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ST-EFFECTIVE HARDWARE → UNCOMMON CASE HANDL

COVERABLE EXCEPTIONS (NOT SEGFAULTS)
• TLB miss

• unaligned access

• emulated instructions

ENT DETECTED BY HARDWARE, RESOLVED BY SOFTWAR

• A short piece of code is executed

• Control is returned to the application at the
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Trends
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Structure of Exception Handler
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CONVERGENT CONTROL FLOW

The same application instructions are execute
order INDEPENDENT of the exception handler’

INIMAL DATA DEPENDENCES between application 
handler

typically only involving excepting instr

ample: TLB MISS HANDLER

• reads miss address from privileged register

• loads from page table

• writes TLB
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Extension to SMT processor
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Extension to SMT processor
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INIMAL DATA DEPENDENCES →USE SEPARATE REGIST

oids additional renamer complexity

COMMON CASE (TLB MISS → PAGE FAULT → CON

• REVERT TO NORMAL MECHANISM

EMORY DEPENDENCES

• DETECT CONFLICTS, RECOVER (MUCH LIKE R10K,
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Methodology
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AMPLE IMPLEMENTATION: SOFTWARE TLB MISS HANDL

• EXECUTION DRIVEN SMT SIMULATOR

• BUILT FROM ALPHA ARCHITECTURE SIMPLESCALAR

• SUPPORTS ENOUGH OF 21164 PRIVILEGED ARCH
COMMON-CASE TLB HANDLER

O SPECULATIVE EXECUTION, MULTIPLE IN-FLIGHT M

• 8 WIDE, 128 WINDOW, 7 STAGE, BIG YAGS, 64K
• BENCHMARKS WITH NON-TRIVIAL TLB BEHAVIOR (

ELSEWHERE)
• SCALED DOWN (64 ENTRY) DATA TLB

ETRIC: PENALTY PER MISS

(additional overhead vs. simulation with perfe
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Optimization: Quick-starting
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RFORMANCE GAP BETWEEN HARDWARE AND MULTI-THREAD

• FETCH/DECODE LATENCY

LUTION: CACHE EXCEPTION HANDLER PARTWAY DOWN PIP

UR SMT IMPLEMENTATION:
• PER THREAD FETCH BUFFERS, IDLE RESOURCES WHE

• PREDICT NEXT EXCEPTION, USE IDLE FETCH CYCLE
HANDLER.

• REDUCES MULTI-THREADED EXCEPTION LATENCY.

FETCH FETCH DECODE REGREAD REGREADRENAME
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Performance: Quick-starting
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Single Thread Performance vs. Throughput

IN

O

O

ON)
N HANDLING
S
F

M
F

O

The Use of Multithreading for Exception Handling - Craig Zilles, Joel Emer, and
International Symposium on Microarchitecture - 32, November 1999

GLE APPLICATION: (PREVIOUS RESULTS)
CUS: IMPROVE SINGLE THREAD PERFORMANCE

ULTIPROGRAMED/MULTITHREADED WORKLOAD:
CUS: MAXIMIZE THROUGHPUT

UR EXPERIMENT: (NOT NECESSARILY A FAIR COMPARIS

RUN 3 APPLICATIONS, 1 IDLE THREAD FOR EXCEPTIO
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Performance on Multiprogramed Workloads

ERFORMANCE IS MORE COMPLICATED

• SMT IS MORE LATENCY TOLERANT
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NIFICANTLY IMPROVES EXCEPTION HANDLING PERFORMA

• software TLB miss performance approaching
aggressive hardware TLB miss performanc

T ALL EXCEPTIONS CAN BE IMPLEMENTED IN HARDWARE

GH PERFORMANCE EXCEPTIONS ENABLE NOVEL SOFTWARE

• ‘a la SOFTWARE DSM or CONCURRENT GC
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