Exploiting Program Behavior

» Program Execution in the abstract: 1. fetch instruction

Faster Circuits -> Faster Execution 2. read inputs
3. calculate

4. store result

» Be “smarter” about program execution:
Exploit Idiosynchrasies in Program Behavior
Examples: 1. Caching
2. Branch Prediction
What to do Next? One Possibility is:
Identify Other Idiosynchrasies in Typical Program Behavior
Develop Techniques to Exploit

A. Moshovos m Memory Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

Memory Dependences are Quite Regular

* Identified a new form of regularity:

store

Memory Dependence Stream <
load

1. Load/Store has a Dependence?

2. Which Dependence a Load/Store has?

<St0 re

load

Opportunity to Exploit this Regularity +
Techniques are Required to Make Use of this Opportunity

awiL

A. Moshovos m Memory Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

Memory Dependence Prediction

1. Load/Store has a Dependence?

Guess: 2. Which Dependence a Load/Store has?
I
How? PastBehavior -> Store
Good Indicator of Future Behavior | Ob%"e
load
Basis for Three Micro-Architectural Techniques:
1. Exploit Load/Store Parallelism X ﬁs,ttore
. edic
6‘ 2. Reduce Memory Latency load
O . .
3. Provide for Multiple Memory Accesses ‘

A. Moshovos m Memory Dependence Prediction = 3

Permission to use these slides is granted provided that a reference to their origin is included.

Dynamic Speculation/Synchronization

Goal: Exploit Load/Store Parallelism
Ideally:
Loads Wait for a Store only when a RAW dependence exists

Determining Dependences vs. Speculating Dependences
safe but delays balance penalty vs. gain

Prior to this work: Always predict no dependence or No Speculation
This work:

When Mispeculation Penalty Becomes High
Mimic Ideal: Make loads wait only as long as necessary

A. Moshovos m Memory Dependence Prediction = 4

Permission to use these slides is granted provided that a reference to their origin is included.

In Search of Higher Performance #1

Instruction Timeline
Sequence send load
(]
N
address £
c
load - Memory = |
<——|/ computation
value Y starts
|

1. Higher Performance: Memory Responds Faster

A. Moshovos m Memory Dependence Prediction = 5

Permission to use these slides is granted provided that a reference to their origin is included.

#1. Making Memory Respond Faster

Ideally: Memory is Large and Fast
Can have it! Technology - Cost trade-off
Solution: Memory Hierarchy

! Main Memory |

slower
[o 1 larger
[— cheaper

E_
e

OK, we did the best we could, but ...
...memory is still not that fast
...and it is getting slower
Is this the end?

A. Moshovos m Memory Dependence Prediction = 6

Permission to use these slides is granted provided that a reference to their origin is included.

In Search of Higher Performance #2

Original Modified Timeline 4
Sequence Sequence "/old osition
T | T | AR P
load
(O]
N
£
load s computation
= starts
L L \old position

2. Higher Performance:
Send Load Request As Far In Advance As Possible
But, will the program still run correctly?
A. Can we ever move loads up? B. How do we do it?

A. Moshovos m Memory Dependence Prediction = 7

Permission to use these slides is granted provided that a reference to their origin is included.

A. Can We Ever Move Loads Up?

Instruction Sequence

A

load
(r1E 2+ 10 r1=r2 + 10
load ...,([r1)+ 5] load ..., [r3 + 5]

Valid Execution Order

el A load
joad J dependence = 5 Loadl A |

parallelism

A and load can execute in any order
if load does not use a value produced by A

A. Moshovos m Memory Dependence Prediction = 8

Permission to use these slides is granted provided that a reference to their origin is included.

B. How To Move Loads Up?

Instruction Level Parallel Processors:

Step #1 Step #2 Step #3
E load
memory
latency
load load &
L) &Q
< ¢
; X
grab a chunk find the execute
of instructions) dependences
Instructio

Window

Use Parallelism to Tolerate Memory Latency

A. Moshovos m Memory Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

Moving Loads Past Stores

Instructions Timeline
o load addr
i tore addr. cal ©
Store addr. caic.
Gf 2
S (¢D)
<~store S
| r. calc. (&)
oad } oad addr. calc S store addr
et © " |oad executes
1 — 1 store

"

load

A

Use Of Addresses Hinders Parallelism
O Limits Us in Our Effort to Tolerate Memory Latency

A. Moshovos

m Memory Dependence Prediction =

n to use these slides is granted provided that a reference to their origin is included.

10
Permissiol

The Goal and The Problem

Goal: Exploit Load/Store parallelism

Ideally 1. Loads w/o Dep. execute at will

2. Loads w/ Dep. synchronize with store

| : I
store| Rx

1. Wait to Determine Dependences

safe, but addresses must be known

load [Ry 2. Speculate on Dependences
\ | | balance gain vs. penalty
L 1

Prior to this work:

Program Order

Naive Speculation or No-Speculation
This work:
Speculation and No-speculation gap increases with window
Naive less close to Ideal - Net Mispeculation Penalty

A. Moshovos m Memory Dependence Prediction = 1

Permission to use these slides is granted provided that a reference to their origin is included.

Naive Memory Dependence Speculation

* Don’t give up, be optimistic, guess no dependences exist
« State-of-the-art in modern processors

Instructions Timeline

— load addr

o Guess no: load executes
G} ©
&)
c
- :
store E’_
el) dependence? 8 store addr
g — load re-executes if yes
- penalty

Need to Balance: vs. Penalty

A. Moshovos m Memory Dependence Prediction = 12

Permission to use these slides is granted provided that a reference to their origin is included.

Dependence Speculation and Performance

Proo%gp No Speculation Speculation
- No Dependence Dependence
A > A | free A |load | A | |
load C B C B
C free |load B | load
D C D

Speculation may affect performance either way
Balance: Gain vs. Penalty

Penalty: (a) work thrown away
) (b) opportunity cost

A. Moshovos m Memory Dependence Prediction = 13

Permission to use these slides is granted provided that a reference to their origin is included.

Dependence Speculation and Performance

Performance

:] Gain 5 (100% - Mis-speculation%)

= Penalty 5 Mis-speculation%

ASAP SPECULATE Never
@ Gain) 4
- Penalty \ 4
S 5 Mis-speculation% \ 4

* Balance between Gain and Penalty

A. Moshovos m Memory Dependence Prediction = 14

Permission to use these slides is granted provided that a reference to their origin is included.

Dependences vs. Window Size

0.40
—— ccl
——— compress
espresso

8 — scC
€ 0.30 xlisp
]
o
c
(]
o
<
— 0.20
o
=2
S
©
Q 0.10
o
P —
o

0.00

Ok

5‘0 160 1&")0 200
Distance in dynamic instructions

Frequency of loads with Dependences within the Window

A. Moshovos m Memory Dependence Prediction = 15

Permission to use these slides is granted provided that a reference to their origin is included.

Small Instruction Windows and Speculation

Small Instruction Window:
 Loads are speculated past few instructions

* Dependences are infrequent

Blind Speculation a good choice:
» Mis-speculations are infrequent
» Low probality of other, independent work
» Low mis-speculation penalty

Not Speculating at times is acceptable.

A. Moshovos m Memory Dependence Prediction = 16

Permission to use these slides is granted provided that a reference to their origin is included.

How About Future Systems?

Common Case:

Today S00N .« Memory will be slower

—
1

O Need to move loads further up

Guessing Naively:

Penalty becomes significant

1 Loads — ldeal Behavior:

No Dependence: execute at will

Dependence: Synchronize w/ store

—

Future Systems: Wish Dependences Were Known

A. Moshovos m Memory Dependence Prediction = 17

Permission to use these slides is granted provided that a reference to their origin is included.

Wider Instruction Windows

As the Window size increases:
» Loads are speculated past many more instructions
» Dependences become more frequent
Overall:
» Mis-speculations are more frequent
» Higher probability of other, independent work
» Higher mis-speculation penalty

Blind Speculation is still a viable approach
Not Speculating is not

HOWEVER! Net penalty of mis-speculation becomes sig-
nificant

A. Moshovos m Memory Dependence Prediction = 18

Permission to use these slides is granted provided that a reference to their origin is included.

Reducing Net Mispeculation Penalty

1. Improve the Accuracy of Speculation

2. Reduce the Amount of Work Thrown away on mispeculation

A. Moshovos m Memory Dependence Prediction = 19

Permission to use these slides is granted provided that a reference to their origin is included.

Reducing the Net Mis-speculation Penalty

Ideally:
Cc:ie * Dependent load/store pairs are synchronized
[= Other loads execute as early as possible
AN

13

|V4 Blind Speculation Ideal Speculation
ST2 11 | 11 [LD2
LE)l ST1 ST1 \k 19

17 13 LD1 13 LD1

14 I'7 14 I'7

LD2

rala” ST2| |LD2 ST2

19 19

A. Moshovos m Memory Dependence Prediction = 20

Permission to use these slides is granted provided that a reference to their origin is included.

When is Mispeculation Penalty a Concern?

Intelligent Speculation for:
1. Distributed, Split Window
even if address-based information is available
2. Centralized, Continuous Window
if address-based information is not available

for i Cent. Continuous Dist. Split

all=ali-1+1 SR == =
f \\ iteri+1<(%D ; ; g ;

store load
) iteri iter i+1

A. Moshovos m Memory Dependence Prediction = 21

Permission to use these slides is granted provided that a reference to their origin is included.

How serious a problem is it really?

What if loads wait till dependences are known
Depends on how aggressive the processor is:
- For small instruction window ~16: no difference
- But for larger windows:

150% .
SPECInt'92
100%
better
50%
0% comp espr gcc SC xTsp

Waiting vs. Perfect Dependence Knowledge

40% - %140 Performance loss

A. Moshovos m Memory Dependence Prediction = 22

Permission to use these slides is granted provided that a reference to their origin is included.

Naive Memory Dependence Speculation-Performance

» Naive: Always guess that no dependence exists
» Works well for today’s windows
* How well can we do on an aggressive processor:

60% SPECint95

40%

o)

fo)

0 20% I I

0% I | I ,] !
& L © < N S N Al
S N O o)))
Q‘,S’? ® @Q&) D 40\&
N S

Future Processors: Wish we knew the dependences

m Memory Dependence Prediction =

A. Moshovos 23

Permission to use these slides is granted provided that a reference to their origin is included.

Dependence Speculation/Synchronization

To mimic the ideal we need:
(1). Identify the loads that have dependences

(2). Identify the relevant stores

(3). Enforce synchronization

Can we do without synchronization?

How about selective speculation:
* |[dentify the loads that have dependences

e Do not speculate them

A. Moshovos m Memory Dependence Prediction = 24

Permission to use these slides is granted provided that a reference to their origin is included.

Selective Dependence Speculation

Code Blind Selective Ideal
11 11 11 LD2 11 LD2
ST1 s ST1 ST1 19 ST1 \K 19
13 13 LD1 13 _ 13 LD1
14 14 |7 14 <C 14 |7
v ST2 LD2 ST2 wn ST2
19 LD1

 Selective may perform worse than blind
19 » Can also perform as well as the ideal

v * In practice:
performance behavior varies

| _ |-|ln

O 90| (d

N PN

\\\ !_//
I

A. Moshovos m Memory Dependence Prediction = 25

Permission to use these slides is granted provided that a reference to their origin is included.

Dependence Speculation Policies

Q1. Which loads should wait
Q2. For how long

No Speculation

Al. All A2. For all previous stores
Naive
Al. None A2. N/A
Selective (also in Alpha 21264)
Al. Some A2. For all previous stores
Al. Some A2. For the specific store

Store Barrier (Hesson at al. IBM)
Predict Store and Make all subsequent loads wait

A. Moshovos m Memory Dependence Prediction = 26

Permission to use these slides is granted provided that a reference to their origin is included.

Our Solution

Requirements:

Q1. Which loads should wait? Q2. For how long?
avoid mispeculation maintain high gain

Our Solution:
Al. Predict (load, store) dependences
start with naive
learn from mistakes
A2. Synchronize

A. Moshovos m Memory Dependence Prediction = 27

Permission to use these slides is granted provided that a reference to their origin is included.

Our approach

Attempt to mimic the Ideal:

* To identify the dependent load/store pairs:
Predict!
Based on the history of mis-speculations

e To synchronize:

Use dynamically assigned synchronization variables

A. Moshovos m Memory Dependence Prediction = 28

Permission to use these slides is granted provided that a reference to their origin is included.

Memory Dependence Prediction - Goal

Goal: Report Memory Dependences
without actual knowledge of the addresses involved

Instructions

-

T Functionality:

store: dependence with which load?

load: dependence with which store?

store
) Dependence? ——.m
load 1
1

When Dependences Are Not Know... Guess Them.

A. Moshovos m Memory Dependence Prediction = 29

Permission to use these slides is granted provided that a reference to their origin is included.

Memory Dependence Prediction

Dependence Behavior: Locality in time
Detect Dependences O next time guess that the same will happen
Address may vary over time!

Instructions ali]=ali-1]
]

(store|_»
load |+ Probe using address —a (store PC, load PC)

p->count++

Record: (store PC, address)

Time

C'store "™ Predict: (store PC, load PC)
load

<' store

load
|

Use Dependence History to Predict Future Dependences

™ Predict: (store PC, load PC)

A. Moshovos m Memory Dependence Prediction = 30

Permission to use these slides is granted provided that a reference to their origin is included.

Memory Dependence Speculation/Synchronization

A. Predict Dependence Timeline o
: store
1. Predict load (s
Allocate Sync. bit load
2. Predict store load addr
v/ @

Wait on Sync. bit
3. Store Signals
Load executes
B. Predict No Dependence store addr @
_/
2. Load executes
3. Store verifies

Correct Prediction: Loads wait only as long as it is necessary
Incorrect: Same as Naive or Delay

A. Moshovos m Memory Dependence Prediction = 31

Permission to use these slides is granted provided that a reference to their origin is included.

Predicting Dependences

* Dependence: (Load PC, Store PC)

» Temporal locality - Small Working Set.

(2). track recent mis-speculations
» Use a small table to:

(2). Predict dependences
Memory Dependence Prediction Table

ED ED

- Allocate entry _ Exec

LDPq STP rop

ute?

- Synchronize
[sTP

LD LD LD

- No! Synchronij

- Misspeculation

- Synchronize

ST =l

A. Moshovos m Memory Dependence Prediction = 32

Permission to use these slides is granted provided that a reference to their origin is included.

Speculation/Synchronization

Speculation/Synchronization, we need:

. 1. Loads with dependences

ldentify — P
2. Relevant stores

3. Enforce synchronization

How we do it:

e Parts (1) & (2): Predict load - store
Start with Naive but learn from mistakes

Based on the history of mispeculations
 Part (3):

Dynamically assigned synchronization variables

A. Moshovos m Memory Dependence Prediction = 33

Permission to use these slides is granted provided that a reference to their origin is included.

Synchronization - Load Waits

* Provide a small pool of full/lempty bits
» Use (LD PC, ST PC) to associate entries w/ dependences

Memory Dependence Synchronization Table

MDPT MDST FIEV

- May | Execute LDPC

LD - No Wait

A. Moshovos m Memory Dependence Prediction = 34

Permission to use these slides is granted provided that a reference to their origin is included.

Synchronization - Load Resumes

Memory Dependence Synchronization Table

MDPT MDST FIEV
ED

°1Free

- Do | need to synchronize?
STP | - PrObany

/

LD
ST

® Anyone waiting~

~ Resume Execution

A. Moshovos m Memory Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

Multiple Instances of the Same Dependence

35

LOOP 0 STORE,
~ STORE 1 STO
1
C /\/
C LOAR,
LOAD
c+1 LOAD¥,,

Identification: (Load PC, Store PC) not enough
In additionf (1). Data Address, or

(2). Dependence Distance
Analogous to static linear recurrence

May Need:

Multiple synchronization entries per dependence

A. Moshovos m Memory Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

36

Dependence Speculation/Synchronization

* Other alternatives exist for both prediction and
synchronization.

» Simplifications may be possible.

For example:
* Use PC to identify only loads
* Use the data address to indirectly identify the stores and to
synchronize

37

A. Moshovos m Memory Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

How it works

Mem. Dependence Prediction Table
Predict Loads w/ Dependences
Mem. Dependence Synchronization Table

o O Enforce Synchronization
03 MDST F/IEV FIEV
7 LDPC STRC|(1 LDPG STRC|(d 1
MDPT

LDPG STPC PHED | [LDPC STPC PHED | |LDPG STPC PRED

i
/‘- Allocate entny A\ N Wat - Resume
LDP(- Synchronize?

LDPQ STPC
_ _ - Execute? STPQ LDP(
- Mispeculation T 1
\ \
1|Cst1 [io] ? 3 |CsT] [io]

38

A. Moshovos m Memory Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

Mechanism Models

* Multiscalar - 3 models:
1. Merged MDPT/MDST, allows for adaptivity
concerns: centralized & multiple deps. per load
use more as an indicator of potential
2. Merged MDPT/MDST, fixed #stores per load
3. Split, Level of indirection for multiple dependences per load

e Superscalar - 1 model:
Level of indirection for multiple dependences
Synchronization using the register scheduler

A. Moshovos m Memory Dependence Prediction = 39

Permission to use these slides is granted provided that a reference to their origin is included.

Evaluation - Roadmap

1. Multiscalar - Split, Distributed Window
* Review:
Naive Speculation / Potential
Address-Based information
Selective Speculation
 Evaluation of Speculation/Synchronization
1. Prediction Accuracy
2. Performance
2. Superscalar - Continuous, Centralized window

A. Moshovos m Memory Dependence Prediction = 40

Permission to use these slides is granted provided that a reference to their origin is included.

Multiscalar - Result Review
» Naive Speculation is a win, more so as window increases
4-stages: ~30% int, ~110% fp
8-stages: ~50% int, ~280% fp

 Potential over Naive (oracle):
8-stages: ~31% int, ~17% fp

» Exposing Store addresses helps only slightly
8-stages: ~9% int, ~3% fp

 Selective Speculation not robust
8-stages: slowdowns as much as 45%

A. Moshovos m Memory Dependence Prediction = 41
ir origin is included.

Permission to use these slides is granted provided that a reference to their

Comparison of Speculation Policies

150%
SPECint'92
4-Stages 8-Stages
100%
50%
0% 103 161 1.36 145 1.34| 1.13 163 1.40 154 1.38
= = 8 % § £ 3 8 8 3
o o o = o o o =
o o

@ Blind [l Selective [Synchronization

» Speedups are relative to no speculation (IPC along X axis)

 Perfect dependence prediction is used

42

A. Moshovos m Memory Dependence Prediction =
origin is included.

Permission to use these slides is granted provided that a reference to their

Dependence Prediction Accuracy

100%
95%
90%
oo% E S 852 3 5 E B8 Q 2 2 2 28 %
92 o = £ 2 & 2 2 o s 2
> S = g » 5 § E «© g o
ol d RS ;=
Q S o < 8 2 2~ o =
£ 8 = S 4 3 § 8 4 39
< 4 — — o —
8§ R =
—
Predicted/Actual Correct:] +
BN NY YINERYIY Incorrect: [+

A. Moshovos m Memory Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

Mis-speculation Rates

8 Stages
0.10
0.05
0.00
o) 0O »w = o = X S T T S 5 2 W
> E 83 5 @ 8 38 E g o« 2 3 8 3 9
o 8 290 & 2 92 £t =2 g £ 2 g « 2 2
@%QQ_‘—!'—.vg"?::'cEm‘_i-E'g
© o ™ £ N o TN 0> oS s =
E ~ g O 9 5 2 oo £ o 494 & § 9
< S = 7 g3 - = 3
)
N I =
N —

A. Moshovos m Memory Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

Speedup - SPECIint95

60%
SPECIint95 - 8 Stages m Actual

m ldeal
40%
20%
0%

1.18 2.96 1.65 2.44 2.11 4.45 2.12 1.90
90 ‘\((\ cC o 0\\ e,g e\\ \e*
P @B 0¥ (7 WP 1\\9 RS
g N
» Speedups are relative to blind speculation
e |[PC w/ our mechanism
A. Moshovos m Memory Dependence Prediction = 45
Speedup - SPECfp95
60%
SPECfp95 - 8 Stages m Actual

H Ideal
40%
20%

0% I

486 5.81 533 3.12 6.92 362 502 2.85 1.31 3.46
N ““-\«\ & O O PP B R P
((\G \)'7/ (3\ ((\() @,Q \)('\,‘a‘ QQ >
x9,&»\0 ,&Q’L XQB‘X\\; SO AN A 6 '\/Nb‘\“

» Speedups are relative to blind speculation
 |PC w/ our mechanism

A. Moshovos m Memory Dependence Prediction = 46

ermission to use these slides is granted provided that a reference to their origin is included.

Superscalar: Key Results

* Naive memory speculation very close to ideal speculation
if loads can inspect store addresses before going to memory
&
this does not impact load latency
Address Scheduler: Complexity & Cost?

« Memory Dependence Speculation/Synchronization for:
1. Lower Complexity
2. High Performance

A. Moshovos m Memory Dependence Prediction = 47

Permission to use these slides is granted provided that a reference to their origin is included.

Re-Scheduling Loads on-the-fly: Design Space

 Address Scheduler

Can loads see preceding store addresses before going to
memory?

* Why not? Additional Scheduler is needed!
Complexity & Latency implications
» Similar to register scheduler (window), but:
e.g., Large address fields & Out-of-order insertion

© =
% S (o)} = (o] = @ =
s SPl 2 o Sl @ > S =P E
LL D 0w [%) = o

@) O

\) Mem.

Is it there £

A. Moshovos m Memory Dependence Prediction = 48

Permission to use these slides is granted provided that a reference to their origin is included.

Memory Dependence Speculation
* No Speculation:

load executes only when it is certain that no dependence will
be violated

» Speculation:
load may execute before a preceding store
a dependence may be violated
check for violations at a later time (possibly not in critical path)

o =
bl Shl 2 TP S q,—>a)—>“§3—>g
Lo | |0 =S| (= o

O O

‘\\\\\\\\S‘ Mem Dependence /f
Checking

A. Moshovos m Memory Dependence Prediction = 49

Permission to use these slides is granted provided that a reference to their origin is included.

Speculation Policies

Code Naive Selective Store Barrier |Synchronization
LD2 LD2
ST1 ST1 ST1 | sT2 . ST1 \
LD1 LD1 LD1
ST2.. || [sT2| [LP2] | [sT2 | sT2| [LD2| | [sT2
LD1 D1
LD2 5

A. Moshovos m Memory Dependence Prediction = 50

Permission to use these slides is granted provided that a reference to their origin is included.

Speculation Policies: Tradeoffs

* Naive:
May execute loads too early
Suffers from misspeculations
* Selective
May delay a load more than it is necessary
Dependences often among distant loads and stores
» Store Barrier
Delays dependent loads only as long as it is necessary
Delays unrelated loads too
* Synchronization
Delays loads only as long as it is necessary

A. Moshovos m Memory Dependence Prediction = 51

Permission to use these slides is granted provided that a reference to their origin is included.

Evaluation

» w/ Address Scheduler (AS)
- Speculation a win
- NAIVE Speculation as good as it gets (ORACLE)
- no need for other speculation policies
- But! Performance drops w/ scheduler latency

* w/o Scheduler (NAS)
- Speculation a must
- Can do a lot better than NAIVE
- SELECTIVE and STORE BARRIER not robust
- SYNCHRONIZATION close to as good as it gets (ORACLE)

A. Moshovos m Memory Dependence Prediction = 52

Permission to use these slides is granted provided that a reference to their origin is included.

Dependence Status Prediction - Loads

3.0% I N/Y - DEPENDENCE MISSED

Y/N - FALSE DEPENDENCE

2.0% —

1.0% - _

0.09% L HE o O P 5 e P _ET:]H W
Y

D A% 10 D 2O oV o A DD DO D W o O
NENZANZNZNENUNAN SEFNIAS SN SN RN NN N

A. Moshovos m Memory Dependence Prediction = 53

Permission to use these slides is granted provided that a reference to their origin is included.

Mispeculation Rates

10%
]] SYNCHRONIZATION
8% _
— NAIVE
6% u -
4%] o
204 L o ~ -
0% q | s e j]
B

J
SRS AS

SO >N
AN ARSI DCA

NSEENINENNN N

A. Moshovos m Memory Dependence Prediction = 54

Permission to use these slides is granted provided that a reference to their origin is included.

AS: Naive vs. No Speculation
— 0 - ™
g) 16% _ M < <
o - 14% —
g5 1% . 4
cUE 0]
Z= 8% petter ||
VO 6% _ 7 u
%;’% 4% [i
3] I I SIS IS
Eo ox nll B _
=~) "
"% g & « & § 5 & £ &
o o cveLes . | 1cvee | 2 cveles

* NAIVE a win over no speculation (in most cases)
» Gains increase w/ scheduler latency
* No misspeculations observed

A. Moshovos m Memory Dependence Prediction = 55

Permission to use these slides is granted provided that a reference to their origin is included.

AS/Naive vs. NAS/Oracle

NAS/Oracle: No scheduler (i.e., no latency for loads)
Perfect knowledge of all memory dependences

w
@ 3
S X

IhAattAar
ULl

N
Q
>

10%

11

e}
< G % 3] *
S § &« & § & & ¥ &

DNAS/ORACLE D AS/NAV O-CYCLES D AS/NAV 1-CYCLE l AS/NAV 2-CYCLE

3
S

N
=
S

Performance over
AS/no 0-cycles

-20%

@/-/

AS/Naive 0-cycles: as good as it gets
Potential to do much better when AS latency is >0

A. Moshovos m Memory Dependence Prediction = 56

Permission to use these slides is granted provided that a reference to their origin is included.

over NAS/Naive

Approximating NAS/Oracle: NAS/Naive

* Naive offers some of the performance potential
Speedups over No Speculation:
Oracle: ~65%, 30% (int) and 113% (fp)
Naive: ~20%, 21% (int) and 20% (fp)

Significant room for improvement w/ other speculation
methods

A. Moshovos m Memory Dependence Prediction = 57

Permission to use these slides is granted provided that a reference to their origin is included.

Selective and Store Barrier Speculation

50%
40% 4

30% better M

20% T

0 = 1]
e | T T UL LW S -

-10% |
-20%

-30%

-40% -
O {3 N QY g O
S § &« ¢ S g & F K

. | NAs/ORACLE | | NAs/sEL I NAS/STORE

Neither is robust: Naive sometimes better

A. Moshovos m Memory Dependence Prediction = 58

Permission to use these slides is granted provided that a reference to their origin is included.

Speculation/Synchronization

40% _

> 30% better

®

e 0

< 20%

<

Z 10%

s L 1

o 0% |
> © O & N N6 o
S v 9 <2 9 9 9 ¥ I

. | NAS/ORACLE B NnAS/sYNC

* 4k-entry memory dependence predictor
Robust, performance close to Oracle Speculation

A. Moshovos m Memory Dependence Prediction = 59

Permission to use these slides is granted provided that a reference to their origin is included.

AS: Naive vs. No Speculation
L 0~ ™
cg 16% M < <
@) 14%]
O < 12% [A
=9 10% 1 -
T T 8% better
=2 o | ;
4%
oo
c o 2% H ﬂ
§§ -2% L
@) O M OO O NVNNANAVIOVYADLNLOL O
s Y IIFTLIISIIILITIINY
al o cveLes "l 1cveie | 2 cvetes

* NAIVE a win over no speculation (in most cases)
» Gains increase w/ scheduler latency
* No misspeculations observed

A. Moshovos m Memory Dependence Prediction = 60

Permission to use these slides is granted provided that a reference to their origin is included.

AS/Naive vs. NAS/Oracle

NAS/Oracle: No scheduler (i.e., no latency for loads)

Perfect knowledge of all memory dependences
40% _

Ih AattAar
ULl

N
Q
>

10%

3
X
I
I

N
=
S

Performance over
AS/no 0-cycles

-20%

R TS B I T I N
SIFISIFTY FTTETFFIY

D AS/NAV 0-CYCLES D AS/NAV 1-CYCLE l AS/NAV 2-CYCLE D NAS/ORACLE
AS/Naive 0-cycles: as good as it gets
Potential to do much better when AS latency is >0

A. Moshovos m Memory Dependence Prediction = 61

Permission to use these slides is granted provided that a reference to their origin is included.

Selective and Store Barrier Speculation

50%

40% a 4

30% better m

ZOgAJ E
i Jj.m_ﬂj.iﬂmq I rj;f " .

-10%
-20%

-30% |

-40%
O 00 Q0N WA NVOVYNQOOL NN
SIYVYIRIIY SIIIIIIIIY

. | NAs/ORACLE | | NAs/sEL I NAS/STORE

* Performance relative to NAS/Naive
Neither is robust: Naive is often better

A. Moshovos m Memory Dependence Prediction = 62

Permission to use these slides is granted provided that a reference to their origin is included.

Speculation/Synchronization

50% u
A
v 40% B better
3 30%
2 20%
Z
~ 10% }
)
>
T P STELSIIL SIS TT L
OANNNNNNY YNYNYNYNYNNYNYNYNY

. | NAS/ORACLE B NnAS/sYNC

* 4k-entry memory dependence predictor
Robust, performance close to Oracle Speculation

A. Moshovos m Memory Dependence Prediction = 63

Permission to use these slides is granted provided that a reference to their origin is included.

Summary

« W/ AS

- Speculation is a win

- Naive speculation as good as it gets

- No need for other speculation policies

- But AS may impact latency

- Performance degrades w/ scheduling latency

- Could do better if dependence were known in advance
* W/O an AS

- Naive much better than no speculation

- But lots to be gained over naive

- Selective or Barrier not robust, often worse than naive

- Speculation/Synchronization very close to ideal

A. Moshovos m Memory Dependence Prediction = 64

Permission to use these slides is granted provided that a reference to their origin is included.

