Master/Slave Speculative Parallelization

Craig Zilles (U. Illinois)
Guri Sohi (U. Wisconsin)

The Basics

#1: a well-known problem:

On-chip Communication

#2: a well-known opportunity:

Program Predictability

#3: our novel approach to #1 using #2

Problem: Communication

- Cores becoming "communication limited"
 - Rather than "capacity limited"
- Many, many transistors on a chip, but...
- Can't bring them all to bear on one thread
 - ─ Control/data dependences = freq. communication

Best core << chip size

- Sweet spot for core size
 - Further size increases either hurts Mhz or IPC

How can we maximize core's efficiency?

Opportunity: Predictability

- Many programs behaviors are predictable
 - Control flow, dependences, values, stalls, etc.
- Widely exploited by processors/compilers
 - But, not to help increase effective core size
 - Core resources used to make, validate pred's
- Example: perfectly-biased branch

Speculative Execution

- Execute code before/after branch in parallel
- Serior Branch is fetched, predicted, executed, retired

All of this occurs in the core

Not just the branch, but its backwards slice

Trace/Superblock Formation

- Optimize code assuming the predicted path
 - Reduces cost of branch and surrounding code
 - Prediction implicitly encoded in executable

- Code still verifies prediction
 - Branch & slice still fetched, executed, committed, etc.

All of this occurs on the core

Why waste core resources?

The branch is perfectly predictable!

The core should only execute instructions that are not statically predictable!

If not in the core, where?

- Anywhere else on chip!
- Because it is predictable:
 - Doesn't prevent forward progress
 - We can tolerate latency to verify prediction

A concrete example: Master/Slave Speculative Parallelization

- Execute "distilled program" on one processor
 - A version of program with predictable inst's removed
 - Faster than original, but not guaranteed to be correct
- Verify predictions by executing original program

Talk Outline

- Removing predictability from programs
 - "Approximation"
- Externally verifying distilled programs
 - Master/Slave Speculative Parallelization (MSSP)
- Results Summary
- **Summary**

Approximation Transformations

- Pretend you've proven the common case
 - Preserve correctness in the common case
 - Break correctness in uncommon case
 - ○Use profile to know the common case

Not just for branches

Values: Load is highly invariant (usually gets 7)
Id r13, 0(X) addi \$zero, 7, r13

Memory Dependences:

st r12, 0(A)

Id r11, 0(B)

mv r12, r11

A and B may alias always

If rarely alias in practice?

If almost always alias?

Many static paths

Two dominant paths

Approximate away unimportant paths

From bzip2

From bzip2

Many static paths

Two dominant paths

Approximate away unimportant paths

Very straightforward structure

Easy for compiler to optimize

Many static paths

Two dominant paths

Approximate away unimportant paths

Very straightforward structure

Easy for compiler to optimize

From bzip2

Effect of Approximation

- Equivalent 99.999% of the time, better execution characteristics
 - \ominus Fewer dynamic instructions: \sim 1/3 of original code
 - → Smaller static size: ~2/5 of original code

 - Smaller fraction of loads/stores
- Shorter than best non-speculative code
 - Removing checks: code incorrect .001% of the time

Talk Outline

- Removing predictability from programs
 "Approximation"
- Results Summary
- **Summary**

Goal

- Achieve performance of distilled program
- Retain correctness of original program

Approach:

Use distilled code to speed original program

Checkpoint parallelization

- Cut original program into "tasks"
 - Assign tasks to processors
- Provide each a checkpoint of registers & memory
 - Completely decouples task execution
 - Tasks retrieve all live-ins from checkpoint
- Checkpoints taken from distilled program
 - Captured in hardware
 - Stored as a "diff" from architected state

Example Execution

Start Master and Slave from architected state

Take checkpoint, use to start next task

Verify B's inputs with A's outputs; commit state

Bad Checkpoint @ C

Detected at end of B

Squash, restart from architected state

MSSP Critical Path

If checkpoints correct:

- through distilled program
- no communication latency
- verification in background

Bad checkpoints:

- through original program
- interprocessor comm.

If bad checkpoints are rare:

- performance of distilled program
- tolerant of communication latency

Talk Outline

- Removing predictability from programs
 "Approximation"
- Results Summary
- **Summary**

Methodology

- First-cut distiller
 - Static binary-to-binary translator
 - Simple control flow approximations
 - DCE, inlining, register re-allocation, save/restore elimination, code layout...
- **EXECUTE:** 8-way CMP of 21264's
 - → 10 cycle interconnect latency to shared L2
- Spec2000 Integer benchmarks on Alpha

Results Summary

- Oistilled Programs can be accurate
 - ⊕1 task misspeculation per 10,000 instructions
- Speedup depends on distillation
 - ⊕ 1.25 h-mean: ranges from 1.0 to 1.7 (gcc, vortex)
- Modest storage requirements
 - Tens of kB at L2 for speculation buffering
- Oecent latency tolerance
 - ⊖Latency 5 -> 20 cycles: 10% slowdown

Distilled Program Accuracy

Average distance between task misspeculations:

> 10,000 original program instructions

Distillation Effectiveness

Instructions retired by Master
Instructions retired by Slave

(distilled program) (original program

(not counting nops)

Performance

Performance scales with distillation effectiveness

Related Work

- Slipstream
- Speculative Multithreading
- Pre-execution
- Seedback-directed Optimization
- Optimizers

Summary

- On't waste core on predictable things
 - "Distill" out predictability from programs
- Verify predictions with original program
 - Split into tasks: parallel validation
 - Achieve the throughput to keep up
- A Has some nice attributes (ask offline)
 - Can support legacy binaries, latency tolerant, low verification cost, complements explicit parallelism