erformance during exception handling in a pi

order processor

• HARDWARE EXCEPTIONS

• PERFORMANCE IN TRADITIONAL IMPLEMENTATION

• IMPORTANT CHARACTERISTICS OF EXCEPTION HAN

• EXPLOIT THEM WITH EXTENSION TO SMT PROCESSO

• METHODOLOGY/PERFORMANCE

• AN OPTIMIZATION: QUICK-STARTING

• CONCLUSIONS



 Guri Sohi 3

Hardware exceptions

O ED BY SOFTWARE

E

V E

 exception
C

R

E

The Use of Multithreading for Exception Handling - Craig Zilles, Joel Emer, and
International Symposium on Microarchitecture - 32, November 1999

ST-EFFECTIVE HARDWARE → UNCOMMON CASE HANDL

COVERABLE EXCEPTIONS (NOT SEGFAULTS)
• TLB miss

• unaligned access

• emulated instructions

ENT DETECTED BY HARDWARE, RESOLVED BY SOFTWAR

• A short piece of code is executed

• Control is returned to the application at the



ultithreading for Exception Handling - Craig Zilles, Joel Emer, and Guri Sohi
ternational Symposium on Microarchitecture - 32, November 1999 4

APPLICATION EXCPT. HANDLER

POST-EXCEPT APPLICATION

Performance problem

H MISPREDICT

ANGE IN CONTROL FLOW

TED AT EXECUTE TIME

APPLICATION

APPLICATION

CEPTION AND POST-EXCEPTION INSTRUCTIONS

MIC INSTRUCTION STREAM

EXCEPTION HANDLER

ATION CODE

EXCPT. HANDLER

CTED
APPLICATION

POST-EXCEPT APPLI
M

T
I
M
E

The Use of M
In

PRE-EXCEPT

UCH LIKE BRANC

• causes CH

• often DETEC

PRE-EXCEPT

PRE-EXCEPT

SQUASH THE EX

DYNA

FETCH/EXECUTE

REFETCH APPLIC

EXCEPTION DETE
PRE-EXCEPT



ltithreading for Exception Handling - Craig Zilles, Joel Emer, and Guri Sohi
rnational Symposium on Microarchitecture - 32, November 1999 5

Trends

ELINE LENGTH, SUPERSCALAR WIDTH, AND WINDOW SIZE

WORSE

alphadoom
applu

compress
deltablue

gcc
hydro2d

murphi
vortex

average

3 pipe stages
7 pipe stages
11 pipe stages

3 STAGE
7 STAGE
11 STAGE

LPHADOOM
APPLU

COMPRESS
DELTABLUE

GCC
HYDRO2D

MURPHI
VORTEX

AVERAGE
W

The Use of Mu
Inte

ITH INCREASED PIP

• IT ONLY GETS

0

5

10

15

20

25

30

35

40

45

pe
na

lty
 c

yc
le

s 
pe

r T
LB

 m
is

s

A



 Guri Sohi 6

Structure of Exception Handler

E

d in the same
s execution

and exception

uction

x

R

M

E

The Use of Multithreading for Exception Handling - Craig Zilles, Joel Emer, and
International Symposium on Microarchitecture - 32, November 1999

CONVERGENT CONTROL FLOW

The same application instructions are execute
order INDEPENDENT of the exception handler’

INIMAL DATA DEPENDENCES between application 
handler

typically only involving excepting instr

ample: TLB MISS HANDLER

• reads miss address from privileged register

• loads from page table

• writes TLB



 for Exception Handling - Craig Zilles, Joel Emer, and Guri Sohi
mposium on Microarchitecture - 32, November 1999 7

Extension to SMT processor

E L FLOW → DON’T SQUASH

L O SEPARATE THREAD

nt of window resources (within a thread)

quired for ordering threads

POST-EXCEPT APPLICATIONION

E

R F SEQUENTIAL EXECUTION

tirement order
R

A

THR

#1

#2

P

The Use of Multithreading
International Sy

CONVERGENT CONTRO

LOCATE THE HANDLER T

• FIFO manageme

• extra hardware re

EXCPT. HANDLER

PRE-EXCEPT APPLICAT

AD

OVIDE APPEARANCE O

• Control thread re



 Guri Sohi 8

Extension to SMT processor

ER FILE

v

N TEXT SWITCH)

OR ARB)
M

A

U

M

The Use of Multithreading for Exception Handling - Craig Zilles, Joel Emer, and
International Symposium on Microarchitecture - 32, November 1999

INIMAL DATA DEPENDENCES →USE SEPARATE REGIST

oids additional renamer complexity

COMMON CASE (TLB MISS → PAGE FAULT → CON

• REVERT TO NORMAL MECHANISM

EMORY DEPENDENCES

• DETECT CONFLICTS, RECOVER (MUCH LIKE R10K,



 Guri Sohi 9

Methodology

X ING

TOOLKIT

ITECTURE TO RUN

ISSES

L1’S, 1M L2
FROM SPEC AND

ct TLB) / misses
E

M

The Use of Multithreading for Exception Handling - Craig Zilles, Joel Emer, and
International Symposium on Microarchitecture - 32, November 1999

AMPLE IMPLEMENTATION: SOFTWARE TLB MISS HANDL

• EXECUTION DRIVEN SMT SIMULATOR

• BUILT FROM ALPHA ARCHITECTURE SIMPLESCALAR

• SUPPORTS ENOUGH OF 21164 PRIVILEGED ARCH
COMMON-CASE TLB HANDLER

O SPECULATIVE EXECUTION, MULTIPLE IN-FLIGHT M

• 8 WIDE, 128 WINDOW, 7 STAGE, BIG YAGS, 64K
• BENCHMARKS WITH NON-TRIVIAL TLB BEHAVIOR (

ELSEWHERE)
• SCALED DOWN (64 ENTRY) DATA TLB

ETRIC: PENALTY PER MISS

(additional overhead vs. simulation with perfe



se of Multithreading for Exception Handling - Craig Zilles, Joel Emer, and Guri Sohi
International Symposium on Microarchitecture - 32, November 1999 10

alphadoom
applu

compress
deltablue

gcc
hydro2d

murphi
vortex

average

0

5

10

15

20

25

30

35

40

pe
na

lty
 c

yc
le

s 
pe

r 
T

LB
 m

is
s

traditional software
multithreaded(1)
multithreaded(3)
hardware 

Performance

O TTER THAN TRADITIONAL SOFTWARE APPROACH

O AS AGGRESSIVE HARDWARE TLB MISS WIDGET

ALPHADOOM
APPLU

COMPRESS
DELTABLUE

GCC
HYDRO2D

MURPHI
VORTEX

AVERAGE

TRADITIONAL
MULTITHREAD-1
MULTITHREAD-3
HARDWARE
D
N

The U

ES MUCH BE

T AS GOOD



 Guri Sohi 11

Optimization: Quick-starting

E ED

O ELINE

N THREAD IS IDLE

S TO PREFETCH

EXECUTE
P

S

O

The Use of Multithreading for Exception Handling - Craig Zilles, Joel Emer, and
International Symposium on Microarchitecture - 32, November 1999

RFORMANCE GAP BETWEEN HARDWARE AND MULTI-THREAD

• FETCH/DECODE LATENCY

LUTION: CACHE EXCEPTION HANDLER PARTWAY DOWN PIP

UR SMT IMPLEMENTATION:
• PER THREAD FETCH BUFFERS, IDLE RESOURCES WHE

• PREDICT NEXT EXCEPTION, USE IDLE FETCH CYCLE
HANDLER.

• REDUCES MULTI-THREADED EXCEPTION LATENCY.

FETCH FETCH DECODE REGREAD REGREADRENAME



The Use of Multithreading for Exception Handling - Craig Zilles, Joel Emer, and Guri Sohi
International Symposium on Microarchitecture - 32, November 1999 12

alphadoom
applu

compress
deltablue

gcc
hydro2d

murphi
vortex

average

0

5

10

15

20

25
pe

na
lty

 c
yc

le
s 

pe
r 

T
LB

 m
is

s

multithreaded(1)
quick start(1)
hardware 

Performance: Quick-starting

L UTS PERFORMANCE GAP IN HALF

ALPHADOOM
APPLU

COMPRESS
DELTABLUE

GCC
HYDRO2D

MURPHI
VORTEX

AVERAGE

MULTI-1

HARDWARE
QUICKSTART-1
A
 MOST C



 Guri Sohi 13

Single Thread Performance vs. Throughput

IN

O

O

ON)
N HANDLING
S
F

M
F

O

The Use of Multithreading for Exception Handling - Craig Zilles, Joel Emer, and
International Symposium on Microarchitecture - 32, November 1999

GLE APPLICATION: (PREVIOUS RESULTS)
CUS: IMPROVE SINGLE THREAD PERFORMANCE

ULTIPROGRAMED/MULTITHREADED WORKLOAD:
CUS: MAXIMIZE THROUGHPUT

UR EXPERIMENT: (NOT NECESSARILY A FAIR COMPARIS

RUN 3 APPLICATIONS, 1 IDLE THREAD FOR EXCEPTIO



The Use of Multithreading for Exception Handling - Craig  Guri Sohi
International Symposium on Microarchitecture 14

Performance on Multiprogramed Workloads

ERFORMANCE IS MORE COMPLICATED

• SMT IS MORE LATENCY TOLERANT

• SMT IS LESS TOLERANT OF WASTED BA

adm−cmp−vor
adm−gcc−vor

adm−h2d−mph
apl−cmp−h2d

apl−dbl−mph
apl−dbl−

ge

0

2

4

6

8

10

12

pe
na

lty
 c

yc
le

s 
pe

r 
T

LB
 m

is
s

traditional
multithreaded(1)
quick start(1)
hardware

ADM
GCC

H2D

APL
DBL

RAGE
CMP
VOR

ADM ADM
CMP

APL APL
DBLH2D

MPHMPHVOR VOR

HARDWARE
QUICKSTART-1
MULTI-1
TRADITIONAL
P

 Zilles, Joel Emer, and
 - 32, November 1999

NDWIDTH

vor
cmp−gcc−mph

dbl−gcc−h2d
averaAVECMP DBL

GCCGCC
H2DMPH



 Guri Sohi 15

Related Work

R

REVICH, LEE

U

A

S

The Use of Multithreading for Exception Handling - Craig Zilles, Joel Emer, and
International Symposium on Microarchitecture - 32, November 1999

CHITECTURES:

• M-MACHINE

O FILLO, KECKLER, DALLY, CARTER, CHANG, GU

O KECKLER, DALLY, CHANG, LEE, CHATTERJEE

• MULTISCALAR/KESTREL

BORDINATE MULTITHREADING:

• CHAPPEL, STARK, KIM, REINHART, AND PATT

• SONG AND DUBOIS



 Guri Sohi 16

Conclusions

IG NCE:
 that of an

e

O

I SYSTEMS
S

N

H

The Use of Multithreading for Exception Handling - Craig Zilles, Joel Emer, and
International Symposium on Microarchitecture - 32, November 1999

NIFICANTLY IMPROVES EXCEPTION HANDLING PERFORMA

• software TLB miss performance approaching
aggressive hardware TLB miss performanc

T ALL EXCEPTIONS CAN BE IMPLEMENTED IN HARDWARE

GH PERFORMANCE EXCEPTIONS ENABLE NOVEL SOFTWARE

• ‘a la SOFTWARE DSM or CONCURRENT GC


	Overview
	Extensions to a multithreaded processor to reclaim lost performance during exception handling in ...
	• Hardware exceptions
	• Performance in traditional implementation
	• Important characteristics of exception handlers
	• Exploit them with extension to smt processor
	• Methodology/Performance
	• An optimization: Quick-starting
	• Conclusions


	Hardware exceptions
	cost-effective hardware Æ uncommon case handled by software
	Recoverable exceptions (not segfaults)
	• TLB miss
	• unaligned access
	• emulated instructions

	Event detected by hardware, resolved by software
	• A short piece of code is executed
	• Control is returned to the application at the exception


	Performance problem
	Much like branch mispredict
	• causes change in control flow
	• often detected at execute time


	Trends
	With increased pipeline length, superscalar width, and window size
	• it only gets worse


	Structure of Exception Handler
	Reconvergent control flow
	The same application instructions are executed in the same order independent of the exception han...
	Minimal data dependences between application and exception handler

	typically only involving excepting instruction
	Example: tlb miss handler
	• reads miss address from privileged register
	• loads from page table
	• writes TLB



	Extension to SMT processor
	Reconvergent control flow Æ don’t squash
	Allocate the handler to separate thread
	• FIFO management of window resources (within a thread)
	• extra hardware required for ordering threads


	Extension to SMT processor
	Minimal data dependences Æ use separate register file
	Avoids additional renamer complexity
	Uncommon case (tlb miss Æ page fault Æ context switch)
	• revert to normal mechanism

	Memory dependences
	• detect conflicts, recover (much like R10K, or ARB)


	Methodology
	Example implementation: software tlb miss handling
	• Execution driven smt simulator
	• Built from alpha architecture SimpleScalar toolkit
	• Supports enough of 21164 privileged architecture to run common-case tlb handler
	O speculative execution, multiple in-flight misses
	• 8 wide, 128 window, 7 stage, big yags, 64K L1’s, 1M L2
	• Benchmarks with non-trivial tlb behavior (from spec and elsewhere)
	• Scaled down (64 entry) data tlb
	Metric: penalty per miss

	(additional overhead vs. simulation with perfect TLB) / misses

	Performance
	Does much better than traditional software approach
	Not as good as aggressive hardware tlb miss widget

	Optimization: Quick-starting
	Performance gap between hardware and multi-threaded
	• Fetch/Decode latency

	Solution: Cache exception handler partway down pipeline
	Our SMT Implementation:
	• Per thread fetch buffers, idle resources when thread is idle
	• Predict next exception, use idle fetch cycles to prefetch handler.
	• Reduces multi-threaded exception latency.


	Performance: Quick-starting
	Almost cuts performance gap in half

	Single Thread Performance vs. Throughput
	Single Application: (previous results)
	Focus: Improve single thread performance
	Multiprogramed/Multithreaded Workload:
	Focus: Maximize throughput
	Our experiment: (Not necessarily a fair comparison)
	Run 3 applications, 1 idle thread for exception handling

	Performance on Multiprogramed Workloads
	Performance is more complicated
	• SMT is more latency tolerant
	• SMT is less tolerant of wasted bandwidth


	Related Work
	Architectures:
	• M-Machine
	O Fillo, Keckler, Dally, Carter, Chang, Gurevich, Lee
	O Keckler, Dally, Chang, Lee, Chatterjee
	• Multiscalar/Kestrel

	Subordinate Multithreading:
	• Chappel, Stark, Kim, Reinhart, and Patt
	• Song and Dubois


	Conclusions
	Significantly improves exception handling performance:
	• software TLB miss performance approaching that of an aggressive hardware TLB miss performance

	Not all exceptions can be implemented in hardware
	High performance exceptions enable novel software systems
	• ‘a la software DSM or concurrent GC

	The Use of Multithreading for Exception Handling
	Craig Zilles, Joel Emer*, Guri Sohi
	University of Wisconsin - Madison
	*Compaq - Alpha Development Group
	International Symposium on Microarchitecture - 32
	November, 1999
	Provide appearance of sequential execution
	• Control thread retirement order






