Master/Slave Speculative
Parallelization

Craig Zilles (U. lllinois)
Guri Sohi (U. Wisconsin)

The Basics

#1: a well-known problem:
On-chip Communication
#2: a well-known opportunity:
Program Predictability
#3: our novel approach to #1 using #2

Problem: Communication

Cores becoming “communication limited”
Rather than “capacity limited”

Many, many transistors on a chip, but...

Can't bring them all to bear on one thread
Control/data dependences = freq. communication

Best core << chip size

Chip

Core

Sweet spot for core size
Further size increases either hurts Mhz or IPC

How can we maximize core’s efficiency?

Opportunity: Predictability

Many programs

Control f

ow, de

behaviors are predictable

nendences, values, sta

hloited

Widely ex

by processors/com

s, etc.
dilers

But, not to help increase effective core size
Core resources used to make, validate pred’s

Example: perfectly-biased branch

bne

10014/ Q’%

Speculative Execution

Execute code before/after branch in parallel
Branch is fetched, predicted, executed, retired
All of this occurs in the core

Branch predictor Uses space in I-cache

Uses execution resources

Not just the branch, but its backwards slice

Trace/Superblock Formation

Optimize code assuming the predicted path
Reduces cost of branch and surrounding code
Prediction implicitly encoded in executable

bne

1001%/ w’%

CC

Code still verifies prediction

Branch & slice still fetched, executed, committed, etc.
All of this occurs on the core

Why waste core resources?

The branch is perfectly predictable!

The core should only execute
instructions that are not statically
predictable!

If not in the core, where?

Anywhere else on chip!

Because it is predictable:
Doesn’t prevent forward progress
We can tolerate latency to verify prediction

Instruction Storage
Prediction

Verify Prediction

A concrete example:
Master/Slave Speculative Parallelization

Execute “distilled program” on one processor
A version of program with predictable inst’s removed
Faster than original, but not guaranteed to be correct

Verify predictions by executing original
program
Parallelize vefification by SpIitgng it into “tasks”

Master core: BB | slave cores:

E.Xe.CUteS . . Parallel execution
distilled program / of original program

NS

Talk Outline

Removing predictability from programs
“Approximation”

Externally verifying distilled programs
Master/Slave Speculative Parallelization (MSSP)

Results Summary
Summary

Approximation Transformations

Pretend you've proven the common case
Preserve correctness in the common case

Break correctness in uncommon case
Use profile to know the common case

gﬁ-"gu-’lu

Not just for branches

Values: __— Load is highly invariant (usually gets 7)

+e~13700 addi $zero, 7, r13

Memory Dependences:
If rarely alias

st r12, 0(A) never in practice?
A and B saa@w alias

S0 (B) always

4
mv ri2, ril It almost

always alias?

Enables Traditional Optimizations

Many static paths
[‘ Two dominant paths

Approximate away
exit unimportant paths

fwrite

Ny
alla\
Juud

From bzip2

Enables Traditional Optimizations

Many static paths

Two dominant paths

Approximate away
unimportant paths

From bzip2

Enables Traditional Optimizations

From bzip2

Many static paths

Two dominant paths

Approximate away
unimportant paths

Very straightforward structure

Easy for compiler to optimize

Enables Traditional Optimizations

From bzip2

Many static paths

Two dominant paths

Approximate away
unimportant paths

Very straightforward structure

Easy for compiler to optimize

Effect of Approximation

Original Code
Distilled Code

Equivalent 99.999% of the time, better execution characteristics
Fewer dynamic instructions: ~1/3 of original code
Smaller static size: ~2/5 of original code
Fewer taken branches: ~1/4 of original code
Smaller fraction of loads/stores

Shorter than best non-speculative code
Removing checks: code incorrect .001% of the time

Talk Outline

Removing predictability from programs
“Approximation”

Externally verifying distilled programs
Master/Slave Speculative Parallelization (MSSP)

Results Summary
Summary

Goal

Achieve performance of distilled program
Retain correctness of original program

Approach:
Use distilled code to speed original program

Checkpoint parallelization

Cut original program into “tasks”
Assign tasks to processors
Provide each a checkpoint of registers & memory
Completely decouples task execution
Tasks retrieve all live-ins from checkpoint
Checkpoints taken from distilled program

Captured in hardware
Stored as a “diff” from architected state

Master core:
Executes
distilled program

Slave cores:
Parallel execution
of original program

Example Execution

Master Slave1 Slave2 Slave3

Start Master and Slave
from architected state

Take checkpoint, use
to start next task

Verify B’s inputs with A’s
outputs; commit state

Bad Checkpoint @ C
Detected at end of B

Squash, restart from architected state

MSSP Critical Path

Master, Slave1 Slave2 Slave3
; A If checkpoints correct:

" through distilled program
" no communication latency
" verification in background

Bad checkpoints:
" through original program
" interprocessor comm.

If bad checkpoints are rare:
® performance of distilled program
" tolerant of communication latency

Talk Outline

Removing predictability from programs
“Approximation”

Externally verifying distilled programs
Master/Slave Speculative Parallelism (MSSP)

Results Summary
Summary

Methodology

First-cut distiller
Static binary-to-binary translator
Simple control flow approximations

DCE, inlining, register re-allocation,
save/restore elimination, code layout...

HW model: 8-way CMP of 21264's
10 cycle interconnect latency to shared L2

Spec2000 Integer benchmarks on Alpha

Results Summary

Distilled Programs can be accurate
1 task misspeculation per 10,000 instructions

Speedup depends on distillation

1.25 h-mean: ranges from 1.0 to 1.7 (gcc, vortex)
(relative to uniprocessor execution)

Modest storage requirements
Tens of kB at L2 for speculation buffering

Decent latency tolerance
Latency 5 -> 20 cycles: 10% slowdown

Distilled Program Accuracy

100,000

10,600
1mﬂ||lllllllll

bzip2 crafty con g azip mef parser perl twoll vortex vpr

Average distance between task misspeculations:

> 10,000 original program instructions

Distillation Effectiveness

Instructions retired by Master (distilled program)
Instructions retired by Slave (original program

(not counting nops)

100%

60%]"' HHHH]
0% -

bzip2 crally eon g gz1p mcl parser perl twoll vortex vpr

|

Up to two-thirds reduction

Performance

> 100,000
o
et I I
: l
S 1,000
bzip2 crafty eon oap gzip mcl parser perl twoll vortex vpr
c 0)
S 100%
)
© 60% A
G i I _
S 0% -
bzip2 craflty eon gap gzip mel parser perl twoll vortex vpr

oNAO

bzip2 crafty eon gap gzip mel parser perl twoll vortex vpr

Speedup

Performance scales with distillation effectiveness

Related Work

Slipstream

Speculative Multithreading
Pre-execution
-eedback-directed Optimization
Dynamic Optimizers

Summary

Don‘t waste core on predictable things
“Distill” out predictability from programs
Verify predictions with original program
Split into tasks: parallel validation
Achieve the throughput to keep up

Has some nice attributes (ask offline)

Can support legacy binaries, latency tolerant, low
verification cost, complements explicit parallelism

